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Abstract: We consider a R-extension of one dimensional uniformly expanding open
dynamical systems and prove a new explicit estimate for the asymptotic spectral gap. To
get these results, we use a new application of a “global normal form” for the dynamical
system, a “semiclassical expression beyond the Ehrenfest time” that expresses the
transfer operator at large time as a sum over rank one operators (each is associated to one
orbit). In this paper we establish the validity of the so-called “diagonal approximation”
up to twice the local Ehrenfest time.

Contents
1. Introduction . . . . . ... ... ... 756
The Model . . . . . . . . . 757
2.1 Tterated function system . . . . . . . . . . ... ... ... 757
2.2 Thetrappedset K . . . . . . . . . . 758
2.3 Thetransferoperator £ . . . . . . . . ... 758
2.3.1 Extension of the transfer operator to distributions. . . . . . . . . . 760
24 Escapefunction . . . . . . . . ... ... 761
3. TheMainResults . . . . ... ... .. ... ... 762
3.1 Theorems . . . . . . . . . . e 763
3.2 Expansion of correlation functions for partially expanding maps . . . 764
3.3 Other interesting results:global normal form and asymptotic expansion 765
3.4 Sketchoftheproof . . ... ... ... ................ 766
4. The Canonical Map ¢ and Its Trapped Set /C in Phase Space . . . . . . . . 767
4.1 Thetrappedset kO . . . . . . . . . . . ... 768
4.2 Symbolic dynamics on the trappedset K C I . . .. ... ... ... 768
4.3 Symbolic dynamics on the trapped set C C T*I . . . . .. ... ... 770
5. Global Normal Form . . . . . .. ... ... ... ... .. ...... 772

6. Asymptotic Expansion . . . . .. ... ... Lo 776


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-017-3000-0&domain=pdf

756 F. Faure, T. Weich

6.1 Asymptotic expansion for the dilation operator . . . . . . . . ... .. 776
6.2 Asymptotic expansion for the transfer operator . . . . . . . . ... .. 781
7. Diagonal Approximation. . . . . . .. ... L oL 783
7.1 Proof of Proposition 7.8 about separation of orbits . . . . . . . .. .. 790
8. Proof of the Main Theorems 3.3and3.6 . . .. ... ... ... ..... 795
8.1 Proofof Theorem3.3 . . . . . . . . ... ... ... .. ....... 795
8.1.1 Expression of y (J,) in terms of topological pressure. . . . . . . . 796
8.1.2 Minimization of y (J¢) todeduce yyp. . . . . . . . .. ... 797
8.2 Proof of Theorem3.6 . . . . . .. .. .. ... .. ... ....... 800
A. Examples . . . . .. e e e e 801
A.lLinear IFS . . . . . . . . .. 801
A.l1.1 Definition of the model. . . . . . ... ... ... .. ...... 801
A.1.2 Estimates for the asymptotic spectral gap Yasympt.- - - - -+ - + - 803

A.1.3 Numerical observations for the Ruelle-Pollicott resonances and yasympt.
and discussion. . . . ... ... 806
A2 Truncated Gauss map . . . . . . . o vt oo e 807
B. Topological Pressure . . . . . .. ... ... L oL 808
B.1 Definition and basic properties . . . . . . ... ... ... ... ... 808
B.2 Distribution of time averages of f weightedby g . .. ... ... .. 810
C. Discussion About yasympt. in Hyperbolic Dynamics . . . . . .. ... ... 814
C.1 Motivation to study Yasympt. « - « - « « « o o 0o e 814
C.l.1 Gibbsmeasure. . . . . . . .. ... 815
C.1.2 Special choice V. =J = =divX/g,. . . . . ... ... ... ... 817
C.1.3 Specialchoice V.=0. ... ... ... .. .. ... ....... 818
C.2 Known results about Yasympt. - + -+« v oo oo oo 818
C.2.1 Contact Anosov flows. . . . . .. ... ... ... ..., 818
C.2.2 Anosov flows in dimension 3. . . . . . .. ... ... ... .. 818
C.2.3 Open hyperbolic dynamics. . . . . . .. ... ... ... ..... 819
C.2.4 Quantum hyperbolic dynamics. . . . . .. ... ... .. .... 819
C.3 Conjecture fOr Yasympt « - « « « v« v v v v e 819

1. Introduction

In this paper we consider a R-extension of one dimensional uniformly expanding open
dynamical systems, so called iterated function systems (IFS). The dynamical properties
of these IFS are on the one hand interesting, because of relations to the spectral theory on
Riemann surfaces and questions in number theory. On the other hand, the R-extension
adds a neutral direction to the dynamics and our model can also be considered as a
toy model for more complicated dynamical systems such as Anosov or Axiom A flows
[KHO95]. The main object of study in this paper is the asymptotic spectral gap for the
family of transfer operators associated to these specific open partially expanding maps. In
Appendix C we propose a discussion for motivating the study of the “asymptotic spectral
gap” Yasympt. from the general point of view of hyperbolic flows (in both classical and
quantum mechanics). For related models we review known results on yasympt, and we also
discuss the conjecture for yasympt. that generically Vasympt. = Veonj = %Pr Q2w =J0)).
This appendix may be consulted first by the reader who are interested in more detailed
motivations. It is, however, not mandatory for understanding the main results.
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In Sect. 2, we define the model under study. The transfer operator £, acting on
functions u is £L,u := ¢’V uo¢$~! depending on a parameter v € R, smooth functions
7, V and ¢! an expanding map on intervals.

In Sect. 3, we define the *“asymptotic spectral gap” Yasympt. := limsup, o,
log (ry (L)) (where rg (L)) stands for the spectral radius) and give the main results
of this paper: in Theorem 3.3 we show that yasympt. < Yup = %Pr QW -=J)+ }‘ (J)

where Pr (.) is the topological pressure, J = log ‘((ﬁ’l)/‘ > 0 is the expansion rate,

(J) is an averaged expansion rate given in Eq. (27). In Theorem 3.6 we also get an
upper bound for the norm of the resolvent of the transfer operator. We discuss their
consequences in terms of decay of correlations. In Sect. 3.3 we discuss other interesting
results obtained in this paper that may be extended to more general hyperbolic dynamics:
a global normal form and an asymptotic expansion of the transfer operator. In Sect. 3.4
we provide a (very short) sketch of the proof of the main results.

From Sects. 4, 5, 6, 7 and 8 we provide the proof of the main Theorems and develop
tools for this.

Under non local integrability (NLI) hypothesis it has been shown by D. Dolgopyat
[Dol02] that 3¢ > 0, Yasympt. < VGibbs — € With yGipps = Pr(V — J). Using semi-
classical analysis and some hypothesis it is also known [AFW13] that yasympt. < ¥sc =
tsup (V - %J ) where tsup means supremum after time average (see (30)).

In Appendix A we consider examples based on linear maps and the Gauss map
and compare our bounds with numerical results for the Ruelle spectrum. We also show
that the new bound yy, improves the previous bounds yGipbs and ysc in some range of
parameters. On the web site of the first author [Fau] we propose movies and additional
multimedia contents that illustrate these models.

2. The Model

In this section we introduce the model which we study in this paper. This model has al-
ready been studied' in [AFW13] and we refer to this paper for more comments, examples
or details.

2.1. Iterated function system. See Fig. 1 for an illustration.

Definition 2.1. “An iterated function system (I.E.S.)”. Let /1, ... Iy C R be a finite
collection of disjoint bounded and closed intervals with N > 1. Let A € {0, 1}V*V
called an adjacency matrix and assume that the matrix A is primitive, i.e. thereis 7 > 0
such that Vi, j, (AT)I.J. > 0. We will note i ~ j if A; ; = 1. Assume that for each
pairi, j € {1,..., N} such that i ~ j, we have a smooth invertible map ¢; ; : I; —
¢i,j (Ii) C Int(I;). Assume that the map ¢, ; is a strict contraction, i.e. there exists
0 < 6 < 1 such that for every x € [;,

0 <¢l{)j (x) <86. (D

We suppose that different images of the maps ¢; ; do not intersect (this is the “strong
separation condition” in [Fal97, p.35]):

i) # kD = ¢ij )N ey Ix) = 0. 2

1 Compared to the previous paper [AFW13], we have changed the notation of the transfer operator from
F to £ and of its associated symplectic map from F to ¢p. We have also replaced h by v = 1/h.
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Remark 2.2. We have assumed for simplicity that the map ¢; ; preserves orientation,
ie. 0 < ¢ j (x) < 6. The results of this paper also hold if we only suppose that

0<

¢lf’j (x)) < 6. To treat this case, we can define o; ; = sign (qbl’J) € {—1, 1} and

replace in every formula of this paper, the term ¢/i/ ™) by o; je’ii ™). For example the
truncated Gauss model presented in Sect. A.2 has negative derivatives ¢; j (x) <O.

2.2. The trapped set K. We define

I:Uh 3)

i=1

The multivalued map:

o:1 -1, ¢:= (qﬁi,j)

i,j

can be iterated and generates a multivalued map ¢" : I — [ forn > 1. From Condition
(2) the inverse map

o i) > 1

is uni-valued. Let

Ky = ¢" (I) “4)
and Ko = I. We have K,,;1 C K, so we can define the limit set

K :=()Kx S

neN

called the trapped set. The map

6" K> K (6)

is well defined and uni-valued.

2.3. The transfer operator L.

Notations. We denote Ci° (R) the space of smooth functions on R with compact support.
If B C Ris afinite union of closed intervals, we denote by Ci° (B) C Cg° (R) the space
of smooth functions on R with support included in B. We denote by C* (B; R) and
C®° (B; C) the space of real (respect. complex) valued smooth functions on B.

Definition 2.3. Let 1 € C* (¢ (/);R) and V € C*® (¢ (I); R) be smooth functions
called respectively roof function and potential function. Let v > 0. We define the
transfer operator:

. Cgo(l) —>C8°(I) .
" le=(e); — (vazlﬁi,jfpi>j )
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Fig. 1. Action of the transfer operator £, on a function ¢ as defined in (7) for the dynamics of truncated
Gauss map with N = 3 intervals (I.f)jzl...N’ defined in Sect. A.2. In this picture ¢ is supported on /1 and
L, ¢ is supported on the three intervals /1 U I, U I3. The maps ¢: ¢; j : I; — 1,1, j = 1... N are contracting
and given by ¢; ; (x) = % The trapped set K defined in (5) is a N-adic Cantor set. It is obtained as the
limit of the sets Ko = ([ Ul ---Uly) D K1 = ¢ (Kog) D Ko = ¢ (K1) D --- D K. In this example,
dimg (K) = 0.705 .. .. In this schematic figure we have T = 0, V = 0. In general the factor eV changes

the amplitude of £, ¢ and ¢/VT(™) creates some fast oscillations if v >> 1

with
Cse Iy — C§° (1)
Lij: o (L) () = VTV D) g (¢’Z} (x)) ifi ~ jandx € ¢;; (I;)
' 0 otherwise.
3)
See Fig. 1.

Remark 2.4. 1. Eq. (7) is a family of transfer operators depending on the parameter
v € R. We will be interested in the spectrum of these operators in the “semiclassical
limit” v — +o0.

2. From Assumption (2), for any x € I, the sum | (L; j¢;) (x) which appears on
the right hand side of (7) contains at most one non vanishing term.

3. Forany ¢ € Cgo (I),n > 0 we have

supp (Lh¢) C K, ©)

with K, defined in (4).

4. The family of operators (L, ), g can naturally be obtained from a dynamical system
(32) that is a R-extension of the IFS and take the Fourier component with frequency v
in the neutral direction (see Sect. 3.2 or [AFW13, Sec.2.2] for a detailed explanation).
The limit v — 400 corresponds to the limit of high Fourier modes. In this sense
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studying the spectral properties of the whole family of operators (L)), corresponds
to studying the spectral properties of this R-extension of the IFS, i.e. a dynamical
system with a neutral direction.

2.3.1. Extension of the transfer operator to distributions. In [AFW13, Sec.3.1] it is
explained how the transfer operator £, initially defined on smooth functions C§° (1), can
be extended to the space of distributions. For completeness we recall this construction.
We first introduce a cut-off function y € C§° (K,) such that 0 < x (x) for x € Int (K,)
where a € N and K, is defined in (4) and x (x) = O for x € dK,. Let us remark that
in the proof of Lemma 7.10, we will need to fix the value of a according to (59). We
denote ¥ the multiplication operator by the function x. We define?

Lijyi=x"LijR:CP MR — CC (1), Liy:i=3x "LuR (10)
which is well defined since supp (L,-, j )2(0) C Int (K,) where x does not vanish, although
% ! is not defined by itself. The formal L?-adjoint operator L:?,j,x (CPR) — C3° (1)
is defined by

(@i L7 Wi = (Lijx9i ¥idp2, VYoi € Cf° (R), ¥ € C5° (R), (1D

with the L2-scalar product?
(U, v)2 :=/ﬁ(x)v(x)dx. (12)
The L2-adjoint operator E:’;X 1 Cp° (R) — C§° (1) is defined by

v=);— (L) 0= X (Luw)

JjS.tii~j
whose components are given by [AFW 13, Lemma 3.1]

x ()

(EL1091) 0= S (g ks O/ (9 0). 1)

$;0)

Proposition 2.5 [AFW13, Sec.3.2]. By duality the transfer operators L, y and Et,x
extend to distributions:

L,,:D R — D (R)
Ly, :D'(R) - D' (R) (14)

2 The conjugation by x is necessary to extend the operators to distributions and thus, later in Sect. 2.4,
to Sobolev spaces. This is due to the fact that the dynamics is “open”. The spectral properties are, however,
independent of the choice of x (cf. Theorem 3.3).

3 We will omit the index L2 sometimes.
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2.4. Escape function. In this section we want to introduce Hilbert spaces in which the
transfer operator has discrete spectrum. We therefore consider the following “escape*
function” on the cotangent space T*R = R? with coordinates (x, £). Let m > 0 and let
Ap € C® (R?; R) be the “symbol” given by’

Ap (x,8) = (&)™ 5)

with (&) := (1 + 52)1/2. We will use the Lz—unitary v—Fourier transform F, : L? (Ry)
— L? (Rg) and its inverse:

1 .
(Fop) (§) = NoraE /R e g (x) dx,
1 .
(Frtv) @ = o [y s (16)

Notice that the parameter v is just a scaling in &. Let Am :=0p, (Am) : SR) - S(R),
be the linear operator defined as the semiclassical quantization of A,, [Zwo12]. In this
case this is simple. For ¢ € S (R),

(Ang) 0 1= 52 [ A% () ayae
" T 2m/v mAT
= FL ()™ (Fop) (x) (17)

where in the last line (§)™" denotes the multiplication operator. By duality Ay is ex-

tended to® Am :S"(R) — S’ (R). Form € R, the v-Sobolev space of order m is defined
by
H"®) = A, (L2 @) (18)

and the norm of ¢ € H, ™ (R) is defined by

0 ey = |Ang ], - (19)
Let
Oij=AnLij A, L*(R)— L (R).
and
0= Ani ' LoR A = ALy ALY (20)

Equivalently we have the following commutative diagram

L2® —25 2[R

A,;'l A,,—,ll : 1)
H™ () —=25 o (R)

4 The name “escape function” will be justified by Remark 4.2 which shows that A;, decays along the
dynamics of ¢ for |£] = C.

5 In fact Ap (x, &) is independent on x.

6 S’ (R) is the space of tempered distributions, see [Tay96, p.204].



762 F. Faure, T. Weich

Theorem 2.6 [AFW 13, th.2.6]. “Discrete spectrum”. For any r > 0, there is mg > 0
such that for all m > mq and for all v € R,

Loy :H™ MR — H™(R)

has purely discrete spectrum ()» j (\1)) on the spectral domain {\ € C, |A| > r}. The

jeN
eigenvalues (X j (U))J.EN in this domain are independent on m and x and are called the

Ruelle—Pollicott resonances of the transfer operator L,

Remark 2.7. From the commutative diagram (21), the spectral properties of Q (L2 (R) -
L? (R) are equivalent to those of Ly, H™[R) — H™ (R). In practice (in the
proofs) we will work with Q on L2 (R).

3. The Main Results

Letrs (Ly.5) = sup;en {|x; (v)|} be the spectral radius of the operator £, : H,™ (R) —
H;™ (R) with m large enough so that r ([ZU, x) does not depend on m nor on x (for this

we need that the Ruelle spectrum is non empty, otherwise we put r; (Lv, X) = 0). We
are interested in the asymptotic value

Yasympt. = lim sup (log (rS (Ev,)())) . (22)

V—>+00

To express the main results below we need to introduce the topological pressure. It
can be defined from the periodic points as follows. A periodic point of period n > 1 is
x € K such that x = ¢~ (x).

Definition 3.1 [Fal97, p.72]. The topological pressure of a Lipschitz function ¢ €
U — R with U a neighborhood of the trapped set K, is

1
Pr(p) := lim —log Z e ™) (23)
n—>00 n )

where

=30 (67 @)
k=0

is the Birkhoff sum of ¢ along the periodic orbit.

