Microlocal analysis of Anosov geodesic flow

F. Faure (Grenoble) with M. Tsujii (Kyushu),

June 2019, Shanghai.

Deterministic dynamics：vector field X and flow ϕ^{t}

On a closed manifold M ，let X be a C^{∞} vector field that determines a flow map：

$$
\phi^{t}:\left\{\begin{array}{ll}
M & \rightarrow M \\
m & \rightarrow \phi^{t}(m)
\end{array}, \quad t \in \mathbb{R},\right.
$$

by

$$
\left(\frac{d \phi^{t^{\prime}}}{d t^{\prime}}(m)\right)_{t^{\prime}=t}=X\left(\phi^{t}(m)\right), \quad \phi^{t=0}(m)=m
$$

Evolution of distributions on M by transfer operators $e^{t X}$

Pull-back action of the flow on functions $u \in C^{\infty}(M)$ is $u \circ \phi^{t}$.
Since $\frac{d\left(u \circ \phi^{t}\right)}{d t}=X u$ with $X=\sum_{j=1}^{\operatorname{dim} M} X_{j}(m) \frac{\partial}{\partial m_{j}}$, we get

$$
e^{t X} u:=u \circ \phi^{t}
$$

- Remark: $e^{t X} 1=1, X 1=0$ hence the adjoint $\left(e^{t X}\right)^{*}$ called the Perron Frobenius operator is
pushes forward probability distributions:

Evolution of distributions on M by transfer operators $e^{t X}$

Pull-back action of the flow on functions $u \in C^{\infty}(M)$ is $u \circ \phi^{t}$.
Since $\frac{d\left(u \circ \phi^{t}\right)}{d t}=X u$ with $X=\sum_{j=1}^{\operatorname{dim} M} X_{j}(m) \frac{\partial}{\partial m_{j}}$, we get

$$
e^{t X} u:=u \circ \phi^{t}
$$

- Remark: $e^{t X} \mathbf{1}=\mathbf{1}, X \mathbf{1}=0$ hence the adjoint $\left(e^{t X}\right)^{*}$ called the Perron Frobenius operator is

$$
\left(e^{t X}\right)^{*} u=\left|\operatorname{det} D \phi^{-t}\right| . u \circ \phi^{-t}
$$

pushes forward probability distributions:

$$
\int_{M}\left(e^{t X}\right)^{*} u d \mu=\left\langle 1 \mid\left(e^{t X}\right)^{*} u\right\rangle_{L^{2}}=\left\langle e^{t X} 1 \mid u\right\rangle_{L^{2}}=\langle 1 \mid u\rangle_{L^{2}}=\int_{M} u d \mu .
$$

In particular and $e^{t X^{*}} \delta_{m}=\delta_{\phi^{t}(m)}$.

More general evolution of sections of $F \rightarrow M$

Let $F \rightarrow M$ a vector bundle and $\tilde{\phi}_{F}^{t}=e^{t \tilde{X}_{F}}: F \rightarrow F$ be smooth, linear, bundle map, extension of $\phi^{t}: M \rightarrow M$.

Definition

For a section $u \in C^{\infty}(M ; F)$,

- Example: for tensor bundle $F=T M \otimes \ldots \otimes T^{*} M$, $\tilde{\phi}_{F}^{t}$ is determined by the differential $D \phi^{t}$ and X_{F} is the Lie derivative.

More general evolution of sections of $F \rightarrow M$

Let $F \rightarrow M$ a vector bundle and $\tilde{\phi}_{F}^{t}=e^{t \tilde{X}_{F}}: F \rightarrow F$ be smooth, linear, bundle map, extension of $\phi^{t}: M \rightarrow M$.

Definition

For a section $u \in C^{\infty}(M ; F)$,

$$
e^{t X_{F}} u:=\tilde{\phi}_{F}^{-t}\left(u \circ \phi^{t}\right) .
$$

- Example: for tensor bundle $F=T M \otimes \ldots \otimes T^{*} M, \tilde{\phi}_{F}^{t}$ is determined by the differential $D \phi^{t}$ and X_{F} is the Lie derivative.

More general evolution of sections of $F \rightarrow M$

Let $F \rightarrow M$ a vector bundle and $\tilde{\phi}_{F}^{t}=e^{t \tilde{X}_{F}}: F \rightarrow F$ be smooth, linear, bundle map, extension of $\phi^{t}: M \rightarrow M$.

Definition

For a section $u \in C^{\infty}(M ; F)$,

$$
e^{t X_{F}} u:=\tilde{\phi}_{F}^{-t}\left(u \circ \phi^{t}\right) .
$$

- Example: for tensor bundle $F=T M \otimes \ldots \otimes T^{*} M$, $\tilde{\phi}_{F}^{t}$ is determined by the differential $D \phi^{t}$ and X_{F} is the Lie derivative.

Anosov flow (or uniformly hyperbolic flow)

Definition

Vector field X is Anosov if there exists an invariant, Hölder continuous splitting, $\forall m \in M, \quad T_{m} M=E_{u}(m) \oplus E_{s}(m) \oplus \underbrace{E_{0}(m)}_{\mathbb{R} X}$, s.t.
$\exists g, \exists C>0, \lambda>0, \forall t \geq 0, m \in M$,

$$
\left\|D \phi_{/ E_{s}(m)}^{t}\right\|_{g} \leq C e^{-\lambda t}, \quad\left\|D \phi_{/ E_{u}(m)}^{-t}\right\|_{g} \leq C e^{-\lambda t}
$$

this "sensitivity to initial conditions" generates "chaos" (confusion, unpredictability).

Special example: Anosov geodesic flow
Let (\mathcal{N}, g) a closed Riemannian manifold, $\operatorname{dim} \mathcal{N}=d+1$. Let $\mathcal{A}=\sum_{j} p_{j} d q_{j}$ be the canonical Liouville one form on phase space $T^{*} \mathcal{N}$.

- Def: The Geodesic vector field X on $M=\left(T^{*} \mathcal{N}\right)_{1}, \operatorname{dim} M=2 d+1$, is defined by Hamilton equation of motion of a free particle $\left(H(q ; p)=\|p\|_{g(q)}\right): d \mathcal{A}(X,)=0,. \mathcal{A}(X)=1$.
- Thm (Anosov 67): if (\mathcal{N}, g) has negative curvature then X is Anosov with $\operatorname{dim} E_{u}$

Special example: Anosov geodesic flow
Let (\mathcal{N}, g) a closed Riemannian manifold, $\operatorname{dim} \mathcal{N}=d+1$. Let $\mathcal{A}=\sum_{j} p_{j} d q_{j}$ be the canonical Liouville one form on phase space $T^{*} \mathcal{N}$.

- Def: The Geodesic vector field X on $M=\left(T^{*} \mathcal{N}\right)_{1}, \operatorname{dim} M=2 d+1$, is defined by Hamilton equation of motion of a free particle $\left(H(q ; p)=\|p\|_{g(q)}\right): d \mathcal{A}(X,)=0,. \mathcal{A}(X)=1$.

Special example: Anosov geodesic flow

Let (\mathcal{N}, g) a closed Riemannian manifold, $\operatorname{dim} \mathcal{N}=d+1$. Let $\mathcal{A}=\sum_{j} p_{j} d q_{j}$ be the canonical Liouville one form on phase space $T^{*} \mathcal{N}$.

