Small perturbations of Dirichlet Laplacians are QUE

Peyresq, May 2016

[CG]: S. Chatterjee and J. Galkowski, arxiv:1603.00597

May 25, 2016

K ロ ▶ K (日) > K ミ ▶ K ミ ▶ → ミ → り Q (V

Quantum Ergodicity theorem (Shnirelman, Zelditch, Colin de Verdière): *M*-compact; *g*-Riemannian metric on *M*; *G^t* geodesic flow for *g*. If *G^t* is *ergodic* (e.g. *M* has negative sectional curvatures), then "almost all" Laplace eigenfunctions, $\Delta_q \phi_i + \lambda_i \phi_i = 0$ and the corresponding microlocal lifts (Wigner functions) become uniformly distributed as $\lambda \to \infty$: For $a \in C(M)$ (observable depending only on position):

$$
\int_M |\phi_j(x)|^2 a(x) dx \to \int_M a(x) dx
$$

KERKARKERKER E KORA

for *almost all* eigenfunctions ϕ_j (except possibly for a subsequence of density zero).

For *A* a pseudodifferential operator (observable depending on position and momentum)

$$
\langle \phi_j, A\phi_j \rangle \to \int_{S^*M} \sigma_{\mathcal{A}}(x,\xi) dxd\xi,
$$

where σ_A is the principal symbol of A. In particular, for $\boldsymbol{B} \subset \boldsymbol{M}, \int_{\boldsymbol{B}} |\phi|^2$, for almost all $\phi_{\lambda},$

$$
\lim_{\lambda \to \infty} \frac{\int_B |\phi_\lambda|^2}{\int_M |\phi_\lambda|^2} = \frac{\text{vol}(B)}{\text{vol}(M)}
$$

Quantum Unique Ergodicity:

There may be *exceptional* sequences of eigenfunctions that *do not* become uniformly distributed ("strong scars"), but these sequences are "thin."

If *all* eigenfunctions become uniformly distributed (no exceptions!), then *quantum unique ergodicity* (or QUE) holds. Example: *S* 1 .

KERK ERKER EI VAN

Conjecture (Rudnick, Sarnak): QUE holds on

negatively-curved manifolds.

Theorem (Lindenstrauss; Soundararajan, Holowinsky): QUE holds for Hecke eigenfunctions on *arithmetic* hyperbolic surfaces. Higher dimensions: Silberman, Venkatesh, Anantharaman et al

Arithmetic hyperbolic surfaces correspond to *arithmetic* groups Γ: groups whose *commensurator* is dense. Commensurator is the set of all *g* such that *g*Γ*g* [−]¹ ∩ Γ has finite index in both Γ and *g*Γ*g* −1 . Those results make crucial use of ergodic properties of the action of *Hecke operators*.

• QE results were established for *Eisenstein series* (eigenfunctions that correspond to the continuous spectrum of ∆ for *M* of finite hyperbolic area): QE for general Γ was established by Zelditch, Z-Bonthonneau; QUE for Γ = $PSL_2(\mathbf{Z})$ by Luo, Sarnak and D.J. Related results were proved for hyperbolic manifolds of dimension *n* ≥ 3, for Eisenstein series for Fuchsian groups of the 2nd kind (*M* has infinite volume) etc: Guillarmou, Naud, Dyatlov et al

Billiards:

QE theorem holds for billiards (bounded domains in **R** 2); proved by Gerard-Leichtnam, Zelditch-Zworski. Geodesic flow is replaced by the *billiard flow:* move along straight line until the boundary; at the boundary, angle of incidence equals angle of reflection.

Ergodic planar billiards: Sinai billiard and Bunimovich stadium

K ロ ▶ K (日) > K ミ ▶ K ミ ▶ → ミ → り Q (V

イロト イ部 トイミト イミト

 \equiv

 $\circledcirc \circledcirc \circledcirc$

イロトイ団トイモトイモト OQ Þ

Ergodic eigenfunction on a cardioid billiard.

Ergodic eigenfunction on the stadium billiard:

イロト イ団 トイモト イモト 一毛 OQ **Theorem** (Hassell): QUE conjecture *does not* hold for *almost any* (Bunimovich) stadium billiard.