We define the “Jacobian function”

—1
J (x) :=log d (x) > 0. 24)
dx
and
1 n—1
Jmax ;= tsup (J) := lim sup (— J <¢_k (x))) , 25)
l’l—)OOxEK n k=0
n—1
Jnin = tinf (J) := lim inf (l J(¢_k (x))>. (26)
n—ooxek \n —
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Remark 3.2. The limits on the right hand sides of (25), (26) exist because the sequences

a, = xlg( (SJ (¢_k (x)>) , by :=sup (SJ (¢_k UC)))

k=0 xeK \r—o

are superadditive (i.e. a, +a,, < ap+n)and subadditive (i.e. b, +b,, > b4y ) respectively
and Fekete’s Lemma guaranties existence of the limits J,,;;, = lim, . a,/nand J;0x =
limy,— o0 by /1.

3.1. Theorems.

Theorem 3.3. “Bound of the spectral radius”. Let 8 > 0 be defined by
PrQ(V —J)+BJ)=2Pr(V—1J)

and
_ 2Pr (V. —J)—Pr2(V —J))
B B

Under the Assumption 4.5 of minimal captivity defined below, if B > % and (J) < 2Jpin
then

<J> : € [Jmin» Jmax] . (27)

1 1
Vasympt. = Yup := ZPr 2 (V. =)+ 2 {J) (28)

otherwise
Yasympt. < ¥Gibbs := Pr(V —J). (29)

Remark 3.4. The Assumption 4.5 of minimal captivity will be explained later but can

be summarized as follows. If ¢ is the symplectic map on T*R associated to the transfer
operator £, and IC C T*Risits trapped set (it is a Cantor set) then the “minimal captivity
assumption” is that ¢ is univalued on a small neighborhood of K.

Remark 3.5. 1t is remarkable that the bound yyp in (28) does not depend on the roof

function t, however beware that t will appear in the expression of é (see (40)) and
therefore the Assumption 4.5 needed to get (28) depends on t.

Previous known results about Yasympt.:
e the bound (29) is already well known and holds without any assumption [Rue89].
e D. Dolgopyat [Dol02] has shown under a generic condition that 3¢ > 0,

Yasympt. < VGibbs — €,  YGibbs := Pr(V — J).

e in [AFW13] it has been shown under the assumption of “minimal captivity” that we
have

' 1 n—1 » 1
Yasympt. < Ysc := tsup (D) := lim sup | — Z D (¢ (x)) , D=V ——J,
n—00 g\ n = 2
(30)
(here ysc stands for “Vsemi-ciassical” Since we used semiclassical analysis to obtain
itand D=V — %J is called the “effective damping function” from [FT15]).
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The next Theorem gives an upper bound for the norm of the resolvent of the transfer
operator in H, ™ (R) outside the radius e’». This is useful to control the asymptotic
decay of correlation functions for the corresponding dynamical system (see Corollary
3.9). For an operator O : H — 'H we will use the notation ||O||y = |0l -

Theorem 3.6. “bound of the resolvent” With yy, and (J) given in Theorem 3.3, and
Ysc := tsup (D) defined in (30), let us suppose that yup < Vsc. Then for any € > 0, there

exists ve > 0, Ce > 0, such that for any v > v, we have for any |z| > e(w+€),

1 2 (ye—
(= £0)7"] oy = CevTime o), (1)

Remark 3.7. 1. If |z| > ¢ then a bound of the resolvent norm independent on v
has been obtained in [AFW 13, Thm 2.9].
2. The positive power of v in (31) (that diverges for v — 00), is related to our choice

Ly, H is
controlled by yyp only for long time n of order (3—> log v. This time is the required
time for a wave packet starting on the trapped set to reach the region where there is
an effective damping by the escape function. Using cutoff functions in some exotic

symbol classes that allows a sharper cutoff in &, one should be able to improve this
term.

of the escape function that defines the norm in Sobolev space: the norm )

3.2. Expansion of correlation functions for partially expanding maps. Theorem 3.6 has
a direct application for decay of correlation functions for a related partially expand-
ing dynamical system (see Remark 2.4(3)). One obtains exactly the same result as in
[AFW13, Theorem 2.9] with the only change that we take any p > e’ and initial func-
tionsu € H™ ()@ H° (S'),v € H™ (I)® H° (S") should have regularity of positive
order o = ﬁ (ysc — yup) in the neutral direction. Here is the precise statement.

Let ¢ be an iterated function system as defined in Definition 2.1. Recall that the map
¢~ ' : ¢ (I) — I is univalued and expanding. Let T € C® (¢ (I) ; R) as in Definition
2.3. We define the map

dp() xS > TIxS!
: 32
f {(x,y) = (7' ), y+T () 52)

with S! := R/ (27 Z). Notice that the map f is expanding in the x variable whereas
it is neutral in the y variable in the sense that g—’; = (0, 1). This is called a partially

expanding map and may serve as a very simple model for the general study of partially
open hyperbolic dynamics [Pes04] such as Axiom A flows. Let V € C* (¢ (1); R).

Definition 3.8. The transfer operator of the map f with potential V' is

I3 Ce (I x SY) — ¢ (¢ (1) x SY)

: . 33
Yy e Oy (f (xy) 59
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A function ¢ € Cg° (I X Sl) can be decomposed in Fourier modes in the y variable:

1 ]
Yy =—= "o, (x) (34)
\/E VEZ
then
~ 1 ]
Ly) (. y) = —=>_ " (Lvp)) (x)
( ) \/E VEZ

with £, given by (7).

We introduce some notation: for a given v € Z, we have seen in Theorem 2.6 that the
transfer operator £, has a discrete spectrum of resonances. Let p > 0 such that there
is no eigenvalue on the circle |z| = p for any v € Z and denote by IT, , the spectral
projector of the operator £, on the domain {z € C, |z] > p}. These projection operators
have obviously finite rank and each commutes with £,,. Theorem 3.6 has the following
corollary.

Corollary 3.9. “Expansion of correlations”. For m large enough (such that r < e
in Th. 2.6), for any € > O, there exists ve € N and Cc > 0 such that if we put
o = (J)%e (ysc - yup), Pe = e"w*€ we have for any u € H™™ (I) @ H (Sl),

ve H" (I) ® H% (Sl), anyn €N,

WIL" ) — > ol (Lo Tpen)" )

[V]<ve

< Cep; | (35)

2 2
|M ”H—m(l)@[_lde (Sl) ”v”Hm(I)@H(re (Sl) .
Here u, € H™™ (I), v, € H™ (I) stand for the Fourier components in S direction of
u, v defined as in (34) and (vlu) = fﬁ(x)u(x)dx (extended to distributions).

Remark 3.10. The second term in Eq. (35) is a finite sum and each operator £, , I1, ,, has
finite rank hence (ﬁ,,’ Pt pg,u)'1 can be expended over individual eigenvalues. Using the

spectral decomposition of £, , we get an expansion of the correlation function (| £"u)
with a finite number of terms which involve the leading Ruelle resonances (i.e. those
with modulus greater than p) and an error term that is O (p").

Remark 3.11. In (32) we could consider (x, y) € ¢ (I) x R instead which would give a
Fourier decomposition ¥ (x, y) = —i= [ ¢ ¢, (x) dv with v € R. Then expansion of

correlations would manifest some “diffusive behavior” governed by the range [v| < vy.

Proof. The proof of Corollary 3.9 is similar to the proof of [AFW 13, Theorem 2.9].

3.3. Other interesting results:global normal form and asymptotic expansion. To get the
result (28) we establish a “global normal form” for the transfer operator. The term
“global” means here that the normal form is not specific to an individual fixed point or
a periodic orbit as it is usually done [Arn88] but concerns the global dynamics in its
whole. “Global normal forms” have already been considered for hyperbolic dynamics
[Del.92,DelL95,Fau07] under the name “non stationary normal form”. In this paper the
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use of global normal form shows that the transfer operator is conjugated to a simple
dilation operator in a vicinity of any point and that the conjugation is Hélder continuous
with respect to the point considered. This is particularly useful because dilation operators
can be easily composed and this helps to study the dynamics for “long times” n: this is
Theorem 5.2 that can be considered as an interesting result of this paper by itself. Then
we use an expansion for large time’ 7 >> log v, and obtain in Theorem 6.7 an asymptotic
expression for the transfer operator £7 as a sum of rank one operators IT,, that can be
written®:

oy~ Y elvnremhom,, (36)

w

where the sum is over symbolic words w of length n that represent orbits (explained in
Sect. 4.2), V,, is the Birkhoff sum of the function V along the orbit w (similarly for 7,
and Jy,) and I1,, is a rank one operator of the form

H7™([R) — H;™ (R)

u — Uy <'5w|“>[-1v—m ©7

My = [Uyp)(Sw| {

wherelty,, S, € H, ™ (R) are distributions associated respectively to the unstable/stable
manifolds of the orbit w as shown on Fig. 4 (more precisely U,,, S,, are Lagrangian WBK
states, they will be precisely defined in Theorem 6.7).

3.4. Sketch of the proof. Let us shortly outline the principal mechanism in the proof of
the new asymptotic gap bound (28) without discussing the technical difficulties. If the

1/(2n)
operator £, would be trace class in H; ™ (R) then r, (£,) < ‘Tr ((E’IZ)Jf ﬁﬁ)‘ !

any n > 1, where { stands for adjointness in the specific Hilbert space H, ™ (R). In
order to obtain good bounds on the trace norm we develop in a first step a global normal
form (Sect. 5) as well as an asymptotic expansion (Sect. 6). This leads to the expansion
(36) for £ and similarly for its adjoint (EL’)Jf ~ Y e_i"fw’+vw’_]w’l'[jv,. Using the
definition of the asymptotic spectral gap (22) we get for v — o0,

or

1 B CNrsivle o .
Yasympt. < log (rs (£,)) < n log Z/e(v Dt (V=) +iv (T =Ty ) Ty (H:U/Hw> _
w,w

(38)
We have Tr (rﬁw, nw) = (SulSu)UysIUhy). In Proposition 7.8 we will show that for
37)

time 7 less than twice the Ehrenfest time i.e. such that n < 21((’§>” (or &™) < v?) then

the unstable/stable manifolds S,,, U,, are well separated9 in the sense that w # w’' =

Tr <1'ITw, Hw> ~ 0. Applying this separation to the double sum (38) means that the non

7 The symbol n 3> log v means here the right hand side of (94) get relatively small.

8 We don’t give here a precise statement of the result. We just write the main terms and ignore the remainders.
We refer to Theorem 6.7 for a precise statement.

9 This is up to some few pairs (w, w’ ) that give negligible contributions. To control these terms we use
large deviation techniques explained in Appendix B.
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diagonal terms can be neglected and we call this the “diagonal approximation”. For the
diagonal terms that remain we compute that Tr (HTw I'Iw) < vC. This gives

1
s < —1 E 2V=Iw
Vasympt. = n og ( a e v

38)

1 1 1
= -PrQV-UJ)+—logC+ —1 +o(1 39
139, 2 r(2( ) 5, log 5, ogV o(1) (39

Then we take the time n = 21?%” (1 —€) with any € > 0 and v — +o0o and get the

result (28) that Yasympt. < Vup 1= 3Pr 2 (V — 1)) + 1 (J).

4. The Canonical Map 5 and Its Trapped Set /C in Phase Space

According to [AFW13, Lemma 4.2], the transfer operator £; ; in (8) is a v-semiclassical
Fourier integral operator (FIO).!0 It is a general fact in semiclassical analysis that var-
ious properties of Fourier integral operators are obtained from the properties of their
associated symplectic map (or canonical map) which are maps on the cotangent space.
Here we use coordinates x € I; and £ € T} I;. The canonical map associated to £; ; is
defined by [AFW13, Lemma 4.2]

T*Ii e T*Ij
i) : X' =i (x) (40)
e {5/ = it ).

This gives a multi-valued canonical map ¢ : T*I — T*I on the phase space T*] =
I x R, given by:

. |1 - T*I
: (41)

P N6 > {43,,,- (0, &) withi, jstx el i~ j}.

We have the following property of “escape at infinity outside a compact” for the
dynamics defined by ¢ : T*I — T*I:

Lemma 4.1 [AFW13, Lemma 4.4]. Forany 1 < k < e’min_ there exists C > 0 such that
Vx el;, V¢ e R Vjsti~ j,

(x'. &) =i j (x.8) and & > C = |&'| > « |&]. (42)

Remark 4.2. At this stage we observe from (42) that the function A, (x,&) = (§)7"

Am(ij (x.6)
defined in (15) satisfies [§] > C = f(,m(—;@) o

A, decreases strictly with the dynamics. This explains why we call A,, an “escape
function”.

< "™ with ¢ =

< 1, 1.e.

10 The reader does not need to be familiar with the theory of global Fourier integral operators for the rest of
the article. For a discussion of FIOs in the context of IFS-transfer operators we refer to [AFW 13, Section 4].
For a more general introduction we refer to [Zwo12, Chap.10].
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4.1. The trapped set KC. We define the trapped set I for the dynamics of the canonical

map ¢ in (41), as the points which do not escape “totally” neither in the past nor the
future:

Definition 4.3. The trapped set in phase space 7*1 = I x R is defined as

K={(x,&) el xR, ID &I xR compact,
st.Vn e’ &”(x,gmp;ﬁ@}

Remark 4.4. Since the map ¢ is a lift of the map ¢ : I — I we conclude that K C
(K x R) with K the trapped set of ¢ defined in (5). Using any value of C given from
Lemma 4.1 one can make this precise and obtain that

KCc(Kx{EeR g <CY).
For ¢ > 0, let K, denote a closed ¢ —neighborhood of the trapped set /I, namely
Kei={(x,&) € T*I, I(x0,5) € K, max (Ix — xol, 1§ — &) <} .
From now on we will make the following hypothesis on the multi-valued map ¢.

Assumption 4.5. We assume the following property called “minimal captivity”:
>0, Vo eke oK) =1 43)

This means that the dynamics of ¢ is univalued on a neighborhood of the trapped set K.

Remark 4.6. 1. The minimal captivity assumption has been introduced in [AFW13] and
it allows an easy description of the trapped set . We refer to [AFW 13, Prop. 4.1]
for further discussions and alternative equivalent formulations.

2. The minimal captivity assumption is a stronger assumption than the Dolgopyat non-
local integrability condition, [Dol98], [Nau05, Definition 2.1]. We refer to [AFW 13,
Section 4.3] for a comparison.

3. In[AFW13, Prop. 7.3] an explicit procedure to verify the minimal captivity assump-
tion is discussed and minimal captivity assumption is proven for the examples of
Bowen Series map and the truncated Gauss maps.

4. Given the minimal captivity Assumption 4.5, let U C R? open such that K cU C

e N ¢~>71 (Ke)). We can extend the univalued map $ on K to an embedding b :
U — R?. With this point of view K is simply the maximal invariant hyperbolic set
of the diffeomorphism 43 (cf. [Has02, Section 1.b, Section 2.h]). This observation
will be useful in the proof of Lemma 7.11 to use regularity estimates on the stable
foliation of ¢.

4.2. Symbolic dynamics on the trapped set K C I. Inthe following two sub-sections we
introduce the symbolic dynamics on the trapped set K C I and the trapped set C C T*1
in phase space. Note that the symbolic dynamics is not necessary for the definition of
Ruelle—Pollicott resonances neither for the statement of the results. It is a useful tool to
keep track of orbits and is natural in the context of L.LE.S. dynamics that is defined from

a set of intervals (Ij)j:l N
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L I,

Tagy ey Iagles

-- - _\
T2y 1220

Fig. 2. This picture illustrates the definition of intervals Ty, defined in (47) from a word w_, o =
(w,n, oW, wo) and the contracting maps ¢; ; : I; — 1. For example here I3 2 1) := ¢(2,2,1) (I2) =
$2,10¢20 () =21 (1) C 1

We first consider the dynamics of ¢ : I — I on the “base space” I. Let
W= w wowe) € (1 N e < 0] @)

be the set of admissible left semi-infinite sequences. In other words, VW_ is a subshift of
finite type [BS02, p.56]. For w_ € W_andi < j < 0 we write

Wi, j = (w,-,w,-+1,...wj) (45)

for an extracted sequence. For simplicity we will use the following notation for the
composition of maps:

Gy ;= Pw; w; ©Puwj gw;y © 0 Puywiyy - lwy = Tu; (46)

Forn > 0, let
Loy = $u_ro (Tu,) € Tug- 47)
See Fig. 2.

For any 0 < m < n we have the strict inclusions I,_, , C Iy_,,, C Iy, and from
(1), the size of I,_, , is bounded by |Iw7m0 < 6" |Iw0| , hence the sequence of sets
(Iw—n,o)n>1 is a sequence of non empty and decreasing closed intervals and (7~ T,_, ,
is a point in the trapped set K, Eq. (5). So we can define

Definition 4.7. The “symbolic coding map of K is

W_ K
S: - . (48)
wo = S(wo) =2 Tw_,
Let us introduce the left shift L, a multivalued map, defined by
L - - (49)
(.ooowa,wop,wo) — (.., w2, W_, Wo, W1)
with w; € {1, ..., N} such that wy ~» wi and let the right shift R be the univalued
map defined by
R AV - W- . (50)
(o,wo,wog,wy) —> (.., wop, wop)
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Proposition 4.8 [AFW 13, Prop. 4.12]. The following diagram is commutative
S

W — K (1))
RAL R N
w.o -5, K

and the map S : W_ — K is one to one.

