Some aspects of geometric quantization and quantum chaos

Slides are on my web-page.

F. Faure (Grenoble)

January 19, 2024, Marseille

Geometric quantization of a symplectic map (flow) Let $\phi:(M, \Omega) \rightarrow(M, \Omega)$ a symplectic map.

Example (geodesic flow)

$M=T^{*} \mathbb{R}^{d}=\mathbb{R}^{d} \times \mathbb{R}^{d} \ni($ position q, momentum $p)$ and $\Omega=\sum_{j} d q_{j} \wedge d p_{j}$. Hamiltonian function $H(q, p)$, generates a (symplectic) flow ϕ^{t} by
$\frac{\partial q}{\partial t}=\frac{\partial H}{\partial p}, \frac{\partial p}{\partial t}=-\frac{\partial H}{\partial q}$.
If g is a metric on $\mathbb{R}_{q}^{d}, H(q, p)=\|p\|_{g_{q}}$ generates the geodesic flow (motion of a free particle or adhesive tape).

Geometric quantization of a symplectic map (flow)
Let $\phi:(M, \Omega) \rightarrow(M, \Omega)$ a symplectic map.

Example (geodesic flow)

$M=T^{*} \mathbb{R}^{d}=\mathbb{R}^{d} \times \mathbb{R}^{d} \ni($ position q, momentum $p)$ and $\Omega=\sum_{j} d q_{j} \wedge d p_{j}$.
Hamiltonian function $H(q, p)$, generates a (symplectic) flow ϕ^{t} by
$\frac{\partial q}{\partial t}=\frac{\partial H}{\partial p}, \frac{\partial p}{\partial t}=-\frac{\partial H}{\partial q}$.
If g is a metric on $\mathbb{R}_{q}^{d}, H(q, p)=\|p\|_{g_{q}}$ generates the geodesic flow (motion of a free particle or adhesive tape).

Geometric quantization of a symplectic map (flow)
Let $\phi:(M, \Omega) \rightarrow(M, \Omega)$ a symplectic map.

Example (geodesic flow)

$M=T^{*} \mathbb{R}^{d}=\mathbb{R}^{d} \times \mathbb{R}^{d} \ni($ position q, momentum $p)$ and $\Omega=\sum_{j} d q_{j} \wedge d p_{j}$.
Hamiltonian function H (q, p), generates a (symplectic) flow ϕ^{t} by
$\frac{\partial q}{\partial t}=\frac{\partial H}{\partial p}, \frac{\partial p}{\partial t}=-\frac{\partial H}{\partial q}$.
If g is a metric on $\mathbb{R}_{q}^{d}, H(q, p)=\|p\|_{g_{q}}$ generates the geodesic flow (motion of a free particle or adhesive tape).
video modular billiard 1 particle, video 1 e 5 particles in modular billiard, video 1 e 5 particles on a closed horocycle.

Cat Map

Example (Cat map)

On $M=T^{*} \mathbb{R}=\mathbb{R}^{2} \ni(q, p)$, the hyperbolic symplectic map $\phi=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ is the flow $\phi^{t=1}$ generated by $H(q, p)=\alpha q^{2}+\beta p^{2}+\gamma q p$ with some $\alpha, \beta, \gamma \in \mathbb{R}$. This gives a mixing map on $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ (that can be perturbed). See movie of 1 particle in cat map, movie of cat map, movie of pertubated cat map

(a)

(b)

(c)

Cat Map

Example (Cat map)

On $M=T^{*} \mathbb{R}=\mathbb{R}^{2} \ni(q, p)$, the hyperbolic symplectic map $\phi=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ is the flow $\phi^{t=1}$ generated by $H(q, p)=\alpha q^{2}+\beta p^{2}+\gamma q p$ with some $\alpha, \beta, \gamma \in \mathbb{R}$. This gives a mixing map on $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ (that can be perturbed). See movie of 1 particle in cat map, movie of cat map, movie of pertubated cat map