Exceptions: "bouncing ball" eigenfunctions, (they have density 0 among all eigenfunctions, so QE still holds).

 OQ

Generic domains/metrics are conjectured to be QUE **Random spherical harmonics:** QE (Zelditch, 1992), QUE (Vanderkam, 1997)

Shiffman, Zelditch: random sections of high powers of positive line bundles (2003)

Burq, Lebeau: applications to PDE with random initial conditions (2011)

Random bases of high dimensional subspaces of *L* 2 (*M*) are QE a.s. (Zelditch, 2012); are QUE a.s. (Maples, 2013) Random bases defined by more general Wigner RM ensembles are QE (R. Chang, 2015)

Riviére, Eswarathasan: QE for random perturbations of semiclassical Schrödinger equation on negatively curved surfaces (2014)

"Loschmit echo" eigenfunctions: Canzani, Jakobson, Toth

Chatterjee-Galkowski: QUE for random perturbations of the Dirichlet Laplacian for Euclidean domains with mild regularity properties.

Petrubations for general domains have small *L* ² norm. For more regular domains, QUE is shown for perturbations of small $L^2 \to H^{\gamma}$ norm, where γ depends on the domain.

Regularity assumptions for the domain $\Omega \subset \mathbf{R}^d$: **Definition:** Ω is called *regular* if

- (*a*) Ω is nonempty, bounded, open, connected; *Vol*(∂Ω) = 0.
- (*b*) For any *x* ∈ ∂Ω, $\mathbb{P}^{\chi}(\tau_{\Omega} = 0) = 1$, where \mathbb{P}^{χ} is the law of the Brownian motion started at *x*, and τ_{Ω} is the exit time of the standard BM in **R**^d from Ω.

Condition (b) is a sharp condition (in an appropriate sense) for existence of solutions to the Dirichlet problem on Ω . If $\partial\Omega$ is smooth enough, then Ω is regular.

Defect measures. Let $\{f_n\} \in L^2(\mathbf{R}^d)$. Given $a \in C_c^{\infty}(S^*\mathbf{R}^d)$, let

$$
\widetilde{\mathsf{a}}(x,\xi)=\mathsf{a}(x,\xi/|\xi|)(1-\chi(\xi))
$$

where $\chi \in C_c^\infty({\bf R}^d)$, and $\chi \equiv 1$ in a neighborhood of 0. Let $\mu_{\textit{n}} \in \mathcal{D}'(\mathcal{S}^*\textbf{R}^d)$ be defined by

$$
\mu_n(a)=\langle \widetilde{a}(x,D)f_n,f_n\rangle.
$$

Let $\mathcal{M}(f_n)$ be the set of limit points of $\{f_n\}$, i.e. the set of measures μ s.t. for a subsequence f_{n_k} and for all operators \boldsymbol{A} with a symbol $\sigma(A)$ compactly supported in x, we have

$$
\langle Af_{n_k}, f_{n_k} \rangle \rightarrow \int_{S^*{\bf R}^d} \sigma(A) d\mu,
$$

the set of defect measures associated to {*fn*}.

H - linear operator from a subspace of $L^2(\overline{\Omega})$ into $L^2(\overline{\Omega})$. **Definition 1.** *H* has QUE eigenfunctions if for any sequence of *L* ² normalized eigenfunctions {*fn*} of *H*, we have

$$
\mathcal{M}(\mathbf{1}_{\overline{\Omega}}f_n)=\left\{\frac{1}{\text{Vol}(\Omega)}\mathbf{1}_{\overline{\Omega}}dxd\sigma(\xi)\right\},\,
$$

where σ is the normalized surface measure on $\mathcal{S}^{d-1}.$ In particular,

$$
\langle A1_{\overline{\Omega}}f_n, 1_{\overline{\Omega}}f_n \rangle \rightarrow \frac{1}{Vol(\Omega)}\int_{S^*{\bf R}^d}\sigma(A)1_{\overline{\Omega}}dxd\sigma(\xi).
$$