4.3. Symbolic dynamics on the trapped set K C T*1. We consider now the dynamics
of the canonical map ¢ : I x R — I x R on the phase space. Let

W, = {(wo,wl,wz...)6{1,-.-,N}N, wlwwm,wzo}

be the set of admissible right semi-infinite sequences. For any n > 0 let

Lug, = ¢7" (Iwy,, x [=C, Cl) (52)
be the image of the rectangle under the univalued map ¢, where Ly, is given in
(47) and C is given by Lemma 4.1. See Fig. 3a. Notice that (iw(),n> = I, where

7 (x,£) = x is the canonical projection map. Since the map ¢~ contracts strictly

in the variable £ by the factor 6 < 1 the sequence (iwo_”> N is strictly decreasing:
ne

Ly, C in,n and we can define the limit

Wy — I xR

. L - (53)
wy = S(wy) = ﬂnzo IwO.n

Proposition 4.9 [AFW 13, Prop. 4.13]. For every wy € W, the set S (wy) C T*1, is
a smooth curve given by

S(U)+): {(x’§w+ (-x))v-xelw()} (54)
with y
Cw+ (.X) — Z e_ ""O,k(x)fl (d)woyk (x)) , (55)
k>1
and .
Jwo.n (x) :== Z S wier (¢11)0,k (x)) (56)
k=1
is the Birkhoff sum of the “Jacobian function” defined in (24)
Jij(x) = —log (¢;, ; (x)) > 0. (57)

We have an estimate of regularity, uniform in w: Yo € N, 3Cy > 0, Yw; € Wy,
Vx € Ly,
[(8%8w.) ()] < Ca. (58)
Moreover, with the hypothesis 4.5 of minimal captivity with a neighborhood IC; of
IC, there exists a > 1 and K, defined in (4) such that

Vx € K;, Ywy € Wy, (x, Cw, (x)) e KCe. 59)
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§

() (b)

Fig. 3. a Illustrates the construction of iwo,b given in (52), the construction of waa, , given in (60). b

lustrates the limit of these sets for semi-infinite words, i.e. a, b — oco. This gives the smooth curve S (wy4)
given in (54), the point xy,_ = S (w—) € K given in (48), the vertical line P (S (w-)) and finally the

intersection S (w) = (77_1 S (w=))N S (w+)> € K given in (61), that depends on a bi-infinite word
w=(w_,ws) €W

Proof. For (55) and (58) see [AFW13, Prop. 4.13]. For (59) see [AFW13, Prop. 4.10
(D]

Let
W .= {(...w_z,w_l,wo,wl,...) S {1,...,N}Z, wy ~ Wiy, VI GZ}

be the set of bi-infinite admissible sequences. For a given w € W and a, b € N, let

Tw_,, = (7‘[—1 (In_,) N fwo,,,) : (60)
See Fig. 3a.
Definition 4.10. The symbolic coding map of C is

w — K ol
w > S(w):= ﬂi’;ll'wfn’n = (n_l (Sw_)nNS (w+)) 61
with w_ = (... w_1, wg) € W_, wy = (wg, wy, ...) € W, (with the same extreme

letter wo).
See Fig. 3b. More precisely we can express the point S (w) € K as
Sw) = (xw, &), xp=8Sw-)eK, & = Cw, (xw) € T;wl’ (62)

with § (w_) given in (48) and ¢, given in (55).
Let L, R denote the full left/right shift on WV defined similarly to (49) and (50) by
(Lw); = wjs1 and (Rw); = wj_;.
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&w

Fig. 4. According to (63) and (62), a word w € W is associated to a point S (w) = (xy, &y) € K. By
the canonical map &, this point is sent to $ (S (w)) = S(L (w)). In fact, in a vicinity of S (w) the map @
is conjugated to the dilation map: ¢w0,w1 = Trw) © Dij,wl ) © T 1 . Equation (65) shows that this
conjugation is also true for the component Ly, of the transfer operator. The stable (respectively unstable)
manifold of the point S (w) (in blue, respect. in red) supports a Lagrangian state S,(f ) (respect. Z/{,(f )) that are

defined in Theorem 6.7 and used to express the transfer operator £} for large time, as an asymptotic expansion
(color figure online)

Proposition 4.11 [AFW 13, Prop. 4.15]. The following diagram is commutative

w-S (63)
RAVL  ¢7' 1o
w5

If Assumption 4.5 of minimal captivity holds true then the map S : W — K is one to
one. This means that the univalued dynamics of points on the trapped set IC under the

maps 1, ¢ is equivalent to the symbolic dynamics of the full shift maps R, L on the
set of words W.

Remark 4.12. Considering the trapped set /C as the hyperbolic set with a local product
structure of ¢ (cf. Remark 4.6(4)), the curve Sw+ = (x, &w(x)) is precisely the stable
manifold [Has02, Section 2.e] through the point (x,,, {y+(xy)) € K. The unstable
manifold is the vertical line 77 ~! (S (w_)) = {(xw, &), & € R} (cf. Figs. 4 or 3b).

5. Global Normal Form

Normal forms are usually constructed for individual fixed points or individual periodic
orbits [Arn88]. In few papers, normal forms have already been considered globally
for a hyperbolic dynamics [DelL92,Del.95,Fau07]. We present here the global normal
form for the transfer operator £, considered in this paper. This is Theorem 5.2 below.
We will need the following elementary (Fourier integral) operators on C3° (R) and

their associated symplectic (or canonical) maps on T*R = R)zc, £ [Zwo12, chap.10]. Let
¢ € C® (R).
e For A € R, the dilation operator is

(D) @) 1= ¢ () (64)

whose canonical map is Dy, : (x, §) — (x' = e *x, & = €*§).
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e For x € R, the translation operator is
(fxw) M =9 —x)

whose canonical map is Ty : (y, &) — (y/ =y +x,& =§).
e For a smooth diffeomorphism f : R — R, the composition operator is

(ﬁfw) ) =9 (f’l (y))

whose canonical mapis L : (x, &) — (x’ =f@.&=(f (x))_l .5)'
e For two smooth functions Y@, 7 e C®°(R; R)andv > 0,let Y = T<0)+%T(1)
and

(ércﬂ) () =" TWg (y)

whose canonical map is Oy : (x, &) — (x’ =x,& =€+ dT(O) (x ))

Remark 5.1. The dilation operator is a special case of a composition operator: D=7 f
with f (y) = e~ *y. Similarly for the translation operator T, = L Fwith f (y) =y—=x.
For any two dlffeomorphlsm f g one has £ o L'g =L fog-

The next theorem shows that using a combination of these previous simple operators,
the transfer operator £, : Cg° (1) — C{° (I) defined in (7) is “globally conjugated” to
a simple dilation operator. This is illustrated in Fig. 4.

Theorem 5.2. “Global normal form”. For any word w = (... w_1, wo, wy,...) € W
there exist functions Tu(,o), Tu(,l) € C®(yy;R), 7y, = TU(JO) + %Tu(,l) e C*® (Iwo; (C)
as well as a map Hy, : J — R defined on an neighborhood J C R of 0, which is
independent of the word w € W. Hy, is a C* diffeomorphism onto its image and the
following points hold.

1. There exists a neighborhood U of x,, such that the transfer operator in (8) acting on
Cg° (U) can be expressed as

Loo.w; = VT L)+ (L)) | ’j\’L(w) o bfwo,wl (xw) © ,j\'w_1 (65)
with R ) . A
Ty =01, 0Ty, oLy, (66)

Xy € Iy, defined in (62) and Jy,, v, defined in (57). Equation (65) means that the
components of the transfer operator (8) are conjugated to some dilation operator
multiplied by a constant. The operator Ty, is a FIO whose canonical map T, sends
(0, 0) to the point S (w) = (xy, &) € K.

2. Hy (0) =0, H),(0) =1, T (xy) = 0 and

ar.y

) =2%w )

with &y (¥) = G, () given in (55).
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3. For any a € N there exists Cy, such that for any w € W,

0" Hy| oo < Ca

0°Hy'| < Car [0 < Ca (67)

that express some regularity of the functions Hy,, 1.

Remark 5.3. Note that for a given operator Ly, ,,, the word w € V appearing in the
conjugation 7, w can be an arbitrary extension of (wq, w). This freedom for the choice
of extension will be used from time to time in the sequel. When necessary, we will check
that the choice does give bounded or negligible corrections, see e.g. Lemma B.1. The
right hand side in (65) is acting on functions with support in a neighborhood of x,, that
contains K N Iy,,. This is enough for us.

Remark 5.4. A consequence of (67) is that for any x € C3° (1), m € R,

o~

wa( : HV_’” (R) — H;m (R), (68)
7.7'% H™([R) — H™(R),

are bounded uniformly with respect to w € W and v € R.

The next Corollary uses Theorem 5.2 and iterations of it to express long time evolu-
tion.

Corollary 5.5. For any n > 1,
Ly=2 Lo, (69)

wo,n
For each term Ly, ,,, let w € VW be an arbitrary extension of wo, . We can write
Loy, = o VT )+ Vg, (x"’)'TLn w) ﬁfwoﬂ (xw)Tw_lv wew (70)
with Vg, Twy,, and Juy,,, being Birkhoff sums defined as in (56).

Proof. of Theorem 5.2. For simplicity we define
vuy:um—%vuy 1)

Letus denote y : ¢ (y) — y¢ (y) the multiplication operator by y. The operator Ly,
in (8) can be written:

‘Cwo’wl = eZVV(y)‘C¢u70~IU1 (72)
with Ly, , ¢ = @o ¢1;o1,w1' The aim is to transform progressively (72) into the ex-

pression (6§). For the first step we write
Lo, = ei”V(qu))eiv(V(ﬁ)—V(xuw)))/;d)wovwl

= ei”V(xuw))/;%O_wl eV (V(9ug.y (9)) =V (xLw))

Forany y € Iy, and k > 1 we have |y, () = Xpk(y)| < C.e”*/min with some C > 0
independent on w and y. Hence

Yo () ==Y (V(buos ) =V (x10010))) (73)

k=0
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defines a smooth complex valued function with regularity estimate given in (67). We
have also 7, (x,y) = Oand
(73)

d
—Tu(y) =

dy T3) DV (Puoser ) - w0

k>0

SO diy'fu()o) (y) 5=5 Cw, (¥). The family of functions 77, solves the homological equation
39)

TL(w) (¢wo,w1 (y)) = - Z (V (¢w0,k+2 (y)) -V (XLHZ(W)))

k=0

- Z (V (¢we,k+1 (y)) -V (XL"“(w)))

k>1
=Ty )+ (V (¢w0,w1 (y)) -V (xL(w))) .

Therefore we get

Lugowy ="V, . YV (@ug.0y () =V ()

3 Wy ,IU|

— eiVV(XL(w))L¢ ) eiv(TL(u,v)(¢wO,w1 ())-1w(3))
W, Wy

— VY OLw) p#ivTew) (9) Lo, e~V Tw()

For the second step we write

o V(L) pHiv T (9) fo(w)LfO 1 f_xwe—iva(f’) (74)

with!!
Jo,1 (2) = Pug,uy (2 +Xw) — XL(w),

satisfying fo,1 (0) = 0 and f, (0) = ¢}, ,,, (xu) = e~ o1 ™) with Jy 0, (xy) =
—log ¢1’U0’w1 (xy). For the third step, as shown in [Nel69, th7, p.45], there exists a family

of smooth functions H,, : 7 — R defined on 7 C R a sufficiently small neighborhood
of the origin12 and satisfying H,, (0) = 0, H,, (0) =1 and

VZed, Huw (e70m)z) = fo1 (Hy () (75)

which gives
Lf()l = EHL(zu) ° l/jjwo,wl (xw) o E;]i, . (76)

In other words, the contracting map fo, 1 is “globally conjugated” to the linear contract-
ing map z — e~ w0 “w)z The functions H,, can be constructed by the "scattering

11 Beware that fo,1 depends on the full word w.

12 This is possible because the points xy, are bounded away from the boundary of 7, uniformly with respect
to the words w € W.
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proces.s.”13 as follows. Forn > 1let fo, := fu—tn © fu—2.n—1...0 fo,1. Forz e R

(closed enough to 0) let
HY ()= f;, (E_J“’Ov” (x“’)z) :

As n — o0, the uniform convergence of H,E)n) and its derivatives can be obtained using
bounded distortion estimates [Fal97, prop 4.2]. This gives the existence of the limit

Hy (2) := lim H" (z).
n—o0
We also get (67) from bounded distortion estimates. Then
Hz’z;;) (e—-lwo,wl(xw)_z> = f1T; (ei‘l“’o,n (x"’)z)
= fo1 (fO_,nl (e_JwO’"(x“’)z))
= fo. (Hlf]") (Z)) :

Taking the limit # — oo and noting L (w) = (wy, wa, ...), we get (75). With (74) and
(76) we have obtained that:

_ ivV(xg +ivYLw) (D) T A —1 4 —ivYy (Y
Ewval =e ( (w))e (u)( )TXL(u,v)ﬁHL(w) o waovwl (xy) © EHw T—Xwe “)( )
_ ivV(xLw)) 7 A 7—1
=e ( (u))ﬂ(w)D-]wO,wl(xw)Tw
This is (65).

6. Asymptotic Expansion

In this section we first give a simple but useful expansion for the dilation operator defined
in (64) in terms of rank one operators in Theorem 6.3. Then we use this expansion and
the global normal form (70) to deduce an expansion for the transfer operator L, for large
time n in Theorem 6.7.

6.1. Asymptotic expansion for the dilation operator. Fix 1y > OandletA > Ag,letyy >
0, ¢ € C5° (1 — yo. yoD)- Recall from (64) that we defined (ﬁw)) () = ¢ (e*y). Let
x0 € C§° (R) such that suppxo C [—o, yol and xo (x) = 1 forx € [—e *0yp, e 0y
so that xo = 1 on supp (lA);\Xo). Hence we have )20_1 o D; o X0 = D; o Xo where xq is
the multiplication operator by xg.

For k > 0 let us denote 8% for the k-th derivative of the Dirac distribution. Let
(x*, q0v) == fR xFx0 (x) ¥ (x) dx. We introduce the rank one operator'*

I : v € SR) — %uk, 20v)8® e 8 (R) (77)

13 The term “scattering process” comes from [Nel69]. Here in the “non interacting region” is z — 0 whereas
in the usual theory of scattering of waves, the non interacting region is the infinity, far from the action of the
potential.

14 S (R) is the Schwartz space [Tay74, p.197].
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We will use the Dirac notations of physics and write

My e € (R; C) — (xF, y) = f 4y (x)dx € C
R
1
M = 158" 30 (78)
Lemma 6.1. Ifk < m — % then Iy : H;™ (R) — H,;™ (R) is a bounded operator and

3C > 0,Yv >0, [[Igfly-m < CVFH/2, (79)

Furthermore
3C > 0,V¥m, v, |%o| - <C. (80)

Proof. In order to prove (80) we use v-semiclassical calculus: we have 3o = Op, (x0)
and using composition of PDO as well as L2-continuity [Zwo12],

70l 5 = [Op, (Am) O, x0) O, (47"))|

= [Op, X0) | 2@, + © (v”) <C.

L2(R)

We will use (80) later in (92).
One has for2 (k —m) < —1,

(k) _ —m —1/2 ;: 0 enk
D I 1], =@ exm 2 aer|
S Cl)k+1/2 (81)
and
o], =212 o
= lIg/m” Filxk xo (01 &) ||Lz <C
5(&)’"
This gives
T - ""H' 8% (x0(x)x*] < Ccyk12 (82)
HU—HI

Remark 6.2. We have

[Ty o Iy 7:8 Sk,k/nk, I:IA))\ o X0, Hk] =0, IA))L o Koo I = e—(k+1))hl—[k7
(/o)

i.e. the operators (), form a set of commuting spectral projection operators for the
operator Dj o Xo. The next Theorem shows that they are complete in the sense that they
give a spectral decomposition of D; o xo up to some remainder with small norm.
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Theorem 6.3. Fix Ay > 0 and vy > 0. Let m > 1> Vo, A > Ag and xo as above.

27

The operator Do Xo: H™ — H;™ is bounded and for any d < m — 3. and we have
- d+1)+4
D; o xo — Z e~ kDA, < Ce? (e_)‘v)( Dtz (83)
k=0 Hy ™" (R)

where the constant C in the remainder does not depend on A, v but depends on d, xo and
m.

