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Abstract

   Quasi-horizontal wave motions in the equatorial area are discussed. A single layer of homo-
geneous incompressible fluid with free surface is treated. The Coriolis parameter is assumed 
to be proportional to the latitude. In general, waves of two different types are obtained as 
solutions, one being the inertio-gravity wave and the other Rossby wave. They are distin-
guished from each other by the difference of frequencies and by the relationships between 
pressure and velocity fields. 

   For the solutions of the lowest mode (waves confined near the equator), however, the 
distinction between the Rossby and the inertio-gravity waves is not clear. The wave moves 
westward and the frequency of this wave is compared to that of the gravity wave, if wave 
length is large. With the increase of the wave number the frequency decreases and ap-
proaches to that of the Rossby type wave. The pressure and wind fields of this wave show 
somewhat mixed character of the two types, and change continuously with the wave number. 
In this connection it seems impossible to "filter out" gravity waves from large scale motions. 

   Another interesting feature of the equatorial disturbances is that the low frequency 
waves are trapped near the equator. It is shown that the both waves of inertio-gravity 
type and of the Rossby type have appreciable amplitude only near the equator. The char-
acteristic north-south extent of the waves is (c/ ) 1/2, where c is the velocity of long gravity 
waves and   is the Rossby parameter. This expression is identical with that derived by 
Bretherton (1964) for inertio-gravity oscillations in a meridional plane. 

   In the later half, "forced stationary motion" in the equatorial region is treated. Based 
on the same model, mass sources and sinks are introduced periodically in the east-west 
direction. Then the motions and surface topography caused by them are calculated. 

   As expected, high and low pressures appear where mass source and sink are given 
respectively. But these high and low cells are splitted into two parts separated by troughs 
or ridges located along the equator. Strong east-west current was formed along the equator. 
The flow directs from source to sink and it is intensified by the turning of the circular 
flow in the higher latitudes.

1. Introduction 

 It is well known that quasi-horizontal 
motions of the atmosphere or of the ocean 
have two different types, the one being 
inertio-gravity wave and the other the so-
called quasi-geostrophic wave, and that 
these two waves behave in quite different 
manner. It is an established fact that the 
most part of the energy of large scale motions
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is borne by the latter in the middle and high 
latitudes. Therefore, in numerical studies 
on large scale motions by use of the primitive 
hydrodynamical equations, it is an important 
problem to get a suitable pair of wind and 
pressure fields which does not include inertio-
gravity oscillations of unrealistically large 
amplitude. Many methods have been devised 
for that purpose. (Charney, 1955; Phillips, 
1960; Hinkelmann, 1959). 

 The present author proposed a scheme of 
finite difference of time integration, which 
may filter out gravity oscillations in the 
process of integration. (Matsuno, 1966). All 
these methods are based on the fact that
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there are two distinct modes of motions. 
Moreover in the case of mathematical filter-
ing procedure, it was assumed that the fre-
quency of the inertio-gravity oscillations are 
much higher than that of quasi-geostrophic 
waves of the same horizontal scale. These 
conditions are actually satisfied in the middle 
and high latitudes and these methods were 
used successfully. 

 Here arises a problem how we must modify 
above arguments when we treat the motions 
in the lower latitudes especially those in the 
equatorial area. Can we get two waves of 
different types in the equatorial area? Is there 
quasi-geostrophic motion even at the equator? 
It is possible to eliminate the gravity oscil-
lations by use of the filtering procedures 
mentioned previously? 

 Concerning the wave motions in the equa-
torial area several works have been made in 
relation to long-term variations of sea level 
in the equatorial ocean. Yoshida (1959) 
pointed out from theoretical considerations 
that low frequency gravity waves may be 
trapped in the narrow belt along the equator. 
This problem was further discussed by Stern 
(1963) and Bretherton (1964), though their 
studies were confined only to the motions in 
the meridional plane. These authors limitted 
the discussion only to the inertio-gravity oscil-
lations or pure inertia oscillations. Ichiye 
(1960) investigated the wave motions near 
the equator, and got the result that in the 
equatorial ocean there may exist both Rossby 
and gravity waves, and that the frequency 
of the former is much lower than the latter. 
However, in his treatments he made many 
assumptions. Some self-inconsistent result 
were obtained concerning the Rossby wave. 
The author's intention in this paper is to 
discuss the behaviours of the Rossby and the 
gravity waves in the equatorial area more 
precisely and to answer some of the questions 
mentioned earlier. 

2. Model and basic equations 
 The simplest model suitable for the dis-

cussion of our interests is the so-called diver-
gent barotropic model, i. e., a layer of incom-
pressible fluid of homogeneous density with 
a free surface under hydrostatic balance. It 
is known that treating such a model and

applying the so-called beta-plane approxim-
ations we can get various characteristics of 
large scale motions in the middle and high 
latitudes mentioned ealier. 

 On a local Cartesian coordinate system 
(Fig. 1), the equations of motion and of the 
mass conservation are written as ;

(1)

where u, v, are the velocities in the x and y 
directions respectively and h is the small 
deviation of the elevation of the top surface, 
the mean value of which is denoted by H. 
f is the Coriolis parameter and g the ac-
celeration of gravity. As shown in Fig. 1 
the x-axis is taken so as to coincide with the 
equator directing eastward, and the y-axis 
is taken northward. Here we shall assume 
that the Coriolis parameter f is linearly pro-
portional to the latitude,

Fig. 1. Model and Coordinates. 

      f= y.