Pre-quantization of $\phi: M \rightarrow M$, :1st step (Kostant Souriau 70')

Definition

Let $P=M \times \mathbb{R}_{\alpha}$, with $M=\left(T^{*} \mathbb{R}^{d}\right)_{q, p}$ (no topological issues),
1 -form $\theta=d \alpha-\sum_{j=1}^{d} p_{j} d q_{j}$ hence $d \theta=\Omega$.
The prequantum map is the equivariant extension $\tilde{\phi}: P \rightarrow P$ of $\phi: M \rightarrow M$ such that $\tilde{\phi}^{*} \theta=\theta$.

Pre-quantization of $\phi: M \rightarrow M$, :1st step (Kostant Souriau 70')

Definition

Let $P=M \times \mathbb{R}_{\alpha}$, with $M=\left(T^{*} \mathbb{R}^{d}\right)_{q, p}$ (no topological issues),
1 -form $\theta=d \alpha-\sum_{j=1}^{d} p_{j} d q_{j}$ hence $d \theta=\Omega$.
The prequantum map is the equivariant extension $\tilde{\phi}: P \rightarrow P$ of $\phi: M \rightarrow M$ such that $\tilde{\phi}^{*} \theta=\theta$.

- Lemma: The lift of $X=\frac{\partial H}{\partial p} \frac{\partial}{\partial q}-\frac{\partial H}{\partial q} \frac{\partial}{\partial p}$ is $\tilde{X}=X+L \frac{\partial}{\partial \alpha}$ with Lagrangian $L=\sum_{j} p_{j} \frac{\partial q_{j}}{\partial t}-H$
- Proof: $\mathcal{L}_{\tilde{x}} \theta={ }^{d} \iota_{\tilde{x}} \theta+\iota_{\tilde{x}} d \theta=d(L-A(X))+d H=0$ with $A=\sum_{j} p_{j} d q_{j}$.
- Consider push forward of functions $\tilde{\phi}_{*}^{t}: v \in L^{2}(P) \rightarrow v \circ \tilde{\phi}^{-t} \in L^{2}(P)$.

- Let $\omega \in \mathbb{R}$, and consider the reduced space invariant under ϕ_{*} :

$$
\tilde{X}_{\omega}=X-i \omega L
$$

- The prequantum Schrödinger equation is, with $\hbar=\frac{1}{\omega}$,

$$
\frac{\partial u_{t}}{\partial t}=-\tilde{X}_{\omega} u_{t} \Leftrightarrow i \hbar \frac{\partial u_{t}}{\partial t}=\hat{H}_{\text {preq. }}, u_{t}, \quad \hat{H}_{\text {pred. }}=-i \hbar \tilde{X}_{\omega}=-i \hbar x-L
$$

- Ex: $H(q, p)=q_{j}$ gives $\hat{H}_{\text {preq. }}=i \hbar \frac{\partial}{\partial p_{j}}+q_{j}$.

$$
H(q, p)=p_{j} \text { gives } \hat{H}_{\text {preq. }}=-i \hbar \frac{\partial}{\partial q_{i}} .
$$

- Consider push forward of functions $\tilde{\phi}_{*}^{t}: v \in L^{2}(P) \rightarrow v \circ \tilde{\phi}^{-t} \in L^{2}(P)$.

- Let $\omega \in \mathbb{R}$, and consider the reduced space invariant under $\tilde{\phi}_{*}$:

$$
\begin{aligned}
L_{\omega}^{2}(P) & =\left\{v \in L^{2}(P), v(q, p, \alpha)=e^{-i \omega \alpha} u(q, p), u \in L^{2}\left(T^{*} \mathbb{R}^{d}\right)\right\}, \\
\tilde{X}_{\omega} & =X-i \omega L
\end{aligned}
$$

- The prequantum Schrödinger equation is, with $\hbar=\frac{1}{\omega}$,

- Ex: $H(q, p)=q_{j}$ gives $\hat{H}_{\text {preq }}$ $H(q, p)=p_{j}$ gives \hat{H} req. $=-i \hbar \frac{\partial}{\partial q_{j}}$.
- Consider push forward of functions $\tilde{\phi}_{*}^{t}: v \in L^{2}(P) \rightarrow v \circ \tilde{\phi}^{-t} \in L^{2}(P)$.