Remark 6.4. Inhigher dimensions, there is a similar resultin [FT15, Prop. 4.19]. Formula
(83) can be considered as a Taylor expansion of the dilation operator. From (79) we

have ¢~ (k+D2 ”nk”H;"’(lR) =0 (e_)‘/z (e_kv)kH/Z), therefore if ¢* > v, (83) can be

interpreted as an asymptotic expansion in powers of e ™.
Proof. We directly see that
d d
D; (20 -3 nk) = (Dm -3 e“””*rlk) (84)
k=0 k=0
and first prove the following Lemma.
Lemma 6.5. Let ¢ € Ci° then
d d_
Fy [(Xo -y nk) 4 € =v (w WE) = Y 5 v O <0>) (85)
k=0 k=0

where U 1= F1 [xod]

Proof. First we consider

N AN —ixk _ 1 e, sk
() = % \/T_ﬂ e Xo(x)¢(x)dx—\/7—n e (—=ix)" xo(x)e (x)dx

and conclude that

- % .
VOO = —= " o). (86)
Furthermore we calculate
Fo[s9] @ = @2 ive)t (87)
and
Fo [Ro#] &) = v'/2¥ (vg). (88)

Finally (78) with (86), (87) and (88) give (85) which finishes the proof of Lemma 6.5.
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We can now return to the proof of Theorem 6.3. We have F, [ﬁk W) = e Fo[W]
(e_)“’g‘ ) which follows directly from variable substitution. Using Taylor’s Theorem we
have

k=0

d
= ¢ F, |:<)Zo - Hk) ¢i| (7€)
84 ,;

d
- 1 k =

= Jvet (w( eE) =Y o (ve ) \P(")@))
(85) ,; e
= ve _A 1)! (veg) ™ B (Bue-reve™) (89)

with [6,,-2¢| < 1. By deﬁmtlon of H; ™ in (19) we have

d
() : = (D,\f(o —Ze<"+‘>*nk)¢>

k=0

—m
H,

d
= [©™"F |:<DA)?0 — Ze“*mnk) ¢] &)

k=0

L2

= Y Jve” (ue*)‘é)‘prl g @+h (Qvefxsveflé)

(89) 1)'

L2

1 - 2
d+ 1)!\//R<§>_2m$2(d+1) P (0,rgve )| de

To finish the proof of Theorem 6.3 we have to show that
(*) < C ||¢”Hv_me—)»/2 (Ue—k)d+3/2

with C independent of ¢, A, v. We decompose the integral over R under the square root

above into
/...dé: / LoodE+ / ... d&

R [—et,e*] R\[—e*,e*]

_ e_x/z (ve_x)d+3/2

(A) (B)
and treat them separately. We have:

‘ 2

(A) < /(§>_2m52(d+1)d$ max \i[(d+1) (Qve%g\/e—)\f)

Ee[—ete*]
R

~ 2
< | [ewrmmeemag | ma (99D 0,c06)
§el-1.1]
R
< Clel} -

©93)
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Recall that we have assumed that 3
d<m-— 3 (90)

for the convergence of the integral. For the second term (B) we first observe that
e—H

_ —2m
EIC>0,V$€R\[—1,1],(61\<§_>;_2>’")SC,

with C that depends on m but is independent of A > 0. Also taking A — 0 in (89) we

have
7 [ (70 o) o] ] = L 0o e o o on
_ VY, Al
v X0 — k (d " 1)‘ vE
Ifd <m —1/2 then
d
3C > 0,Vv > 0, ‘ (20 — Z Hk) < Cvatl2. ©92)
k=0 H™ (79),(80)
Hence
~ 2
B) = ¢ / (€)1 (e ) XD B (6,6v) | ds
R\[-1,1]

o~ 2(m—d=3/2)% ~2(d+1)

i _a\—2m
/ %@2’" 062 31940 (3,e06)

R\[-1,1]
2

< Ce~2m—d=3/2)i ,~2(d+1) (U—I/Z d+ 1)!>2 ’
9h

d
()20 -3 Hk) ¢
k=0

—m
H,

A

S o) 17
90),(92) v

Thus taking (A) and (B) together we obtain
(*) < C||¢||Hu—me*)“/2 (vef)h)d+3/2
which finishes the proof of Theorem 6.3.
The next Lemma has be used in the previous proof.

Lemma 6.6. For every xo € Ci° (R), d,m > 0 there exists C > 0 such that for any
¢ € C° (R),

~ 2
cmax [P0 06" < gl ©3)

with W := F| [xo¢] and where C depends only on xo,d and m.
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Proof. By definition of U we have

G gy = = f =X (i) o (1) (x)dx
thus
lIj(d+1) (Ué) — L <eixv§(l.x)d+l)(0(x)’ ¢>
oz v

B )| < le_n

Thus we have to find for any &y € [—1, 1] an estimate of

E ) g0 16l

0], = @A™

IA

V2 ) A La0™ o

= [&/v + g1 Al

= Cu | AL @] @), = €

where C depends on m, d and .

6.2. Asymptotic expansion for the transfer operator. In Corollary 5.5 we have shown
that £? is a sum of operators L,,,, and each of these operators is conjugated to a
dilation operator. For the next Theorem we additionally use the asymptotic expansion
in Theorem 6.3 for the dilation operator to deduce an asymptotic expansion for L. In
order to simplify the notation we will write Jy,,, = Ju,,, (xw) and Ty, = Tuy, (xw)
Vo, = Vg, (xw) for the Birkhoff sums defined in (56) and where w is an arbitrary
extension of wp , as explained in Corollary 5.5. In the limit of large n the bounded
distortion principle implies that the impact of the arbitrary extension becomes small,
anyway, see Lemma B.1.

Theorem 6.7. Forany0 <d <m — % there exists C > 0 such that for any n > 1, any
v >0,

Z ezvru0n+Vu0n Ze (k+1) Ty ,, Mk

wo,n H,,_m
< Cv(d*'%)en(Pr(Vf(d+2)J)+R(n))’ (94)
with some function R (n) — 09 and with the rank one operators
Mt = U (SW 1 H™ (R) > H™ (R), 95)

where w is an arbitrary extension of wo , and where we used the Dirac notation of
Sect. 6.1 for the following distributions (cf. Fig. 4)

(k)
)

(SW| = (xMT % € H™ (R).

) == TLn(w>|—a”> € Hy™ (R),
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Remark 6.8. u,S," )and S 5{,‘) are WKB Lagrangian states [BW97]. This is a geometric but
non necessary remark.

Remark 6.9. For k < m — 1/2 we conclude from Remark 5.4 and Eq. (82) that I, ,
is bounded by

1
| Tk | g < CVF*2. (96)
with C independent of v, w and n.

Proof. Recall from Sect. 2.4 that

0:=Anx7'L,A L2 (R) — L?(R). 97)

is bounded. For further use, let
(SP = (SW1A-T = (KT 7 A € L2 (R), (98)
U0) = Anld]) = Ani ™ Tl M“)el?(R) (99)

- N A ~ (k ~
1_Ik,w,n = Amnk,w,nAm = AmX ,TL"(w)HkTw X m = |u£n)(w)><8$)|~ (100)

Proving (94) is equivalent to proving an expansion for 0" in L? (R):

d
o — Z e V7ot Vg, Z o~ kD ug, k. < Cv(d"'%)en(Pr(Vf(d+2)J)+R(n))'

wo,n k=0 12
(101)
For any n > 1, we have from (69)
Qn — AAm),e_]‘Cn)%AAyzl
=Y Ouy, (102)
wo,n
with individual terms
Qwo_n = I I‘CZ;O,,XAAA; .
Using (70) we get
Qwo.n _ zvruon+VuOn mX T ”(w)Don T—I)A(AArzl.

In order to use the expansion (83) for D Jug X0, letus choose xg € C 6’" (R) asin Theorem

6.3 such that xo (y) = 1 for every w € W and y € supp (T ! ) This choice of xg is

p0551ble uniformly with respect to w. Then T 13 = XOT 1%. So (83) gives that for a
given d > 1, and using notation (95),

d
QwOJ7 = elvrwo*"-'—vwo*” (Z e_(kH)J"’Ov" Am)zil ﬂ”(w)nkTujl XAAm1> + RwOY,,
k=0

d
= ¢'"T0a Voo, (Z e~ kD Jug,, ﬁk,w,n) + Ry s (103)
k=0
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with a remainder Ry, given by

d

vy, +Vuy , A A—17 A ~ —(k+1)J A 1A -1

Rw(),n =e Y0, Y0, AmX ,TL”(w) (Djw(),n X0 — E e ) w0,n Hk) Tu} X m
k=0

From (83) and (68) its norm is bounded by:

iuer,n+Vw0,n

H Ruy Cle

g g\
= s (e o)

EA
- Cv(d+2)e(v @+2) D), (104)

with some constant C > 0 independent of v, n, and w. Using (160) from the Appendix,
the sum of these remainders is bounded by

S R, (a+3) ) V=D,
0,n

wO,n wo,n

2w = Cv

< Cv(d"'%)en(Pr(V—(d+2)J)+R(n)) with R (n) —> 0
- ’ n—o00

From (102) and (103) we deduce (94).

7. Diagonal Approximation

We have defined the bounded operator Q - L2 (R) — L% (R) in (20). Forn > 1, let
A \NE A
pyi=(0") 0" (105)

which is a positive bounded self-adjoint operator on L (R). In the following Theorem
we bound the norm of P, and this will be used in Sect. 8 to deduce a bound on the
spectral radius of the transfer operator (the main result of this paper). [x] will denote the
approximation of x € R by the closest smaller integer.

Proposition 7.1. We make the Assumption 4.5 of minimal captivity. Lete > 0,0 < J, <
2Jmin —€ and 0 < B < 1. There exists C > 0, such that for any v > 0 and n given by

2 1
= 1 1 . 106
n |:Jc+€ ogvi|>]mm ogv ( )
We have
2(V-J) V=7 V=), n
1Pl <C v e ontel e N e v | +Cg" (107)
Wo.n w;\/*,n
with
N*:=N*"(w, Jo) :=max {k <n, st Jy, <nlc}. (108)

Remark 7.2. Note that in the inequality (107), the Birkhoff sums of (V — J) can be
calculated with any possible extension of the word fragments.
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Remark 7.3. In semiclassical analysis, the time Jn:ﬁ log v in (106) is called the maximal
local Ehrenfest time. The definition of N* in (108) can be written as

el ~ 2

and N* can be called “twice the standard local Ehrenfest time”. It is known in specific
situations that this particular time is important; see discussions and results in [FNDO3,
Fau07]. For example there are curious phenomena of “quantum revival” or “quantum
period” at that time for the quantum cat map as explained in [BD00, FNDO3].

The rest of Sect. 7 is devoted to the proof of Proposition 7.1. At some point of the
proof, i.e. Lemma 7.8, we will use the hypothesis of minimal captivity and obtain that
the orbits of length n are “well distributed and separated” on phase space (inside the
trapped set K) so that they do not “interfere” with each over, provided the time 7 is not
too long. Using this, the double sum over the orbits that appears in Lemma 7.4, can be
reduced to a much smaller sum, which is basically a sum over the diagonal. This step
can thus be considered as some kind of “diagonal approximation”.

In a first step we use the asymptotic expansion for the transfer operator, Theorem
6.7, in order to write || P,||;2 as a double sum over orbits. The next Lemma shows that
this is possible provided we consider time n long enough w.r.t. v.

Lemma 7.4. Let 0 < o < Jpin and 0 < B < 1. There existd € N and C > 0 such that
forany v > 0 and

- [1 log v:| (109)

we have
[Pallp2 <S+CB". (110)

with

d
S:Z Z wo +Vw0n Z e_(k,+1)‘]w(/)ﬂ_(k+])'1w0‘n

w(’)Y”»wO n K k=0

Tr (flk, ok n)

(111)

Remark 7.5. Later we will provide an upper bound for S keeping only the terms k =
kK'=0.

Proof. We use Theorem 6.7 with its formulation (101) and write

Qn = Sp + Ry
with
) d
S, = Z ewer_n+VwO_” Z g_(k+l)']w0,n Mk (112)
wo,n k=0
which is a finite rank operator and
3
IRl =< Cv(d+§)en(Pr(V—(d+2)J)+R(n))‘ (113)

94
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Then N
By = (Q") Q" =SS, + (RXSy + 'R, + RXR,), (114)
0>
R,
gives
1Pallz2 < [[SySull 2 + | RA 2 - (115)

In order to bound the remainder H R ” 12 We have to bound || R, ||;2 and || S, || ;2. Notice
that

1 1
O G ) G e e G (116)
(109
Let 1
By = e+ D@rORPI(V =kt D)) (117)

with € > 0 chosen later. So
IRl < Culd3) prv—@sdsyeran)
113)

c'ppe ) < gy

<
117),(116)

and

1Sul 2 sz(k+ 1) Z V=G+D) D)y, (118)

(112) 96 1= Won
d
< C Z v( )en(Pr(V—(k+1)J)+R(n))7 with R (n) —> 0
(160) =0 =00

d
(117)(116) ,;

Notice that

ﬂk+l — ea+6—5k
Bk (117

with
Sp:=Pr(V—-(>k+1)J)—Pr(V—-(k+2)J).

From Proposition B.5 we have Vr, (%Pr (Vv — rJ)) (r) < —Jmin- Consequently for

o < Jpin wehave ka+Pr (V — kJ) k—) —00. Hence, if € > Oissuchthata+e < Jyin
— 00

then
Bx — 0. (119)

k— 00

Also 8y > Sr+1 = Jmin > o + € for any k hence

Br+1
Br

< 1. (120)
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In particular [|S,|;2 < CBj and we record for later use that

(118)
d s ]
Zv( +7) Ze(v—(k+1)1)uyoﬁ S Cﬂg (121)
k=0 wo,n

‘We conclude that
”R,/1||L2 < 2RI ISl + IRn I = IRl 2 I1Sull + |1 R ll) < CBL, 1 BE- (122)

We now consider the term S)7'S,, in (114) given by

n

vt +V :
S* Sn :2 § e Wo W0 el Ut"’(),n +V’“0,n
112y,

0,n°WO0,n
W), — (kD)
) w ~ ~
% Z e Yo, n 0.1 ]‘[Z(/)w/’nl_[k,w’n. (]23)
k' k=0

S¥Sy is a finite rank positive self-adjoint operator, hence we have the bound

ISaSull e = [SaSullg =Tr (S7S0) (124)
V., Vi
< Z e w0,11+ 0.n (125)
w(/),n’wo-"
(k1) —(eD)
3 e o O e (11 )| (126)
K k=0
=S
a1l
and
I Pallz2 < S+ C (Bar1Bo)" -

(115),(122),(125)

Let 0 < B < 1. Using (119), we can choose d large enough so that B4+180 < B. We
have obtained (110).

Remark 7.6. In the inequality of (124) we have bounded the L? norm by a trace norm.
This is a crucial step in the paper. This is obviously not an optimal bound. However it

makes appear the terms ‘Tr (ﬁz, W nl:Ik,w, n) and in the next Proposition we will see

that these terms can be neglected for many pairs of trajectories wo ., wé’n.

We first introduce the following notations. For w, w’ € W and n > 1, suppose that
wo,, 7wy, and let

ni (wo,n, w(’),n) ‘= min {0 <k<n, w# w,’(}

na (won, wy,) :=min {0 <k <n, wy_ #wj,_;}. (127)
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In other words this means that the words wg_, and w(’)yn have equal letters at extremities
w; = w; fori € [0, n1[Uln — ny, n] and differ for letters: wy, # wy, , Wp—n, 7# Wy,_,,.

Notice that J; ; (x) > 0hence the Birkhoff sum J,, , (defined in (56)) is anincreasing
function of k. For some given w € W, n > 1, J. > 0, let

nJ.
Ni (w, n, J.) := max {O <k=n, st Jy, < T}

nJ.
Noy(w,n, Jo) :=max {0 <k <n, sty .,< ek

Let us introduce the following Definition.

Definition 7.7. For a given J. > 0, we call a pair of orbits (w6 n wo,n> separable if
W, 7 Wo,n and ny (wo,n, w{),,,) < Ny (w,n, J.) orny (wo,n, w(’),,,) < N> (w,n, Je).

Otherwise we call the pair (w(’) e wo,n> non-separable.

Proposition 7.8. “Orbit separation”. We make the Assumption 4.5 of minimal captivity.
Let ¢ > 0 and J. > 0. Then for any M > O there exists Cy > 0, such that for any

v>0n:= [
then

Tre log v] any w, w’ € W, ifthe pair of orbits (wo 1 WO, ,,) is separable

VORI (77, i )| < Care™ (128)

Remark 7.9. In other words, Proposition 7.8 says that for a separable pair of orbits
(wo e WO, n), the term )Tr (l'[k/ W nl'Ik w n)

Lemma 7.10 that this is because a “separable pair of orbits” is indeed “separated” in
phase space so that their Lagrangian states do not overlap.

will be “negligible”. We will see later in

Proof of Proposition 7.1. The proof of Proposition 7.8 will be given in Sect. 7.1. For
now, we continue the proof of Proposition 7.1. Let J. < 2Ji,. Lete > 0, v > 0 and

n = [J “— log v] = [Llogv] with @ = JJ. + €. We suppose that € > 0 is small
enough so that J. + € < 2J,;,. Hence ¢ < Jy,;,, and we can apply Lemma 7.4. We
decompose the double sum (125) over w(’)’n, w,, into separable and non-separable pairs:

S = Sseparable + Snon—separable-

We first show that Sgeparable is “negligible”. We have

d
S _ V A +Vw0,, _(k/*'l)Jw(’)n_(kH)J"’O,n
separable = E E e j

Wo.ns wé’n sep. k' k=0

T (717, Pk

2

£
< CMe_an

(128)

1
v(k+z) Z Vw0~ *+DJug

0 wo,n

< Ce™ 2”Mﬂ C(ef%Mﬂ(%)n
(121)

M&

»
Il
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We deduce that for any given 0 < B < 1 we can choose M large enough so that
e_%Mﬂoz < B hence

SSﬁ:parable <Cum ,3 " s

which means that Sgeparable is “negligible”. We have now to bound from above the “non

separable trajectories” for which n; > Nj and ny > N,. By the definition of J. and n
there exists some € > 0 such J. + € + € < 2J,,;, which implies

1
n>——— log ).
Jmln -
For every word wo ,, we have Jy,,, > nJy, hence

~\n
ve*]u)o‘n S ve—nlmi,, S <e—€> .