Definition 2. *H* has *uniquely equidistributed* (UD) eigenfunctions if $|f_n(x)|^2 dx \to dx/V$ ol (Ω) (QUE "on the base.") **Main results:** Let −∆ be the Dirichlet Laplacian with the domain F[∆] defined below; if ∂Ω is *C* 2 , then $\mathcal{F}_\Delta = H^1_0(\Omega) \cap H^2(\Omega).$ **Theorem 1.** Ω - regular domain. ∀ε > 0, ∃ $S_ε$: $L^2(\overline{\Omega})$ → $L^2(\overline{\Omega})$

such that

- (i) $||S_{\epsilon}||_{L^2 \to L^2} \leq \epsilon.$
- (ii) $H = H_{\epsilon} = -(I + S_{\epsilon})\Delta$ is a positive operator on \mathcal{F}_{Δ} .
- (iii) \exists an ONB of $L^2(\overline{\Omega})$ consisting of eigenfunctions of *H* that belong to \mathcal{F}_{Λ} and the corresponding eigenvalues can be ordered as $0 < \lambda_1 < \lambda_2 < \ldots \rightarrow +\infty$.

(iv) *H* has QUE eigenfunctions.

If ∂Ω is smooth, then ∀ γ $<$ 1, there exists $\mathcal{S}_\epsilon:\mathsf{L}^2(\overline{\Omega})\to H^\gamma(\overline{\Omega})$ with the norm $||\mathcal{S}_{\epsilon}||_{L^2(\overline{\Omega})\to H^{\gamma}(\overline{\Omega})}\leq \epsilon.$ If, in addition, the set of periodic billiard trajectories has measure 0, then one can choose any γ < 1.

Theorem 2; local Weyl law for regular domains: Ω - regular domain. Let $\Delta u_j + \mu_j u_j = 0$ be a complete ONB of the Dirichlet Laplacian on $Ω$. Then for an operator *A* with $σ(A)$ supported in a compact subset of Ω and for any $E > 1$,

$$
\sum_{\mu_j\in[\mu,\mu\in J]}\langle A1_{\overline{\Omega}}f_n,1_{\overline{\Omega}}f_n\rangle=\frac{\mu^d}{(2\pi)^d}\int\int_{1\leq|\xi|\leq E}\sigma(A)1_{\overline{\Omega}}dxd\xi\,+\,o(\mu^d).
$$
\n(1)

Let $\alpha = \alpha(\mu)$ be non-increasing. **Definition 3:** Domain Ω is *average QE* (AQE) at scale α if an analogue of [\(1\)](#page-18-0) holds for *A* from a dense set of operators, and with $[\mu, \mu]$ replaced by $[\mu, \mu(1 + \alpha(\mu))]$:

$$
\sum_{\mu_j\in[\mu,\mu(1+\alpha(\mu))]} \langle A1_{\overline{\Omega}}f_n, 1_{\overline{\Omega}}f_n\rangle = \qquad (2)
$$

$$
\frac{\mu^d}{(2\pi)^d}\int\int_{1\leq|\xi|\leq 1+\alpha(\mu)}\sigma(A)1_{\overline{\Omega}}dxd\xi\;+\;{\textit{o}}(\alpha(\mu)\mu^d).
$$

If ∂Ω is smooth, then (Duistermaat, Guillemin, Safarov, Vassiliev) Ω is AQE at scale $\mu^{-\gamma}$, for any $\gamma <$ 1; if the set of periodic trajectories has measure 0, then Ω is AQE at scale $\mu^{-1}.$

The following Theorem 3 implies Theorem 1. Let $\gamma\in[0,2]$. $\mathcal{F}_{\Delta}^{\gamma}$ - complex interpolation space $(L^2(\Omega),\mathcal{F}_{\Delta})_{\gamma/2}.$ **Theorem 3:** Ω - regular domain, AQE at scale $\alpha(\mu) = \mu^{-\gamma}$. Then an analogue of Theorem 1 holds with $\mathcal{S}_\epsilon: L^2(\overline{\Omega}) \to \mathcal{F}_\Delta^\gamma,$ where the corresponding norm satisfies $||S_{\epsilon}|| \leq \epsilon$. Also, AQE at scale $O(\mu^{-\gamma})$ implies the existence of an ONB of *L* 2 -normalized quasi-modes

$$
(-\alpha_n^{-2}\Delta-1)f_n=O_{L^2}(\alpha_n^{-\gamma})
$$

that are QUE, Corollary 2.8 in [CG].