- Let $\omega \in \mathbb{R}$, and consider the reduced space invariant under $\tilde{\phi}_{*}$:

$$
\begin{aligned}
L_{\omega}^{2}(P) & =\left\{v \in L^{2}(P), v(q, p, \alpha)=e^{-i \omega \alpha} u(q, p), u \in L^{2}\left(T^{*} \mathbb{R}^{d}\right)\right\}, \\
\tilde{X}_{\omega} & =X-i \omega L
\end{aligned}
$$

- The prequantum Schrödinger equation is, with $\hbar=\frac{1}{\omega}$,

$$
\frac{\partial u_{t}}{\partial t}=-\tilde{X}_{\omega} u_{t} \quad \Leftrightarrow i \hbar \frac{\partial u_{t}}{\partial t}=\hat{H}_{\text {preq. }} \cdot u_{t}, \quad \hat{H}_{\text {preq. }}=-i \hbar \tilde{X}_{\omega}=-i \hbar X-L
$$

- Consider push forward of functions $\tilde{\phi}_{*}^{t}: v \in L^{2}(P) \rightarrow v \circ \tilde{\phi}^{-t} \in L^{2}(P)$.

- Let $\omega \in \mathbb{R}$, and consider the reduced space invariant under $\tilde{\phi}_{*}$:

$$
\begin{aligned}
L_{\omega}^{2}(P) & =\left\{v \in L^{2}(P), v(q, p, \alpha)=e^{-i \omega \alpha} u(q, p), u \in L^{2}\left(T^{*} \mathbb{R}^{d}\right)\right\}, \\
\tilde{X}_{\omega} & =X-i \omega L
\end{aligned}
$$

- The prequantum Schrödinger equation is, with $\hbar=\frac{1}{\omega}$,

$$
\frac{\partial u_{t}}{\partial t}=-\tilde{X}_{\omega} u_{t} \quad \Leftrightarrow i \hbar \frac{\partial u_{t}}{\partial t}=\hat{H}_{\text {preq. }} \cdot u_{t}, \quad \hat{H}_{\text {preq. }}=-i \hbar \tilde{X}_{\omega}=-i \hbar X-L
$$

- Ex: $H(q, p)=q_{j}$ gives $\hat{H}_{\text {preq. }}=i \hbar \frac{\partial}{\partial p_{j}}+q_{j}$.

$$
H(q, p)=p_{j} \text { gives } \hat{H}_{\text {preq. }}=-i \hbar \frac{\partial}{\partial q_{j}} .
$$

Quantization of ϕ (:2nd step, less intrinsic)

- Def: a polarization is an arbitrary integrable Lagrangian distribution \mathcal{L} on TM lifted to ker . Not invariant by the dynamics!

- The quantum space $\mathcal{H} \subset L_{\omega}^{2}(P)$ is functions invariant along \mathcal{L}.
- Ex: "vertical polarization" $\operatorname{Span}\left(D_{\frac{\partial}{\partial_{j}}}\right)_{j}$ (cov. deriv.) gives $\mathcal{H} \equiv L^{2}\left(\mathbb{R}^{d}\right)$.
- Let $\Pi: L_{\omega}^{2}(P) \rightarrow \mathcal{H}$ the "orthogonal projector" (averaging along \mathcal{L}). The quantum Schrödinger equation in \mathcal{H} is

$$
i \hbar \frac{\partial u_{t}}{\partial t}=\underbrace{(-i \hbar \Pi \tilde{X} \Pi)}_{\hat{H}} u_{t} \Leftrightarrow u_{t}=e^{-i t \hat{H} / \hbar} u_{0}
$$

Quantization of ϕ (:2nd step, less intrinsic)

- Def: a polarization is an arbitrary integrable Lagrangian distribution \mathcal{L} on TM lifted to ker . Not invariant by the dynamics!