(129)
We write (with a constant C that is independent of n but whose actual value might change
from line to line)

Snon—sepamble

d
Z ‘/ +Vw0 u Z —(K'+1) ]"’6 ., —(k+D) g ,
= 0,r e E

WO, w(’),n ,non-sep

‘Tr (ﬁz/’w/’nl:[k’w’n> ’

V=0), +V=J)y,
<o T
133

k' k=0

/ .
wo,n, Wy ,,-NON-SEP

d

K k
—J
Z <ve w(/) n ) <vei‘l“"0,n )
k' k=0

d
V=0), +(V=J0)y
N M D
129

o E é(k+k")
0,n, Wy, ,,NON-SEP

k' k=0
V—J V—J
< Cv E e( Jug , ¥ Jug.n

wo.n, w(’)wn ,non-sep

We will now use the fact that we only sum over non-separable pairs of words. Recall

that this requires, that the word wo ,, 1s equal to wq,, for their first Ny (w, n, J.) and
their last N> (w, n, J,.) symbols. Accordingly we can write the last expression as

V="
Snon-separable <Cv Z e( Do,

V=D V=D
wo,n

Z e(V Dy

U’Nl n—Np
’ — ’ —
le,anz,S't' le—le,wanz—wn Ny

Note that the last transformation can be done in an exact way (with the same constant C):
One can choose appropriate extensions of the words wy, ,,, w(, v, = Wo,n;» Wy , A and
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w

;Z—Nz.,n = Wp_p,.n such that one has (V — J)U){),n = (V= Dugn, +(V— .I)w}vlJHV2

V—=Dw,_ Ny - Note furthermore, that, since we are only interested in an upper bound,
we can remove the restrictions on the initial and last symbol in the second sum and
obtain

v—-7), V-7 +(V—-J
Shon-separable < CV Ze( Yuo.n e< Yoo, YNy Z e

wo,n

V—J
( )w§\/1.)17N2 A

’
le n—Ny

Let us finally explain, how to pass from this expression to (107) which involves N*
instead of N1 and N;: Let us first hypothetically assume that the symbolic dynamic is
complete and that (V — J),, would only depend on the fragment wy , and not on
the extension and the we have (V — J)y,, = (V — Dy, + (V — J)y,, forany 0 <
a < n. Then we could can rearrange each word wo,, by putting the fragments wo, y, and
Wy—N, ., at the beginning of the new word wy ,, such that N*(wo ,, J.) = N1 (w, n, J.)+
N> (w, n, J.) and rewrite the last expression by rearranging the combinatorial sum over
the words, as

v_J V_I)y vV=J).
Snon-separable <Cv Z e( Juo.n 6( Jug e Z e UN*n

wo,n w;\’*,rz

without having to modify the constant C. Now both above assumptions are in general not
true in the framework in which we are working. Nevertheless we can obtain the above
bound by modifying the constant C. This is justified for the following reasons: Firstly the
expressions (V — J)y, , depend on the extension of the word wy , only in a controlled
way (see Lemma B.1) thus we always have (V — )y, < (V =)y, +(V =D, +co
and the n independent constant ¢y can always be absorbed in multiplicative constant C.
The second problem concerns non complete symbolic dynamic: In the sum over wg ,
there might occur word fragments wo, n, and w,—y, , that do not occur as the leading and
the last letters in some wo, y+. However, as we demanded a transitive symbolic dynamic
we can assure, that the word fragments wo, y, and w,_y, , appear as disjoint fragments
of some wo, y++7 Where T is the maximal transition time between two letters. Thus we
can bound

- V—J V="
Snon—separable < Cv Ze(v J)w(),n €( )wO,N*+T Z e YN*n s

wo,n !
\ Wy,

where we absorb the impact of the additional letters that are needed to concatenate wo, v,
and w,—p, » in a modified constant C. Finally we can also absorb the last 7' terms in
the Birkhoff sum (V — J),, ., in the constant C and obtain

— v—J V=),
Snon-separable < CV Ze(v Pug. 8( Jug e Z e UNEn

w, ’
0,n wN*,n

Finally we get

S = Sseparable + Srlon»separable
< Cup"+Co 3 AV e e,

wo,n

(V_J)U);V*.ﬂ .

/
wN*.n

Together with (110) we have finished the proof of Proposition 7.1. O
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7.1. Proof of Proposition 7.8 about separation of orbits. The following Lemma gives
bounds for the quantities |an(w) — an(w/)| and minycg, (| (x) — &y (x)]) that will
appear later in Lemma 7.11, Eq. (134).

Lemma 7.10. We make the Assumption 4.5 of minimal captivity. Let w, w’ € W, n > 1
and suppose that wo , #* w(’)’n. Furthermore as in (127), let ny,ny € N be such that

w; = w; ifi <nyori>n—nyandwy, F Wy, Wy-ny # Wy_,,. Then we have

—Ju
Ce n—np+1.n 5 |_an(w) — _an(w/) s (130)
and for any x € Kq N Iy,
Ce™ 01 < |£,(x) = L ()] < CTe”Tom-1, (131)

with C, C' > 0 independent of w, w', n, x.

Proof. We have

Xpn=0n-1) () € Py (uy1) (Iw,,,,,z) and
anf(nzfl)(w/) € ¢w’/1_"2’w:’l*()12*1) <Iw;'_"2) )

As we have wy—p, # w,_,, we conclude from the strong separation condition (2) we
have that

|an—(il2—l)(w) - XL”_(”Z_I)(w/)| = C (132)

/

with C > 0 whichis the minimal distance between the intervals ¢; ; (). As Wy i1y =

Wy—(ny—1),n WE Obtain

xL"(w) = ¢wn,(,,271),n (anf(nzfl)(w)) and xL”(w’) = ¢w,,,(n271)m (anf(nzfl) (w/)) .
From (132) and the fact, that ¢, ,,,» is a diffeomorphism we get

|xL”(w) - xL”(u/)' = |anf(n2—1)(w) - anf(nz—l)(w/)|

min @),

0] = e s,
€y ’

n—(np—1

We have obtained the first inequality in (130).

Now we prove the second inequality of (130) which uses Assumption 4.5 of minimal
captivity. The minimal captivity assumption is equivalent to the following property: Let
KCe be a closed neighborhood of the trapped set as in (43). For any i ~» j and i ~» k
with j # k we have that

(51'?]'1 (ICE A=l (I.,')) ﬂq}ifkl (ICS aF (Ik)) =,

because otherwise the dynamics of ¢ restricted to K, is not univalued.
From this we deduce that there exists Crnini—capt > 0, such that for any any i ~» j

andi ~ kwith j # k,if ¥ € I;, (£, £), (¥,8") € Ke, i, (£, 6), ik (¥, &') € Ko then
|‘§ - §/| = Cmini—capt~
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Let x € Iy, N K, and for m < n define x,, 1= ¢y, (X), & 1= Somw) (Xm), X,, =

Py, () and & == Lrmqu) (x;,)- From Proposition 4.11 one has @y, .., (Xm, &n) =
(Xm+1> Em+1)- As x,, € K, with a chosen large enough according to (59), we have
(Xms &m) . (x),.§),) € Ke. We have x,, 1 = x;,,_; from definition of n; and we

/ /
(xnl_l,é ,,1_1) and

Eni—1 — E,,”,1 ‘ > Cminifcapr Furthermore

have (x"l’%-"l) = ‘ngnl—l.nl (x”l—l’ 5"1—1)’ (x,/”, r/u) = ('Z;w'

ny—l.ng

Wy, # wy, so from above we deduce that

by Lemma 4.1 we know that

Enj—1 — 5,;1 _ ‘ <C. Using the definition of the canonical

map $in (41) we compute

-1 = 1,1 = '(éwo,,, (&), ~ (P, (&) E‘ = e"0a ) |go — |

Now using the bounds for |&,,-1 — Er/”_l ‘ from above as well as the bounded variation

estimate from Lemma B.1 we obtain (131).

Lemma 7.11. For any m > 0, there exists C > 0, such that for any 0 < k, k' < m — %
w,w eW,n>1v >0, we have

v D gy (7 Tl )| = € (133)

Moreover for any My, My > 0, there exists Cpy, u,, such that for any w, w' € W with
Xpn(wy 7 Xpnwy and mingeg, (18 (x) — &y (X)]) # 0, with K, given in (59), we have

1 M
v
< CM[,MZ ( > (134)

XL (w) — XLn (w)

/ ~ ~
p~ (k41 ‘Tr (HZ,’w,,n I"Ik,w’n>

vl M
(minxeKa (18w (x) = Suy (X)|)> '

Proof. Using Dirac notation (100) we have

~ ~ ~(k' ~(K - ~
i ewa = 186 @) Uy 2SO L) 2

L (w')’
SO
~ ~ ~ k/ ~ k ~ ~ k/
T (1, k) = @y, Uiz - S9,85 20 (39)

. ~ (k' ~ . . . .
We first consider the term (U4 én ()w,) U gfl)(w) ) 2. Since the following estimates are uniform

. . .. . . ~(K') .
with respect to the words w, w’, for simplicity we will estimate (Z/llg, ), L{,ﬂ,k) ) 2 without

the action of L". In the expression (99) of |L~{,S)k)), we have the distribution 2—1,’]"—11) %6 &)
and the product formula for derivatives gives that

k
a1 1
X_lTwE(S(k) = chv(k_l)&(c{z
’ [=0
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with constants ¢; independent on w and v. Then

( (k) u(k) 12 ZZC[/C}UUHI{/ —I= l)< (l/)’AArzn‘Sgu),)Lz

99) —0 (=0
We have
()El,),Az sy, ‘ HS(I)H } < ColHH,
Hv Hv (81)
so we have the general bound
%), 0%) | < c.olek 4D (136)

Let us now suppose that x,, # x,,. We use the non stationary phase approximation
and get that for any M| > 0,

6, 2,80),

mxu

<1>

' / ~2m 7, (50 (6) Fo 8(”><s>ds’
iv1+l+l’

/e—ivé(xw—xw/) (S)—zm §l+l/d§’
2

, 1/v Mi
CMlv1+l+l < /
[Xw — Xyl

M
< Cayp @D (L) |

[ Xy — Xyl

IA

hence

~(K) ~
@ a®)

with Cy, independent on v, w. This also gives that for any n:

M,
< Cy p (kHk'+1) ( L/v ) . (137)

(K)o
(Z/{Ln (w')’ uLn (w))LZ

XL (w) — XLn ()

Let us consider now the second term (S(k) S( ))Lz in (135). We have S(k) = A;l)z
(’?w_l)* x¥ and using the form of ?w given in Theorem 5.2 we can write

~ * A 0)
)2 <Tw—l> xk — ethw (x)aw (x)
with ay, € C§° (R) given by

B 0y (Hy' o —x)"
an () = x ()€™ ¢ ))H&, (Hujl (x —)m))‘.

Recall that from the choice of x in Sect. 2.3.1 we have supp (a,) C K,. Furthermore,
from (67) we conclude that a,, and its derivatives are bounded on K,and that these
bounds are uniform with respect to w € W and v. Then

~ ~(k . ) A~ (0)
(S9, 88Dy 2 = (ay, e W A2 O, (1))
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From Egorov’s theorem, since A2 = Op, ((£)*™), we have

w

A—Zeiv)’((/))(x) _ eivT]i?)(x)Bﬁ
m

A 2m A
with B € § (<§ — %Tu(}(,)) (x)) ) Thus B is a continuous operator on S(R), thus

Ay = éaw/ € S (R) with all derivatives uniformly bounded with respect to v, w. This
gives

iv(rl‘u‘fLrlﬁO))(x) _

(S0, 8%) 15 = (ay, e Gy (1) (138)

We deduce the general bound

|59, 85712

<C (139)

with C independent of v and w.
Let us now assumed minyeg, (|5 (x) — &y (x)]) # O then we want to bound the
oscillating integral
(S, 8%,

— (1O O
/ Ay (X)ayy (X) ew( w )(X)dx
Kq

by partial integration. Recall that %Tu(,o) (x) = &w(x), thus the differential operator

_< (1 Q-1 v (rO-10 .
L = Wm% fulfills Lew( w’ : )(x) = ew( w! ) )(x) and we can insert an

arbitrary power of this differential operator in front of the oscillating phase. Note, that
its L2-dual is given by
s @@ —For ) iy d
Cw () = L () G (0) = Gur (x) dx”

Note that without any additional knowledge about the ¢,, partial integration would only
allow us to obtain remainder terms of the form

p—172 M
<minxeKu (18w (x) = Cuy (X)l)) ’

where the term v comes from a non stationary phase estimate. We can however
improve this estimate crucially if we take into account the regularity of the invariant
foliation of ¢. Let us explain this in more detail:

Recall that K was the hyperbolic set of the map ¢~> (cf. Remark 4.6(4)). Further more
this hyperbolic set has a precise description via the symbolic dynamics, i.e. for any
(x,&) € Kthere is w € W such that (x, £) = (xy,_,¢w, (xy_)). Recall furthermore (cf.
Remark 4.12), that the stable manifold through such a point (xy,_, {u, (xy_)) is locally
given by {(x, &y, (x)), x € I,,_, }. Now for general hyperbolic C* diffeomorphisms,
the regularity theory of the invariant manifolds implies, that the stable manifolds are
C®° and that they depend Holder continuously on the base point w.r.t. the C°°-topology
[HP70]. Let us make precise what this means using our notation: If we fix the value of
x, i.e. if we restrict ourselves to an unstable manifold, then the map

—1/2

ot =x) = ¥R

’ (xw_,§w+(xw_)) = S,
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that associates to a point in C the function describing the unstable manifold, is Holder
continuous, where we put the metrizable C* —topology on the right side. As the hyper-
bolic map ¢ acts on a two dimensional space one even knows that the Holder regularity
is 2 — ¢ for any ¢ > 0 (This is a direct consequence of the more general regularity
estimate in terms of bunching coefficients, see [Has02, Proposition 2.3.3]). In particular
the map g is Lipschitz!?, thus for any k, there is C; > 0 such that for any x € Ly_y 0

d \* d \*
(a) Sw, (X) — <E> Cw,, (X)

As K, is a finite union of /,,_, , we obtain

d\* d \*
(E) Lo m‘(ﬁ) Cuy, (X)

Using this estimate, partial integration of (138) with respect to L yields that for any
M >0,

< Ce |G, (xu_) = Cuy, (xu_)]

< Cp min gy, () =&y )]
131y  YElu_,p

max

< 1 — ’ .
max < C« min |Gw, (¥) = Gy ()]

550,857

vl M>
Cums. 140
= G (minxeKaucw ™) — (x>|)> (140)

with Cy, independent on v, w. Finally (136), (139) and (135) give (133). Equations
(137), (140) and (135) give (134).

Proof of Proposition 7.8. Let us summarize what we have obtained so far. Lemma 7.10
gives us lower bounds

—-J . —Ju,
|XLnw) — Xpnnl = Ce "™r=m2rtrmin (8 (x) — Gy (x)] = Ce 770mt,

a

and in (134) we have the terms

—1
v S _e']wn—n2+l‘n
[xpn @y = Xenn| T Cv
. 1/v -
minyeg, ([w (X) — & (X)) — Cv

that we would like to be “small”. Therefore, for any J. > 0, any ¢ > 0, v > 0 we

J
e WO,y —1

take n = [Jc2+s log v] (equivalently v < e"k%). Then the condition ny < Np(w, n, J)

implies

Je Je e
_e‘]wll*ﬂz‘f’l,ﬂ < Ce_n L;E e"TL — e_%”
v

andn; < Ny(w, n, J.) implies

1 —J, Jete Je £
—e Mon-l < Ce™"2 "2 =7 2",
v

15 Note that we in fact only need Lipschitz continuity of the stable foliation which might be an important
observation for generalizations to higher dimensional settings.
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Consider a pair of words w, w’ € W with wg,, # w{)’n withn; < Njorny < Np. From
(134), (130) and definitions of N1, N> we get

- N , 1y M 7 M,
‘Tl” (n/t/ w' o Wke,w n) <Cum, sz(k+k 1) (—6 u}""zﬂ'") (—e wo*"11>
) ’ ’ ? - ’ v

Vv

/ &
< CMv(k+k +1)677”M

where, if n; < N we have set M, = M and M| = 0 otherwise we have set M| = 0
and M, = M. This finishes the proof of Proposition 7.8. O

8. Proof of the Main Theorems 3.3 and 3.6

8.1. Proof of Theorem 3.3. Let
Yasympt. = lim sup (lOg (rs (AC,,,X [Hv—m))> .
V—+00

We will proceed in few steps in order to bound from above yasympt. . The following Propo-
sition gives an upper bound yy, with a complicated expression that will be simplified
later.