Here /3 is the so-called Rossby parameter and 
we shall take it as a constant. In the process 
of mathematical analyses made in this study 
no further approximation will be made. It 
means that Coriolis parameter is treated as 
a variable at any occasion.
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 It is convenient to convert basic equations 
into non-dimensional form. At first we shall 
rewrite (1) by using the geopotential height 

  instead of the geometrical height h.

pic model, the equations (1) may be inter-
preted in some other ways. For instance, 
let us consider a two-layer model of the 
atmosphere on pressure-coordinates. Adopt-
ing the conventional notations the equations 
of motion and the thermodynamic equation 
for small perturbations are written as ;

(la)

(4)

Here c2 (=gH) is the square of velocity of 
pure gravity waves. By taking the units of 
time and length as following, 

     [T]= (1/c )1/2   [L]= (c/ )1/2 (2) 

the equations (la) are transformed into non-
dimensional form ;

where subscripts 1, 2 and 3 stand for upper, 
middle and lower levels respectively, and

is the stability factor. Taking

the difference of the first and the second equa-
tions and making use of continuity relation, 
a closed system of equations for the differ-
enced quantities are derived.

(3)

(4a)

Hereafter non-dimensional equations (3) will 
be treated and all symbols stand for dimen-
sionless quantities. The time and length 
scales are shown in Fig. 2 as function of c. 

 Though our model is the so-called barotro-

Fig, 2. Units of time (left scale) and length 
   (right scale) as functions of velocity of 

   pure gravity wave.

Here symbols with subscript d are defined as 
follows ;

This set of equations (4a) is just equivalent 
to (la) and consequently (3), if we replace 
(u, v,  ) by (ud, vd,  d) and c2 by ci2 
(= S p2/2) where ca is the velocity of the in-
ternal gravity waves. It means that the 
equations (la) are valid to internal mode of 
motions, and in this case the velocity should 
be taken as the wind shear and the geopoten-
tial height should be replaced by thickness or 
the temperature. 

  It could be shown that our model are ap-
plicable not only to such simplified models 
but to some particular cases of the stratified 
fluid, if we formulate the problem in a suit-
able manner. It will be discussed in the 
Section 7.
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3. The frequency equation 
 We shall consider wave motions propagat-

ing in the east-west direction. Assuming that 
all quantities have the factor eiwt+ikx, the 
equations (3) turn to ;

iwu-yv+ik =0

(5)

number for some difinite meridional mode n. 
Since (8) is a cubic equation to w, we have 
three roots when n and k are specified. 

 It is expected that two of the three roots 
correspond to the two inertio-gravity waves, 
one of which is propagating eastward and the 
other westward, and the last one to Rossby 
wave. In fact, the approximate values of 
three roots of w for very large k, are given 
as;

(10)

Here the same symbols u, v, and   are used 
to denote the y-dependent part of the cor-
responding quantities in (3). Eliminating u 
and  we get the equation to v as follows ;

(6)

This equation reduces to the equation treated 
by Bretherton when k*0. Since we are con-
sidering wave motions near the equator or 
y* 0 the boundary condition ; 

            v*0; when y* ±* (7) 

may be adequate. In the actual atmospheric 
situations there is upper limit to y ! , the 
position of the pole and boundary conditions 
should be different ones. 

 However, approximations in the boundary 
conditions have little effect on the solutions 
of lower modes, as described later. 

 The equation (6) with boundary conditions 
(7) poses an eigen-value problem, just the 
same as Shrodinger equation for a simple 
harmonic oscillator. The conditions (7) are
satisfied only when the constant

is equal to an odd integer ;

(8)

Then the solution of (6) is given as; 

          v (y) = Ce-1/2y2 Hn (y) (9) 

where Hn (y) is the Hermite polynomial of 
the n'th order. 

 The equation (8) gives a relation between 
the frequency and the longitudinal wave

The upper two roots are identified as the 
frequencies of inertio-gravity waves and the 
lower, w3 is that of the Rossby wave. This 
point is confirmed if we express the above 
relations in terms of phase velocity of waves 
using original dimensioned parameters ;

(11)

Here the velocity of pure gravity wave is 
denoted by cg instead of c, in order to avoid 
confusion. It is noted that effects of the 
rotation and meridional mode are condensed 
in a single term including the factor

 For arbitrary values of k, we can get three 
frequencies, by solving the cubic equation 
(8). They are shown in Fig. 3a in linear 
scale. Fig. 3b shows the same relations in 
logarithmic scale. For n>_1, these three 
frequencies are completely separated from 
each other over the whole range of k. Each 
of them are identified with the frequency of 
the waves of the following three kinds. 

 1. The inertio-gravity wave which pro-
pagates eastward (indicated by thin solid line 
in Fig. 3) 

 2. The inertio-gravity wave which pro-
pagates westward (indicated by thin dashed 
line) 

 3. The Rossby wave that propagates 
westward with slow velocity (indicated by
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 Fig. 3a. Frequencies as functions of wave 
     number. 

    Thin solid line: eastward propating inertio-
       gravity waves. 

    Thin dashed line: westward propagating 
       inertio-gravity waves. 

    Thick solid line: Rossby (quasi-geostrophic) 
       waves. 

    Thick dashed line : The Kelvine wave like 
       wave. 

thick solid line) 
 Conventionally the subscripts 1, 2 and 3 

will be used to denote the three kinds in the 
above order. 

Special treatments for n=0 
 Putting n=0 in the equation (8) we can 

also get three roots for w. In this case the 
equation (8) is factorized as following; 

          (w-k) (w2+kw-1) = 0 (12) 

From (12) we have simple expressions for 
the three roots of w, but they do not cor-
respond one to one with the frequencies of 
three different waves. The classification of 
the roots is made from their behaviors as

                            * wave number k 
 Fig. 3b. Same as Fig. 3a but both the fre-

     quency and the wave number in logari-
     thmic scale. 

functions of n. Namely, if we consider n as 
a continuous parameter, the frequencies of 
the three different wave for n=0 is obtained 
by ; 

        wl (k ; 0) =lim wl (k; n) 
                                     n-*0 

where the subscript l denotes the three types 
of waves. 