- Ex: "vertical polarization" $\operatorname{Span}\left(\frac{\widetilde{\partial}}{\partial_{p_{j}}}\right)_{j}$ gives $\mathcal{H} \equiv L^{2}\left(\mathbb{R}^{d}\right)$. $H(q, p)=q_{j}$ gives $\hat{H}=q_{j} . H(q, p)=p_{j}$ gives $\hat{H}=-i \hbar \frac{\partial}{\partial q_{j}}$.
- For geodesic flow, $H(q, p)=\|p\|$ gives $\hat{H}=-\hbar \sqrt{\Delta}+$ l.o.t hence $i \hbar \frac{\partial u_{t}}{\partial t}=(-\hbar \sqrt{\Delta}) u_{t}$ gives the wave equation $\frac{\partial^{2} u_{t}}{\partial t^{2}}=-\Delta u_{t}$.

Complex polarization

－Ex：＂complex polarization＂ $\operatorname{Span}\left(\frac{\widetilde{\partial}}{\partial \bar{z}_{j}}\right)_{j}$ with $z_{j}=q_{j}+i p_{j} \in \mathbb{C}^{d} \equiv T^{*} \mathbb{R}^{d}$ gives

$$
\begin{equation*}
\mathcal{H}_{(16)}^{=}\left\{u(q, p)=w(z) e^{-\left(\frac{|z|}{2 \sqrt{\hbar}}\right)^{2}} \in L^{2}\left(T^{*} \mathbb{R}^{d}\right)\right\} \tag{1}
\end{equation*}
$$

with holomorphic w ．
－A wave－packet at $z_{0} \in T^{*} \mathbb{R}^{d}$ is $\varphi_{z_{0}}:=\Pi \delta_{z_{0}} \in \mathcal{H}$ ，gives $\left|\varphi_{z_{0}}(z)\right|=C e^{-\left(\frac{1 z-z_{0}}{2 \sqrt{n}}\right)^{2}}$ and

＇resolution of identity＂

Complex polarization

- Ex:"complex polarization" $\operatorname{Span}\left(\frac{\widetilde{\partial}}{\partial \bar{z}_{j}}\right)_{j}$ with $z_{j}=q_{j}+i p_{j} \in \mathbb{C}^{d} \equiv T^{*} \mathbb{R}^{d}$ gives

$$
\begin{equation*}
\mathcal{H} \underset{(16)}{=}\left\{u(q, p)=w(z) e^{-\left(\frac{|z|}{2 \sqrt{\hbar}}\right)^{2}} \in L^{2}\left(T^{*} \mathbb{R}^{d}\right)\right\} \tag{1}
\end{equation*}
$$

with holomorphic w.

- A wave-packet at $z_{0} \in T^{*} \mathbb{R}^{d}$ is $\varphi_{\mathrm{z}_{0}}:=\Pi \delta_{\mathrm{z}_{0}} \in \mathcal{H}$, gives $\left|\varphi_{\mathrm{z}_{0}}(z)\right|=C e^{-\left(\frac{1 z-z_{0} \mid}{2 \sqrt{\hbar}}\right)^{2}}$ and

$$
\operatorname{Id}_{\mathcal{H}}=\int_{T^{*} \mathbb{R}^{d}} \varphi_{z}\left\langle\varphi_{z} \mid \cdot\right\rangle \frac{d q d p}{\hbar} \quad: " \text { resolution of identity" }
$$

Quantum cat map (or perturbed)

Recall the cat map $\phi=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right): \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$. By geometric quantization we get a quantum space \mathcal{H} with

$$
N=\operatorname{dim} \mathcal{H}=\frac{\omega}{2 \pi}=\frac{1}{2 \pi \hbar} \in \mathbb{N} \quad \text { (Riemann-Roch thm) }
$$

and a unitary operator

$$
\hat{U}:=e^{-i \hat{H} / \hbar}: \mathcal{H} \rightarrow \mathcal{H} .
$$

We will use complex polarization, denote $z=q+i p \in \mathbb{T}^{2}$ and consider the semi-classical limit $\hbar \ll 1$.

