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Introduction

e aim of this note is to clarify the somewhat elusive connection between
Sdesics on the modular surface M (the quotient of the hyperbolic plane H by the
2 duiar group G = SL(2,Z)) and continued fractions. This connection was, for
ea}iﬁp}é, noted by Artin [3] who, by an ingenious use of continued fractions, deduced
istence of a dense geodesic on M. Qur results may be regarded as a rationale
\rtin’s method.

The idea that the sequence in which a geodesic ¥ cuts certain fixed lines on M (or
ifts to M) is related to continued fractions is by no means new. However, when
g the lines of the usual tesselation &~ of H by copies of the fundamental region
<1 |z| 2 1, attempts to find a precise relation between the cutting sequence
ot and the continued-fraction expansions of endpoints of suitable lifts of y are
jzht with minor discrepancies. Two possible solutions to the problem, neither
tely natural, are to be found in [11, 1].

Fis. 1

tion F, Figure 1. In this way we obtain much clearer statements of the rather
kable facts. The Farey tesselation is a tesselation of H by ideal triangles, that
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70 CAROLINE SERIES THE MODULAR SURFACE AND CONTINUED FRACTIONS 71
i el? F|_ ; : . - ar roup G = SL(2, Z) acts by isometries of H mapping z to (az+b)/(cz+d),
F if and only if g q" =+ 1. The sides of F turn out to be precisely the images of the 1 i H/SL(2,2) = M s the projection map. Geodesics on M arc exactly the

imaginary axis under G.

An oriented geodesic in H is divided into segments as it cuts across the triangley
which compose F. In crossing such a triangle A a segment s cuts two sides of A which:
meet int a vertex at infinity. We label the (oriented) segment R or L according as thig
vertex lies to the right or left of s (Figure 2). This labelling is invariant under the action’

Sapes under 7 of geodesics in H. We shall always be interested in orien ted geodesics.

We write [ny, 1y, ...] for the continued fraction n, +

nyt+ —

! 1 and [x] for the integer

‘ 0.
fjicé:a_;;f a geometric interpretation of continued fractions using I goes back
bert [7] and H. J. Smith [12]; the anthor was introduced to it by Moeckel’s
[9] which inspired this work. - _
¢ author would like to thank the referee for helpful suggestions regarding the
entation of this paper.

1. Cutting sequences and continued fractions

he Farey tesselation

Tﬁe standard fundamental region | Rez| <4, |2} = 1 for G is divided in half by
imaginary axis. Move the left half.over using the transformation z —z+1 and

tyee & eithe two halves together as in Figure 3. One obtains a new fundamental region

type R

Fi. 2

of G and hence, to any geodesic § on M, we may associate a cutting sequence
...RroLMmR® . n,eN. If xe7 lies at the end of a segment labelled R, we show
{Theorem A) that there is a unique lift y of 7 such that the lift £ of x lies on the
imaginary axis and such that the positive and negative endpoints of y on R are

Yoo =My +—— Yo = ——1 / N
Ay+1 © T e+l
nyt.. n_j+1
A_g+...
respectively. ) ! 1 1
Motion along 7 is obviously related to shifting the cutting sequence. This is made FiG. 3

precise in Theorem B. The relation of the dynamics to the continued-fraction
transformation T:x — (1/x)—[1/x] is explained in Theorem C. These results are
described in §§1, 2.

In §3 we give some applications. We derive the relation of the hyperbolic area on
M and the invariant Gauss measure for 7. Theorem B allows an explicit representation
of the geodesic flow as a flow over a shift [2], see also [10]. We compute the height
function in 3.2, Finally, for amusement we rederive some of the well-known results

about the action of G on R and continued fractions in 3.3.
Throughout, H = {zeC:Imz > 0] with the Poincaré metric ds? = (dx?+ dy%)/)% U £o0} and that two points p/g, p'/q are joined by a side of F if and only if
) eGL(2, Z).