 From the above considerations the three 
roots of (12) are classified as follows, 

            (east, gravity)

(west, gravity)

(for k < 1/*2)         2 

(for k>_/1 /* 2 )
(Rossby) (13)

(for k<1//2) 

(for k>_ll / 2 )

 In this case, for n=0, the frequency of the 
westward propagating gravity wave is not 
separated from that of the Rossby wave, but 
they coincide with each other at k=1/ *2 ,
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  w2 (k=1/  2) = w3 (k=1/  2) =k=1/ 2 

Except this point w3 is always smaller in 
magnitude than w2. 

 Here we should claim that one of the three 
roots of (12), w=k, cannot be adopted as an 
eigenvalue of the original equations (5), from 
the following reasons. In the process of deriv-
ing the equation (6) and consequently the 
frequency equation (8), we assumed implicitly 
the following relation holds

Therefore it is demanded that the denomina-
tor (w-k) (w+k) does not vanish, unless the 
numerator is identically zero. The solution 
obtained by equating the numerator to zero 
does not satisfy the boundary conditions, if 
we solve the equation to  . 

 From the above reason the one of the 
roots for n=0, w=k, should be rejected. Then, 
from (13) we see that the westward pro-
pagating gravity wave does not exist for 
k>1/ 2and the Rossby wave does not exist 
for k<1/ 2. 

 In other words, in the case of the lowest 
mode, n=0, we have only two waves, one of 
which is considered as the intertio-gravity 
wave propagating eastward, and the other 
wave, that propagates westward, can be 
identified neither with the Rossby wave nor 
with the inertio-gravity wave. The frequency 
of this wave ranges from the value which is 
compared to that of the inertio-gravity wave, 
to the value which is close to that of the 
Rossby wave. 

 As observed from Fig. 3a and 3b this wave 
connects the two families of waves, and 
because of the existence of this wave, the 
vacant space in the frequency diagram is lost. 

Special solution not included in the equation (8) 
 Next we shall consider another solution 

which is not included in the general form 
(8). The frequency equation (8) was obtain-
ed by reducing the original simultaneous 
equation (5) to the equation for v only. 

 There may exist a solution which has no 
meridional velocity v. Putting v (x, y) -0 in 
(5) we get

(14)

Since both u and  appear in the first and 
the third equations and they are algebraic 
equations, the above equations have solutions 
only when

(w-k) (w+k) =0

Then the solutions are obtained as follows, 

          =u=Ce- y2, for w= -k 
         =-u=Ce1/2y2, for w=k (15)

Clearly the lower one does not satisfy the 
boundary condition (7), and it is rejected. 
It is interesting that the upper solution, 
w= -k, is obtained if we put n=-1 in (8). 
So we shall label this solution by n= -1. In 
Fig. 3a and 3b the value of w of this mode 
is drawn with a thick dashed line. The 
frequency of this wave reaches zero, when 
the wave number becomes zero, whereas the 
frequencies of the other eastward propagat-
ing waves have the lower bound (approxima-
tely  2n+1) in magnitude. 

 At any rate, it seems very important that 
for the lowest mode solutions the frequencies 
of Rossby type wave continues to that of 
inertio-gravity wave and there is no gap in 
the spectrum. 

4. Eigenfunctions 
 In the last section we got a set of eigen-

values, wn1, of the equations (3). They are 
labelled by double subscripts n and l where 
n stands for n in equation (8) or meridional 
mode of solutions, while l distinguishes the 
three roots of (8) for definite value of n. 
It decides the type of solutions, that is, 
whether it is of inertio-gravity waves (east-
ward and westward propagating) or of 
Rossby wave. 

 The eigensolutions of u and   will be 
obtained from (9) and the following relations,

(16)
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Making use of the recurrence formulas for 
Hermite's polynomials

eigenfunctions belonging to eigenvalue wn1 
are written as ;

where

 n=e-1/2y2 Hn (y)

(17)

We note that from the above expression that 
if n is an odd number then v is an odd func-
tion and u and   are even functions with 
respect to y, and if n in even, parity of each 
component is reversed. From this point it 
seems adequate to consider that the solution 
obtained by putting v-0 (the upper one of 
(15)) corresponds to n=-1. 

 Special attention must be paid to the 
solutions for n=0. In this case expression 
(17) is valid, but as w01 we have only two 
roots as described earlier. Putting n=0 in 
(17) they are simplified as follows ;

(18)

 In addition to the above mentioned family 
of solutions we have the solution labelled 
with n=-1.

(19)

 These eigensolutions including (19) form 
an orthogonal complete set. 

 The orthogonality is derived directly from 
(5). We can rewrite (5) in the following 
way

(20)

In the above expression the operator   is 
skew-Hermitic, i. e., Hermitian adjoint opera-
tor of   is the same as   except that the 
sign is reversed. It is known that all eigen-
values of such operators are pure imaginary, 
and corresponding eigenfunctions are ortho-
gonal to each other unless degeneracy occurs. 

 The completeness is proved by use of the 
completeness of the Hermite functions. 

5. Rossby waves and gravity waves in the 
   equatorial area 

 Some examples of eigenfunctions obtained 
in the last section are shown in Fig. 4 through 
8. Units of wind velocity and pressure 
(surface elevation) are arbitrary. In all 
figures half of the one wave length in the 
x-direction is shown. In Figs. 4 and 5 the 
eastward propagating inertio-gravity wave, 
the westward propagating inertio-gravity 
wave, and the Rossby wave are indicated by 

 a, b and c, respectively. 
 At first we shall note the pattern for n=l 

shown in Fig. 4a-4c. We notice clear dis-
tinction between the Rossby-type wave and 
the gravity waves. The former is characteriz-
ed by the geostrophic relationship between 
pressure (surface elevation) and velocity 
fields, while the latters have the features of 
inertio-gravity waves. It is interesting that 
in the Rossby wave solution, strong zonal 
velocity is found along the equator, which is 
expected from approximate geostrophic bal-
ance between the pressure gradient and wind. 