- Def: The Geodesic vector field X on $M=\left(T^{*} \mathcal{N}\right)_{1}$, $\operatorname{dim} M=2 d+1$, is defined by Hamilton equation of motion of a free particle $\left(H(q ; p)=\|p\|_{g(q)}\right): d \mathcal{A}(X,)=0,. \mathcal{A}(X)=1$.
- Thm (Anosov 67): if (\mathcal{N}, g) has negative curvature then X is Anosov with $\operatorname{dim} E_{u}=\operatorname{dim} E_{s}=d$.

Special example: Anosov geodesic flow
Let (\mathcal{N}, g) a closed Riemannian manifold, $\operatorname{dim} \mathcal{N}=d+1$. Let $\mathcal{A}=\sum_{j} p_{j} d q_{j}$ be the canonical Liouville one form on phase space $T^{*} \mathcal{N}$.

- "special" because $E_{u} \oplus E_{s}=\operatorname{Ker} \mathcal{A}$ is C^{∞} and $d \mathcal{A}$-symplectic (maximally non integrable).

- Ex: surface of constant curvature

Special example: Anosov geodesic flow
Let (\mathcal{N}, g) a closed Riemannian manifold, $\operatorname{dim} \mathcal{N}=d+1$. Let $\mathcal{A}=\sum_{j} p_{j} d q_{j}$ be the canonical Liouville one form on phase space $T^{*} \mathcal{N}$.

- "special" because $E_{u} \oplus E_{s}=\operatorname{Ker} \mathcal{A}$ is C^{∞} and $d \mathcal{A}$-symplectic (maximally non integrable).
- Ex: surface of constant curvature

$$
\mathcal{N}=\Gamma \backslash \underbrace{\left(\mathrm{SL}_{2} \mathbb{R} / \mathrm{SO}_{2}\right)}_{\mathbb{D}^{2}} \quad M=\left(T^{*} \mathcal{N}\right)_{1}=\Gamma \backslash \mathrm{SL}_{2}(\mathbb{R}),
$$

Dynamical correlation functions

Observe that for $t \rightarrow+\infty, e^{t X} u=u \circ \phi^{t}$ gets high oscillations along $E_{u}^{*}=\left(E_{s} \oplus E_{0}\right)^{\perp}$, i.e. informations goes towards microscopic scales.

- Rem: this is reversible: $e^{-t X} e^{t X} u=u$.
- Objective: describe $e^{t X} u$ in the "weak sense" i.e. for $u, v \in C^{\infty}(M)$ describe "dynamical correlation functions"

Dynamical correlation functions

Observe that for $t \rightarrow+\infty, e^{t X} u=u \circ \phi^{t}$ gets high oscillations along $E_{u}^{*}=\left(E_{s} \oplus E_{0}\right)^{\perp}$, i.e. informations goes towards microscopic scales.

- Rem: this is reversible: $e^{-t X} e^{t X} u=u$.
- Objective: describe $e^{t X} u$ in the "weak sense" i.e. for $u, v \in C^{\infty}(M)$ describe "dynamical correlation functions"

Dynamical correlation functions

Observe that for $t \rightarrow+\infty, e^{t X} u=u \circ \phi^{t}$ gets high oscillations along $E_{u}^{*}=\left(E_{s} \oplus E_{0}\right)^{\perp}$, i.e. informations goes towards microscopic scales.

- Rem: this is reversible: $e^{-t X} e^{t X} u=u$.
- Objective: describe $e^{t X} u$ in the "weak sense" i.e. for $u, v \in C^{\infty}(M)$ describe "dynamical correlation functions":

$$
\left\langle v \mid e^{t X} u\right\rangle_{L^{2}} \underset{t \gg 1}{ } ?
$$

Motivation

Objective: understand "emergent behaviors" in "complex dynamical systems", here Anosov geodesic flow ϕ^{t}.

- Sinaï billiard = limit case of Anosov geodesic flow:

- See moviel "Anosov flow linkage" by Mickael Kourganoff (2015). See movie2. For an individual trajectory,i.e. evolution of a Dirac measure, we observe "chaos" (confusion, unpredictability).
- See movie3. For a smooth distribution, one observes "predictable irreversible evolution towards equilibrium" (mixing) with decaying fluctuations we'd like to describe.
- Idea of D. Ruelle: study the linear action of the flow on "good distribution spaces" and its discrete spectrum of resonances.

Motivation

Objective: understand "emergent behaviors" in "complex dynamical systems", here Anosov geodesic flow ϕ^{t}.

- Sinaï billiard $=$ limit case of Anosov geodesic flow:

view from above dispersive billard

- See moviel "Anosov flow linkage" by Mickael Kourganoff (2015). See movie2. For an individual trajectory,i.e. evolution of a Dirac measure, we observe "chaos" (confusion, unpredictability)
- See movie3. For a smooth distribution, one observes "predictable irreversible evolution towards equilibrium" (mixing) with decaying fluctuations we'd like to describe.
- Idea of D. Ruelle: study the linear action of the flow on "good distribution spaces" and its discrete spectrum of resonances.

Motivation

Objective: understand "emergent behaviors" in "complex dynamical systems", here Anosov geodesic flow ϕ^{t}.

- Sinaï billiard $=$ limit case of Anosov geodesic flow:

- See movie1 "Anosov flow linkage" by Mickael Kourganoff (2015). See movie2. For an individual trajectory,i.e. evolution of a Dirac measure, we observe "chaos" (confusion, unpredictability).
- See movie3. For a smooth distribution, one observes "predictable irreversible evolution towards equilibrium" (mixing) with decaying fluctuations we'd like to describe.
- Idea of D. Ruelle: study the linear action of the flow on "good distribution spaces" and its discrete spectrum of resonances.

Motivation

Objective: understand "emergent behaviors" in "complex dynamical systems", here Anosov geodesic flow ϕ^{t}.

- Sinaï billiard = limit case of Anosov geodesic flow:

- See movie1 "Anosov flow linkage" by Mickael Kourganoff (2015). See movie2. For an individual trajectory,i.e. evolution of a Dirac measure, we observe "chaos" (confusion, unpredictability).
- See movie3. For a smooth distribution, one observes "predictable irreversible evolution towards equilibrium" (mixing) with decaying fluctuations we'd like to describe.

Motivation

Objective: understand "emergent behaviors" in "complex dynamical systems", here Anosov geodesic flow ϕ^{t}.

- Sinaï billiard = limit case of Anosov geodesic flow:

- See movie1 "Anosov flow linkage" by Mickael Kourganoff (2015). See movie2. For an individual trajectory,i.e. evolution of a Dirac measure, we observe "chaos" (confusion, unpredictability).
- See movie3. For a smooth distribution, one observes "predictable irreversible evolution towards equilibrium" (mixing) with decaying fluctuations we'd like to describe.
- Idea of D. Ruelle: study the linear action of the flow on "good distribution spaces" and its discrete spectrum of resonances.

Question: discrete spectrum of the generator X_{F} ?

- Imagine: if $X_{F}=\sum_{j=1}^{N} z_{j} \Pi_{j}$, were a matrix with complex eigenvalues $z_{j}=a_{j}+i \omega_{j}$ and eigen-projectors (rank 1) Π_{j} then

- In $L^{2}(M)$, the vector field $X=-X^{*}$ is skew symmetric, X has continuous

Question: discrete spectrum of the generator X_{F} ?