On Riemannian manifolds s.t. the measure of the set of closed geodesics is $=$ 0, AQE holds at scale $\mu^{-1}.$ It follows that there exists and ONB of $o_{L^2}(\alpha_n^{-1})$ quasimodes "on the base" (uniquely equidistributed), Corollary 2.9 in [CG].

Many earlier results: Fix a basis {*un*} of eigenfunctions of ∆. Prove QE for the "rotated" basis {*Uun*}, where

$$
U=\oplus_k U_k
$$

is a "block diagonal" unitary operator, dim $\text{Ran} U_k < \infty$ and dim Ran $U_k \to \infty$ polynomially in *k*.

Zelditch, VanderKam, Maples - use Haar measure to choose *U^k* . Chang - uses more general (Wigner) measures to construct U_k , and uses results of Bourgade and Yau (2013). Consider the operator $P = -U\Delta U^*$, where $U \approx$ Id. Then *P* = −(*I* + *S*)∆, where ||*S*||*^L* ²→*L* ² is small. In [CG], the operators *U^k* are replaced by nearly unitary operators; Hanson-Wright inequality is used in place of LLN. This allows to use smaller spectral windows, show that the perturbation is often regularizing, and prove QUE.

Sketch of the proof of Theorem 2: compare the heat trace of ∆ on **R** *^d* with the heat trace on Ω, as in Gerard-Leichtnam, 1993. Key estimate: let *k*(*t*, *x*, *y*) be the heat kernel for the "free" laplacian, and $k_D(t, x, y)$ the heat kernel for the Dirichlet Laplacian on Ω. Key estimate:

$$
|\partial_{x}^{\alpha}(k(t,x,y)-k_{D}(t,x,y))|\leq C_{\delta}t^{-N_{\alpha}}e^{-c_{\delta}/t},\qquad d(x,\partial\Omega)>\delta.
$$
\n(3)

Proof uses results about Brownian motion and works for domains that are only regular.

 $\mathbb{E}^{\chi}(f(B_t); t < \tau_{\Omega}) = \int_{\Omega} p(t,x,y)f(y)dy$, where $f: \Omega \to \mathbf{R}, \mathbb{E}^{\chi}$ expectation w.r. to the law of BM started at *x*;

 $\tau_{\Omega} = \{\inf t > 0 : b_t \notin \Omega\}.$ Here $p(t,x,y) = \sum_i e^{-t\mu_i^2/2}\phi_i(x)\phi_i(y)$ - heat kernel for the Dirichlet Δ in Ω , $-\Delta\phi_i = \mu_i^2\phi_i$. Let

$$
J_{\epsilon,\lambda}:=\{i:\mu_i\in[\lambda,\lambda(1+\epsilon)]\}.
$$

।
≮□ ኦ ⊀@ ኦ ⊀ Ξ ≯ ⊀ Ξ → Ξ → 9Q(V

The following result ([CG], Theorem 4.2) is establishes for $\mathcal{A} \in \Psi(\mathbf{R}^{d})$ with $\sigma(\mathcal{A})$ compactly supported in Ω ; here $\overline{\mathcal{A}}$ = average of $\sigma(A)$:

Theorem 4: Fix $\epsilon > 0$. Then $J_{\epsilon,\lambda}$ is nonempty for large λ and

$$
\lim_{\lambda\to\infty}\left|\frac{1}{|J_{\epsilon,\lambda}|}\sum_{i\in J_{\epsilon,\lambda}}\langle (A-\overline{A})1_{\overline{\Omega}}\phi_j,1_{\overline{\Omega}}\phi_j\rangle\right|=0.
$$

Also,

$$
\frac{|J_{\varepsilon,\lambda}|}{\lambda^d}\to \frac{(1+\varepsilon)^d-1}{(4\pi)^{d/2}\Gamma(d/2+1)}.
$$

Theorem 4 implies Theorem 2. Theorem 4 is proved using trace asymptotics (Lemma 4.3 in [CG]) and a Tauberian theorem (Lemma 4.4 in [CG]). In the proof of the Tauberian theorem, the estimate [\(3\)](#page-22-0) is established using the Markov property of BM.