  The situation is similar for n=2, as shown 
in Fig. 5a-5c. Approximate geostrophic 
balance holds for the Rossby type solution, 
though somewhat curious wind field is 
observed in the vicinity of the equator. 
Namely counter-clockwise vortex which is 
located at the equator has no counterpart in 
the pressure fields. 

 Those peculiarities found in the Rossby type 
solution might simply be attributed to vanish-
ing of the Coriolis force. Anyhow it is note-
worthy that we can get " quasi-geostrophic "
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a)-
a)

b)
b)

c)

c)

unit length

Fig. 4. Pressure and velocity distributions of 
   eigensolutions for n=1 

 a : Eastward propagating inertio-gravity wave 
 b : Westward propagating inertio-gravity wave 
 c : Rossby wave.

Fig. 5. Same as Fig. 4 but for n=2.

q) -

b)

c7

a)

b)

C)
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a)

b)

 Fig. 6. Pressure and velocity distributions of 
     eigensolutions for n=0 and k=0.5 

     a : Eastward moving inertio-gravity wave 
     b : Westward moving inertio-gravity wave. 

motions in the domain including the equator. 
 The most interesting are the behaviours 

of Rossby and gravity waves of the lowest 
modes. Fig. 6a and 6b show the pressure 
and wind patterns for n=0 and k=0.5. For 
this case, as mentioned earlier, only two 
solutions, i. e. eastward (6a) and westward 
(6b) moving waves exist. The westward 
moving wave was taken as a gravity wave 
in this case from the frequency diagram 
shown in Fig. 3. In this diagram westward 
moving wave is classified as the Rossby wave 
for k>1/  2 and as the gravity wave for k< 
1/ 2 , from the reasons described previously. 
The pressure and wind distributions for n=0, 
k=1.0 are shown in Fig. 7. This solution 
belongs to the Rossby type according to the

    Fig. 7. Rossby type wave (n=0 k=1.0). 

frequency diagram. As observed from these 
figures there is no marked difference between 
the "gravity" wave of k=0.5 and the Rossby 
wave of k=1.0. It is expected from the ex-
pression for eigensolution (18), where k and 
w are the parameters which control the type 
of patterns, and if the differences are little 
amount the resultant patterns will show little 
difference, too. In our case the frequency w 
changes continuously with wave number, k, 
and consequently eigenfunction changes its 
form gradually with change of wave number. 

 If we examine these figures, we note that 
the westward moving waves have somewhat 
mixed characteristics of the Rossby and 
gravity waves. The relationship between 
the pressure and the velocity fields is ap-
proximately geostrophic in the higher lati-
tudes, while near the equator ageostrophic 
wind components predominate. The con-
figuration of wind and pressure fields near 
the equator resemble those of the gravity 
wave for n=2. With increase of wave 
number k, the former character tends to 
predominate, therefore the overall feature of 
the wind and pressure fields becomes those 
of the quasi-geostrophic wave. 

 The situation is similar for the wave labeled 
with n = -1, the solution obtained by putting 
v (x, y)* 0. Namely, it is impossible to classify 
this wave as either of the two wave types. 
The solution of this type behaves like as a 
pure gravity wave in the x-direction, while 
in the y-direction the geostrophic relation 
holds between zonal velocity and meridional 
pressure gradient. This feature is observed 
in Fig. 8, which shows pattern for n=-1 
and k=0.5. At the both ends of the cell 
where the longitudinal pressure gradient is 
large, the feature of pure gravity wave is 
marked, while in the middle part where

a}

b)
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detail. As understood from the expression 
for eigensolutions (17) the waves of both 
gravity and Rossby type of lower modes are 
confined in the region near the equator. From 
the equation (6) we can recognize that the 
solution v has an appreciable amplitude 
only in the domain,

(21)
Fig. 8. Pressure and velocity distributions of 

   eigensolution for n=-1 and k=0.5. 
   This wave behaves like as the Kelvin wave.

longitudinal pressure gradient is small and 
zonal velocity is large, the other aspect, the 
geostrophic balance between the pressure and 
the wind fields is pronounced. It is plausible 
that the former character predominates in 
short waves and the latter becomes more 
pronounced in long waves. 

 In conclusion we might say that there is 
no marked difference between the Rossby 
and the gravity waves for the lowest modes, 
the wave confined near the equator. Since 
we have no physical reason to distinguish 
"quasi -geostrophic wave" and "gravity wave" 
we cannot apply the concept of filtering to the 
motions in the equatorial area. 

6. Trapping of waves in the equatorial area 
 As mentioned previously, one of the charac-

teristic phenomena concerning the equatorial 
disturbances is trapping of the waves of low 
frequencies. This problem was first discus-
sed by Yoshida (1959), based upon the same 
set of equations as treated in this paper. 
But his analysis was not complete, because 
he derived an equation of surface elevation 
which was difficult to be dealt with and he 
suggested the existence of trapped waves 
from the asymptotic behaviors of the solution. 
Stern (1963) treated inertia oscillation in the 
low latitudes and Bretherton (1964) discussed 
inertio-gravity oscillations in a two-layered 
ocean. Either of them confined the problem 
to the motions in the meridional plane, i. e., 
they assumed the motion is uniform in the 
longitudinal direction. Therefore it might be 
said that they did not discuss about "waves ", 
but motions of fluid ring, so to say. 

 Here we shall discuss about the trapping 
of waves in the equatorial area in more

Within this domain the solution becomes 
wavy, and in the outer part of this domain 
it approaches to 0. y* denotes the approximate 
north-south extent of the wave. The equa-
tion (6) is equivalent to a equation which 
describes the wave motions in an inhomo-
geneous medium and condition (21) determines 
the domain where refractive index is positive. 
Bretherton (1964) gave an explanation to the 
trapping phenomenon of pure intertia oscilla-
tion from the view point of reflection of waves 
at the top and the bottom of the fluid. 