Proposition 8.1. Under the assumption of minimal captivity (43) we have

Yasympt. = Vup
with

Yup = 051}221,,,“1 (v (Je)) (141)

Je . 1 2V=Duy n (V=D V=D,
Y (Jc) = Z +n1]m —log Ze 0,N* o N*.n Z e N*.n

—00 2n " -
O.n Wi p

N*:= N*(wopu, Jo) :=max {k <n, st Jy,, <nJe}. (142)

Proof. In order to estimate the spectral radius of the transfer operator we use that for
any n > 1:

(ee) = (00) = (@) ]

Now we use Proposition 7.1 for some arbitrary ¢ > 0,0 < 8 < 1,0 < J, <

1/(2
= 1P IS (143)

2Jmin —&,v>0andn = [ﬁ log v] and calculate

1
log (rs (L"V,X [H”—m)) =< E log || Pyl 12

1 20V 1) V—J) (V=J)y
< —log|Cv) e Yo.N* ¢ YN e N 4+ CB"
e > >

wo. 4
o Wy



796 F. Faure, T. Weich

Jo+e 1
= + —log (C)
2n

1 2V 1) (V—J) V=), 1
+—1o e Yo.N* o WN* n e "N* 0 4 — BN
g Z E vﬁ

w /
0,n Wik

As we can choose ¢ > 0 and 0 < 8 < 1 arbitrarily small we deduce Proposition 8.1.
The fact that the limit exists is explained in Remark B.3.

8.1.1. Expression of y (J.) in terms of topological pressure. We will now express y (J;)
in Eq. (142) in a concise way that will finally give the formulation in Theorem 3.3. For
this we will use the topological pressure Pr (.) defined in (159).

Remark 8.2. Let us first remark that if the Jacobian J is equal to (or even cohomologous
to) a constant Jo , then the expression of y (J.) and of yyp in Theorem 3.3 are obtained

%Jw().n = Jo and by choosing J. = Jy one obtains

y(Jo) = % + %Pr(Z(V — J)) which is precisely the upper bound (28) for Yasympt. in
Theorem 3.3. The rest of this section will be devoted to derive (28) in the case where J
is not cohomologous to a constant, which we will suppose from now on.

LetO0 < J. < 2Jin and

very easily: in this case lim,— oo

N Je 2 log (v) Je N Je ) 1 log (v) Je
=0 = og (v , =n = og v

e Jmux Jmax g Jc +é& e Jmin Jmin g JC +&
Note that Ny < Npax- As chjr'g ~ | we can interpret them as twice the Ehrenfest time

for the most expanding and less expanding trajectory respectively. For every word wg ,
we have N* (wo,n, Jc) € [Npin; min (Npay: n)]. Let us sort the words wo,, in the sum
(142) according to their values N* (wo,,, J¢):

v (Jo)
J min(Nmax;n)
c

. 1 2(V=J)y, — 2( —N)Pr(V—
_ ¢ _ Yo, N n ) T ( J)
= +nlllll 5 1()g E e e

N=Npin Wy S-t. onﬁ<n.lp<fw

- 0,N+1
" Z 62( V—J )wO?n

wo., S.t. N*=n

In the above formula, Pr (V — J) appears by using (159). This gives

v (Je) = % +max (A; B) (144)
with
A= lim ilog mi“(%x?”) Z ZV D | 2Ny -1y
e N=Nyin wyy St onﬁandeoml

wo., S.t. Juwg., <ntde
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Recall that we are interested in determining info<y, <24,., ¥ (Jc). Let us first discuss
what happens if J. > Jy4y. In this case A = —oo and B = %Pr(2(V — J)) are

both independent of J.. Consequently, through the additional % term in (144), the
quantity y (J.) becomes monotonously increasing in this regime. Thus in order to find
info<j,<24,:, ¥ (Jc) we can from no on suppose, that we only consider J. < Jyqax-
Next we want to give precise expressions for the terms 4 and B in term of the
topological pressure functions. For this purpose we use some large deviations results
presented in Appendix B:
For the term B we use the formula (169) giving

with
vi (1) = B(J) 7 —u(B(J))
u(B)=PrQ(V -7 +BJ).
and with B () such that
T=u(B(J)). (145)

Observe that v (7) is the Legendre transform of the convex and increasing function

u (B). For the term .A we change the variable N by J = ”NJ" and we also use the formula
(169) giving
Jmax n =2 nJe
A= tim Lrog ([ 7o O =280 ) 2= =)
n—oo 2n Je
1

= - max (—vz(j))

B 2 T€lJe; Tmax]
with
v (J) = % (vi (J) +2Pr (V = J)) = 2Pr (V = J).

In summary we have that

vy (Je) =

1
— min v (J) (146)
2 7€[j171in§]max]

Je
4
with the function v (7) defined in two parts:
v (7)== (7)) if T € [Tin: Je] (147)
= (ﬂ if J e [Je; Tmax].

8.1.2. Minimization of y (J.) to deduce y,p. Considering (141) we finally want to mini-
mize y (J.) in order to obtain the final expression (28) for yyp. Note that this minimization
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Jmin Jl Jc JQ Jma:r

Fig. 5. The function v (7) defined in (147) depends on the parameter J. and is defined piece-wise. We look
for its global minimum min-, [din: Jmax] ® ﬁ ) It will finally turn out that the optimal value of J. is between
the local minima Jq and J of the functions v and vy

demands two steps: first for a given J., ¥ (J..) is given by (146) as a minimum over some
parameter J. In a second step we then have to minimize y (J.) for J. < 2J,ip.

Let us start with the first step and fix J. < 2J,i, for the moment. The function
v (7) depends on the parameter J, and v, (J.) = vy (J;) hence v (7) is continuous on
1Jmin,> Jmax[. The function v (ﬂ is depicted on Fig. 5. Note that the function v itself
does not depend on J... Our goal is to minimize the composite function v(J) that is piece-
wise defined via the functions vq, vo. However the functions v; and v, are themselves
both well defined on the whole interval [J,;i,, Jmax] and as a first step we look for the
minima of v; and vy on the whole interval [ i1, Jmax]-

Recall that by Remark 8.2 and Proposition B.5, the function v (ﬂ is strictly convex
and we compute that v} (7) =8 (7) hence its minimum is for J/ = J; such that

B (J1) = 0 giving

minv; (J) = vy (J1) = —u (0) = —Pr 2 (V — J))
J

Notice also that -
dg(J)  d*v

>0 (148)

dJ d7’
so B (7) is increasing.
For the function vy (ﬂ we compute its derivative

0 (7) = —2 (0 (T) +2Pr (V — 1) + gvg @
J

= % (=vi (J) =2Pr(V =)+ JB(J))

=%(u(,3m)—2Pr(V—J)).
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Let J> € [Jyin; Jmax] be such that v} (J2) =0, i.e.
u(B(J2)=2Pr(V-1J).
We have
u(p(J2)) =2Pr(V —J) >Pr(2(V —J)) =u(f(J1))

hence J, > Jj and from (148) g (J2) > B (J1) = 0. Plugging J, into v, we get the
minimum

. Je

min va (ﬂ =vy () = A (v1 (J2) +2Pr (V — J)) —2Pr (V — J)
J 2
= J.B(Jy) —=2Pr(V —J).

Remark 8.3. The function vy hence its minimum J; also do not depend on J... The value
J> does not depend on J,. neither but v, (J2) depends on J..

The two local minima coincide vy (J1) = vz (J») for the parameter J. = (J) given
by
_2Pkr(V—-J)—=Pr(2(V 1))

B (J2)

Since u (f) is strictly convex and S (7) is increasing we have that

u (B () —u(B )
B (J2) — B (J1)

and using (145) and (149) this gives

(J) :

(149)

<u' (B(1)

u' (B (1) <

Ji < (J) < Jo.

Note that up to now we considered the minima of v and v, independently. Now let us
consider the minimum of the composite function v which will give us a concrete value
for y(J.) = % — %infjv (7):

We finally deduce for (146) that

o IfJ. < (J)then

1, -
yUo) =5 = Eu%fvz (J)
Joo1
=7~ /B +P(V =), (150)
o IfJ. > (J)then
Je
y (o) = = infur (J)

_ Je ]P 2(V—1J
_Z+§r(( —-J))

that is minimal for J, = (J).
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From (150), we have y' (Jc) . <(sy = % (% — B (h2)) hence if B (o) > % then
_ 7)) =
43 ,in ()/ Jo) =y {(J)

B <J>
= T+§Pr(2(V—J)),

otherwise if 8 (J2) < % then
Yap=y (0) =Pr(V —J).

We have finished the proof of the main Theorem 3.3.

8.2. Proof of Theorem 3.6. From (105) and (97) we have

1 ., 1
22 [ e = 7 o 1P

In Sect. 8 we have shown that for n related to v by n = [ W log v] we have for
Vv — 00,

1
%log 1 Pall2 < yup+o(l).
We deduce that for any € > 0, vy > 0, Vv > vy,

1
n log Hﬁﬁ’x H g = Yt e

Yo < en(yup+e).
Sl

In [AFW13, thm 2.9, or proof of thm 2.11] we have shown that for any r,
HEV H < Coer(ysc+€)
v, X Hm :

Let us suppose that yyp < ysc in order to improve this bound (otherwise Theorem 3.6 is
covered by [AFW 13, thm 2.9]). Forany r € N, we write t = Nn+r withr <n, N € N,
and we have

L H ’
v, _ v,
X H; m X

< et

—m

H m
eNn (yup+e) Coer(ysc+e)

IA

C()et (VuP+5) er (Vsc —)/up)

IA

< Coet (Vup+€) e ()’sc—)’up)

2
= Coet(y“"+€) p W+e (Yse—vup) )
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_ 1
The relation (z — L,y ) b= 2150 (EZ'X) gives that

H(Z—Ev,x)qHH;m B |71Z H - |)r < |z]~! Cou e (e yup)z t(;:T:E)

t>0 >0

IA

(ys(. Vup)
_ Cov 1€ Fre < T e (Voe—up)

|Z| — e(VuP"'e)

We have finished the proof of Theorem 3.6.
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A. Examples

In this section we compare the upper bound on the spectral gap yyp from Theorem 3.3

with the so far known bounds ygipbs = Pr(V — J) and y,c = tsup (V — %J ) for two
explicit examples of IFS according to Definition 2.1: a “two branched linear IFS” and the
“truncated Gauss map” which plays an important role in the study of continued fraction
expansion.

A.l. Linear IFS. Within the class of dynamical systems, treated in this article, the linear
IFS is perhaps the most simple, nevertheless non trivial example.

A.1.1. Definition of the model. See Fig. 6.
Definition A.1. “Linear IFS”.Let 0 < a; < b; < a» < by < 1. Consider the intervals
= [a1, b1l and I, := [az, by] and the adjacency matrix A = < i i ) The contracting

maps are the linear functions:

¢ . I,' —> Ij
Yx eaj+(bj—aj)x”
The Jacobian function J; j (x) := —log —=+ ¢’ =Pl js constant on intervals x € I;:

Jj = Jiyj (x) = —log(bj —aj) > 0.
The topological pressure takes a particularly simple form:

Lemma A.2. Let ¢; j be a linear IFS with Jacobians Jy, J, > 0. Then the topological
pressure function (161) is given by

P (B) = log (fﬂfl +e*ﬁh) . (151)
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Fig. 6. Graphs of ¢’i,j a the linear IFS of Definition A.1 with interval I} = [0.05, 0.49], I» = [0.55, 0.8]

giving Jacobians J1 = 0.821...and Jo = 1.38.... The trapped set K defined in (5) is a dyadic Cantor set of
Hausdorff dimension § = dimy (K) = 0.643 ... given by (162)

Proof. We have

1
P = Pr(—=BJ)= lim —lo e P o (xw)
B) ash (=BJ) Jim_—log wEOH

The fact that J(x) is constant in I and I gives Jy, ,(x) = ZZ: 1 Ju, and since the
adjacency matrix A is full,

n
Z e_ﬁ‘]w(),n (x) — Z e_ﬂ ZZ:I ‘Iu'k — <e_ﬂ‘ll + e_ﬁ‘]2> .
wo,n wo,n

In order to apply Theorem 3.3 we choose a roof function 7 : / — R such that the
minimal captivity assumption is fulfilled. This can be achieved by a piece-wise linear
function.

Lemma A.3. Let ¢; j be a linear IFS as defined in Definition A.1 and suppose that
0<Jy < Jp Let
tx)=r1-x, xe€lj, (152)

with 11 := 0 and 1 := 1. Then the minimal captivity assumption (Assumption 4.5) is
fulfilled.

Proof. With the above definitions, the canonical map takes a particularly simple form

(L EN) =i j(x,E) = (¢j(x), eI +1)).
40)

Let x € I, £ > 0. We have & > e/1£ hence any trajectory starting from positive &
escapes to infinity. This implies that the trapped set is K C I x [—o0, 0].
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Fig. 7. Trapped set K in phase space T*R for the linear IFS of Fig. 6 constructed with a linear function t
given in (152). One clearly sees its Cantor set nature. The dashed lines indicate the values — R, —r that appear
in the proof of Lemma A.3

LetR::ﬁ > 0.For j =1 we get&' = ¢”/1& and for j = 2 we get

(§’+R)=(e’25+1+eh_1>=ef2(g+R).

This implies that all trajectories starting with & < —R escape towards minus infinity
and L C I x [—R,0].

Let (x,&) € K and i such that x € [;. In order to prove minimal captivity we
have to show that either (x{,&]) = ¢;1(x,&) ¢ Kor (x},&) = ¢i2(x,&) ¢ K. Let
ri=e¢ 2 < R.If —r <& < 0then & = e”2& +1 > 0 which implies (x5, &) ¢ K. If
—R <& < —rthen El/ = ejlé < —e’17%2 We use the constraint'® I U, C [0, 1] that
gives

e re 2 <1 (153)
We deduce £; < —R and (x, &) ¢ K.
A.1.2. Estimates for the asymptotic spectral gap Yasympt.- Let us now consider the
asymptotic spectral radius of the family of transfer operators £, for a linear IFS with
unstable Jacobians 0 < J; < J, and t as in Lemma A.3 and with a potential function

of the form
Vx)=(0—-a)J (x), aeR. (154)

We recall that the value a = 0, giving V = J is interesting for counting orbits (180) and
that a = 1/2 is the “quantum case” [FT15]. The different upper bound estimates for the
asymptotic spectral gap yasympt. can be expressed very explicitly as follows.

YGibbs = Pr(V —J) = P (a) = log (e*afl +efaJ2)
29

1 1 . 1 1 . 1
Ysc (:37)) tsup(V—§J> = (z—a> Jyifa > o (E —a) hHifa < >

16 Obviously this constraint is not necessary for the proof but simplifies the choice of the constants.
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Fig. 8. “Phase diagram” in the domain (8, w) €]0, 112 with § = dimgy (K) €]0, 1[ being the Hausdorff
dimension of the trapped set K given by (162) and w := exp (J1 — J2) €]0, 1] that measures the homogeneity
of the Jacobian (we have w = 1 if J1 = J5). The three different plots correspond to three different potential
functions V. For each of the three potentials and each value (8, @) and a, we indicate by a numerical calculation,
which value yGibbs, ¥sc» Yup is the lowest

1 1
o= =PrQV-J)==P2
Yconj (185, 2 T (2 ( ) 3 (2a)

1 2
Yup (:2:8) Yconj + 1 (Y, (J):= % (VGibbs - Vconj) (155)

where B solves the equation
P (2a — By) =2P (a). (156)
Let us introduce
w:=-exp(J; — J2) €]0, 1]

that measures the non homogeneity of the Jacobian. Note that up to dynamical equiva-
lence the linear IFS is uniquely determined by § and w where § is the Hausdorff dimension
of the trapped set K defined in (162). Thus given a fixed potential and a set of param-
eters (8, w) we can ask the question which of the known estimates ysc, ¥Gibbs and yup
is the best i.e. lowest one. This leads to a partition of the §, @ parameter space which is
shown in Fig. 8 for three different choices of V. One observes that yyp obtained in this
paper gives the best (lowest) result (in grey domain) for intermediate values of § and
for a # 1/2. yGibbs 18 better for small values of § (i.e. very open system) or very small
values of w (i.e. very in-homogeneous Jacobian) whereas yx is better for large values
of § and w (i.e. closed system with homogeneous Jacobian).

Figure 9 is a plot of s, ¥Gibbs, Yups Yeonj as functions of § = dimy (K) €]0, 1[ and
forw = 0.5.