Next, Hanson-Wright inequality (the version in Rudelson-Vershynin, 2013) is used to show that random (Haar) rotations of small groups of eigenfunctions are QUE; the size of the group depends on the remainder in Weyl's law. Let $u=(u_1,\ldots,u_n)$ - ON set of bounded functions in $L^2(\overline{\Omega});$ $Q = q_{ii}$ - random (Haar) $n \times n$ orthogonal matrix. Let $v = (v_1, \ldots, v_n)$ be given by

$$
v_i(x)=\sum_j q_{ij}u_j(x);
$$

KERKARKERKER E KORA

random rotation of *u*.

Theorem 5: Let $A: L^2(\Omega) \to L^2(\Omega)$ be a bounded operator. Then

$$
\mathbb{P}\left(\left|\langle A v_i, v_i\rangle - \frac{1}{n}\sum_{i=1}^n \langle A u_i, u_i\rangle\right| \geq t\right) \leq
$$

 C_1 exp[$-C_2(||A||)$ min{ t^2 , t }*n*],

where C_1 only depends on *d* and Ω , and $C_2(||A||)$ depends on *d*, Ω and the operator norm ||*A*||.

The proof uses the following version of Hanson-Wright inequality (a la Rudelson-Vershynin). A r.v. *X* is *sub-Gaussian* iff the norm

$$
||X||_{\psi_2} := \sup_{\rho \geq 1} \frac{(\mathbb{E}|X|^{\rho})^{1/\rho}}{\rho^{1/2}}.
$$

is finite.

Let $M = m_{ij}$ be $n \times n$ matrix; X_1, \ldots, X_n - independent RV-s with $\mathsf{mean}\ 0$ and $||\mathcal{X}_j||_{\psi_2} \leq K.$ Let $R = \sum_{i,j} m_{ij} \mathcal{X}_i \mathcal{X}_j.$ The $\forall t \geq 0,$

$$
\mathbb{P}(|R-\mathbb{E}(R)|\geq t)\leq 2\ \exp\left[-C\min\left\{\frac{t^2}{K^4||M||_{HS}^2},\frac{t}{K^2||M||}\right\}\right],\tag{4}
$$

where $||M||$ denotes the operator norm, and $||M||_{HS}$ denotes the Hilbert-Schmidt norm of *M*.

Applying HW: Let *qⁱ* be the *i*-th row of *Q*. Let *z* be the standard *n*-dimensional Gaussian; then *z*/||*z*|| is uniformly distributed in S^{n-1} (like q_i); and is independent of $||z||.$ Let r_i have the same distribution as $||z||$, for all *i*; then $w_{ii} = r_i q_{ii}$ are iid standard Gaussians.

Let $H = (h_{jk}) = \langle A u_j, u_k \rangle$. Let

$$
A_i = \langle Av_i, v_i \rangle = \sum_{j,k} q_{ij} q_{ik} h_{jk}.
$$

Let $A_i' = r_i^2 A_i = \sum_{j,k} w_{ij} w_{ik} h_{jk}.$ The operator H in u_j coordinates is given by Π*A*Π where Π is the projection of *L* ² onto span of ${u_i}$, so $||H|| \le ||A||$. Also, $||H||_{HS} \le ||A|| \sqrt{n}$.

Apply HW with $X_i = r_i q_i$, i.e. $(X_i)_j = r_i q_{ij}$, and $M = H$, and $R = A'_i$. Then $K = C \cdot ||A||$, $||M|| \le ||A||$ and $||M||_{HS} \le ||A|| \sqrt{n}$. Application of HW gives

$$
\mathbb{P}(|A'_i - \mathbb{E}(A'_i)| \geq t) \leq 2 \exp \left[-C(||A||) \min\{t^2/n, t\}\right],
$$

where *C*(||*A*||) = *O*(min{||*A*||−¹ , ||*A*||−2}). Next, HW implies that

$$
\mathbb{P}(|r_i^2 - n| \ge t) \le 2 \exp \left[-C \min\{t^2/n, t\}\right],
$$

 $\mathsf{Also\ note\ that\ }|\mathcal{A}_i|\leq ||\mathcal{A}||_{L^2\rightarrow L^2}||\mathcal{V}||^2=||\mathcal{A}||_{L^2\rightarrow L^2},$ and also $\mathbb{E}(\mathcal{A}'_i) = n \cdot \mathbb{E}(\mathcal{A}_i) := n$ B, where $B = (\sum_i A_i)/n$.