 In our case, the existence of trapped modes 
of waves may be understood as a result of 
refraction of primary waves. Though the 
medium is not inhomogeneous, the variation 
of the Coriolis effects give arise the varia-
tion of propagation velocity of inertio-gravity 
waves. The phase velocity of inertio-gravity 
wave is given as ;

(22)

where k is the vector wave number in 
horizontal plane and the velocity of pure 
gravity wave is denoted by cg. The relation 
(22) is valid in this discussion, because now 
we are concerning propagation of wavelets 
from a wave front, so we may take the 
Coriolis parameter is constant in such a small 
range. Since (22) states that propagation 
velocity is larger for higher latitudes, the 
wave generated near the equator will be re-
fracted and reflected toward the equator. 

 In this meaning the equator plays the role 
of a duct in the propagations of inertio-
gravity waves. The solutions of lower mode 
we have obtained are the guided waves 
through this duct. 

 From the same view point we shall consider 
the trapping of the Rossby waves. The pro-



February 1966 Taroh Matsuno 35

pagation velocity of the Rossby waves by 
 -plane approximation is written as

where H is the mean depth of the fluid. 
Here we note that the larger the f is the 
smaller (in magnitude) cR becomes, i. e., the 
velocity of the Rossby waves is smaller in 
the higher latitudes. Then we cannot expect 
reflection of the Rossby waves at higher 
latitude, though in the solutions obtain in the 
Section 4 we see that the Rossby waves of 
lower modes are confined in the equatorial 
region, too. The simple explanation of trap-
ping phenomena in terms of refraction of 
waves is not correct for this case. 

 Next we shall discuss the nature of the 
wave labelled by n= -1. This wave is very 
similar to the Kelvin wave. The Kelvin wave 
is a wave which propagates along the coastal 
line with the velocity of long gravity wave. 
The deviation of the surface elevation is just 
in geostrophic balance with the motions as-
sociated with the waves. Particle velocities 
are parallel to the coastal line and have no 
transverse component. In these points the 
two waves are the same. In the case of 
Kelvin wave, however, coastal boundary is 
essential, because the amplitude of the wave 
increases exponentially towards the coast. 
In the case of the equatorial Kelvin wave 
there is no coastal boundary but owing to 
changing of sign of the Coriolis parameter, 
the wave can be confined only in the vicinity 
of the equator. 

 Finally the author should stress that there 
is a possibility that the inertio-gravity waves 
of long periods could propagate through the 
equatorial duct, so to say. It seems promis-
ing to explain the long period variation of 
sea level observed in the equatorial ocean, 
in terms of these guided waves. 

  Concerning the problems, in what way an 
incident wave is refracted and trapped, or by 
what cause the trapped modes of waves could 
be excited, it is necessary to carry out more 
detailed analyses and will be discussed else-
where.

7. Validity of the approximations in con-
   nection with the tidal theory 

 In this article in Sections 2 through 4 we 
have developed a theory on free waves in the 
equatorial area. Since we have been dealing 
with the motions of fluid of constant depth 
under hydrostatic balance, and which is 
subject to the earth's rotation, the problem 
should be included in the theories on tides. 
In fact, it will be demonstrated that the equa-
tion we have treated is an approximate form 
of the Laplace's tidal equation which is valid 
near the equator, and that the solutions we 
have obtained in Section 4 are the free wave 
solutions of the approximated tidal equation. 
Therefore the waves which we called inertio-
gravity waves and the Rossby waves are just 
equivalent to approximate forms of free 
oscillations of the first and the second kind, 
respectively. 
 Here we shall examine to what extent our 
solutions are applicable as approximate solu-
tions of the rigorous tidal equation. 

 In the mathematical analyses performed 
in Section 2, we treated the equation to v, 
the meridional component of velocity. For 
the sake of comparison with the tidal theory, 
it is convenient to deal with the equation to 

 
, geopotential height of the top surface, 

which is equivalent to pressure. Eliminating 
u and v between the equations (5) we get 
the equation to  as follows,

(23)

where w and k are the frequency and the 
wave number in the longitudinal direction, 
respectively. All quantities are non-dimen-
sionalized by use of scaling given as (2). 

 Now according to the tidal theory (for in-
stance, see Siebert, 1961), the Laplace's tidal 
equation which determines the meridional 
distributions of horizontal velocity divergence 
and pressure is written as;
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(24)

where f is the frequency of oscillations divided 
by twice of the earth's angular frequency 2 , 
s is the wave number in the longitudinal 
direction, a the radius of the earth, g the 
accerelation of the gravity and i is cos e 
where   is the co-latitude. Here noted that 
h is the so-called equivalent depth, and in 
the tidal theory it is an eigenvalue to be 
determined, because f is a specified quantity 
as one of the periods of the tidal oscillations. 
In our problem, however, we are treating 
free oscillations and therefore the procedure 
is reversed, i, e., h is the depth of the fluid 
that is prescribed and the problem is to find 
out eigenvalues of f as function of s, by 
solving (24) with the suitable boundary con-
ditions at  =±1. 

 Since we are considering the problems of 
the equatorial region or   =O, the approximate 
form to (24) is obtained by neglecting t 
against 1 as follows ;

which period are order of days or so. As to 
the next point, if we use the same scaling 
for corresponding quantities in the two equ-
ations the two terms become equal. Then we 
may conclude that the equation we have 
treated becomes identical with the tidal 
equations if we make approximations valid 
near the equator. 