Proposition A.4. For a linear IFS with roof function t given in (152) we have the
following three properties that appear on Fig. 8:

1. For any a € R, potential V. = (1 —a)J, and o = 1 (i.e. homogeneous case
J = J1 = J2) we have yGibbs < min(ysc, yup) if 6 < 0.5 and ysc < min (VGibbSv Vup)
if 8 > 0.5. For § = 0.5 we have ysc = YGibbs = Vup-

2. For the potential V (x) = 0, for any w €]0, 1] there exists § = & (w) such that
Yup < YGibss = Vsc-
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Fig. 9. Plot of various estimates ysc, ¥Gibbs» Yups Yconj defined in Sect. (3) for the linear IFS model with
w = 0.5, as a function of § = dimgy (K) €]0, 1[

3. For the potential V (x) = Ly (x), for any w €]0, 1[, we have yGipbs < min(¥sc, Vup)
if 6 < 0.5 and y5c < min (yGibbs, yup) if 6 > 0.5.

Proof. Proof of case (1). Suppose J = J; = J>. Thisisthecasew :=exp (J1 — J2) =1
on Fig. 8. We have

P = log(2¢7P") = hypp — BJ
® 3, o2 (267) = huop =

with hyp 1§3 P (0) = log?2 being the topological entropy. Then the Hausdorff di-
(165)

mension § = dimgy (K) of the trapped set K, given by P (§) 1?2 0,is 6 = }# We
162)

)
1
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We deduce that for § < % then yGibbs < min(Ysc, Yup), for 6 > % then ys <
min(YGibbs. Vup) and for § = % then ysc = ¥Gibbs = Yup-
Proof of case (2). Suppose V = 0. For a given 0 < w < 1 we choose 0 < J; <
2ht0p = 2log2 such that
e'? =1+w. (157)

From w = exp (J1 — J») this gives a value of J, and §. Equation (155) gives YGibbs = Vsc-
According to the statement of Theorem 3.3, if we show that By > 1/2, this implies that
Yup < YGibbs. From (156) the condition for By is

P2 — By) —2P(1) = 0.
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Fig. 10. Model of linear IFS. a Shows the Ruelle-Pollicott eigenvalues A ; € C (blue points) of the operator
L, for parameters v = 105, V =0, Jo, = J; + 1 and § = 0.65. Vertical lines show y,,, j» Yups YGibbss ¥sc and

log (rs (£y)) = max ; (Re (log (%))) in dotted line. b Shows log (rs (£y)) with blue points, as a function of
v (color figure online)

As P(2—B) —2P(1) is strictly increasing in g it is sufficient to show that P (2 — %) —
2P (1) < 0. Using that P (1) = —%J 1 from our choice yGibhs = Ysc, We compute

P(3/2)=2P() = log (e—3/211(1+e—3/2<12—11>))+Jl
(151

= log (efl/y' 1+ 673/2“2711)))

< log (e_l/zj' (1+ a)))
=0
(157)

A.1.3. Numerical observations for the Ruelle—Pollicott resonances and yasympt. and dis-
cussion. As the linear branches of the IFS can be extended from the intervals /; to disks
in the complex plane, the linear IFS can also be considered as a holomorphic IFS and its
Ruelle—Pollicott spectrum can be calculated using a dynamical zeta function approach,
introduced by Jenkinson and Pollicott [JP02] (see also [GLZ04,Bor14,BW16,Weil5,
BFW14] for applications and further details).

Figure 10a shows the Ruelle—Pollicott spectrum of £, for a given value of v. Figure
10b shows the value log (ry (£,)) = max; (Re (log (A J))) as a function of v, that we
want to bound for v — oo. It can be observed, that log (r; (£,)) decays rather quickly
starting from yGibbs and then oscillates in a wide range. Each “bump” is due to an in-
dividual eigenvalue. The numerical results indicate that the new bound yy,, is not an
optimal bound of log (ry (£,)). Furthermore the conjecture ycon;j = %Pr QW -=1J)
proposed (185) is not observed to be an upper bound in this range of v. However the
value of log (s (£,)) performs “large fluctuations” touching the value of y..,; several
times. A similar phenomenon has been observed for the related question of the asymp-
totic spectral gap for the Laplacian on Schottky surfaces (see [BW16, Figure 13]). The
conjecture Yasympt. = Yeonj could thus hold if one suspects, that the “large fluctuations”
of log (rs (£,)) die out in the semiclassical limit.
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Fig. 11. The iterated functions system (IFS) defined from the truncated Gauss map (158). Here we have N = 3
branches. The maps ¢: ¢; j : I; — I, i, j = 1...N are contracting and given by ¢; ; (x) = % The

trapped set K defined in (5) is a N-adic Cantor set

A.2. Truncated Gauss map. The model of transfer operators considered here is con-
structed from the Gauss map and has simple expressions. The Gauss map is important
in number theory in relation with continued fractions. The Gauss map is defined by

10,11 = 0, 11

G .
y —>/%mod1

(158)

As this map has an infinite number of branches it does not fit into the Definition 2.1 of
an IFS. However if we restrict ourselves to a finite number of branches we get a well
defined IFS. For more details on this construction we refer to [AFW13, Section 2.1 and
7.1].

Definition A.5. Let N > 1. We consider the finite number of inverse branches of the
Gauss map given for 1 < j < N by (G_l)j(x) =1/(x+j).Nowforl <i < N let
a; = 1 +i and b; such that (G_l)i(ﬁ) < b < % Then we set the intervals of the
truncated Gauss IFS to be I; = [a;, b;]. We take the full N x N matrix as adjacency

matrix and define the maps

_ 1 .
¢ij(x) = (G (x) =7 1<i,j<N.

See Fig. 11.

The dynamical properties of such truncated Gauss IFS play an important role in the
study of continued fraction expansions (see e.g. [Hen92,MU99]). In [AFW 13, Prop.7.1]
it has been shown, that the minimal captivity assumption is fulfilled for roof function
7(x) = —J(x). So Theorem 3.3 can be applied.

Figure 12 shows ysc, ¥Gibbss Yups Yeonj as a function of § for V.= Oand V = J.
Figure 13 shows numerical results for log (rs (£,)). We can make the same observations
and comments as in Sect. A.1.3.
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Fig. 13. Numerical values of log (rg (£,)) (blue points) as a function of v for the truncated Gauss map model
with N = 3 branches and V = 0

B. Topological Pressure

B.1. Definition and basic properties. We use the notations introduced in Sect. 4.2. For
a given admissible word wy , of length n + 1, let w € WV be an arbitrary extension of
wo.n. Let xy := S (w-) € K according to Definition 4.7. For a function g € C (I; R),
we define gy, (Xxw) == Y p_; & (Pwo, (xw)) its Birkhoff sum. Note that gy, (x,) is
not completely determined by wg , but depends also on its extension, to a bi-infinite
word w € WW. However this dependence is well controllable for Lipschitz functions:

Lemma B.1. If g € C (I; R) is Lipschitz, then there is a constant C such that for any
n € Nany wo , and two arbitrary points x, y € I,, we have

|gw0<n ('x) - ngJ, (y)| S C
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In particular for two arbitrary extensions w, w' € W of wg , we have

|gw01n (Xw) — 8wo., (xw)| = C.
Proof. The statement follows directly from a geometric series argument using the fact

that ¢; ; are uniformly contracting and that g is Lipschitz (see e.g. [Fal97, Proposition
4.1]1)

Definition B.2. The topological pressure of a function g € C (I; R) which is Lipschitz
continuous is defined as

1
Pr(g) := lim —log Zegwoﬂ(x'”) . (159)
n—-oon
wo,n
Equivalently
Zegwo,,,(xm = "Pr@+RM) R (1) — 0 (160)
’ n—s00

wo,n

Remark B.3. Lemma B.1 assures that Pr (g) is independent on the extensions of the
words. The fact, that the limit n — 00 exists can be seen as follows: If we set a,, :=

log (Zwo A (Xw)), then using Lemma B.1 we deduce that there is a constant ¢ > 0
such that a4, > ay + a, — c. Consequently a; = a; — c is a superadditive sequence
(i.e. dkym = @ + ap) thus the limit lim, oo 9% = lim, oo 5% exists in R U {oo}
from Fekete’s Lemma. The fact that the limit is finite is deduced from the crude bound
Z egw(),n (xw) < N"e"supr 8

wo,n - :

Remark B.4. The expression of Pr (g), Eq. (159) is similar to the Helmholtz free energy
in statistical physics.

A particular useful example of a topological pressure is with the choice of function
g = —pBJ where 8 € R and J is the unstable Jacobian (24):

1 _
P(B) :=Pr(=pJ) = lim —log D e Blug,, (xw) | (161)
wo,n

The Bowen formula [Fal97, p.77] gives the Hausdorff dimension § = dimy K € [0, 1]
of the trapped set K, (5), as the unique solution of

P ($)=0. (162)

The topological entropy counts the exponential rate of number of trajectories with
respect to time n:

1
hiop := P (0) = nll)rgo - log (# {wo,, admissible}) (163)
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B.2. Distribution of time averages of [ weighted by g. The theory of large deviations
has originally been developed in the context of stochastic processes and has later been
adapted for hyperbolic dynamical systems (see e.g. [ You90, Kif92, Kif94]). In this section
we will shortly collect a few of these results in the context of our systems and give self
contained proofs for the sake of completeness.

Let f, g € C (I, R) be two functions. For a given n > 1, we use the function g to
define a probability measure p, on the set of admissible words (or trajectories) wo
with a given length n + 1:

gg""(),n (xw) (164)

pe o) = 77

where Z, (g) :== ), on %200 v) i the normalization factor (called “partition function”
in physics). We are interested in the distribution of time Birkhoff averages of the function
f for large time n, namely the values (1 f,,0 . (xu)) wo,, Where each value L Fon Crw)

is weighted by the probability pg (wo,,). Let

.. 1 . 1
fmin := lim inf <—fw0‘n (xw)> s fmax = lim sup <—fw0‘n (xw)>
n— n n— n n

00 W0, 0wy

be the limit values of the distribution. The average of this distribution is

1
= Z pg (U)O,n) (;fwo.n ()Cw)> s

wo,n

and its variance is

1 2
Var, o (f) == Z Pg (wO,n) ((;fwo,n (xw)) - (f)ng) .

wo,n

To express some results concerning this distribution, let us introduce the function
u:peR—-u(B):=Pr(g+pf)eR (165)

Proposition B.5. The function u is convex. We have

) . d?u
Jm (f), o = ( /3) ), lim nVar, (f) = (W) ©).

We also have

Smin = hm <d,3) B, Sfmax = hm (dﬂ) B).

Proof. Write S, () := Y, e5"0n " Plo0nt) and, (B) := L 1og S, (B). We have
4 7 2

(dun) ) = %Sn(o) — (f)n,g and (ddzﬂuz") 0) = 1 <‘§ Eg; (g:gg;) ) = nVarn’g .

‘We deduce that (
0. So u is convex.

dﬁz) (0) > 0. We canreplace g by g+ f and deduce that (dﬁz) B) =
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We will now consider “large deviations” of the distribution. Note that the variance
of the distribution is of order 1/n so being at a distance =< 1 from the expectation value
is already a “large deviation”. Thus we consider for an interval Z C] finin, fimax[ the
quantity

P(n,1) = Z Pg (w(),n)

wo,n S.t. %f“"o.n ez

which represents the probability that (% fwo,n) € 7. In particular for fin <t < finax
let

1
Q(t):=lim lim —log(P (n,[t —e,t+¢[)) €RU{—o00}.
e—~>0n—oon

1
- _P lim lim —1 8w, (¥u) 166
15y, ~Fr(e)+ lim lim -~ log > e (166)

1
wo,, S.L o waJZ et—e,t+e[

be the exponential rate of the probability as n — oo for a small interval around ¢. In the
last expression, the limit n — oo exists from a superadditivity argument analogous to
the argument given in Remark B.3 above. The limit ¢ — 0 exists because one obtains a
monotonously decreasing sequence.

Note that if f is cohomologous to a constant ¢ (i.e. f = ¢+ 1 — o ¢! with
some function 7), then there is another constant C such that for any word wy , we have
| fwo., —nc| < C. In particular the complete distribution of fi,, is contained in the
interval [c — C/n, ¢+ C/n], so the question of studying large deviations becomes trivial
in this case. We therefore assume from now on, that f is not cohomologous to a constant,
which implies, that the pressure function u(f) is strictly convex.

Proposition B.6. “Large deviations”. Let t € R and B (t) be defined by

d du
t= @PY (&+B)jp=pw) = ap/P=p0
and

v():=p ) -t —Pr(g+p () f)

be the Legendre transform [Arn76, p.61] of the function u, Eq. (165). Then for fpi, <
t < fmax we have

Q@)=—-Pr(g)—v(@). (167)
Remark B.7. We have

W\ =pa 168
(E)()_’B()' (168)

The functions u# and v are convex. We deduce:



812 F. Faure, T. Weich

Corollary B.8. Let ty €] fnin, finax| such that (‘CJI—’;) (to) = B (to) = 0. For any interval
T = [ty, tp] with finin <ty < tp < finax we have

lim l log (P (n,7)) = —Pr (g) +sup (—v (¢))
n—-oon IEI

equivalently

1
lim — log E 50 ) | — qup (—v (1)) (169)
n—00 p 1 eT
wo,, S.1. ;f“’(),n €z

with

—v (to) ifto € [ta, tp]
sup (—v () = §—v(tp) ifto =1 (170)
<k v (ta) ifto <tq

Proof of Proposition B.6. We are grateful to Mark Pollicott and Richard Sharp for ex-
plaining Proposition B.6 and Corollary B.8 to us. Based on ideas from Kifer [Kif92,
Kif94] these kind of formulas can be derived from the work of Pollicott and Sharp
[PS96,Pol95,Sha92] using the variational approach to the pressure function. In the se-
quel we provide a self-contained proof, which fits into the periodic orbit definition of
the topological pressure which we use in this article.

For any two functions f, g € C (I, R), for any r € R and any € > 0 let us define the
following quantity

1
Kg,e(f) = n]l>ngo ; log Z 510, (xw)

1
wo.n S-t. E-fWO,ne[’_E!H‘?[

Recall that we denoted by N the number of letters, so we get the very crude estimate
—00 < K, ¢(t) < log N +-max,¢s g. We also deduce from that fact, that ef o > (0 and
the monotonicity of the logarithm, that for any fixed ¢ € R and for ¢ — 0 the expression
Kg (1) is monotonously decreasing. Thus we can define

K, (1) = SIER) Kge(t) e RU—o00.
Notice that 2 (1) 1§6 —Pr (g)+ K, (t). In a first step let us show the following Lemma
(166)

Lemma B.9. The functiont — K,(t) is an upper semi-continuous concave function.

Proof. The upper semi-continuity follows easily from the definition of K: for a given
fo and ¢ > O take 6 > O such that 0 < K, 5(to) — K4(fo) < &. Then for any ¢ such
that |t — 79| < & we get, that K, (1) < K, 5(f0) < Kg(tp) +¢. Forevery ¢ > 0, K, ¢ is
midpoint concave because for any #1, t2 € [ finin, fmax] We have
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t+n . 1 )
Kg e = lim — log Z e510.2n
’ 2 n—00 2n 1+t 1+
wo.2n S.t. 2]7wa'2" el 12 2 —s,%%[
1
> hm -— lOg Z egw(),n +gwn,2n
n—o0 2n

1 1,
wo,2n S.t. 7 fwg , €l11—e,11+¢[ and E-fwn,Zn €ltr—e,tr+e

1
= lim — log > e8von (171)

n—o00 2n .
wo,, S.L. ﬁfwo,ne[’l_&’“’g[

E egwo,n

1
wo., S.L. gfw(),,,e[l‘Z*eth“'e[

1
= 5 (Kg.e(n) + Kg o (12)

Taking the limite — 0 we deduce that K, is midpoint concave. As upper semi-continuity
implies Lebesgue measurable we deduce that K, is concave.

Remark B.10. Note that in (171) we crucially use the transitivity of the adjacency matrix
as assumed in Definition 2.1. Without this assumption the statement that K ¢ (¢) is concave
becomes obviously false: Assume for example the case with N = 2 intervals and the non-
transitive adjacency matrix A = <(1) ?) If now f is piece-wise constant, with f/;, #
fythen for any word wo,,, either fy,,, = nf/; or fu,, = nfy, and consequently
Kq(t) > 0ift = fyport = f/, and Kg(t) = —o0 else.

We continue the proof of Proposition B.6. Let us now show that K¢ (t) = —v (7).

Recall from (168) that %v(t) = B(t) hence for any #y we have % B(t0)t —v ()= =
0 or in other words B (f9) t — v (t) has a maximum at 1 = #y given by

max (B (t0) 1 — v (1)) = B (to) to — v (o) = Pr (g + B (t0) ) =uB ). 172

Recall the definition (159) of the topological pressure. For K € Nand Ag := w
we write

Pr(g+Bf)
) K—1
= lim —log Z e8w0n B wg
n—oo n
k=0 \ g, s.t. A gy S min AR SinHEFD A
.1 +Bf
= max lim —log Z e8wonPIwon

k=0,..K—-1n—>oon )
wo,n s.t. ;fw()ﬂ e[fmin"'kAKs.f;rlin+(k+l)AK[
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Recalling the definition of K .(¢) above we get forany k =0, ..., K —1

. 8uig. 81,
Lim - log Z eS0TI | — (Ko A 2 (fi) + BSi)
wo,nS-t & gy Elfmin KA nin+k+D A [

< BAk

where fi = finin + (k + %)AK. Taking the limit K — oo, we get
u () =Pr(g+pf) = max (Bt + K, (1))

which is the same expression that we have obtained for —v (¢) in (172). As we have
shown that K, is upper semi continuous and concave, the Fenchel-Moreau theorem
implies that K, = —v. We have finished the proof of Proposition B.6.