—1 .
7, a quadrilateral. If S denotes the matrix ((1) _ 1) € then the three images of
is quadrilateral under £, § and S exactly fill the ideal triangle A whose vertices are
0,1 and co, (Figure 4). The images of A under G tesselate H by what we call the
y tesselation F. Notice that F can be regarded as the images of the imaginary axis
er G.
t is not hard to see that the images of {0, 1, co} under G are exactly the points

Geodesics in M are semicircles centred on R or vertical lines. For the positive and p
negative endpoints of .an oriented geodesic y we write y,,y_., respectively. The q
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g sequences

pologically, the modular surface 3/ is the thrice-punctured sphere with singular
at the images of i, }(I+i+/3) and <o respectively. The lines in the Farey
ation project to the singular line S which runs from the cusp n(c0) to =(f) and
|capain.If we take any geodesic ¥ on M, other than S itself, we may lift to a geodesic
and obtain a cutting sequence ... LP-1R% L™ [ as described in the introduction.
ifferent lifts of 7 differ by covering translations which leave F invariant and
¢ orientation, the labels of a segment and hence the cutting sequence obtained
endent of the lift chosen.

‘The catting sequence terminates if and only if y begins or ends in the cusp z(co).
ase the label of the initial or final segment may be taken to be either R or
We.call such segments initial or terminal and sometimes denote them by R,, or
xe¥ N § then we may indicate the position of x in the cutting sequence by
g ... RMxL™.... We say that the sequence changes type at xS at which the
jents change from R to L or vice versa, including the points immediately preceding
llowing initial or terminal segments.

[
t
3
£
3
3
1
1
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1

FiGc. 4

There is a nice description of F in terms of Farey sequences. Recall that the a-th

Farey sequence F, is the set of rationals p/q with |p|, |¢| < n arranged in increasing
order. Thus

alement of Theorem A

gt~4 be the set of geodesics in H with endpoints satisfying |y, | = 1,
2| € 1. Any such geodesic intersects the imaginary axis /R in a point &,
ce'that the cutting sequence of any such y changes type at &,.

ince geodesics on M repeatedly cut the singular line S we have a natural
eztion X of the unit tangent bundle T M, namely the set of unit tangent vectors
se point x & S which point along geodesics whose cutting sequences change type

Fis —o0,—-1,0,1, 0,

Fis —e0,—2,—1,—-1,0,1,4,2 o0,
and so on. Rationals p/g > p’/q’ are adjacent in some Farey sequence if and only if:
—(‘Z }; :) € G [5]. Thus F may be obtained by drawing the vertical line through 0 and

sclear that if y € 4 then the unit tangent vector u], to yat £, projects to an element
This identification of 4 with X is almost a homeomorphism.

then successively joining adjacent points in each Farey sequence, Figure 5.

OREM A.  The map i: 4 — X, i(y) = n(w,), is surjective, continuous and open. It
ective except that the two oppositely oriented geodesics joining +1 to —1 have the
age. Moreover, if u, € X defines a geodesic with cutting sequence ... R%xL% ...,
= iTNu,) has endpoints given by
’ -1
Yoo = [M1a Mg, ..., -=[ng, n_5,n_,,...),

H —®
if the cutting sequence terminates at either end, so does the corresponding
d fraction,

1
Yo = —[111, gy --]: - = [nos H_g,. }

Ve

EMARK 1.1.  Notice that y,, is independent of y_,, and the part of the cutting
ice which precedes £, and vice versa.

T . 1 N
. FiG. 5 X 1.2, Since (n,+1)+0= n,+m, the terminating sequences ... Lot

rR give the same endpoint expansion, accounting for the ambiguity in
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labelling a segment ending in a cusp. The same remark holds for sequences beginning ;

en Lo = Rep Ties in X)) Let X* = {u, € X: the segment immediately following
LR%,,, or R*-H1,,., :

erminal}. We havedefined P : X* — X, thefirst return map for the cross-section
¢ geodesic flow,

~a-geodesic on M has cutting sequence ... RoxL™... starting from xeS§, then
ame geodesic reading from P(x) has cutting sequence ... R™L™P(x) R%... . Thus
‘ot return map corresponds to shifting cutting sequences to the left. In order to
truct symbolic dynamics we introduce the space NZ x Z,, where the first coordinate
scord the sequence ... n, 7, 1, ... of exponents and the second will record whether
egment immediately following the base point is of type L or R. We take
nating sequences into account by adjoining points whose sequences begin or end
row of zeros.

Thus, let

CoOROLLARY. Two geodesics with the same cutting sequence coincide.