- Imagine: if $X_{F}=\sum_{j=1}^{N} z_{j} \Pi_{j}$, were a matrix with complex eigenvalues $z_{j}=a_{j}+i \omega_{j}$ and eigen-projectors (rank 1) Π_{j} then

$$
\begin{aligned}
e^{t X_{F}} & =\sum_{j} e^{t z_{j}} \Pi_{j}=\sum_{j} \underbrace{e^{t a_{j}}}_{\text {amplitude oscillations }} \underbrace{e^{i t \omega_{j}}}_{t \rightarrow+\infty} \Pi_{j} \\
& e^{t a_{0}} e^{i t \omega_{0}} \Pi_{0}+. . \quad: \text { if } a_{0}>a_{j \neq 0}, \quad: \text { "emerging behavior" }
\end{aligned}
$$

- In $L^{2}(M)$, the vector field $X=-X^{*}$ is skew symmetric, X has continuous

Question: discrete spectrum of the generator X_{F} ?

- Imagine: if $X_{F}=\sum_{j=1}^{N} z_{j} \Pi_{j}$, were a matrix with complex eigenvalues $z_{j}=a_{j}+i \omega_{j}$ and eigen-projectors (rank 1) Π_{j} then

$$
\begin{aligned}
e^{t X_{F}} & =\sum_{j} e^{t z_{j}} \Pi_{j}=\sum_{j} \underbrace{e^{t a_{j}}}_{\text {amplitude oscillations }} \underbrace{e^{i t \omega_{j}}}_{t \rightarrow+\infty} \Pi_{j} \\
& e^{t a_{0}} e^{i t \omega_{0}} \Pi_{0}+. . \quad: \text { if } a_{0}>a_{j \neq 0}, \quad: \text { "emerging behavior" }
\end{aligned}
$$

- In $L^{2}(M)$, the vector field $X=-X^{*}$ is skew symmetric, X has continuous spectrum on $i \mathbb{R}$.
$\Rightarrow L^{2}(M)$ is not adequate, we need to change the norm (or the space).

Discrete spectrum of the generator X_{F} : "Pollicott-Ruelle resonances"

- We are using micro-local analysis, similarly to the approaches of Combes 70' (dilatation method), Helffer-Sjöstrand 86 (escape functions, resonances as eigenvalues, quantum scattering on phase space), Melrose $80^{\prime}, 90^{\prime}$ (scattering, radial estimates).

Discrete spectrum of the generator X_{F} : "Pollicott-Ruelle resonances"

- We are using micro-local analysis, similarly to the approaches of Combes 70' (dilatation method), Helffer-Sjöstrand 86 (escape functions, resonances as eigenvalues, quantum scattering on phase space), Melrose 80 ', 90 '(scattering, radial estimates).
- Series of work and interesting recent activity: Ruelle, Bowen 70', Pollicott 86, Rugh 90', Blank, Keller, Liverani 2002, Gouëzel, Liverani 2005, Baladi, Tsujii 2005,2008, Butterley-Liverani 2007, Roy-Sjöstrand-F. 2008, Datchev-Dyatlov-Zworski, Dyatlov-Guillarmou 2014 for Axiom A flows. Dang-Rivière 2016 for Morse-Smale flows, Bonthonneau-Weich 2017 for cusps, Guillarmou-Hilgert-Weich 2018 for symmetric spaces.

Dual Anosov decomposition of $T^{*} M$.

We have $T M=E_{u} \oplus E_{s} \oplus E_{0}$.
Let $E_{0}^{*}:=\left(E_{u} \oplus E_{s}\right)^{\perp}=\mathbb{R} \mathcal{A}, E_{s}^{*}:=\left(E_{u} \oplus E_{0}\right)^{\perp}, E_{u}^{*}:=\left(E_{s} \oplus E_{0}\right)^{\perp}$,

$$
T^{*} M=E_{u}^{*} \oplus E_{s}^{*} \oplus E_{0}^{*}
$$

Dual Anosov decomposition of $T^{*} M$.

We have $T M=E_{u} \oplus E_{s} \oplus E_{0}$.
Let $E_{0}^{*}:=\left(E_{u} \oplus E_{s}\right)^{\perp}=\mathbb{R} \mathcal{A}, E_{s}^{*}:=\left(E_{u} \oplus E_{0}\right)^{\perp}, E_{u}^{*}:=\left(E_{s} \oplus E_{0}\right)^{\perp}$,

$$
\begin{aligned}
T^{*} M & =E_{u}^{*} \oplus E_{s}^{*} \oplus E_{0}^{*} \\
\xi & =\xi_{u}+\xi_{s}+(\omega \mathcal{A}) \in T^{*} M, \quad \omega \in \mathbb{R} .
\end{aligned}
$$

$E_{0}^{*}=\mathbb{R} \mathcal{A}$ is the trapped set, symplectic. $\operatorname{dim} E_{0}^{*}=2(d+1)$.

Weight W on $T^{*} M$. Anisotropic Sobolev space $\mathcal{H}_{W}(M)$

(Notation: $\langle x\rangle:=|x|$ if $|x| \geq 1$, otherwise $\langle x\rangle=1$.) Let $h_{0} \ll 1, m \gg 1$,

$$
\mathcal{H}_{W}(M):=\mathrm{Op}\left(W^{-1}\right)\left(L^{2}(M)\right): \text { anisotropic Sobolev space }
$$

i.e. imposes smoothness along E_{s}^{*} and accepts irregularities along E_{u}^{*}

Weight W on $T^{*} M$. Anisotropic Sobolev space $\mathcal{H}_{W}(M)$

(Notation: $\langle x\rangle:=|x|$ if $|x| \geq 1$, otherwise $\langle x\rangle=1$.) Let $h_{0} \ll 1, m \gg 1$,

$$
W(\xi):=\frac{\left\langle h_{0}\right| \xi_{s}| \rangle^{m}}{\left\langle h_{0}\right| \xi_{u}| \rangle^{m}}, \quad \Rightarrow \text { decay }: \frac{W(\xi(t))}{W(\xi)} \leq e^{-\lambda m t} \text { outside } E_{0}^{*} .
$$

Weight W on $T^{*} M$. Anisotropic Sobolev space $\mathcal{H}_{W}(M)$

(Notation: $\langle x\rangle:=|x|$ if $|x| \geq 1$, otherwise $\langle x\rangle=1$.) Let $h_{0} \ll 1, m \gg 1$,

$$
W(\xi):=\frac{\left\langle h_{0}\right| \xi_{s}| \rangle^{m}}{\left\langle h_{0}\right| \xi_{u}| \rangle^{m}}, \quad \Rightarrow \text { decay }: \frac{W(\xi(t))}{W(\xi)} \leq e^{-\lambda m t} \text { outside } E_{0}^{*}
$$

Let

$$
\mathcal{H}_{W}(M):=\mathrm{Op}\left(W^{-1}\right)\left(L^{2}(M)\right): \text { anisotropic Sobolev space }
$$

i.e. imposes smoothness along E_{s}^{*} and accepts irregularities along E_{u}^{*}.