 Next the boundary conditions should be 
discussed. Since the rigorous tidal equation 
is formulated on the spherical cordinates the 
boundary conditions to (24) is; 

       =0 at  =±1 (for s* 0) (26) 

 This condition implies that   should vanish 
at the both poles which are the singular 
points of the coordinate system. In our 
treatment the boundary conditions imposed 
were 

            *o when   ±   (27) 

In order to compare the above two conditions 
we shall consider the behaviors of the solu-
tions in the region distant from the equator 
or , » 0. Considering the situations

(28)

(25)

 One would note that equation (25) is very 
similar to (23), if one reminds that the fol-
lowing correspondences hold ; f*w, s *k,  - y. 
Discrepancies are found in the two points : 
The second term is multiplied by factor 
(1-f2) in (25), and the last term in the 
brackets is multiplied by non-dimensional 
parameter 4a2 2/gh. Since f is the ratio of the 
frequency of the oscillation considered to that 
of the earth's rotation, we may neglect it 
against unity so far as we concern with the 
low frequency oscillations, say oscillations of

the solution of (24) in the region >>0 behaves 
as a convex function and should grow ex-
ponentially with , unless f is an eigenvalue. 
Then the eigenvalue which is determined so 
as to satisfy the boundary condition (26) 
should not differ so much from the value 
which is determined to satisfy (27). Other-
wise the exponentially growing component 
will become remarkable with increase of  . 

 Summarizing the above discussions the 
solutions obtaind in this article would be 
justified, a posteriori, as approximate solutions 
of the tidal equation, if the conditions (28) 
are fulfilled. 

 The validity of these assumptions for
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various kinds of motions are examined and 
listed below. 

8. Forced stationary motion 

 So far we have discussed free waves in the 
equatorial region. In this section we shall 
examine what motion is caused when some 
external forces are working, for one simple 
example. The problem is ; what motions and 
surface elevations will be caused when the 
mass sources and sinks are put alternatingly 
along the equator. By solving this problem 
we will get some informations on particular 
properties of atmospheric and oceanic motions 
in the low latitude area. The methods of 
mathematical analysis are explained below, 
in a generalized form. 

 Here we shall start again from the same 
model as treated in Section 2. Now we are 
considering stationary state resulted from 
some external causes, the equations of motion 
and continuity are written as follows ;

(29)

where u, v, h, f, g and H are the same as 
in Section 2. In this case in right hand side 
of the equations two sets of terms are added. 
Fx, Fy, and Q are the x and y components 
of forces and mass source (or sink) respec-
tively. They are to be given as external 
forces and tend to cause motions and undula-
tions of the surface elevations. If such ex-
ternal causes are given and the fluid is 
set in motion, there will appear some re-
stitutive effects, say frictional forces, dif-
fusions. They will counteract the motion 
and at last the balance will be reached. In 
order to simulate this situation, we add the 
terms (- u, - v, - h) in the right side of 
(29) as the simplest form that express these 
effects. 
 The equations (30) may describe the internal 
mode of the atmospheric motions, as mention-
ed in the last part of Section 2. In this case, 
h expresses the thickness between two isobaric

surfaces, which is equivalent to the tem-
perature, and Q should be interpreted as the 
heat sources and sinks. 

 Equations (29) are transformed in dimen-
sionless forms in the same manner as 
adopted in Section 2. 

 Here we shall assume that all external 
forces have sinusoidal variation in the x-
direction. Then the solutions will have the 
same variation, and factor eikx will be 
separable. Then equations (29) are reduced 
to ;

(30)

here various quantities are nondimensionalized 
and common factor eikx is omitted. The same 
symbol as in (29) are used, for no confusion 
will occur. 

 Next we shall consider the boundary con-
ditions. It may be plausible to assume that 
external forces or inhomogeneous terms in 
(30) are not zero only in the finite distance 
from y=0. Then the solution should have 
no-zero value in the finite domain, i, e., the 
boundary conditions to solve (30) are ;

u, v,  *0 when y*±  

 The free wave solutions obtained in Section 
4 satisfy the same boundary conditions and 
it is proved that the set of all eigenfunctions 
form a complete set, that is, any arbitrary 
set of three functions (which satisfies the 
condition that integration of square of abso-
lute value over the whole domain remains 
finite) can be expressed by the linear com-
bination of eigenfunctions. Therefore it is 
possible to express both solution and forcing 
functions of (30) by serieses of free wave 
solutions. We shall write the equations (30) 
symbolically in the following way; 

           ( + I) X =   (31) 
where X and   are solution and the inhomo-
geneous terms of (30), respectively. ( + l ) 
is the operater which corresponds to the left 
hand side of (30). I is the unit operator and
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 f expresses the first terms in each equation 
of (30) and   expresses the rest terms. We 
shall denote free wave solutions obtained in 
the previous sections by  m, of which fre-
quency is  wm. Then the following relation 
holds 

                 m= -iwm m (32) 

 Here it is noted that  's are labelled by 
one subscript m, because it is possible to re-
arrange the set of eigensolutions obtained in 
Section 4 in a single array. 

 Expanding x and   in terms of  , 

            x=  am m   = bm m 

and inserting this expression into (31), we 
have 

           ( + I) am m= bm m 

Making use of (32) the above equation turns 
to 

            am (-iwm+ )  m = bm m (33) 

Since e's are orthogonal with each other we 
have following relation between the two 
expansion coefficients ;

(34)

 This relation represents the "response" of 
the system (30), i, e., it shows that when bm 
or external causes are given, how this model 
reacts to them. It is understood from (34) 
that the low frequency modes will have large 
amplitudes while the high frequency modes 
will be suppressed if the input is of the same 
amount. It is simply due to the fact that we 
are treating stationary motions or the input 
of zero frequency. Therefore the lower the fre-
quency of a free wave is, the more resonant 
it is to the excitation. Since bm is got by 
the following relation,

we can get {am} and consequently the solu-
tion of (30) for any arbitrarily given external 
forces, (Fr, Fy, Q). 

 Here we shall treat one particular solution 
of (30).