Propagation of singularities

Theorem

"propagation of singularities at finite time". $\forall t \in \mathbb{Z}, \forall n, \exists C_{n, t}, \forall z_{0} \in \mathbb{T}^{2}$, $\forall z \in \mathbb{T}^{2}$,

$$
\left|\left(\hat{U}^{t} \varphi_{z_{0}}\right)(z)\right| \leq C_{n, t}\left(\frac{\operatorname{dist}\left(z, \phi^{t}\left(z_{0}\right)\right)}{\sqrt{\hbar}}\right)^{-n}
$$

Cos,

After the Ehrenfest time?

Question (Open in general)

What happens to $\hat{U}^{t} \varphi_{z_{0}}$ for $e^{\lambda t} \hbar \gg 1 \Leftrightarrow t \gg T_{E}:=\frac{1}{\lambda} \log \frac{1}{\hbar}$ i.e. after the Ehrenfest time? ($\lambda>1$ is Lyapunov exponent)

- For the cat map, we have some exceptional phenomena of quantum period (Hannay-Berry 1980): $\forall \hbar, \exists P_{\hbar}, \exists \alpha, \hat{U}^{P_{\hbar}}=e^{i \alpha} \mathrm{Id}$, and $P_{\hbar}=2\left(\frac{1}{\lambda} \log \frac{1}{\hbar}\right)$ for infinite sequences of \hbar. See videos.

Quantum ergodicity

Ref: S. Dyatlov-review arxiv 2103.08093
It concerns eigenvectors $\hat{U} \psi_{j}=e^{i \theta_{j}} \psi_{j}, \psi_{j} \in \mathcal{H},\left\|\psi_{j}\right\|_{\mathcal{H}}=1, j=1 \rightarrow N$.

Theorem (Quantum ergodicity (schnirelmann 74, zedlitch 87, colin de Verdière 85))

Suppose that the dynamics ϕ is ergodic. For any "observable" $a \in C^{\infty}\left(\mathbb{T}^{2}\right)$, define $\mathrm{Op}_{N}(a)=\Pi \mathcal{M}_{\mathrm{a}} \Pi: \mathcal{H} \rightarrow \mathcal{H}$. We have

$$
\text { "quantum variance": } V_{a, N}:=\frac{1}{N} \sum_{j=1}^{N}\left|\left\langle\psi_{j} \mid \mathrm{OP}_{N}(\mathrm{a}) \psi_{j}\right\rangle-\langle a)_{\mathbb{T}^{2}}\right|^{2} \underset{N \rightarrow \infty}{\rightarrow} 0
$$

means that almost all eigenfunctions ψ_{j} get equidistributed on \mathbb{T}^{2} in the limit $N \rightarrow \infty$.

Quantum ergodicity

Theorem (Quantum ergodicity (sshmirdmann ra, zoditich 87, Colin de veritier s5))

Suppose that the dynamics ϕ is ergodic. For any "observable" $a \in C^{\infty}\left(\mathbb{T}^{2}\right)$, define $\mathrm{Op}_{N}(a)=\Pi \mathcal{M}_{\mathrm{a}} \Pi: \mathcal{H} \rightarrow \mathcal{H}$. We have

$$
\text { "quantum variance": } V_{a, N}:=\frac{1}{N} \sum_{j=1}^{N}\left|\left\langle\psi_{j} \mid \mathrm{Op}_{N}(a) \psi_{j}\right\rangle-\langle a\rangle_{\mathbb{T}^{2}}\right|^{2} \underset{N \rightarrow \infty}{ } 0
$$

means that almost all eigenfunctions ψ_{j} get equidistributed on \mathbb{T}^{2} in the limit $N \rightarrow \infty$.
Proof: suppose $\langle a\rangle_{\mathbb{T}^{2}}=0$. Let $T \geq 1$.