Proof. Fix initial points x, x at the same division points in each sequence, and
lift to points &, &' iRt as in Theorem A. Since the endpoints at infinity of the lifs’
of the two geodesics have the same continued-fraction expansion, the geodesics’
coincide. :

Proof of Theorem A. Let y be any geodesic in H which intersects iR. Since A is-
Convex, Yo = 1 if and only if the segment y N Ais of type L, and -1 € y_, <
if and only if the segment immediately preceding A is of type R. Similar remarks
apply if 9, < —1 and 0 < y_, < 1. Since any geodesic on M cutting S at x can be
lifted to a geodesic in H which intersects /R at the lift £ of x, we see that { maps 4
onto X, Moreover, suppose that y,9'€4 and that i(y) =#y"). Since the only.
identification of pairs of points on /R under G is given by Q:z — —1/z one sees that,:
if y # 7', then Q(y) = ¥’. The only geodesics y € A such that O(y)e A are the geodesic
joining 41 to =1 and its inverse. This proves the first part of the statement.

Suppose now that ye 4 and o, > 1. Let 9 = [y 7, ...). Let py =1, if 3, > 1y
and let p, =m—1 if y,=n,. Let 7,=y n (Rez=p,). Between &, and #, the
tesselation [ partitions y into p, segments at the vertical lines Rez =0, 1, ..., p,. Thus
the cutting sequence of y between £, and 7, is LP. Fmally, if p= 1 then the
sequence starting at £, is either R, or L '

Apply the map p,:z—> —1 /(z—p,) Cleariy__ pLEG; moreover one checks easily
that p,(M)e € —1 and 0 < p,())_co € 1, a0d that py(m) = &y, Since p,€G,p(7)
is also a lift of n(y), and so the cutting sequence of y beginning at #, is the same as
the cutting sequence of p,(y) beginning at ¢,y If p(p}=—1 this sequence
terminates with an ambiguous segment R, or L,; otherwise, setting p, = n, if
—p (7o) ¢N and p, = n,— 1 otherwise, the cutting sequence begins with p, segments

—{(("i)t-m whimeN, —oo <N, <0< N, < 0,weZy}

et ©* = £ be the subset with N, > 1. When we shift the (n,)-sequence we also
ge the type ... LxR... to ..RP(x)L... and vice versa. Thus we define

G:Z*¥——Z, &{(n),w) = (a((n), w+1),

e (7)) = My4q is the left shift.

fe = ((n;), 0) € Zlet y(e) be the geodesicin H whose endpoints are y,(e) = [y, #g, ..

1/7_o(e) = [Mg, 11y, ...). Likewise if e={(r;),1) let p(¢) be the geodesic

th endpoints yeo(e) =—{n;, m,, ...] and 1/7—co(e} = [gy 1y, ...]. Define D:Z — X so

() is the projection on T, M of the unit tangent vector to y(e) based at
ye) niRk.

TEEOREM B.  With the product topology on I, the map D is a continuous surjection
> X which is bijective except at points whose expansions (n;) terminate in zeros on
e or other side. The fibre of D above the image of any such point consists of the two
ivalent expansions described in Remark 1.2. Moreover D(Z¥) = X*, and the diagram

of type R. Applying p,:z— —1/(z+p,), the argument repeats. Exactly similar s .._(i_,z

argnments apply if y,, < —1I. D 1 1 D
Notice that, if y,, €N, v, > 1, then the cutting sequence is ambiguously L™ R or P

Lt consistent with the ambiguity in the continued-fraction expansions. Xt— X

To study the negative endpoint y ... ,, apply the map @:z — —1/z. If y has cutting tes.

sequence ... L2-1R%Z, L7 R, .. then since Q&G the geodesic Q(y)* running from
O(ye) to O(y_o) has cutting sequence ...LMQ(£) R™L".... Clearly Q(y)e4
and §gen-1 = O(E)- Thus Oy _ ) = [1g, 5y, ...], which proves the result.