 Namely we shall seek for the solution of 
(30) which is caused by the inhomogeneous 
terms as following ;

In this case the series of solution in terms of 
 terminates up to the forth term. 

 In Fig. 9 the distributions of the surface 
elevation and the circulation are shown, 
together with the distribution of mass source 
and sink given as forcing term. Numerical 
values adopted are k=0.5 and  =0.2. 

 An outstanding feature of the circulation 
pattern is the strong zonal flow confined in 
the vicinity of the equator. Associated with 
this flow ridge and trough are located along 
the equator which divide the pressure cells 
into two petals. 

 Mathematically speaking, we can explain 
this result by the fact that Rossby wave solu-
tion predominates while gravity waves are 
suppressed. It is quite natural because the 
frequency of Rossby wave is much smaller 
than that of the gravity wave and consequent-
ly more resonant to the excitation. 

 In the physical point of view, the situation 
may be explained in the following way. For 
the sake of understanding, we shall imagine 
the series of events which would take place 
if the mass sources and sinks are given at a 
certain moment. 

 The surface elevation will be subject to the 
distribution of mass sources and sinks, i. e., 
where the mass is added the surface tends 
to be raised and where the mass is extracted 
the surface is depressed. The fluid motions 
induced by the surface inclination will be 
deflected by the Coriolis force, in higher lati-
tudes. Then flow field is settled as to be 
geostrophic flow corresponding to the pres-
sure field. In this way anticyclonic or cyclonic 
flow fields are established where high or low 
pressure cells are located. In the vicinity of 
the equator, we see that a strong zonal flow 
exists. This flow is caused by the imp-
pression of the mass sources and sinks, i,                                                                    e., 
the flow is directing from the mass source to 
the mass sink. It is interesting that this 
equatorial zonal flow is intensified by the
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Fig. 9. Stationary circulation pattern (lower) caused by the mass source and sink (upper).

turning of flows from the higher latitude. 
Namely the circulations in the high latitude 
regions bring converging or diverging motions 
towards or from the equator at the end of 
each cell, because the sense of rotation is 
opposite in each hemisphere for the same 
pressure pattern. If we note, for instance, 
the western edge of the low pressure cell in 
Fig. 9 the flow is converging towards the 
equator, and this flow turns to the east. 

 On the other hand, horizontal velocity con-
vergence brings surface elevation and makes 
a ridge along the equator. In this way 
geostrophic balance between the pressure and 
the flow fields is attained in the vicinity of 
the equator, too. 

 In other words, when the fluid is supplied 
at some place and extracted at the other place 
the compensating current prefers to flow 
through the equator. 

 If we speak in terms of "adjustment prob-

lem ", the above process may be summerized 
as follows : In the higher latitudes the flow 
field is set up so as to balance geostrophical-
ly with the pressure field which was gene-
rated by mass sources and sinks. On the 
contrary, in the equatorial region, pressure 
distribution tends to follow wind field, ignore-
ing the impressed mass sources. It is note-
worthy that, in this example, the surface 
elevation pattern near the equator is not 
the reflection of the external forces, though 
the external forces have the maximum 
magnitude at the equator. It seems to be 
very important that, in the equatorial area, 
pressure or temperature fields could be op-
posite in sense to the external heatings. 

9. Formal development of the theory for 
   general stratified fluid 

 So far our discussions were confined to the 
so-called divergent barotropic model as des-
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cribed in the second section. It is thought 
that this model simulates the atmosphere or 
the ocean in fundamental hydrodynamic pro-
perties. We cannot apply the results obtained 
in this study directly to the actual atmo-
spheric or oceanic phenomena. But fortunate-
ly the mathematical discussions made in the 
previous sections are applicable to some par-
ticular cases of stratified fluids if we formulate 
the problem in the following manner. 

 Let us consider a stably stratified fluid on 
the rotating earth. With some approxima-
tions conventionally adopted, we can derive 
the system of equations governing small 
perturbations of the fluid motion and the 
density as follows ;

(35;

(36)

the differential equations with respect to the 
horizontal coordinates only. Further they 
are equivalent to (1) which we have treated. 
Namely, if we put

;40) is written as

(41)

(42)

Clearly this equation corresponds to the mass 
conservation equation in the one-layer model 
treated in the previous sections, and (35), 
(36) and (42) form an equivalent set of 
equations to (1), or the set of equations for 
two-dimensional quasi-horizontal motions of 
the homogeneous fluid with (apparent) depth 
H*. 
 Here H*is to be determined in the follow-
ing way. In solving (41), the boundary con-
ditions are

(37)
w=0 at z=0

(38) at z=H

(39)

 Here (u, v, w) are the velocities in the x, 
y, z directions respectively. p the pressure, 
p the density. All these symbols stand for 
small perturbation quantities, while  (z) is 
the basic density and  o is the constant mean 
density, f being the Coriolis parameter and 
g the acceleration of gravity. By eliminating 
p and w between (37), (38), and (39) the 
equation for p is obtained as follows,

(40)

where  z is the abreviation of  / z, the basic 
stability factor. Combining this equation 
with (35) and (36) we get three equations 
for three variables u, v, and p. 

 We note that in this set of equations, dif-
ferentiation 'with respect to z appears only 
within the brackets in (40), and if we assume 
that this term is proportional to (p/ o), the 
system (35), (36) and (40) are reduced to

where  is the surface elevation. 
 These conditions are transformed into,

at z=0

(43)

Then the equation (41) with the above con-
ditions poses an eigenvalue problem, and H*
will be determined as eigenvalues. The cor-
responding eigenf unctions will form a set of 
orthogonal functions. If they are complete 
we can express any function of z in terms 
of them. 

 The mathematical discussions mentioned 
above are the same as usually found in the 
theory of wave motions of long wave length 
(Eckart, 1960). 