Theorem ("Discrete spectrum of X_{F} in vertical bands B_{k} " (F.-Tsujii 2006,12,13,16..))

The generator X_{F} generates a strongly cont. group on $\mathcal{H}_{W}(M)$ and has intrinsic discrete Ruelle-Pollicott spectrum on $\operatorname{Re}(z)>-\lambda m+C_{X_{F}}+\epsilon, \forall \epsilon>0$:

$$
\operatorname{Spec}\left(X_{F}\right) \subset \underbrace{\left(\left[-\infty, z_{0}\right] \times\left[-i \omega_{\epsilon}, i \omega_{\epsilon}\right]\right)}_{\boldsymbol{H}} \cup \bigcup_{k \geq 0} \underbrace{\left(\left[\gamma_{k}^{-}-\epsilon, \gamma_{k}^{+}+\epsilon\right]\right) \times i \mathbb{R}}_{\boldsymbol{B}_{\mathrm{k}}}
$$

$\gamma_{k}^{ \pm}$given below. ϵ depends on W. Weyl law in each isolated band. Bounded resolvent in the gaps.

Other models with spectral band structure

- S. Dyatlov (2015): similar spectral band structure for the decay of waves around black holes.
- F. (2006), band structure of the Ruelle-Pollicott spectrum of a U (1)-contact extension of a limear hyperbolic "cat map" $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ on \mathbb{T}^{2}. (Simplified model of Anosov geodesic flow)
- F. - M.Tsuiii (2012), idem with a U(1)-contact extension of an arbitrary non linear symplectic Anosov map.

Other models with spectral band structure

- S. Dyatlov (2015): similar spectral band structure for the decay of waves around black holes.
- F. (2006), band structure of the Ruelle-Pollicott spectrum of a $U(1)$-contact extension of a linear hyperbolic "cat map" $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ on \mathbb{T}^{2}. (Simplified model of Anosov geodesic flow).
- F. - M.Tsujii (2012), idem with a U (1)-contact extension of an arbitrary non linear symplectic Anosov map.

Ex: spectrum of $X_{F}=X+\frac{1}{2}$ in case of $\Gamma \backslash \mathrm{SL}_{2} \mathbb{R}$ (constant curvature), $F=\left|E_{u}\right|^{1 / 2}$.
Obtained by direct "equivariant" method (Ref: Dyatlov-F-Guillarmou 2015). Short explanation at the end.

Case of $\Gamma \backslash S L_{2}(R)$:

Consequences for evolution of correlation functions

Let $\Pi_{\text {Band } B_{0}}$ be the spectral projector on band B_{0}. Then, $\forall u, v \in C^{\infty}(M)$,

$$
\left\langle u \mid e^{t X_{F}} v\right\rangle_{L^{2}}=\left\langle\left. u\right|_{\text {"quantum operator","wave op." }}\left(\Pi_{\text {Band }_{0}} e^{t X_{F}}\right) \quad v\right\rangle+O_{u, v}\left(e^{\left(\gamma_{\mathbf{1}}^{+}+\epsilon\right) t}\right)
$$

Interpretations:

- Fmergence of an effective "quantum dynamics and uncertainty principle" (wave equation, discrete spectrum) from classical correlation functions that describes the fluctuations.
- (F-Tsujii 2013) Operators $\left(\Pi_{\text {Band } B_{0}} \mathcal{L}^{t}\right)$ and ($\left.\Pi_{\text {Band }} B_{0} A\right)$ are a natural quantization of the geodesic flow (exact trace formula, Egorov theorem etc..), that emerge from long time dynamics.

Consequences for evolution of correlation functions

Let $\Pi_{\text {Band } B_{0}}$ be the spectral projector on band B_{0}. Then, $\forall u, v \in C^{\infty}(M)$,

$$
\left\langle u \mid e^{t X_{F}} v\right\rangle_{L^{2}}=\left\langle\left. u\right|_{\text {"quantum operator","wave op." }}\left(\Pi_{\text {Band }_{0}} e^{t X_{F}}\right) \quad v\right\rangle+O_{u, v}\left(e^{\left(\gamma_{1}^{+}+\epsilon\right) t}\right)
$$

Interpretations:

- Emergence of an effective "quantum dynamics and uncertainty principle" (wave equation, discrete spectrum) from classical correlation functions that describes the fluctuations.
- (F-Tsujii 2013) Operators $\left(\Pi_{\text {Band }} \mathrm{B}_{0} \mathcal{L}^{t}\right)$ and $\left(\Pi_{\text {Band }} \mathrm{B}_{0} A\right)$ are a natural quantization of the geodesic flow (exact trace formula, Egorov theorem etc..), that emerge from long time dynamics.

Consequences for evolution of correlation functions

Let $\Pi_{\text {Band } B_{0}}$ be the spectral projector on band B_{0}. Then, $\forall u, v \in C^{\infty}(M)$,

$$
\left\langle u \mid e^{t X_{F}} v\right\rangle_{L^{2}}=\left\langle\left. u\right|_{\text {"quantum operator","wave op." }}\left(\Pi_{\text {Band B }} e^{t X_{F}}\right) \quad v\right\rangle+O_{u, v}\left(e^{\left(\gamma_{1}^{+}+\epsilon\right) t}\right)
$$

Interpretations:

- Emergence of an effective "quantum dynamics and uncertainty principle" (wave equation, discrete spectrum) from classical correlation functions that describes the fluctuations.
- (F-Tsujii 2013) Operators $\left(\Pi_{\text {Band }_{B}} \mathcal{L}^{t}\right)$ and $\left(\Pi_{\text {Band }_{0}} A\right)$ are a natural quantization of the geodesic flow (exact trace formula, Egorov theorem etc..), that emerge from long time dynamics.

Preliminary remark with vector field $X=-x \partial_{x}$ on \mathbb{R}
Consider the expanding vector field $X=-x \partial_{x}$ on $\mathbb{R} \equiv E_{s}$ that generates the flow $\phi^{t}(x)=e^{-t} x$, and the induced flow $\tilde{\phi}^{t}(x, \xi)=\left(e^{t} x, e^{-t} \xi\right)$ on $T^{*} \mathbb{R} \equiv T^{*} E_{s}$.

Rem: in $L^{2}(\mathbb{R}), X^{*}=-X+1 \Leftrightarrow\left(X-\frac{1}{2}\right)=-\left(X-\frac{1}{2}\right)^{*}, \operatorname{Spec}(X)=\mathrm{i} \mathbb{R}+\frac{1}{2}$. Let $W(x, \xi)=\frac{\langle\sqrt{h \xi}\rangle^{m}}{\langle\sqrt{h}\rangle^{m}}$ with $0<h \ll 1, m \geq 0$. In $\mathcal{H}_{W}(\mathbb{R})=\mathrm{Op}\left(W^{-1}\right) L^{2}(\mathbb{R})$, the Ruelle-Pollicott spectrum on $\operatorname{Re}(z)>-m+2+o(1)$ is $X x^{k}=(-k) x^{k}, \quad k \in \mathbb{N}, \quad \Pi_{k}=\left|x^{k}\right\rangle\left\langle\left.\frac{1}{k!} \delta^{(k)} \right\rvert\,.\right\rangle$ is the (bounded) spectral proj.