: Proof It is clear that the map e y(e), eeZ, maps surjectively to 4 and has
s claimed, By Theorem A the same is true of D.

f e = ((»,),0)eZ* then by Theorem A one immediately knows that the cutting
ence of y(e) is ... RP&y,y L™ ... and hence the geodesic on M through D(e) has
tting sequence .. R“oxL"t where x = (). By the discussion above, P(D(e)) has
tifg - sequence ...RPL™mP(x)R™.... This is also the cutting sequence of
6(€)) = (o{{n:)), 1). By the corollary to Theorem A, two geodesics in A with the same
sequence coincide. A similar argument works if ¢ = ((n;), 1). This proves the

2. Dynamics

In order to set up symbolic dynamics for the geodesics on M we need to investigate
the relation between shifting cutting sequences and movement along geodesics. We
shall describe symbolic dynamics for the first return map P on our special cross-section -
X of T} M.

For u,cX, let P(u,) be the unit tangent vector where the geodesic through x in JOROLLARY, Geodesics v,y € A are equivalent under G If and only if
the direction u, next enters X after u,. Let the base point of P(u,) be P(x). It is clear : a1 ot
that P(u,) is defined unless the segment immediately following x is terminal. (Note GMd () = d0") for some neZ,
that if the cutting sequence following x is LML, then the point preceding the terminal Where d:Z — A is the map d(e) = y(e).
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Progf. If y,y are equivalent, then #n{}) = =(y’) and y,y" have the same cutting
sequence starting at different points. Thus P*i(y) = i(y) for some ncZ. The result
follows from the theorem.

Conversely, if 6*d*(y) = d"1(y") for some n, then P*i(y) = i(y") and so =(i{y)),
n(i(y')) lie on the same geodesic in M, so that y,y" are equivalent.

nother solution, more in the spirit of the symbolic dynamics of Theorem B, would
take both p* o P and T as two-valued at the points in question.

3. Applications
he Gauss measure

well known that the Gauss measure

1 dx
log2) o 14+x

This corollary is the fact on which the work in [1] is based.

Finally we can make precise the connection between the dynamics of the
geodesic flow on M and the continued-fraction transformation T:{0, 1) [0, 1),
T(@) = (1/6)—[1/6]. The shift ¢ on Z induces a map on the positive endpoints of
geodesics in A, Let W = {tcR:|¢| = 1}. Then the map p7: X - W,

e = |

m(E) =

sriant for the continued-fraction transformation 7 on (0, 1) in the sense that
T"l F) = m{E) for every measurable £ < (0, 1) [4]. It is also well known that there
‘natural invariant measure u for the geodesic flow on T; M given by the projection
¢ measure (dxdy/y*) df on H x §* = T, 1 to T, M. Now ue T, H may be specified
giving the endpoints ¢, feR of the geodesic p(i) through u, and arc length ¢
suring the distance of u from, say, the (Euclidean) midpoint of y(¢). In terms of
aordinatization the above measure transforms to (decdfi/ (ot — B)*) dt [6].

Now, quite generally, let ¢,,1eR, be a measurable fiow on a Lebesgue space Y.
séiving a measure 4, with a cross- -section E < Y. Let P: E— E be the first return
P of ¢,. Then there is always a unique P-invariant measure v on E such that 4 fibres
ally as v x dt, where df is Lebesgue measure on the flow lines of ¢, [2].

Tn our case X is a cross-section for the geodesic flow on 77 M. Identifying X with
n Theorem A, one sces that the natural P-invariant measure on X induced by
dp/(c—p)?) dt is v = dodB /(o — ).

Now let us compute the projection of » on (0, 1) under Jo p*. Since
1
(0c ﬂ)2 TR+’

is the measure d8/B(1 +§) on [1, o). Thus J, pt v = Ju(dB/B(1+5)) = dv/(1+»).
ormalizing we recover the Gauss measure for T.

[y, 75, .00, w=0,
—[ny, 7y ..), w=1,

can be thought of as projection onto the positive endpoint y,(e) of the geodesic y(e)
represented by eeX.

THEOREM C. Define J: W —[0,1),

e, o> 1,
J0 = [ le] =1,

Then the diagram T ¢ . b

Jopt l l Jop*
(0,1) —L—» 10,1)

commtiles.