$$
\begin{aligned}
\left\langle\psi_{j} \mid \mathrm{Op}_{N}(a) \psi_{j}\right\rangle & =\frac{1}{T} \sum_{t=0}^{T-1}\left\langle\psi_{j} \mid \hat{U}^{-t} \mathrm{Op}_{N}(a) \hat{U}^{t} \psi_{j}\right\rangle \underset{(\text { Egorov) }}{=} \frac{1}{T} \sum_{t=0}^{T-1}\left\langle\psi_{j} \mid \mathrm{Op}_{N}\left(a \circ \phi^{t}\right) \psi_{j}\right\rangle+O_{T}\left(\frac{1}{N}\right) \\
& =\langle\psi_{j} \left\lvert\, \mathrm{Op}_{N}(\underbrace{\frac{1}{T} \sum_{t=0}^{T-1} a \circ \phi^{t}}_{a_{T}}) \psi_{j}\right.\rangle+O_{T}\left(\frac{1}{N}\right)
\end{aligned}
$$

Quantum ergodicity

Theorem (Quantum ergodicity (sshmirdmann 74, zodilich 87, Colin de verifier s5))

Suppose that the dynamics ϕ is ergodic. For any "observable" $a \in C^{\infty}\left(\mathbb{T}^{2}\right)$, define $\mathrm{Op}_{N}(a)=\Pi \mathcal{M}_{\mathrm{a}} \Pi: \mathcal{H} \rightarrow \mathcal{H}$. We have

$$
\text { "quantum variance": } V_{a, N}:=\frac{1}{N} \sum_{j=1}^{N}\left|\left\langle\psi_{j} \mid \mathrm{Op}_{N}(a) \psi_{j}\right\rangle-\langle a\rangle_{\mathbb{T}^{2}}\right|^{2} \underset{N \rightarrow \infty}{\rightarrow} 0
$$

means that almost all eigenfunctions ψ_{j} get equidistributed on \mathbb{T}^{2} in the limit $N \rightarrow \infty$.
Proof (cont.)

$$
\begin{gathered}
\left|\left\langle\psi_{j} \mid \mathrm{Op}_{N}\left(a_{T}\right) \psi_{j}\right\rangle\right|^{\mathbf{2}} \underset{\text { (C.S.) }}{\leq}\left\|\mathrm{Op}_{N}\left(a_{T}\right) \psi_{j}\right\|^{2}=\left\langle\psi_{j} \mid \mathrm{Op}_{N}\left(a_{T}\right)^{2} \psi_{j}\right\rangle \underset{\text { (Compos.) }}{=}\left\langle\psi_{j} \mid \mathrm{Op}_{N}\left(a_{T}^{2}\right) \psi_{j}\right\rangle+O_{T}(1 / N) \\
V_{a, N}=\frac{1}{N} \sum_{j=\mathbf{1}}^{N}\left\langle\psi_{j} \mid \mathrm{Op}_{N}\left(a_{T}^{2}\right) \psi_{j}\right\rangle+O_{T}\left(\frac{1}{N}\right)=\frac{1}{N} \operatorname{Tr}\left(\operatorname{Op}_{N}\left(a_{T}^{2}\right)\right)+O_{T}\left(\frac{1}{N}\right) \\
\quad=1 \text { (Trace) } \int_{\mathbb{T}^{2}} a_{T}^{2} d q d p+O_{T}\left(\frac{1}{N}\right)
\end{gathered}
$$

Ergodicity implies $\int_{\mathbb{T}^{2}} a_{T}^{2} d q d p \underset{T \rightarrow \infty}{\rightarrow} 0$. Conclude by taking T large, then N large.