Combining the above observations, we see that

$$
\mathbb{P}(|A_i - B| \ge t) \le \mathbb{P}(|nA_i - A'_i| \ge \frac{nt}{2}) + \mathbb{P}(|A'_i - \mathbb{E}(A'_i)| \ge \frac{nt}{2})
$$

\n
$$
\le \mathbb{P}(|(r_i^2 - n)A_i| \ge \frac{nt}{2}) + \mathbb{P}(|A'_i - \mathbb{E}(A'_i)| \ge \frac{nt}{2})
$$

\n
$$
\le \mathbb{P}(|(r_i^2 - n)| \ge \frac{nt}{2K}) + \mathbb{P}(|A'_i - \mathbb{E}(A'_i)| \ge \frac{nt}{2})
$$

\n
$$
\le C_1 \exp[-C_2(||A||) \min\{t^2, t\}n].
$$

K ロ ▶ K (日) K (ミ) K (王) X (三) 9 Q (9

QED

Spectral preliminaries:

Let $\Psi = (\psi_i)$ be an ONB of $L^2(\overline{\Omega})$. Let $\Lambda = (\lambda_i)_{i\geq 1} \subset \mathbf{R}$. For $s > 0$

$$
\mathcal{F}^s(\Psi,\Lambda):=\left\{f\in L^2(\overline{\Omega}): \sum (1+|\lambda_i|^2)^{s/2}|\langle f,\psi_i\rangle|^2<\infty\right\}.
$$

For $s < 0$, let $\mathcal{F}^s(\Psi, \Lambda) := (\mathcal{F}^{-s}(\Psi, \Lambda))^*$. Also,

$$
T_{\Psi,\Lambda}f=\sum_i\lambda_i\langle f,\psi_i\rangle\psi_i.
$$

Lemma 1: Let $\Lambda' = (\lambda'_i)$. If $|\lambda_i - \lambda'_i| < \epsilon (1 + |\lambda_i|^2)^{(1 - \gamma)/2}$, then the norms $|| \cdot ||_{\mathcal{F}^{s}(\Psi,\Lambda)}$ and $|| \cdot ||_{\mathcal{F}^{s}(\Psi,\Lambda')}$ are equivalent, and

$$
||\mathcal{T}_{\Psi,\Lambda'}-\mathcal{T}_{\Psi,\Lambda}||_{\mathcal{F}^s(\Psi,\Lambda)\to\mathcal{F}^{s-1+\gamma}(\Psi,\Lambda)}\leq \epsilon.
$$

 $\tt Lemma 2: Assume $|\lambda_i| > c > 0, |\lambda_i| \to \infty;$ let $\mathsf{\Gamma} = (1/\lambda_i).$ Then$ $L^2(\overline{\Omega})$ ⊂ $\mathcal{F}(\Phi,\Gamma)$, Ran $\mathcal{T}_{\Phi,\Gamma}$ ⊂ $\mathcal{F}(\Phi,\Lambda)$ and $\mathcal{T}_{\Phi,\Lambda}\mathcal{T}_{\Phi,\Gamma} = I$.

Let $\Phi = \{\phi_i\}$ be a (Dirichlet) ONB of $L^2(\overline{\Omega})$, with eigenvalues $\lambda_i = \mu_i^2$.

Lemma 3: Notation as above, $\mathcal{F}(\Phi, \Lambda) = \mathcal{F}_{\Delta}$ (the domain of the Dirichlet Δ) and $T_{\Phi} \Gamma \Delta f = -f$.

Constructing the perturbation: recall that Ω is assumed to be AQE at scale $\mu^{-\gamma}$. Let $\bar{\gamma} = \gamma/2$.