Preliminary remark with vector field $X=-x \partial_{x}$ on \mathbb{R}
Consider the expanding vector field $X=-x \partial_{x}$ on $\mathbb{R} \equiv E_{s}$ that generates the flow $\phi^{t}(x)=e^{-t} x$, and the induced flow $\tilde{\phi}^{t}(x, \xi)=\left(e^{t} x, e^{-t} \xi\right)$ on $T^{*} \mathbb{R} \equiv T^{*} E_{s}$.

Rem: in $L^{2}(\mathbb{R}), X^{*}=-X+1 \Leftrightarrow\left(X-\frac{1}{2}\right)=-\left(X-\frac{1}{2}\right)^{*}$, $\operatorname{Spec}(X)=i \mathbb{R}+\frac{1}{2}$.
the Ruelle-Pollicott spectrum on $\operatorname{Re}(z)>-m+2+o(1)$ is

Preliminary remark with vector field $X=-x \partial_{x}$ on \mathbb{R}

Consider the expanding vector field $X=-x \partial_{x}$ on $\mathbb{R} \equiv E_{s}$ that generates the flow $\phi^{t}(x)=e^{-t} x$, and the induced flow $\tilde{\phi}^{t}(x, \xi)=\left(e^{t} x, e^{-t} \xi\right)$ on $T^{*} \mathbb{R} \equiv T^{*} E_{s}$.

Rem: in $L^{2}(\mathbb{R}), X^{*}=-X+1 \Leftrightarrow\left(X-\frac{1}{2}\right)=-\left(X-\frac{1}{2}\right)^{*}, \operatorname{Spec}(X)=i \mathbb{R}+\frac{1}{2}$.
Let $W(x, \xi)=\frac{\langle\sqrt{h} \xi\rangle^{m}}{\langle\sqrt{h} x\rangle^{m}}$ with $0<h \ll 1, m \geq 0$. $\ln \mathcal{H}_{W}(\mathbb{R})=\mathrm{Op}\left(W^{-1}\right) L^{2}(\mathbb{R})$, the Ruelle-Pollicott spectrum on $\operatorname{Re}(z)>-m+2+o(1)$ is
$X x^{k}=(-k) x^{k}, \quad k \in \mathbb{N}, \quad \Pi_{k}=\left|x^{k}\right\rangle\left\langle\left.\frac{1}{k!} \delta^{(k)} \right\rvert\,.\right\rangle$ is the (bounded) spectral proj.

Preliminary remark with vector field $X=-x \partial_{x}$ on \mathbb{R}

Consider the expanding vector field $X=-x \partial_{x}$ on $\mathbb{R} \equiv E_{s}$ that generates the flow $\phi^{t}(x)=e^{-t} x$, and the induced flow $\tilde{\phi}^{t}(x, \xi)=\left(e^{t} x, e^{-t} \xi\right)$ on $T^{*} \mathbb{R} \equiv T^{*} E_{s}$.

Rem: in $L^{2}(\mathbb{R}), X^{*}=-X+1 \Leftrightarrow\left(X-\frac{1}{2}\right)=-\left(X-\frac{1}{2}\right)^{*}, \operatorname{Spec}(X)=i \mathbb{R}+\frac{1}{2}$.
Let $W(x, \xi)=\frac{\langle\sqrt{h} \xi\rangle^{m}}{\langle\sqrt{h} x\rangle^{m}}$ with $0<h \ll 1, m \geq 0$. In $\mathcal{H}_{W}(\mathbb{R})=\operatorname{Op}\left(W^{-1}\right) L^{2}(\mathbb{R})$, the Ruelle-Pollicott spectrum on $\operatorname{Re}(z)>-m+2+o(1)$ is
$X x^{k}=(-k) x^{k}, \quad k \in \mathbb{N}, \quad \Pi_{k}=\left|x^{k}\right\rangle\left\langle\left.\frac{1}{k!} \delta^{(k)} \right\rvert\,.\right\rangle$ is the (bounded) spectral proj.

Notice that $\left(x^{k}\right)_{k \geq 0}$ span Taylor expansion on \mathbb{R}, i.e. $\operatorname{Jet}\left(E_{s}\right)=$.

Preliminary remark on "quantization"
Let $f: T^{*} \mathbb{R}^{n} \rightarrow \mathbb{R}$, a Hamiltonian function, or "symbol", that generates the "classical Hamiltonian vector field" X_{f} by $\Omega\left(X_{f},.\right)=d f$.
"Weyl quantization" is

- "Geometric quantization" (Equivalent) is

$$
O_{p}^{\text {Geom. }}(f):=(-i) \mathcal{T}^{*}\left(X_{f}+\text { if }\right) \mathcal{T}
$$

with wave packets $\varphi_{\rho}, \rho \in T^{*} \mathbb{R}^{n}$ and the wave packet transform

- Consequences: Spect $(\mathrm{Op}(f)) \subset \operatorname{Im}(f)+\ldots$ Weyl law for the spectral density: $d \lambda=f^{*}\left(\frac{d \mu}{(2 \pi)^{n}}\right)$
- Rem:"Toeplitz (or Anti-Wick) quantization" is

Preliminary remark on "quantization"
Let $f: T^{*} \mathbb{R}^{n} \rightarrow \mathbb{R}$, a Hamiltonian function, or "symbol", that generates the "classical Hamiltonian vector field" X_{f} by $\Omega\left(X_{f},.\right)=d f$.
Quantization: one associates an operator $\operatorname{Op}(f): L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$.

- "Weyl quantization" is

- "Geometric quantization" (Equivalent) is

$$
O_{p}^{\text {Geom. }}(f):-(-i) \mathcal{T}^{*}\left(X_{f}+i f\right) \mathcal{T}
$$

with wave packets $\varphi_{\rho}, \rho \in T^{*} \mathbb{R}^{n}$ and the wave packet transform

- Consequences: $\operatorname{Spect}(\mathrm{Op}(f)) \subset \operatorname{Im}(f)+$.., Weyl law for the spectral density: $d \lambda=f^{*}\left(\frac{d \mu}{(2 \pi)^{n}}\right)$, etc
- Rem:"Toeplitz (or Anti-Wick) quantization" is

Preliminary remark on "quantization"

Let $f: T^{*} \mathbb{R}^{n} \rightarrow \mathbb{R}$, a Hamiltonian function, or "symbol", that generates the "classical Hamiltonian vector field" X_{f} by $\Omega\left(X_{f},.\right)=d f$.
Quantization: one associates an operator $\operatorname{Op}(f): L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$.

- "Weyl quantization" is

$$
\left(\mathrm{Op}^{\mathrm{Weyl}}(f) u\right)(x):=\frac{1}{(2 \pi)^{n}} \int f\left(\frac{x+y}{2}, \xi\right) e^{i \xi(x-y)} u(y) d y d \xi
$$

- "Geometric quantization" (Equivalent) is

$$
\mathrm{Op}^{\text {Geom. }}(f):=(-i) \mathcal{T}^{*}\left(X_{f}+i f\right) \mathcal{T}
$$

- Rem:"Toeplitz (or Anti-Wick) quantization" is

Preliminary remark on "quantization"

Let $f: T^{*} \mathbb{R}^{n} \rightarrow \mathbb{R}$, a Hamiltonian function, or "symbol", that generates the "classical Hamiltonian vector field" X_{f} by $\Omega\left(X_{f},.\right)=d f$.
Quantization: one associates an operator $\operatorname{Op}(f): L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$.