Proof. Letu,eX* and let 7 be the geodesic through x in the direction u,. Lift §
to a geodesic y in H so that x lifts to £, e#R, With the notation of Theorem A, P(u,)
lifts to the unit tangent vector io y at the point 7, As in Theorem A, let s
mz) =—1/(z—p,). Then py(y)e 4 and p,(,) = &,,05- Thus, if we now lift y so that The height function
the lift of P(x) lies on iR, then P(u,) lifts to the unit tangent vector to p,(y) at &, ;- :
Combining this with Theorem B we see that y,(6{e)) = 7, (7(e)). It is now easy to

heck thy t t of the th . : .
check the statement of the theorem ppose that yed and y,, > 1 and let £, %, be as in the proof of Theorem A.

‘ of the formulae for hyperbolic distance d,
REMARK 2.1, There is obviously an analogous result for the projection from X to

negative endpoints. Voo =My Yoo éy

, Voo Yooty

ReMARK 2.2. The discontinuity in J may be explained as follows. The map p* o P nce £, #, lie on the circle radius }(ye, — 7 - o) centre §(ye +¥ ) (Figure 6), one

has jump discontinuities at integer points Z*, while T is discontinuous at points 1/n,

neN. With our definitions the jumps unfortunately occur on opposite sides of the _Img, _ A/ Yoo ’ ‘ Vo1 Yoo — o] _ Yoo el
Ve V-l Yo7 lma, Pl —7-

the distance between cuts ... R%¢, L., and ... R™ L%y, R, is

d(Gynmy) = log

discontinuities for the two functions. Our definition of J compensates for this, In order
to have J(x} = 1/|x|, | x| 2 I, one would have to lift ue ¥ — X* to lie on a geodesic
ywith =1 < y_,, <0, y, = 00 at the point where y cuts the hyperbolic line joining
—1, 0. The statement of Theorem A would then be modified for geodesics with
¥ = 00, The map p* o P would be defined to be continuous from the right mstead
of from the left at positive integer points.

log ([rmy, g, +. J [Rgy Bogs gy - THgy g, ] gy gy g, - D)

lear by symmetry that one obtains the same formula if Vo € —1.
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Weo—=r-u) 1
Fig. 6

Yo

With p, defined as in §1, note that

Pr(Pw) = (e s D%,
Thus (3.2.1} may also be written

Py _ ) = ([, 1, . T2

Pie0) P65 Yo}
PV —0) Po(PTH Y — o)
In particular, if y is periodic with period n,, ..., n,,, we obtain

(Por - P1) (Pa)
Par- 7)Y (P_ o)

for the length of a period. Since g = p,, ... p, € @ is the primitive element fixing y, and
since g'(¥u) = 4%, ' (y_o) =271 where 1> 1 is the largest eigenvalue of g, we
recover the usual formula, namely 2log 4, for the length of closed geodesics.

}log

ilog

3.3. Actior of G on R and continued fractions

We can use the resuits of §1, 2 to recover some well-known results about
continued fractions, see for example [8].

Eemma 3.3.1. Let 9,y be geodesics in H with y,=1v,,. Then the cutting
sequences of y, ¥ eventually coincide.

Progf. Wemay obviously assume that the cutting sequences do not terminate, so
that y,, ¢ Q. Pick g,,g,eQ such that the circle joining ¢, to g, cuts both y and y".
Suppose that g, € F,,, g, € F,. Then by moving closer to y,, if necessary, we can find
g,q adjacent in Fjpy ¢y my Such that the line C joining ¢ to ¢’ cuts p,7’. Apply geG
such that g(g”) = cc. It is clear that the segments of g(y), g(¥") immediately after the
intersection with g(C) have the same label (Figure 7). Let C, be the side of F next
cut by 9,7". Again apply g, € G so that g(C,) is a vertical line, and the argument repeats.
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g(O)

&)

)/

(")

G

Fia. 7

DeFINITION 3.3.2, We say that two continued fractions
B=L£lmy,my,..]

same tails mod 2 if there exist r, s such that

o= i[nl’ nz’ "']?

r+s={0m0d2 if e > 0,
‘ " lmod2 ifaf <0,
Rpgg = Mgy, k2 0. (We write +{0,n,,..Jif ae(—1,1))

A3
2.