Divide the real line into intervals $\mathbf{R}^+ = J_0 \cup J_1 \cup \ldots$ as follows:

$$
[0,(1+\epsilon)\cup[(1+\epsilon),(1+\epsilon)^2)\cup\ldots
$$

Divide each of the intervals $J_n = [(1 + \epsilon)^n, (1 + \epsilon)^{n+1})$ into $N_n = \lceil (1 + \epsilon)^{n\bar{\gamma}} \rceil$ disjoint intervals, denoted by $I_{n,1}, I_{n,2}, \ldots, I_{n,N_n}$ where $\mathrm{I}_{n,j} = [a_{n,j}, b_{n,j})$ is given by

$$
\left[(1+\epsilon)^n \left(1+\frac{j\epsilon}{N_n} \right), (1+\epsilon)^n \left(1+\frac{(j+1)\epsilon}{N_n} \right) \right).
$$

KERKARKERKER E KORA

Step 1: Don't move the eigenvalues in J_0 . For all eigenvalues in $\lambda_i \in I_{n,j}$, let $\lambda'_i = a_{n,j}$; move them to $a_{n,j}$. Let $\Lambda' = (\lambda'_i)$. Lemma 1 \Longrightarrow $\mathcal{F}^{\mathcal{S}}(\Phi,\Lambda')=\mathcal{F}^{\mathcal{S}}(\Phi,\Lambda)$ and $||T_{\Phi,\Lambda'}-T_{\Phi,\Lambda}||_{\mathcal{F}^s\to\mathcal{F}^{s-1+\bar{\gamma}}} \leq 2\epsilon.$ **Step 2:** Perform a random rotation of all $\{\phi_i : \lambda_i = a_{n,j}\}$; call the resulting functions ϕ'_i , they still form a basis Φ' . **Step 3:** Next, make all the eigenvalues in J_0 distinct; decrease them by at most 1/(1 – ϵ) if necessary. Also, make all the λ'_i distinct again, but keep them all in I*n*,*^j* (the interval that contained the corresponding λ_i -s). Call the corresponding eigenvalues λ''_i , and their union Λ'' . Lemma $1 \implies$

$$
\mathcal{F}^{\mathcal{S}}(\Phi',\Lambda'')=\mathcal{F}^{\mathcal{S}}(\Phi',\Lambda')=\mathcal{F}^{\mathcal{S}}(\Phi,\Lambda')=\mathcal{F}^{\mathcal{S}}(\Phi,\Lambda)
$$

and

$$
||\mathcal{T}_{\Phi',\Lambda''}-\mathcal{T}_{\Phi,\Lambda'}||_{\mathcal{F}^S\rightarrow \mathcal{F}^{S-1+\bar{\gamma}}}\leq \epsilon, ||\mathcal{T}_{\Phi',\Lambda''}-\mathcal{T}_{\Phi,\Lambda}||_{\mathcal{F}^S\rightarrow \mathcal{F}^{S-1+\bar{\gamma}}}\leq 10\epsilon
$$

KERK ERKER EI VAN

Let
$$
\Gamma = {\lambda_i^{-1}}
$$
, and let $G = T_{\Phi,\Gamma}$. Lemma 2 $\implies TG = I$. Let $T = T_{\Phi,\Lambda}$, $T'' = T_{\Phi',\Lambda''}$. Let

$$
S:=(T''-T)G=T''G-I.
$$

Then $S: L^2 \to \mathcal{F}^{\bar{\gamma}}$.

Proof of Theorem 3: The operator *S* satisfies the conclusion of Theorem 3.

First, $||Sf||_{F^{\gamma}} < 10 \epsilon ||Gf||_{F} < C \epsilon ||f||$. This + Lemma 3 \Longrightarrow $||S|| < \epsilon$, part (i) of Theorems 1 and 3. Next, $-(I + S)\Delta = T''$ - positive on \mathcal{F}_{Δ} , part (ii) of Theorems 1 and 3.

Part (iii) of Theorems 1 and 3 follows from the fact that Φ' is still a Dirichlet basis of $L^2(\overline{\Omega})$.

It remains to prove the (most important) QUE part (iv).