- "Weyl quantization" is

$$
\left(\mathrm{Op}^{\mathrm{Weyl}}(f) u\right)(x):=\frac{1}{(2 \pi)^{n}} \int f\left(\frac{x+y}{2}, \xi\right) e^{i \xi(x-y)} u(y) d y d \xi
$$

- "Geometric quantization" (Equivalent) is

$$
\text { Op }{ }^{\text {Geom. }}(f):=(-i) \mathcal{T}^{*}\left(X_{f}+i f\right) \mathcal{T}
$$

with wave packets $\varphi_{\rho}, \rho \in T^{*} \mathbb{R}^{n}$ and the wave packet transform $\mathcal{T}: u \in L^{2}\left(\mathbb{R}^{n}\right) \rightarrow\langle\varphi . \mid u\rangle_{L^{2}} \in L^{2}\left(T^{*} \mathbb{R}\right)$.

- Consequences: Spect $(\mathrm{Op}(f)) \subset \operatorname{Im}(f)+\ldots$ Weyl law for the spectral density: $d \lambda=f^{*}\left(\frac{d \mu}{(2 \pi)^{n}}\right)$, etc.
- Rem:"Toeplitz (or Anti-Wick) quantization" is

Preliminary remark on "quantization"

Let $f: T^{*} \mathbb{R}^{n} \rightarrow \mathbb{R}$, a Hamiltonian function, or "symbol", that generates the "classical Hamiltonian vector field" X_{f} by $\Omega\left(X_{f},.\right)=d f$.
Quantization: one associates an operator $\operatorname{Op}(f): L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$.

- "Weyl quantization" is

$$
\left(\mathrm{Op}^{\mathrm{Weyl}}(f) u\right)(x):=\frac{1}{(2 \pi)^{n}} \int f\left(\frac{x+y}{2}, \xi\right) e^{i \xi(x-y)} u(y) d y d \xi
$$

- "Geometric quantization" (Equivalent) is

$$
\text { Op }{ }^{\text {Geom. }}(f):=(-i) \mathcal{T}^{*}\left(X_{f}+i f\right) \mathcal{T}
$$

with wave packets $\varphi_{\rho}, \rho \in T^{*} \mathbb{R}^{n}$ and the wave packet transform $\mathcal{T}: u \in L^{2}\left(\mathbb{R}^{n}\right) \rightarrow\langle\varphi . \mid u\rangle_{L^{2}} \in L^{2}\left(T^{*} \mathbb{R}\right)$.

- Consequences: Spect $(\mathrm{Op}(f)) \subset \operatorname{Im}(f)+$.., Weyl law for the spectral density: $d \lambda=f^{*}\left(\frac{d \mu}{(2 \pi)^{n}}\right)$, etc...
- Rem:"Toeplitz (or Anti-Wick) quantization" is

Preliminary remark on "quantization"

Let $f: T^{*} \mathbb{R}^{n} \rightarrow \mathbb{R}$, a Hamiltonian function, or "symbol", that generates the "classical Hamiltonian vector field" X_{f} by $\Omega\left(X_{f},.\right)=d f$.
Quantization: one associates an operator $\operatorname{Op}(f): L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$.

- "Weyl quantization" is

$$
\left(\mathrm{Op}^{\mathrm{Weyl}}(f) u\right)(x):=\frac{1}{(2 \pi)^{n}} \int f\left(\frac{x+y}{2}, \xi\right) e^{i \xi(x-y)} u(y) d y d \xi
$$

- "Geometric quantization" (Equivalent) is

$$
\text { Op }{ }^{\text {Geom. }}(f):=(-i) \mathcal{T}^{*}\left(X_{f}+i f\right) \mathcal{T}
$$

with wave packets $\varphi_{\rho}, \rho \in T^{*} \mathbb{R}^{n}$ and the wave packet transform $\mathcal{T}: u \in L^{2}\left(\mathbb{R}^{n}\right) \rightarrow\langle\varphi . \mid u\rangle_{L^{2}} \in L^{2}\left(T^{*} \mathbb{R}\right)$.

- Consequences: Spect $(\mathrm{Op}(f)) \subset \operatorname{Im}(f)+$.., Weyl law for the spectral density: $d \lambda=f^{*}\left(\frac{d \mu}{(2 \pi)^{n}}\right)$, etc...
- Rem:"Toeplitz (or Anti-Wick) quantization" is

$$
\mathrm{Op}^{\text {Toeplitz }}(f):=\int_{\rho \in \boldsymbol{T}^{*} \mathbb{R}_{\boldsymbol{n}}} f(\rho)\left|\varphi_{\rho}\right\rangle\left\langle\varphi_{\rho}\right| \boldsymbol{d} \rho=\mathcal{T}^{*} \mathcal{M}_{\boldsymbol{f}} \mathcal{T}
$$

Spectrum of X_{F} : idea of proof and band estimates $\gamma_{k}^{ \pm}$

- Consider the vicinity of the symplectic trapped set $E_{0}^{*}=\mathbb{R} \mathcal{A} \equiv M \times \mathbb{R}_{\omega}^{*} \subset T^{*} M$, with its symplectic orthogonal $\equiv T^{*} E_{s}$.

- $\ln \underline{L}^{2}\left(E_{0}^{*} ; \mathcal{F}_{k}\right)$ we have $\left(e^{t \mathcal{F}_{k}}\right)^{*}\left(e^{t \mathcal{F}_{k}}\right)(m)=\left(\tilde{\delta}_{\mathcal{F}_{k}}^{-t}\right) \tilde{\phi}_{\mathcal{F}_{k}}^{-t}(m)$: positive
endomorphism in $\mathcal{F}_{k}(m)$. The spectrum of $X_{\mathcal{F}_{k}}: L^{2} \rightarrow L^{2}$ is continuous and contained in vertical band

with

Spectrum of X_{F} : idea of proof and band estimates $\gamma_{k}^{ \pm}$

- Consider the vicinity of the symplectic trapped set $E_{0}^{*}=\mathbb{R} \mathcal{A} \equiv M \times \mathbb{R}_{\omega}^{*} \subset T^{*} M$, with its symplectic orthogonal $\equiv T^{*} E_{s}$.
Thm (in progress): Using "geometric quantization for vector bundle", for $\omega \gg 1$, the operator X_{F} is well approximated by $\mathrm{Op}^{\text {Geom }}\left(X_{\mathcal{F}}\right):=$ $\mathcal{T}^{*}\left(X_{\mathcal{F}}+i \omega\right) \mathcal{T}$ with symbol $X_{\mathcal{F}}$ being the vector field X lifted on the bundle $\mathcal{F} \rightarrow E_{0}^{*}:$

$$
\mathcal{F}:=F \otimes \operatorname{Jet}\left(E_{s}\right) \otimes\left|E_{s}\right|^{1 / 2}=\bigoplus_{k \geq 0} \underbrace{F \otimes \operatorname{Sym}^{k}\left(E_{s}\right) \otimes\left|E_{s}\right|^{1 / 2}}_{\mathcal{F}_{k}}
$$