Points o, e R are equivalent under G if and only if they have the same tails

Proof. Since —1/{c—n,) = —[ny, ns, ...] if & == [n,, n,, ...}, sufficiency is clear.
Thus suppose that «, feR, gz = f, g G. By applying z+ 1/z if necessary (note
at:this does not change tails mod 2), we may assume that «,f > 1. Choose
1,0) such that the geodesics v,y joining & to « and j lie in 4. Let y,9" have
ittinig sequences ... £, L™R™:. .. and ... §, L™ R™... respectively. By Lemma 3.3.1,
g geodesic y” joining gd to ge = f has cutting sequence ... &,-... R™ L., for
k. Since y” and y are equivalent under G, their cutting sequences, starting from
alent initial points, coincide, and hence there exists r€2Z such that n;,, = m,
k. This proves the result.

34. A number a > | has a purely periodic continued-fraction expansion if and
if ® is a reduced quadratic surd (that is, if the conjugate root & satisfies

<a&<0). If
o =[n,n,,...,0]

—1/8 = [y 73

Proof. Suppose that o= [n,...,M,). Let y be the geodesic with endpoints
Yew =0, —1/8=[ny,....,n;]. Then ye A4 has a periodic cutting sequence
s fixed by P?"; in other words y is fixed by g€ G, g # I. Thus o, f are fixed
nd hence are conjugate roots of a quadratic equation over Z,
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Conversely, let « be a reduced quadratic surd with conjugate root &, satisfying t,

@ME: PROPERTIES OF RATIOS OF POLYNOMIAL VALUES

equation ax®*+bx-+¢ = 0, where a, b, ¢ are relatively prime and a'> 0. It is easy ¢4 WITH RESTRICTED ZEROS
show, using the inequalitiesa > 1, — 1 < & < 0, that|a|,| %], | ¢| are bounded in term

of D = b*—4ac. Thus there are only a finite number of reduced quadratic surds with

the same discriminant D. Now consider p,p, acting on the geodesic joining & to g ZALMAN RUBINSTEIN

Since p, p, €G, it follows that p, p,(&), p,p,(&) are another pair of reduced quadratj
surds with the same discriminant. The same holds for ps, ... p,(&), P4 --. 22(c0) fo
any r. Thus eventually this sequence repeats so that the endpoint expansions ar

periodic. 1. Introduction

'ﬁérties of univalent convex functions have been used to great advantage in the
f polynomials, particularly in the case where the zeros are restricted to a fixed
such as the unit disk or its exterior [1, 3], The idea is to represent a polynomial
ee n as an n-th power of a linear expression involving an analytic function
by a known constant. It turns out that it is sometimes easier to manipulate
sion as compared to the original polynomial. This approach has been used
0 solve the boundary part of the Ilieff conjecture on the existence of a zero of
ivative of a polynomial within a unit distance of any zero of the polynomial,
=d all its zeros lie in the closed unit disk.

we extend this approach to the study of ratios of polynomial values at two
ints which lie outside the region of zeros. The corresponding representation turns
e an n-th power of a linear fractional expression involving an analytic function
properties are very similar to the function appearing in the linear case. As a
uence of the basic lemmas, inequalities between the coefficients of these
ials are deduced and results on the location of zeros are proved. The results

3.3.5 The tail of the expansion of aeR is pericdic if and only if o is a quadrati
surd.

Proof. Suppose that the expansion of « has periodic tail. As in the proof of 3.3
we may find ge G such that go is purely periodic, ga = [n,, ..., #,]. Applying 3.34
go is quadratic, hence so is o

Conversely, suppose that o is quadratic and let & be the conjugate root. Let y b
the geodesic joining « to &. Pick a lift gy of ={y) with gy e A. By 3.3.4, ga has a periedi
expansion and hence, by 3.3.2, the tail of « s periodic.
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shall denote by D the open unit disk in the complex plane and by II the class
olynomials of the form

n
pz)y= II (Itzzpy=14a,z4+0, 224 ... + o, 27, (1)

eref'] el =1for k=1,2,..,,n and fixed n. Let K{c,r) denote the closed disk of
and radius r.

2. Basic lemmas

MMA 1. The function

Mathematics Institute 1+ )
Warwick University !og1+ﬁz el £ LIS = Lleff+| 2> 0,0 =0
Coventry CV4 7AL.
. alytic convex function in D if and only if
1 —apfz? :
= >0 2
(1+txz)(l+Bz) : @
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