Denote by $|{\rm I}_{n,j}|$ the number of $\lambda_i \in {\rm I}_{n,j}.$ By the AQE assumption at scale $\alpha(\mu) = \mathcal{O}(\mu^{-\gamma} = \mu^{-2\bar{\gamma}}),$

$$
\lim_{n\to\infty}\frac{1}{|I_{n,j}|}\left|\sum_{i\in I_{n,j}}\left\langle (A-\overline{\sigma_A})1_{\overline{\Omega}}\phi_i,\phi_i\right\rangle\right|=0.
$$
 (5)

Here

$$
\overline{\sigma_A} = \frac{1}{\text{Vol}(1 \leq |\xi| \leq 1 + r_+)} \int \int_{1 \leq |\xi| \leq 1 + r_+} \sigma(A)(x, \xi) \mathbf{1}_{\overline{\Omega}} dx d\xi
$$
\nwhere $r_+ = \sqrt{\frac{1 + (j+1)\epsilon/N_n}{1 + j\epsilon/N_n}} = 1 + \frac{\epsilon}{2N_n} + O(\epsilon^2/N_n).$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 수 있어

Theorem 5 \implies that $\forall t \in (0, 1)$,

$$
\mathbb{P}\left(\left|\langle A1_{\overline{\Omega}}\phi'_i,1_{\overline{\Omega}}\phi'_i\rangle-\frac{1}{|I_{n,j}|}\sum_{\lambda_i\in I_{n,j}}\langle A1_{\overline{\Omega}}\phi_i,1_{\overline{\Omega}}\phi_i\rangle\right|\geq t\right)\leq
$$

 $C_1 \exp[-C_2(||A||) \min\{t^2, t\} | I_{n,j}].$

It follows that

$$
\mathbb{P}\left(\max_{i\in I_{n,j}}\left|\langle A1_{\overline{\Omega}}\phi'_i,1_{\overline{\Omega}}\phi'_i\rangle-\frac{1}{|I_{n,j}|}\sum_{\lambda_i\in I_{n,j}}\langle A1_{\overline{\Omega}}\phi_i,1_{\overline{\Omega}}\phi_i\rangle\right|\geq t\right)\leq
$$

$$
C_1
$$
| $I_{n,j}$ | exp[- C_2 (|| A ||) min{ t^2 , t }| $I_{n,j}$ |].

It follows from Weyl's law that

$$
\sum_{n} \sum_{1 \leq j \leq N_n} C_1 |I_{n,j}| \exp[-C_2(||A||) \min\{t^2, t\} |I_{n,j}|] < \infty.
$$

K ロ ▶ K (日) > K ミ ▶ K ミ ▶ → ミ → り Q (V

It follows from Borel-Cantelli Lemma that

$$
\mathbb{P}\left(\left|\langle A1_{\overline{\Omega}}\phi'_i,1_{\overline{\Omega}}\phi'_i\rangle-\frac{1}{|I_{n,j}|}\sum_{\lambda_i\in I_{n,j}}\langle A1_{\overline{\Omega}}\phi_i,1_{\overline{\Omega}}\phi_i\rangle\right|\geq t:
$$

 $\lambda_i \in {\rm I}_{n,j}$ for inf. many $n,j)=0.$

Application of [\(5\)](#page-34-0) show that $\forall \delta > 0$,

$$
\mathbb{P}\left(\limsup_{i\to\infty}\left|\langle A1_{\overline{\Omega}}\phi'_i,1_{\overline{\Omega}}\phi'_i\rangle-\overline{\sigma_A}\right|\geq \delta\right)=0.
$$

Applying that argument for a dense set of operators $\mathcal{A}\in\mathcal{C}_0(\mathcal{S}^*\Omega)$ finishes the proof of Theorem 3, and hence also of Theorem 1. QED

The existence of $O({\alpha_n})^{-\gamma})$ quasimodes (Corollary 2.8 in [CG]) f ollows from $-(I + S)\Delta f_n = T''f_n = \alpha_n^2 f_n$ (where f_n coincides with one of the $\phi'_{\boldsymbol{n_j}}$ s) and hence

$$
||Sf_n||=||(T''-T)\phi'_{n_j}||\leq C\epsilon(1+|\alpha_n|^2)^{-\gamma/2}.
$$

On closed manifolds, we consider functions in $L_0^2(M)$, orthogonal complement to constants. On that space, the proof of Theorem 1 proceeds as before. Note that $\gamma = 1, \bar{\gamma} = 1/2$ in that case.

The proof of Corollary (2.9) in [CG] uses local Weyl's law with remainder on *M*, and dividing the spectrum into slightly smaller intervals: I_n is now divided into $\mathcal{N}_n := \lceil (1+\epsilon)^{n/2} \rceil \beta_n$, where $\beta_n \to \infty$ slowly enough.