Conjecture of unique quantum ergodicity

Conjecture (Rudnik Sarnak 1994)

For a generic uniformly hyperbolic dynamics, for every sequence $k \in \mathbb{N} \rightarrow \psi_{j_{k}} \in \mathcal{H}_{N_{k}}$ with $N_{k} \underset{k \rightarrow \infty}{\rightarrow} \infty, \forall a \in C^{\infty}\left(\mathbb{T}^{2}\right)$,
$\left\langle\psi_{j_{k}} \mid \mathrm{Op}_{N_{k}}(a) \psi_{j_{k}}\right\rangle \underset{k \rightarrow \infty}{\rightarrow}\langle a\rangle_{\mathbb{T}^{2}}$, i.e. all eigenfunctions get equidistributed.

- Counter-example with the cat map (DB,F,N 2003): the semiclassical measure can be: $\mu_{s c}=\frac{1}{2} \delta_{\text {periodic-orbit }}+\frac{1}{2} d q d p$,
i.e. $\left\langle\psi_{j_{k}}\right| \mathrm{Op}_{N_{k}}$ (a) $\left.\psi_{j_{k}}\right\rangle \underset{k \rightarrow \infty}{\rightarrow} \int_{\mathbb{T}^{2}} a \mu_{s c}$. See video of revival, video generic evolution

Conjecture of unique quantum ergodicity

Conjecture (Rudnik Sarnak 1994)

For a generic uniformly hyperbolic dynamics, for every sequence $k \in \mathbb{N} \rightarrow \psi_{j_{k}} \in \mathcal{H}_{N_{k}}$ with $N_{k} \underset{k \rightarrow \infty}{\rightarrow} \infty, \forall a \in C^{\infty}\left(\mathbb{T}^{2}\right)$, $\left\langle\psi_{j_{k}} \mid \mathrm{Op}_{N_{k}}(a) \psi_{j_{k}}\right\rangle \underset{k \rightarrow \infty}{\rightarrow}\langle a\rangle_{\mathbb{T}^{2}}$, i.e. all eigenfunctions get equidistributed.

- Counter-example : $\mu_{s c}=\frac{1}{2} \delta_{\text {periodic-orbit }}+\frac{1}{2} d q d p$,

- proof: direct consequence of the short quantum period $P_{\hbar}=2 T_{E}$:

Conjecture of unique quantum ergodicity

Conjecture (Rudnik Sarnak 1994)

For a generic uniformly hyperbolic dynamics, for every sequence $k \in \mathbb{N} \rightarrow \psi_{j_{k}} \in \mathcal{H}_{N_{k}}$ with $N_{k} \underset{k \rightarrow \infty}{\rightarrow} \infty, \forall a \in C^{\infty}\left(\mathbb{T}^{2}\right)$,
$\left\langle\psi_{j_{k}} \mid \mathrm{Op}_{N_{k}}(a) \psi_{j_{k}}\right\rangle \underset{k \rightarrow \infty}{\rightarrow}\langle a\rangle_{\mathbb{T}^{2}}$, i.e. all eigenfunctions get equidistributed.
For any semiclassical measure $\mu_{s c}$ defined by $\forall a,\left\langle\psi_{j k} \mid \operatorname{Op}_{N_{k}}(a) \psi_{j_{k}}\right\rangle \underset{k \rightarrow \infty}{\rightarrow} \int_{\mathbb{T}^{2}} a \mu_{s c}$,

- Results from N Anantharaman et al. (2007): for hyperbolic surfaces the Kolmogorov Sinai entropy $h_{\mathrm{KS}}\left(\mu_{\text {sc }}\right) \geq \frac{1}{2}$.
- Results from S. Dyatlov et al. (2018): $\mu_{s c}$ has full support.

