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Deterministic dynamics: vector field X and flow ¢!

Vector field

On a closed manifold M, let X be a C* vector field that determines a flow map:

: )M —M
¢.{m —>¢f(m)’ teR,

by

dﬁbt, t t= _
< . (m))tl_t—xw (m), ¢ (m)=m.



Evolution of distributions on M by transfer operators eX
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Pull-back action of the flow on functions u € C*° (M) is u o ¢*.

Since % Xu with X = ZdlmM Xj (m) 52-, we get

eXu:=uo .



Evolution of distributions on M by transfer operators eX
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Pull-back action of the flow on functions u € C*° (M) is u o ¢*.

Since % Xu with X = ZdlmM Xj (m) 52-, we get

eXu:=uo .

o Remark: X1 =1, X1 = 0 hence the adjoint (e®X)" called the Perron
Frobenius operator is
(etx)* u=|detD¢~*|.uog"

pushes forward probability distributions:

/(tx) udp = (1] (e™)” u>Lz:<etX1|u>Lz:<1|u>Lz:/ udp.
M M

In particular and €™ 6, = Sse(m).
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etXFu 1

Let F — M a vector bundle and ¢t = e'XF 1 F — F be smooth, linear, bundle
map, extension of ¢* : M — M.

Definition
For a section u € C* (M, F),

eXFy = ¢t (uogh).




More general evolution of sections of F — M

F(m)

etXFu 1

Let F — M a vector bundle and ¢t = e'XF 1 F — F be smooth, linear, bundle
map, extension of ¢* : M — M.

Definition
For a section u € C* (M, F),

eXFy = ¢t (uogh).

o Example: for tensor bundle F=TM ® ...® T*M, ¢~5‘F is determined by the
differential D¢t and Xr is the Lie derivative.



Anosov flow (or uniformly hyperbolic flow)

1Es(m)
I stable

_____
________

Definition
Vector field X is Anosov if there exists an invariant, Holder continuous splitting,
Vme M, T,M=E,(m)® E;(m)® Ey(m), s.t.

——

RX
Jg,3C >0,A>0,Vt >0,me M,

t —At ={ — At
|odieml], < e [0978m]|, =

this “sensitivity to initial conditions” generates “chaos” (confusion,
unpredictability).
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o Def: The Geodesic vector field X on M = (T*N),, dimM =2d + 1, is
defined by Hamilton equation of motion of a free particle
(H(0:P) = lly(q)): dA(X,) =0, A(X) =1



Special example: Anosov geodesic flow

Let (\V, g) a closed Riemannian manifold, dimAN = d + 1. Let A =3, pjdg; be
the canonical Liouville one form on phase space T*N.

M=T;N =SN

o Def: The Geodesic vector field X on M = (T*N),, dimM =2d + 1, is
defined by Hamilton equation of motion of a free particle
(H(0:P) = lly(q)): dA(X,) =0, A(X) =1

e Thm (Anosov 67): if (N, g) has negative curvature then X is Anosov
with dimE, = dimEs = d.



Special example: Anosov geodesic flow

Let (\V, g) a closed Riemannian manifold, dimAN = d + 1. Let A =3, pjdg; be
the canonical Liouville one form on phase space T*N.

o “special’ because E, ® E; = Ker A is C* and d. A—symplectic (maximally
non integrable).



Special example: Anosov geodesic flow

Let (\V, g) a closed Riemannian manifold, dimAN = d + 1. Let A =3, pjdg; be
the canonical Liouville one form on phase space T*N.

o “special’ because E, ® E; = Ker A is C* and d. A—symplectic (maximally
non integrable).
o Ex: surface of constant curvature

N =T\ (SLyR/SO;) M= (T*N), = N\SL; (R),

D2



Dynamical correlation functions

Observe that for t — 400, eXu = uo ¢* gets high oscillations along
Ei=(E® Eo)", i.e. informations goes towards microscopic scales.

tX ' E, (X)
ey ! stable . s
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Dynamical correlation functions

Observe that for t — 400, eXu = uo ¢* gets high oscillations along
Ei=(E® Eo)", i.e. informations goes towards microscopic scales.

tX 'E, (X)
ey ! stable . s

unstable direction

@ Rem: this is reversible: e~ XeXy =y,

o Objective: describe e u in the “weak sense” i.e. for u,v € C> (M)
describe “dynamical correlation functions™

X =7
(v]e u)2 L



Motivation

Objective: understand “emergent behaviors’ in “complex dynamical
systems”, here Anosov geodesic flow ¢!.
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For an individual trajectory,i.e. evolution of a Dirac measure, we observe
“chaos” (confusion, unpredictability).
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Motivation

Objective: understand “emergent behaviors’ in “complex dynamical
systems”, here Anosov geodesic flow ¢!.