$\left(\left|E_{s}\right|^{1 / 2}\right.$ is to get unitarity on $\left.E_{0}^{*}\right)$
endomorphism in $\mathcal{F}_{k}(m)$. The spectrum of $X_{\mathcal{F}_{k}}: L^{2} \rightarrow L^{2}$ is continuous and
contained in vertical band

Spectrum of X_{F} : idea of proof and band estimates $\gamma_{k}^{ \pm}$

- Consider the vicinity of the symplectic trapped set $E_{0}^{*}=\mathbb{R} \mathcal{A} \equiv M \times \mathbb{R}_{\omega}^{*} \subset T^{*} M$, with its symplectic orthogonal $\equiv T^{*} E_{s}$.
Thm (in progress): Using "geometric quantization for vector bundle", for $\omega \gg 1$, the operator X_{F} is well approximated by $\mathrm{Op}^{\text {Geom }}\left(X_{\mathcal{F}}\right):=$ $\mathcal{T}^{*}\left(X_{\mathcal{F}}+i \omega\right) \mathcal{T}$ with symbol $X_{\mathcal{F}}$ being the vector field X lifted on the bundle $\mathcal{F} \rightarrow E_{0}^{*}:$

$$
\mathcal{F}:=F \otimes \operatorname{Jet}\left(E_{s}\right) \otimes\left|E_{s}\right|^{1 / 2}=\bigoplus_{k \geq 0} \underbrace{F \otimes \operatorname{Sym}^{k}\left(E_{s}\right) \otimes\left|E_{s}\right|^{1 / 2}}_{\mathcal{F}_{k}}
$$

$\left(\left|E_{s}\right|^{1 / 2}\right.$ is to get unitarity on $\left.E_{0}^{*}\right)$

- $\ln L^{2}\left(E_{0}^{*} ; \mathcal{F}_{k}\right)$ we have $\left(e^{t \mathcal{F}_{k}}\right)^{*}\left(e^{t \mathcal{F}_{k}}\right)(m)=\left(\tilde{\phi}_{\mathcal{F}_{k}}^{-t}\right)^{*} \tilde{\phi}_{\mathcal{F}_{k}}^{-t}(m)$: positive endomorphism in $\mathcal{F}_{k}(m)$. The spectrum of $X_{\mathcal{F}_{k}}: L^{2} \rightarrow L^{2}$ is continuous and contained in vertical band

$$
\boldsymbol{B}_{\mathrm{k}}=\left[\gamma_{k}^{-}, \gamma_{k}^{+}\right] \times i \mathbb{R}
$$

with

$$
\gamma_{k}^{+}=\lim _{t \rightarrow+\infty} \frac{1}{t} \log \max _{m \in M}\left\|\tilde{\phi}_{\mathcal{F}_{k}}^{-t}(m)\right\|, \quad \gamma_{k}^{-}=\lim _{t \rightarrow+\infty} \frac{1}{t} \log \max _{m \in M}\left\|\tilde{\phi}_{\mathcal{F}_{k}}^{-t}(m)^{-1}\right\|^{-1} .
$$

Special case: Let $F=\left|E_{u}\right|^{1 / 2} \equiv\left|E_{s}\right|^{-1 / 2}$ (not smooth! better to consider the smooth bundle $G_{d}(T M) \rightarrow M$ instead), then

$$
\mathcal{F}_{k=0}=F \otimes \operatorname{Sym}^{0}\left(E_{s}\right) \otimes\left|E_{s}\right|^{1 / 2}=\mathbb{C}, \quad: \text { trivial bundle. }
$$

hence the symbol $X_{\mathcal{F}_{0}} \equiv X$: geodesic vector field $, \gamma_{0}^{ \pm}=0, \gamma_{1}^{+}=\lim _{t \rightarrow \infty} \sup _{x \in M}-\frac{1}{t} \log \left\|D \phi^{t}(x)_{/ E_{u}}\right\|_{\min }<0$. We have $X_{F} \underset{t \gg 1}{\sim} \mathrm{Op}(X)!!$

Theorem (F-Tsuif 2015))

For $F=\left|E_{u}\right|^{1 / 2}$, the Ruelle-Pollicott spectrum of X_{F} in $\mathcal{H}_{W}(M)$ has eigenvalues $\left(z_{0,1}\right)$, that accumulate on $\operatorname{Re}(z)=0$, with dencity $\operatorname{Vol}(M) \frac{\omega^{d}}{(2 \pi)^{d+1}}$, and an acymntotic anectral gan

Special case: Let $F=\left|E_{u}\right|^{1 / 2} \equiv\left|E_{s}\right|^{-1 / 2}$ (not smooth! better to consider the smooth bundle $G_{d}(T M) \rightarrow M$ instead), then

$$
\mathcal{F}_{k=0}=F \otimes \operatorname{Sym}^{0}\left(E_{s}\right) \otimes\left|E_{s}\right|^{1 / 2}=\mathbb{C}, \quad: \text { trivial bundle. }
$$

hence the symbol $X_{\mathcal{F}_{0}} \equiv X$: geodesic vector field $, \gamma_{0}^{ \pm}=0, \gamma_{1}^{+}=\lim _{t \rightarrow \infty} \sup _{x \in M}-\frac{1}{t} \log \left\|D \phi^{t}(x)_{/ E_{u}}\right\|_{\min }<0$. We have $X_{F} \underset{t \gg 1}{\sim} \operatorname{Op}(X)!!$

Theorem ((F.-Tsujii 2015))

For $F=\left|E_{u}\right|^{1 / 2}$, the Ruelle-Pollicott spectrum of X_{F} in $\mathcal{H}_{W}(M)$ has eigenvalues $\left(z_{0,1}\right)$, that accumulate on $\operatorname{Re}(z)=0$, with density $\operatorname{Vol}(M) \frac{\omega^{d}}{(2 \pi)^{d+1}}$, and an asymptotic spectral gap $\gamma_{1}^{+}<\operatorname{Re}(z)<0$.

$$
\text { Case of } \Gamma \backslash S L_{2}(R): \quad z_{k, l}=-k+i \sqrt{\mu_{l}-\frac{1}{4}}
$$

Relation with periodic orbits γ from Atiyah-Bott trace formula (65), Guillemin (79)

$$
\begin{aligned}
\operatorname{Tr}^{b}\left(e^{t X_{F}}\right) & :=\int_{M} \underbrace{K_{t}(m, m)}_{\text {Schwartz kernel of } e^{t x_{F}}} d m=\int_{M} \operatorname{Tr}\left(e^{t X_{F}}(m)\right) \delta\left(m-\phi^{t}(m)\right) d m \\
& =\ldots=\sum_{\text {periodic orbits } \gamma}|\gamma| \sum_{n \geq 1} \frac{\operatorname{Tr}\left(\tilde{\phi}_{F}^{t}(m)\right) \cdot \delta(t-n|\gamma|)}{\left|\operatorname{det}\left(1-D_{/ E_{\boldsymbol{u}} \oplus E_{s}} \phi^{t}(m)\right)\right|}, \quad m \in \gamma
\end{aligned}
$$

This is a distribution in $\mathcal{D}^{\prime}\left(\mathbb{R}_{t}\right)$.