C. Discussion About p,sympt. in Hyperbolic Dynamics

C.1. Motivation to study Yasympt.. Let us consider the case of an Anosov flow o' = !X,

t € R (also called uniformly hyperbolic flow) generated by a Anosov vector field X on
a closed manifold M. A typical example is the geodesic vector field X associated to a
Riemannian manifold (M, g) with (variable) negative curvature: X is the Hamiltonian
vector field on M = T} M (the unit cotangent bundle). This example is special because
the flow preserves the canonical Liouville contact one form « on M. More generally
Anosov flows that preserve a contact one form are called “contact Anosov flows”. We
introduce an arbitrary smooth function V € C* (M; R) called the potential function
and consider the operator

A=-X+V.

A has intrinsic discrete spectrum (of finite multiplicity) in certain anisotropic Sobolev
spaces H (M) [BLO7,FS11,FT17] and the set of eigenvalues (zj)j C Cof A are called
the Ruelle-Pollicott resonances of A for positive time > 0. The operator A is the
generator of £! := ¢! At >0, called the transfer operator giving transport of functions
u e C*® (M) by

Llu=e%u=e"19 (uogp_,) (173)
with Vi_,.o := [°, V 0 ¢*ds.
We define
Yasympt. := lim supsup {Re (z;), s.t. [Im (z;)| > v} (174)
V—>00 j

i.e. Yasympt. is such that for any € > O there are only finitely many Ruelle—Pollicott
resonances on the right of the line Re (z) = Yasympt. + €. To express the importance of
the quantity yasympt., we will assume the following two properties about the spectrum of
A. We will see many examples in Sect. C.2 where these assumptions are satisfied.
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Assumption C.1. We will assume

1. The Ruelle-Pollicott spectrum of the operator A has a single and simple dominant

real eigenvalue yGibbs 17,
2. “Uniform control of the norm of the resolvent”: there exists e > 0,v > 0, C > 0
such that Yasympt. T € < VGibbs and

Ve e CotRe @) 2 yaymp e M@ 20, |- <coa7s)
Equivalently to (175) one has [EN99]
3C, V1 >0, |L£'— > L' < Celrmmn+e)t— (176)

j st Re(zj)zyasylnpt"'é H(M)
where I1; is the spectral projector of finite rank associated to z;. If the eigenvalue z; is

simple then L'T1; = ¢%/TI;. The sum in (176) is finite. In particular

Je > 0,3C,Vt >0, ”[} — VGt [T i ”H(M) < (e YGibbs—€)t (177)

From the construction of H (M), one has C*® (M) C H (M) C D’ (M). We define
the dual space H' (M) by

H M) :={ueD (M), st.veH (M) — (u,v) 2.4y € Cis bounded}

where dx is an arbitrary smooth volume on M (in case of contact Anosov flow dx is
inherited from the contact structure). Equation (176) implies some expansions of time
correlation of functions (as in [Tsul0, Corollary 1.2][NZ15, Corollary 5]):

VueH (M), veHM), (u,L)20740) = Z (u, L'Tjv) 2
Jj s.tRe(2j)>Vasympt.+€
+0 (e@asymm«*)f) . (178)

C.1.1. Gibbs measure.

Remark C.2. Equation (178) shows that Ruelle—Pollicott resonances describe the corre-
lation functions w.r.t. Lebesgue measure dx for the dynamics weighted with the potential
V. We will see later in Corollary C.4 that the same spectrum describes the correlation
functions w.r.t. a Gibbs measure defined from V but for the pure flow dynamics, i.e.
without potential V.

The Atiyah-Bott flat trace formula [AB67,Gui77] gives that
YGibbs =Pr(V —J) e R
where'®

J = —divX/g, > 0.

17 j e. other eigenvalues zj € Csatisfy Re () < ¥Gibbs-

18 The choice A = X + V would have give instead yGipbs = Pr (V - divX/Eu).
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divX/fg, < 0 1is the expansion rate along the stable direction E,. We have divX/g, +
divX/g, = divX hence for a volume preserving flow, divX = 0, one has J :=
—divX /g, = divX/Eg,. Pr(¢) is the topological pressure of a function ¢ € C (M)
and is defined for flows using a sum over periodic orbits y as follows:

1
Pr(p) := tlim " log Z er 1. (179)
—> 00
p.o.y S.L |y|elt,t+1]

We denote Igipbs the rank one spectral projector associated to the eigenvalue ygipbs. It
defines the so called “Gibbs equilibrium measure”!® associated to the potential V by

UGibbs 1 ¢ € C (M) — Tr (M, Tgipns) € R

where Myu = ¢u denotes the multiplication operator by a function ¢ € C* (M).
My : H(M) — H (M) is a bounded operator. The operator M, Igibbs is finite rank
hence trace class in H (M). The Gibbs measure pgibbs has the following properties:

Lemma C.3. “Invariance of Gibbs measure under the flow”. We have
Vo € C® (M), Vt >0, puaibbs (9 09 ™") = 1Gibbs (¢) -

Proof. Let us write £} = e~'X and My u = ¢u the multiplication operator by ¢. We
have the relations £/ T Gipbs = HGibbs L' = €/V65 [ Gipps, LT = ./\/lev[,,’o] CB,MMMU =
MMy, LM, = Mﬁguﬁt and circularity of Tr (.) and deduce

[iGibbs (0 ¢~') = Tr (M q)wl'lGibbs) = ¢~ VO Ty (Mz:gq;ﬁtnaibbs)
— ¢ 1YGibbs Ty (£IM¢ HGibbs) — ¢ 1YGibbs Ty (MganGibbSEt)
= Tr (M Gibbs)
= [Gibbs (@) -

The expansion (178) implies some expansion for correlation functions expressed with
the Gibbs measure (that is more usual in dynamical systems theory) as follows.

19 ILGibbs 1S @ positive measure (i.e. distribution of order 0) because of the following argument. Let ¢ €
c™>® (M ; R+). Let us denote 8y the Dirac measure at x € M. The Atiyah-Bott flat trace of an operator A is

Tr’ (A) = fM((SX, A8y )dx, see [Gui77]. The Schwartz kernel of the operator £’ is positive hence for any
t>0,

Tr (Me7Gibbst 1) :=/ @ (x) (8, e YGibbs! £1§ gy < Iw\co/ (8, e~ YGibbs! L1151y
" M
= l¢lco T (e VGibbst 1)

We make + — +o0. Using (177) and additional arguments that can be found in [FT16, Appendix B] one
obtains

KGibbs () < l¢lco Tr (TGibbs) = 9|0 -
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Corollary C.4. “Decay of correlations for the Gibbs measure”. Under Assumption
C.1, we have

Vo1, 92 € C® (M), Vt =20, uaivbs ((¢1 0 ¢7") .902) = 1Gibbs (¥1) HGibbs (92)
+ Z ¢ 1VGibbs Ty (M<pz (Etl_[j) ./\/l(pl HGibbs)
J 8.1 Re(2j)>Vasympt.+€, 2 FVGibbs
+0 <67(VGibhs*()’asympL“’e))t)
Remark C.5. 1. The quantity (J/Gibbs — (yasympt_ +€ )) that governs the exponential de-
cay of the remainder is called the “asymptotic spectral gap”.
2. We have assumed that yGipbs 1S dominant eigenvalue i.e. yGibbs > Re (z j) forz; #

YGibbs- Then the second line decays and one gets exponential mixing property for
the Gibbs measure:

1aibbs (€1 007") .92) = Kaivbs (©1) LGibbs (92) + O (e_(VG‘bbs_maX-" Re(z ))’) )

3. Ifeigenvalues z; are simple then £'T]; = ¢%/'TI; and each term on the second line
writes as

eV (Mo, (L£T1;) Mg, NGibbs) = e~ (vGioos—2)) Ty (Mg, TT; My, Gibbs) -

Proof. Recall the relations at the beginning of proof of Lemma C.3. We have
naivbs ((91007") .2) =Tr (Mqﬂ;] My, HGibbs)

= ¢ 1VGibbs T (Mﬁﬁfﬂl My, L I—[Gibbs)

— o !VGibbs Ty (/\/l(p2 LM, HGibbs)

e S T (M () M M)

J 8.t Re(z;)>Vasympt.+€
+0 (e_(]’Gibbs_(Vasympt.+f))t> .

From the fact that I1gjpps is a rank one projector we deduce that the first term of the sum
is

e~ Tr (M, (L' Tgibbs) My, Haibbs) = Tr (M, Mginbs Mg, Maibbs)
= UGibbs (¥1) UGibbs (¢2) -

C.1.2. Special choice V = J = —divX/g,. In particular, by choosing? the potential
V = J we get the topological entropy /;,p:

1
Yaibbs = Pr(V —J) =Pr(0) = lim — log N (1) =t hyop (180)

where N (t) := f {y periodic orbit s.t. |y| <t} counts the periodic orbits of the flow
of period less than ¢. In this case the Gibbs measure is called “the Bowen Margulis
measure of maximal entropy” (Gibbs =: LB.M.-

20 n general J is only Holder continuous so it requires some special arguments, namely considering the
extension of the transfer operator on a Grassmanian bundle [FT15,FT16].
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C.1.3. Special choice V. = 0. Let1(x) = 1 be the constant function 1 on M. One has
X (1) = 0. If we choose potential V = 0then A = —X, A (1) = 0, yGibbs = 0 and

Mgibbs = 1{ul.) 2,

with u € H' (M). The Gibbs measure is pgipps = dx =: s.g.p. and is called “the
Sinai-Ruelle-Bowen measure”. If the flow is volume preserving, i.e. divyy X = 0 then
WUs.R.B. = dx.

C.2. Known results about Yasympt..

C.2.1. Contact Anosov flows. For contact Anosov flows, it has been shown by C. Liv-
erani [Liv04] that in the case V = 0,

e > 0,  Yasympt. < VGibbs — €. (181)

M. Tsujii [Tsul2] (and [NZ15] for a generalization to other semiclassical operators), has
shown an explicit upper bound for yasympt. (his method works for any smooth potential
V):

1 13
Vasympt., < Vse 1= tsup (D) := lim sup (; /0 Dog¢™ (x)ds) (182)

t—)OOxeM

with the so called damping function D := V — %J and where the linear functional
tsup() called “time-averaged-sup” is defined from the last expression. The proof uses
semiclassical analysis with v := [Im (z)| — oo being the frequency in the neutral
direction. For this we consider the flow ¢’ lifted on the cotangent bundle ¢ T*M —
T*M. Since ¢’ preserves the contact one form «, the trapped set K (i.e. non wandering
set) for the lifted flow ¢, is the line bundle K = Rae C T*M. A crucial property is that
K\ {0} is a smooth symplectic submanifold of 7*M and transversally the dynamics of
b1 is hyperbolic. From this and using semiclassical techniques, one deduces (182) and
also a band structure of the spectrum [FT13].

In particular for the special choice V = %J = %diVX /E, called “semi-classical
potential” it is shown in [FT16] that

Yasympt = Ysc = 0.

i.e. there is an accumulation of Ruelle resonances on the imaginary axis. In that case
YGibbs > 0.

C.2.2. Anosov flows in dimension 3. M. Tsujii has shown in [Tsul6] that for generic
volume preserving Anosov flow in dimension 3 and V = 0, there exists y7ji; < 0
such that

Vasympt. = VYTsujii < VGibbs = 0

and one has a uniform control of the resolvent on Re (z) > yryyji; that gives decay of
correlations.

M. Tsujii considers in [Tsul7] the case V = J for an expanding semi-flow and gives
a bound for yusympt. that improves previous known results.
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C.2.3. Open hyperbolic dynamics. To the authors best knowledge an analog of (182)
for open hyperbolic flows (i.e. Axiom A flow) is not known. However in [AFW13] the
authors proved an analog of (182) together with resolvent estimates for the R-extensions
of IFS which can be considered as a toy model of an Axiom A flow.

The present article concerns open dynamics. Its purpose is to improve the established
bounds ysc and yGibbs. We directly work on a model for open dynamical systems such that
there is hope, that our methods and results can be useful for the study of Ruelle—Pollicott
resonances of open hyperbolic flows, such as Axiom A flows.

C.2.4. Quantum hyperbolic dynamics. In quantum mechanics similar questions con-
cerning the asymptotic spectral gap of an operator arises as follows. On a negative
curvature smoothed closed manifold (M, g), consider the opelrator21

(0 1d
P'_<—A 2iD)

on H' (M) @ L? (M) where A is the Laplace Beltrami operator and D € C* (M; R)
is a smooth function [Sjo00]. P has discrete spectrum (z f)j C C that belongs to the

band Im (zj) € [inf D, sup D] (for Rez; > 0). One defines

Vasympt, := lim sup sup {Im (z;), s.tRe(zj) = v}. (183)

V—>+00 J

G. Lebeau [Leb96] has shown that

. 1 [t .
Yasympt. < Vsc = tsup (D) 1= tgngo sup N (;/0 Do¢™ (x,8) ds) (184)
(x.£)eT}

where ¢* : T* M — T}* Misthe geodesic flow and D is trivially extended to M = T,* M
by D (x, &) := D (x). The bound (184) is similar to the bound (182).

For “open quantum dynamics” Dyatlov and Zahl have recently established [DZ15]
a new bound for the asymptotic spectral gap for resonances of the Laplacian on convex
co-compact manifolds of constant negative curvature. Although their model is different,
it would be interesting to compare their results methods and concepts with ours.

In particular it has been shown recently that there is an exact relation between Ruelle
Pollicott resonances and quantum resonances on convex co-compact hyperbolic surfaces
[GHW16]. For these models it has also been shown that yusympt < ¥sc in [BD16].

C.3. Conjecture for yasympt- In this section we discuss a conjecture for the asymptotic
spectral gap Vasympt.-

This conjecture is motivated from the expression (38) that appears in the sketch of
proof of Theorem 3.3 and that leads us to our result Yasympt. < Vup-

In (38) we have a sum of complex numbers over pairs of orbits w, w’. This sum has

the form Y, s eV = Dut(V=Du+v(mu=t,)T,,  In this double sum, we are not able

to control the phases e’ v(7w=7w) of non diagonal terms so we have considered a time

2L If we put ® = (Y, ¢) € L% (M) & L% (M) then the Schrodinger equation i9; ® = P ® is equivalent to
the “damped wave equation” Blzw =AY — 2D with p = i0; 9.



820 F. Faure, T. Weich

n o~ 21?%" for which these non diagonal terms vanish (because Ty ,, ~ 0). Then the

last term in (39) gives the remainder (J) /4 in our result (28).

If we bound all the phases by 1 and consider the limit » — oo one obtains the
bound Yasympt. < ¥Gibbs. However if one were able to show that phases behave as
“random phases” (this could hold generically), then the non diagonal terms in (38)
become negligible. Consequently we can make the diagonal approximation for arbitrary

long time and if we take time n = A lo(gj(;) ) with A > 1 arbitrary large then the last term

in (39) becomes ﬁ (J) <« 1 and is negligible. One obtains the conjecture that:

Conjecture C.6. For a generic system,

1
Vasympt. = Yeonj 3= 5Pr 2 (V = J)). (185)

This conjecture can been found in [DP98, p.9]. It makes sense for a general hyperbolic
dynamics (Anosov flow, Axiom A flow,...), even for quantum systems as those discussed
in Sect. C.2.4 for which the conjecture is

y(quantum) _ y(quantum) — %PI’ (2 (D . lj)) _ %PI‘ (Q,D . J)

asympt. conj 2

e In particular if we choose the potential V = J (this choice is used for counting
periodic orbits) the conjecture is

1 1
Yasympt. = Yconj = EPr 0) = Ehtom

where h;,, = Pr (0) is the topological entropy.

e Inparticular for D = 0 we have yc(g:fj‘mmm) =1

Pr (—J) and for hyperbolic surfaces

this gives yc(gn";m”m) = %51 where § is the Hausdorff dimension of the limit set

[Bor(07]. This conjecture has been made in [JN12] for convex co-compact hyperbolic
surfaces.

Some numerical observations are in favor of this conjecture, e.g. Figs. 10 and 13. With
some other numerical observations the value %Pr (2 (V — J)) describes rather the max-
imum of the distribution of concentration of eigenvalues 4 and not Yasympe. [LSZ03,
figure 2], [BWP+13, figure 4], [Bor14, figure 27], [BW16, Section 5.3]. One could con-
jecture that both coincide in the semiclassical limit v — +oo (and for generic hyperbolic
systems), i.e. that ¥yax = Yasympt. = Yconj -
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