@ Sinai billiard = limit case of Anosov geodesic flow:
7
zone with
negative
geodesic Curvature limit case ¢ — 0 :

view from above dispersive billard

@ See moviel “Anosov flow linkage” by Mickael Kourganoff (2015). See movie2.
For an individual trajectory,i.e. evolution of a Dirac measure, we observe
“chaos” (confusion, unpredictability).

@ See movie3. For a smooth distribution, one observes “predictable
irreversible evolution towards equilibrium™ (mixing) with decaying
fluctuations we'd like to describe.

o Idea of D. Ruelle: study the linear action of the flow on “good distribution
spaces’ and its discrete spectrum of resonances.
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Question: discrete spectrum of the generator Xg?
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o Imagine: if Xp =} ", z[;, were a matrix with complex eigenvalues

zj = aj + iw;j and eigen-projectors (rank 1) I1; then
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o Imagine: if Xp =} ", z[;, were a matrix with complex eigenvalues

zj = aj + iw;j and eigen-projectors (rank 1) I1; then

etXF _ etzi nJ _ eta,- eltwi rlj
J

J amplitude oscillations
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o Imagine: if Xp =} ", z[;, were a matrix with complex eigenvalues

zj = aj + iw;j and eigen-projectors (rank 1) I1; then

etXF _ etzi nJ _ eta,- eltwi rlj
J

J amplitude oscillations

~  elgltwor], 4 | tif ag > ajxo, : "emerging behavior"
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@ In L2 (M), the vector field X = —X* is skew symmetric, X has continuous

spectrum on /R.
= L% (M) is not adequate, we need to change the norm (or the space).



Discrete spectrum of the generator Xg: “Pollicott-Ruelle
resonances’

o We are using micro-local analysis, similarly to the approaches of Combes
70" (dilatation method), Helffer-Sjéstrand 86 (escape functions,
resonances as eigenvalues, quantum scattering on phase space),
Melrose 80',90"(scattering, radial estimates).



Discrete spectrum of the generator Xg: “Pollicott-Ruelle
resonances’

o We are using micro-local analysis, similarly to the approaches of Combes
70" (dilatation method), Helffer-Sjéstrand 86 (escape functions,
resonances as eigenvalues, quantum scattering on phase space),
Melrose 80',90"(scattering, radial estimates).

o Series of work and interesting recent activity: Ruelle, Bowen 70,
Pollicott 86, Rugh 90, Blank, Keller, Liverani 2002, Gouézel, Liverani 2005,
Baladi, Tsujii 2005,2008, Butterley-Liverani 2007, Roy-Sjostrand-F. 2008,
Datchev-Dyatlov-Zworski, Dyatlov-Guillarmou 2014 for Axiom A flows.
Dang-Riviére 2016 for Morse-Smale flows, Bonthonneau-Weich 2017 for
cusps, Guillarmou-Hilgert-Weich 2018 for symmetric spaces.



Dual Anosov decomposition of T*M.

E, °\
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We have TM = E, & E; $ Ep.
Let Ef := (E, ® E)" =RA, Ef = (E, ® E)", Ef = (Es ® Eo)™,



Dual Anosov decomposition of T*M.

E, °\
unstable

T:M

m

We have TM = E, & E; $ Ep.
Let Ef := (E, ® E)" =RA, Ef = (E, ® E)", Ef = (Es ® Eo)™,

T"M = E; © E; © Eg
E=&6+ &+ (WA ETM, weR.

E; =RA is the trapped set, symplectic. dimE; =2(d + 1).



Weight W on T*M. Anisotropic Sobolev space Hyy (M)
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(Notation: (x) := |x]| if |x| > 1, otherwise (x) =1.) Let hg < 1, m > 1,



Weight W on T*M. Anisotropic Sobolev space Hy (M)
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E, °\
unstable

(Notation: (x) := |x]| if |x| > 1, otherwise (x) =1.) Let hg < 1, m > 1,

W () = M = decay : W
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< ™Mt outside Ej.