 Summing up, the equations (35) through 
(39) can be solved by the method of separa-
tion of variables. Then equations concerning 
the horizontal coordinates turn to be the 
same as those for homogeneous density with
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a parameter H*, apparent depth of that fluid. 
Therefore the analyses made in the previous 
sections are valid, if we note one particular 
mode in the vertical structure. 

10. Summary and conclusions 
 Wave motions in the equatorial area are 

discussed. Based upon the so-called divergent 
barotropic model, linearized equations for 
small perturbations are solved. 

 The following results are obtained from the 
mathematical analyses. 
(1) Even in the equatorial area there are 

 two types in the waves motions. The one 
 is the inertio-gravity waves and the other 

 is the Rossby waves. They are distinguished 
 from each other, by the difference of their 

 frequencies. Namely frequencies of the 
 inertio-gravity waves are much larger than 

that of the Rossby waves. 
(2) For the particular mode, however, the 

 distinction between the two waves is not 
 clear. The wave of the lowest mode, which 

 is the smallest in the north-south extent 
 and propagates westward, has somewhat 

 mixed characters of the Rossby wave and 
 of the inertio-gravity wave. The frequency-

 wave number relationship for this wave is 
 similar to that of the Rossby wave when 

 the longitudinal wave length is smaller 
 than the meridional extent. For long wave 

 part, however, the frequency becomes very 
 large and approaches to that of the gravity 

 wave of the same wave length. The re-
 lationship between the pressure and the 
 wind fields also shows the mixed characters 

 of the two types, the Rossby wave type 
 and the inertio-gravity wave type. Either 

 of the two types becomes predominant de-
 pending upon the wave length. In these 

 aspects this wave is situated in the inter-
 mediate position of the two utterly different 

 wave regimes, and connects them con-
 tinuously. 

   It is an interesting problem that whether 
 the wave of such type exists or not in the 

 actual atmospheric conditions, and if it 
 exists what role it plays in the atmospheric 

 motions in the equatorial area. 
(3) For lower modes the both waves of the 

 inertio-gravity type and of the Rossby type 
 are confined near the equator. The me-

 ridional extent of the wave is of the order 
 of (c/ ) 1/2, where c is the velocity of long 

 gravity waves and   is the Rossby para-
 meter. For the inertio-gravity wave this 

 phenomenon is interpreted as the results 
 of refraction at the both sides of the 

 equator. In this meaning the equator can 
 be a wave guide for the propagation of 

 long period gravity waves. It seems that 
 this effect may play some roles in the 
 maintenance of the atmospheric or oceanic 

 disturbances in the equatorial areas. 
(4) One particular example of the stationary 

 circulation in the equatorial area is obtained. 
 Considering the same model (one layer of 

 homogeneous fluid) we have calculated the 
 circulations and the pressure distributions 

 when mass sources and mass sinks are 
 imposed alternatingly along the equator. 

 The characteristic features of the circula-
 tions and the patterns of surface elevations 

 are : 
   (i) In the higher latitudes the surface 

 tends to be raised where mass is added and 
 depressed where mass is extracted. 

   (ii) In the vicinity of the equator, 
 however, the deviations of the surface 

 elevation is less than that in the higher 
 latitude in magnitudes. As a consequence 

 high and low pressure cells are splitted into 
 two parts separated by the equator. 

   (iii) Strong zonal flow is formed along 
 the equator. The flow directs from the 

 mass source to the mass sink. This equa-
 torial zonal flow is intensified by the turn-
 ing of the flow associated with the high 
 latitude circulations. 

  (iv) In the higher latitude region, the 
 velocity fields are in geostrophic balance 

 with the pressure fields. 
   (v) If we apply the above results to the 

 two level models of the atmosphere, we 
 may deduce the following things. 

  If the air in the equatorial region is 
 subject to the differential heating in the 

 longitudinal direction, the resultant pressure 
 and wind fields will show the following 

 features : The impressed heating and cool-
 ing will produce the low pressure and the 

 high pressure (on the lower level), respec-
 tively. The wind blows geostrophically in 

 the high latitude region. The induced
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 vertical motions counteract to the imposed 
 heat sources and sinks, and their effects 

 are stronger near the equator than in the 
 higher latitudes. Consequently the warm 

 or cold air produced by the heating or cool-
 ing are splitted into the two parts, by the 

 relatively cold or warm air belt located at 
 the equator. 

   The present work concerns only with the 
 mathematical analyses of the simplified 

 hydrodynamical equations, and we must 
 be careful in applying the results obtained 

 in this study to the actual atmospheric or 
 the oceanic disturbances. 

   It is most interesting if we find out 
 some phenomena inferred in this study, for 
 instance, the trapped waves, in the actual 

 atmosphere. 
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赤 道 近 く で の 準 地 衡 風 的 運 動

松 野 太 郎

東京大学理学部地球物理学教室

コリオ リの力が働かなくなる赤道近辺での大規模運動の特性を理論的に検討 してみた.自 由表面をもった単層の流

体-い わゆる発散順圧モデル-に ついて線型化された運動方程式を扱い東西方向に動 く自由波動の解 を求 め る
と,一 定のスケールに対して3つ の解が得 られた.こ れ らは振動数 解の形(圧 力及び運動の場)か ら夫々東向きお
よび西向きの慣性重力波およびロスビー波であることがわかる.但 し南北スケ 一ル最小のものに関してはその区別は
明瞭でなく一方の型から他方の型に連続的にかわる.ロ スビー波に相当する解は風と圧力の関係が高緯度でほぼ地衡

風的であるごと,お よび赤道近 くで特異なふるまいをするのが特徴である.
次に同じモデル熱冷源に相当するものとして東西に周期的なmass source,sinkを 与え,定 常解と求めた.熱 源

に相当する所は低圧になるが赤道で分断され,赤 道のごく近 くはやや逆センスにな り,こ れに伴って高緯度と逆向き
の強い流れが生ずることが分った.