Theorem (Giulietti-Pollicott-Liverani 12, Dyatlov-Zworsky 13)

The spectral determinant

$$
d(z):=" \operatorname{det}^{b}\left(z-X_{F}\right) "=\exp \left(-\sum_{\text {periodic orbits } \gamma} \sum_{n \geq 1} \frac{\operatorname{Tr}\left(\tilde{\phi}_{F}^{t}(m)\right) e^{-z n|\gamma|}}{n\left|\operatorname{det}\left(1-D_{/ E_{u} \oplus E_{s} \phi^{t}}(m)\right)\right|}\right)
$$

has a holomorphic extension on \mathbb{C}. Its zeros are Ruelle eigenvalues $\left\{z_{j}\right\}_{j}=\operatorname{Spect}\left(X_{F}\right)$.

Relation with periodic orbits γ from Atiyah-Bott trace formula

Theorem (Tsujil-F. 12,13)

The semi-classical zeta function (from "quantum chaos"), for $F=\left|E_{u}\right|^{1 / 2}$,:

$$
Z_{\text {s.c. }}(z):=\exp \left(-\sum_{\gamma} \sum_{n \geq 1} \frac{e^{-z n|\gamma|}}{n\left|\operatorname{det}\left(1-D_{/ E_{u} \oplus E_{s}} \phi^{t}(m)\right)\right|^{1 / 2}}\right)
$$

has a meromorphic extension on \mathbb{C} with finite number of poles on $\operatorname{Re}(z) \geq \gamma_{1}^{+}+\epsilon$. Zeros are Ruelle eigenvalues $\left(z_{j}\right)_{j}$.

In example $\Gamma \backslash \mathrm{SL}_{2} \mathbb{R}$, we have $D_{E_{u} \oplus E_{s}} \phi^{n|\gamma|}(\gamma)=\left(\begin{array}{cc}e^{|\gamma| n} & 0 \\ 0 & e^{-|\gamma| n}\end{array}\right)$, giving

$$
\begin{aligned}
Z_{\text {s.c. }}(z) & =\exp \left(-\sum_{\gamma} \sum_{n \geq 1} \sum_{m \geq 0} \frac{1}{n} e^{-n|\gamma|\left(z+\frac{1}{2}+m\right)}\right)=\prod_{\gamma} \prod_{m \geq 0}\left(1-e^{-\left(z+\frac{1}{2}+m\right)|\gamma|}\right) \\
& =: \zeta_{\text {Selberg }}\left(z+\frac{1}{2}\right)
\end{aligned}
$$

Relation with periodic orbits γ from Atiyah-Bott trace formula

$$
\begin{aligned}
Z_{\text {s.c. }}(z) & =\exp \left(-\sum_{\gamma} \sum_{n \geq 1} \sum_{m \geq 0} \frac{1}{n} e^{-n|\gamma|\left(z+\frac{1}{2}+m\right)}\right)=\prod_{\gamma} \prod_{m \geq 0}\left(1-e^{-\left(z+\frac{1}{2}+m\right)|\gamma|}\right) \\
& =: \zeta_{\text {Selberg }}\left(z+\frac{1}{2}\right)
\end{aligned}
$$

Thank you for your attention

$$
\begin{aligned}
Z_{\text {s.c. }}(z) & =\exp \left(-\sum_{\gamma} \sum_{n \geq 1} \sum_{m \geq 0} \frac{1}{n} e^{-n|\gamma|\left(z+\frac{1}{2}+m\right)}\right)=\prod_{\gamma} \prod_{m \geq 0}\left(1-e^{-\left(z+\frac{1}{2}+m\right)|\gamma|}\right) \\
& =: \zeta_{\text {Selberg }}\left(z+\frac{1}{2}\right)
\end{aligned}
$$

$\left(^{*}\right)$ Ex: Ruelle-Pollicott spectrum of geodesic flow on $\Gamma \backslash S L_{2} \mathbb{R}$
(Flaminio-Forni 02, Dyatlov-F-Guillarmou 14 is generalization to $\Gamma \backslash S O_{1, n} / S O_{n-1}$).
 geodesic flow on surface $\mathcal{N}=\Gamma \backslash S L_{2} \mathbb{R} / S O_{2}$.

$$
\begin{gathered}
X(U u)=(U X-U) u=(z-1)(U u) \\
X(S u)=(S X+S) u=(z+1)(S u)
\end{gathered}
$$

and $\exists k \geq 0$ s.t. $S^{k} u=0, S^{k-1} u \neq 0$. We say $u \in B_{k}$ 'bband k ".'

$\left(^{*}\right)$ Ex: Ruelle-Pollicott spectrum of geodesic flow on $\Gamma \backslash S L_{2} \mathbb{R}$

(Flaminio-Forni 02, Dyatlov-F-Guillarmou 14 is generalization to $\Gamma \backslash S O_{1, n} / S O_{n-1}$). $\mathrm{sl}_{2}(\mathbb{R})$ algebra: $[U, X]=U,[S, X]=-S,[S, U]=2 X . X$ is the generator the geodesic flow on surface $\mathcal{N}=\Gamma \backslash S L_{2} \mathbb{R} / S O_{2}$. Observations: if $X u=z u$, then we get other resonances:

$$
\begin{gathered}
X(U u)=(U X-U) u=(z-1)(U u) \\
X(S u)=(S X+S) u=(z+1)(S u)
\end{gathered}
$$

and $\exists k \geq 0$ s.t. $S^{k} u=0, S^{k-1} u \neq 0$. We say $u \in \mathbf{B}_{k}$ "band k ".

$\left(^{*}\right)$ Ex. spectrum on $\Gamma \backslash S L_{2} \mathbb{R}(2)$

- If $u \in \mathbf{B}_{0}$, i.e. $S u=0$ then

$$
\underbrace{\triangle}_{\text {casimir }} u=\left(-X^{2}-\frac{1}{2} S U-\frac{1}{2} U S\right) u=\left(-X^{2}-X-U S\right) u=-z(z+1) u=\mu u
$$

thus $\langle u\rangle_{\mathrm{SO}_{2}} \in C^{\infty}(\mathcal{N})$ is an eigenfunction of $\Delta \equiv-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$. Thus $\mu \in \mathbb{R}^{+}$and

$$
z=-\frac{1}{2} \pm i \sqrt{\mu-\frac{1}{4}}
$$

\rightarrow R-P spectrum has band structure (lines).

- Rem: $\mu_{1}>0$ gives the exponential rate for mixing.

$\left(^{*}\right)$ Ex. spectrum on $\Gamma \backslash S L_{2} \mathbb{R}(2)$
- If $u \in \mathbf{B}_{0}$, i.e. $S u=0$ then

$$
\underbrace{\triangle}_{\text {casimir }} u=\left(-X^{2}-\frac{1}{2} S U-\frac{1}{2} U S\right) u=\left(-X^{2}-X-U S\right) u=-z(z+1) u=\mu u
$$

thus $\langle u\rangle_{\mathrm{SO}_{2}} \in C^{\infty}(\mathcal{N})$ is an eigenfunction of $\Delta \equiv-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$. Thus $\mu \in \mathbb{R}^{+}$and

$$
z=-\frac{1}{2} \pm i \sqrt{\mu-\frac{1}{4}}
$$

\rightarrow R-P spectrum has band structure (lines).

- Rem: $\mu_{1}>0$ gives the exponential rate for mixing.