Weight W on T*M. Anisotropic Sobolev space Hy (M)

E,
!stable
Vector f Id’Ea £ ! Flow

<

E, °\
unstable

(Notation: (x) := |x]| if |x| > 1, otherwise (x) =1.) Let hg < 1, m > 1,

<h0 |£S|>m
{ho [€a)™

—~~
2
—~~
~
~
N—r
A

< ™Mt outside Ej.

W) =

= decay :

Let

Hw (M) := Op (W) (L (M)) | : anisotropic Sobolev space

i.e. imposes smoothness along E} and accepts irregularities along E;.



Theorem (“Discrete spectrum of Xr in vertical bands B,”

(F -Tsujii 2006,12,13,16..))

The generator Xr generates a strongly cont. group on Hw (M) and has intrinsic
discrete Ruelle-Pollicott spectrum on Re (z) > —Am + Cx. + ¢, Ve > 0:

Spec (Xg) C ([0, z0] X [—iwe, iwe]) U U ([ve — e +¢€]) xiR

H

k>0

By

fy,f given below. € depends on W. Weyl law in each isolated band. Bounded resolvent

in the gaps.
Intrinsic
Essential spectrum ~ discrete spectrum,
I = 'w=1I
—— e rEit ,  w=Im(z)
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m>1 Sl oS ® o 1——Spectrum that control
o | * 18 ®e ! emerging behavior
PR - H
bounded resolvent o ! ‘T @ bounded resolvent
e R 1
e I *!' 3 e
R R - W P
e 10 0 o1 o :. o
e ! I L | I e
I e | | YGibbs
e PRy
Vo "Cle
| __'_* |_H
I 3 e
% ng W a0
-2 m — Cx, — ¢ | B B, Bo

—Am+ Cx, + ¢




Other models with spectral band structure

@ S. Dyatlov (2015): similar spectral band structure for the decay of waves
around black holes.




Other models with spectral band structure

@ S. Dyatlov (2015): similar spectral band structure for the decay of waves
around black holes.

e F. (2006), band structure of the Ruelle-Pollicott spectrum of a U (1)-contact

extension of a linear hyperbolic “cat map” < i 1 ) on T2, (Simplified

model of Anosov geodesic flow).

e F. - M.Tsujii (2012), idem with a U (1)-contact extension of an arbitrary
non linear symplectic Anosov map.




Ex: spectrum of Xp = X + 3 in case of I'\SL,R (constant

1/2
curvature), F = |E,|".
Obtained by direct “equivariant” method (Ref: Dyatlov-F-Guillarmou 2015). Short explanation at
the end.

Case of MN\SLy(R) :

B, B, B, Im(z)
° * Zk’/I—k—‘rl'Q/[l,/—%
.\ ? with AU/ =
' ' \ on N = N\SLy(R)/SO,
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Consequences for evolution of correlation functions

Let Mpand B, be the spectral projector on band By. Then, Yu,v € C* (M),

<u|etXF V>L2 = <U| (nBand Bo etXF) V> + Ou,v (e('yr-}—e)t)

"quantum operator”,”wave op.”
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Interpretations:

o Emergence of an effective “quantum dynamics and uncertainty
principle” (wave equation, discrete spectrum) from classical correlation
functions that describes the fluctuations.



Consequences for evolution of correlation functions

Let Mpand B, be the spectral projector on band By. Then, Yu,v € C* (M),

<u|etXF V>L2 = <U| (nBand Bo etXF) V> + Ou,v (e('yr-&-e)t)
"quantum operator”,”wave op.”

Interpretations:
o Emergence of an effective “quantum dynamics and uncertainty
principle” (wave equation, discrete spectrum) from classical correlation
functions that describes the fluctuations.

o (F-Tsujii 2013) Operators (MpanaB, L") and (MpanaB,A) are a natural
quantization of the geodesic flow (exact trace formula, Egorov theorem
etc..), that emerge from long time dynamics.



Preliminary remark with vector field X = —x0d, on R

Consider the expanding vector field ‘X = —x0x on R = E; ‘ that generates the
flow ¢! (x) = e tx, and the induced flow ¢t (x,&) = (etx, e t¢) on T*R = T*E,.
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Consider the expanding vector field ‘X = —x0x on R = E; ‘ that generates the
flow ¢! (x) = e tx, and the induced flow ¢t (x,&) = (etx, e t¢) on T*R = T*E,.