Random matrix conjecture

 It concerns eigenvalues $\hat{U} \psi_{j}=e^{i \theta_{j}} \psi_{j}, \psi_{j} \in \mathcal{H}, j=1 \rightarrow N$.
Conjecture (Universal random matrix conjecture (Bohigas et al. 1984))

For a generic uniformly hyperbolic dynamics, at scale $\Delta \theta \ll T_{E}^{-1}=1 / \log (1 / \hbar)$, eigenvalues $\left(\theta_{j}\right)_{j}$ have the same statistical distributions as eigenvalues of a random unitary matrix (GUE). (the same for eigenvectors).

Resonance spectrum of the prequantum dynamics

Remark that discrete eigenvalues of \hat{H} are poles of
$z \rightarrow\left\langle v \mid(z-\hat{H})^{-1} u\right\rangle=-\frac{i}{\hbar} \int_{0}^{\infty} e^{i t z / \hbar} \underbrace{\left\langle v \mid e^{-i t \hat{H} / \hbar} u\right\rangle}_{\text {correlations }} d t, u, v \in C^{\infty}$.
Thm: If the flow ϕ^{t} is Anosov, for the prequantum dynamics, $z \rightarrow\left\langle v \mid(z-\tilde{X})^{-1} u\right\rangle$ has discrete poles called Ruelle resonances that contain th spectrum of a quantum operator:

- This provides a natural or "dynamical quantization".
- Interpretation: quantum dynamics emerges from classical dynamics after long time.

Resonances of the dynamics on the modular surface

Observation: (ref: Lax-Phillips): The Laplacian Δ on the modular surface $S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$ has a discrete spectrum (resonances $E_{j}=s_{j}\left(1-s_{j}\right)$) containing the Riemann zeroes conjectured at $\operatorname{Re}(s)=1 / 4$.

Appendix: proof of (1)

Let

$$
\begin{gathered}
z=q+i p \\
q=\frac{1}{2}(z+\bar{z}), \quad p=\frac{i}{2}(\bar{z}-z)
\end{gathered}
$$

Let

$$
\begin{aligned}
\theta & =d \alpha-\frac{1}{2} p d q+\frac{1}{2} q d p=d \alpha-\frac{1}{8} i(\bar{z}-z)(d z+d \bar{z})+\frac{1}{8} i(z+\bar{z})(d \bar{z}-d z) \\
& =d \alpha-\frac{i}{4} \bar{z} d z+\frac{i}{4} z d \bar{z}
\end{aligned}
$$

that satisfies $d \theta=d q \wedge d p=\Omega$. Let

$$
\frac{\widetilde{\partial}}{\partial \bar{z}}=\frac{\partial}{\partial \bar{z}}+h(z, \bar{z}) \frac{\partial}{\partial \alpha}
$$

with h such that

$$
0=\theta\left(\frac{\widetilde{\partial}}{\partial \bar{z}}\right)=h(z, \bar{z})+i \frac{z}{4}
$$

hence

$$
h(q, p)=-\frac{i}{4}(q+i p)=-\frac{i}{4} z
$$

So $v(q, p, \alpha)=e^{i \omega \alpha} u(q, p)$ with $\frac{\widetilde{\partial}}{\partial \bar{z}} v=0$ gives

$$
\left(\frac{\partial}{\partial \bar{z}}-\frac{i}{4} z \frac{\partial}{\partial \alpha}\right)\left(e^{i \omega \alpha} u(z, \bar{z})\right)=0 \Leftrightarrow \frac{\partial u}{\partial \bar{z}}+\frac{1}{4} z \omega u=0
$$

Solution is $u=w(z) e^{-\frac{1}{4} \omega \bar{z} z}=w(z) e^{-\frac{1}{4 \hbar} \bar{z} z}$, indeed $\frac{\partial u}{\partial \bar{z}}=-\frac{1}{4} \omega z u$.