f f f
0 X efx

Rem: in L2(R), X* = - X +1& (X —3) = — (X —3)", Spec(X) =iR + 3.
Let W (x,¢) = % with 0 < h < 1, m > 0. In Hy (R) = Op (W) L2 (R),

the Ruelle-Pollicott spectrum on Re (z) > —m+ 2+ o(1) is

1
Xxk = (—k)x¥, keN, M= |xk)<ﬂ6(k)|.> is the (bounded) spectral proj.



Preliminary remark with vector field X = —x0d, on R

Consider the expanding vector field ‘X = —x0x on R = E; ‘ that generates the
flow ¢! (x) = e tx, and the induced flow ¢t (x,&) = (etx, e t¢) on T*R = T*E,.

f f f
0 X efx

Rem: in L2(R), X* = - X +1& (X —3) = — (X — )", Spec(X) =iR + }

- 2 2°
Let W (x,¢) = % with 0 < h < 1, m > 0. In Hy (R) = Op (W) L2 (R),

the Ruelle-Pollicott spectrum on Re (z) > —m+ 2+ o(1) is
1
Xxk=(—k)x¥, keN, M= |xk)<ﬂ6(k)|.> is the (bounded) spectral proj.
—2m—o(1) _m125%0(1)

Notice that (x*), ., span Taylor expansion on R, i.e. Jet (Es) =.
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“classical Hamiltonian vector field’ X; by Q(X¢,.) = df.
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Preliminary remark on “quantization”

Let f : T*R” — R, a Hamiltonian function, or “symbol”, that generates the
“classical Hamiltonian vector field’ X; by Q(X¢,.) = df.
Quantization: one associates an operator Op (f) : L2 (R") — L2 (R").

o “Weyl quantization” is

(09 (1)) () = g [ 7 (55206 €50 uty) el

o “Geometric quantization” (Equivalent) is

OpYe™ () := (=i)T* (X¢ +if) T

with wave packets ¢,, p € T*R” and the wave packet transform
T:uel?2(R") = (p.|u)y € L2(T*R).

e Consequences: Spect (Op (f)) C Im (f) + .., Weyl law for the spectral
density: d\ = f* ( o )..), etc...

@ Rem:“Toeplitz (or Anti-Wick) quantization” is

OpT P ()= [ r(o)lenllenldo = T MT

pET*RN



Spectrum of Xg: idea of proof and band estimates yki

@ Consider the vicinity of the symplectic trapped set
Ef =RA=M xR} C T*M, with its symplectic orthogonal = T*E;.
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@ Consider the vicinity of the symplectic trapped set
Es =RA=M xR} C T*M, with its symplectic orthogonal = T*E;

Thm (in progress): Using “geometric quantization for vector bundle”,
for w > 1, the operator X¢ is well approximated by Op®®°™(Xz) :=
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(\Es\l/2 is to get unitarity on EJ)




Spectrum of Xg: idea of proof and band estimates yf

@ Consider the vicinity of the symplectic trapped set
Es =RA=M xR} C T*M, with its symplectic orthogonal = T*E;

Thm (in progress): Using “geometric quantization for vector bundle”,
for w > 1, the operator X¢ is well approximated by Op®®°™(Xz) :=
T*(XF + iw) T with symbol Xx being the vector field X lifted on the bundle
F — E§:

Fi= Folet(E) 0 |E["? = P F  Sym* (E,) @ |E|/?
k>0

Fk

(\Es\l/2 is to get unitarity on EJ)

o In L2 (E§; Fi) we have (et7k)" (etk) (m) = (J)}:) &}: (m) : positive
endomorphism in F (m). The spectrum of Xz, : L> — L? is continuous and
contained in vertical band

By = [’yk_,'y,ﬂ x iR

with
= tim Lrog ma 35 (m)
Y = lim —logmax ¢z (m)




. 1/2 —1/2
SpeC|aI case: Let F = |Eu| / = ‘Es| / (not smooth! better to consider the smooth
bundle Gy (TM) — M instead), then

Fieo = F @ Sym® (E;) ® |E;|"* = C, : trivial bundle.
hence the symbol Xr, = X: geodesic vector field

e = 0,7 = lime oo SUp,cpy — 2 log HD¢‘ () /e,

~ 1l
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Specml case: Let F = |E,_,| / = |Es| / (not smooth! better to consider the smooth
bundle Gy (TM) — M instead), then

Fieo = F®Sym® (E.) ® |E.|*/* = C, - trivial bundle.
hence the symbol Xr, = X: geodesic vector field

e = 0,7 = lime oo SUp,cpy — 2 log HDqﬁ‘ () e,

~ 1l
< 0. We have Xr i Op(Xx) !

min

Theorem ((F.-Tsujii 2015))

1/2 . . .
For F = |E,| / , the Ruelle-Poliicott spectrum of Xp in Hy (M) has eigenvalues (2o ), that

d
accumulate on Re (z) = 0, with density Vol (M) (2“’)7“1, and an asymptotic spectral gap
s

7 <Re(z) <0.
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Relation with periodic orbits v from Atiyah-Bott trace
formula (65), Guillemin (79)

T (etXF) = /M Kt (m, m) dm = /M Tr (eth (m)) §(m—¢"(m))dm

Schwartz kernel of efXF

Tr (8% (m)) .5 (t = n])
=...= Z MZ |det (1 — D/g,ee,¢t (m))]’ men

periodic orbits v n>1

This is a distribution in D’ (R;).

Theorem (GiuIietti—PoIIicott—Liverani 12, Dyatlov-Zworsky 13)

The spectral determinant

” ” Tr (8 (m)) e
d(z) :="det’ (z— Xp)" = exp <_ i Z ) Z n|det (1 — D/, eE,¢* (m))|>

periodic orbits vy n>1

has a holomorphic extension on C. Its zeros are Ruelle eigenvalues
{zj}; = Spect (X¢).




Relation with periodic orbits v from Atiyah-Bott trace
formula

Theorem (Tsujii-F. 12,13)

The semi-classical zeta function (from “quantum chaos”), for F = |E,,\1/ 2

Zs.c = exp Z Z

L |det (1 - D/g, g0t (m)) ‘1/2

has a meromorphic extension on C with finite number of poles on
Re(z) > 7 +¢. Zeros are Ruelle eigenvalues (z;);.

efz"lp)’l

[vIn 0
e o
In example M\SLyR, we have Dg, g, ¢"" (v) = ( 0 e-hin ) giving

Zoe.( Z)_eXP< >0 Z e =3 *’") =1:[ 1‘2[ (1—e (= 2emi)

Y n>1 m>0

1
=: (Selberg (Z + 5)



Relation with periodic orbits v from Atiyah-Bott trace

formula
Zs.c. (z) = exp Z Z Z
¥ n>1m>0
= CSelberg (Z + 5)
w=Im(z)
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Thank you for your attention

Zs.c. (z) = exp < e—nhl(z+3 *’")) =

)PP
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(*) Ex: Ruelle-Pollicott spectrum of geodesic flow on
M\SLR

(Flaminio-Forni 02, Dyatlov-F-Guillarmou 14 is generalization to ['\SO1 ,/S50,_1).
slo (R) algebra: [U,X] = U,[S, X] = —S.,[S, U] = 2X. X is the generator the
geodesic flow on surface N’ = N\SL,R/S05.
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https://en.wikipedia.org/wiki/Special_linear_Lie_algebra

(*) Ex: Ruelle-Pollicott spectrum of geodesic flow on
M\SLR
(Flaminio-Forni 02, Dyatlov-F-Guillarmou 14 is generalization to ['\SO1 ,/S50,_1).
slo (R) algebra: [U,X] = U,[S, X] = —S.,[S, U] = 2X. X is the generator the
geodesic flow on surface N’ = N\SL,R/S05.
Observations: if Xu = zu, then we get other resonances:

X (Uu)=(UX = U)u=(z-1)(Uu),

X(Su)=(SX+S)u=(z+1)(Sv)

and 3k > 0s.t. Sku=0,5%"1u #0. We say u € By "band k"

Im(z)

Moo py 12 i3
0 1/4 "

o Re(z)



https://en.wikipedia.org/wiki/Special_linear_Lie_algebra

(*) Ex. spectrum on M\ SL,R (2)
o If ue By, i.e. Su=0 then
\A/ u= (—Xz—%SU—%US>u:(—X2—X—U5)u:—z(z+1)u:,uu

casimir

thus (u)go, € C> (N) is an eigenfunction of A = —y? (5—; + 83—;). Thus
i€ RT and
1 e 1
z=—==i - -
2 =%

— R-P spectrum has band structure (lines).
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(*) Ex. spectrum on M\ SL,R (2)

o If ue By, i.e. Su=0 then

1 1
A u= (—XZ—ESU—§U5>U:(—X2—X—U5)u:—z(z+1)u:,uu

~
thus (u)go, € C> (N) is an eigenfunction of A = —y? (5—; + 83—;). Thus
i€ RT and
1 e 1
z=—==i - -
2 =%

— R-P spectrum has band structure (lines).

@ Rem: py > 0 gives the exponential rate for mixing.
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