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Abstract. In these notes we review some of the recent progress on questions related to
spectral gaps of Hecke operators on compact Lie groups. In particular, we discuss the
historical Ruziewicz problem that motivated the discovery of the first examples, followed by
the work of Gamburd-Jakobson-Sarnak [5], Bourgain-Gamburd [3],[2] and also the recent
paper of Benoist-Saxcé [1].

1. Introduction

Let G be a compact connected Lie Group whose normalized Haar measure is denoted by
m. Let µ be a probability measure on G. On the Hilbert space L2(G, dm), we define a
convolution operator by

Tµ(f)(x) :=

∫
G
f(xg)dµ(g).

We can check easily that Tµ : L2 → L2 is bounded linear with norm 1. The constant function
1 is an obvious eigenfunction related to the eigenvalue 1. If in addition µ is symmetric i.e.
µ(A−1) = µ(A) for all Borel set A, then Tµ is self-adjoint. The main purpose of these notes
is the following question. Set

L2
0(G) :=

{
f ∈ L2(G) :

∫
G
fdm = 0

}
.

Clearly L2
0 is a closed Tµ-invariant space. If we have (ρsp is the spectral radius)

ρsp(Tµ|L2
0
) < 1,

then we say that Tµ has a spectral gap. There is an easy case: if µ is symmetric and has a
continuous density with respect to Haar, then by Ascoli-Arzuela Tµ is a compact operator and
one can check that 1 is a simple eigenvalue while −1 is not in the spectrum.

Therefore we will focus on non absolutely continuous examples such as

µS :=
1

|S|
∑
g∈S

δg,

where δg is the dirac mass and S is a finite symmetric set

S = {γ1, γ2, . . . , γp, γ
−1
1 , . . . , γ−1

p }.
In that case we simply have

Tµ(f)(x) =
1

|S|
∑
g∈S

f(xg),
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which is called a ”Hecke operator”. This operators were born out of various problems among
which the Ruziewicz measure problem which is a historical motivation, see below. There is
one fundamental observation that we must mention. Hecke operators on torii can never have
a spectral gap. Indeed, let’s have a look at S1 = {z ∈ C : |z| = 1}, endowed with the
normalized Haar measure. Let

S := {eiθ1 , . . . , eiθp},
and consider the family of functions fk, k ∈ N \ {0} with

fk(z) := zk.

Obviously we have ‖f‖L2 = 1 and
∫
fkdm = 0, while

‖Tµ(fk)‖2L2 =
1

2πp2

∫ 2π

0

∣∣∣∣∣
p∑
`=1

eik(θ+θ`)

∣∣∣∣∣
2

dθ =
1

p2

∣∣∣∣∣
p∑
`=1

eikθ`

∣∣∣∣∣
2

.

By the Dirichlet Box Principle, for all ε > 0, one can find k(ε) >> 1 such that∣∣∣∣∣
p∑
`=1

eikθ`

∣∣∣∣∣ ≥ p− ε.
This shows that ‖Tµ|L2

0
‖ = 1. More generally, the same idea gives

‖TNµ |L2
0
‖ = 1

for all N large and therefore

ρsp(Tµ|L2
0
) = lim

N→+∞

(
‖TNµ |L2

0
‖
)1/N

= 1.

The same type of argument works on general torii. The lesson of this observation is that
non-commutativity must play a key role in the mechanism that produces a spectral gap for
Hecke operators.

One way to attack this problem is to remember that convolutions operators are leaving
invariant coefficients of representations. Combining this with Peter-Weyl Theorem, we can
restrict Tµ to the representation spaces: if ρ is an irreducible complex representation of G
acting unitarily on the finite dimensional representation space Vρ, we have to study

Tµ,ρ :=

∫
G
ρ(g)dµ(g) : Vρ → Vρ.

If µ is symmetric, then this is a self-adjoint matrix acting on Vπ. It is not difficult to see that
the spectral gap problem is equivalent to prove that there exists a uniform r < 1 such that
for all ρ non trivial,

ρsp(Tµ,ρ) ≤ r.
In the case of Hecke operators, it is equivalent to show that the sum of unitary operators
(which is self adjoint if S is a symmetric set),

1

|S|
∑
g∈S

ρ(g) : Vρ → Vρ

has a norm which is uniformly bounded away from 1 when ρ ranges over all non trivial
representations.
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2. The Ruziewicz problem

In this section, we will outline the genesis of the spectral gap problem through the (now
solved) Ruziewicz measure problem. Our basic references for this matter are the books of
Sarnak [7] and Lubotzky [6]. Let Sn be the unit sphere in Rn+1. We denote by λ the
Lebesgue measure, defined on its complete σ-algebra. As usual L∞(Sn) denotes the space of
Lebesgue-measurable, essentially bounded functions on Sn.

Definition 1. A linear functional ν : L∞(Sn)→ R is called an invariant mean iff we have:

• f ≥ 0 implies that ν(f) ≥ 0.
• ν(1) = 1.
• For all t ∈ SO(n+ 1) and f ∈ L∞(Sn), we have ν(ft) = ν(f), where ft(x) = f(t.x).

To each invariant mean ν one can associate a finitely additive measure on Lebesgue sets by
setting

ν(A) := ν(χA)

where χA is the characteristic function of set A. On the other hand, we know by the Riesz-
Kakutani representation theorem that ν, which is obviously a continuous linear functional on
C0(Sn) is a Borel measure, hence countably additive on Borel sets.

It is tempting to believe that such an invariant mean is automatically a countably additive
measure on Lebesgue sets (and therefore proportional to Lebesgue measure), but this is false
in general !

Theorem 2. (Rudin) There exists an invariant mean ν on S1 which is not Lebesgue measure.

Proof. Let A ⊂ S1 be an open and dense set such that λ(A) < 1. Consider

H = Span{ft − f : t ∈ S1, f ∈ L∞} ⊂ L∞(S1)

We need to find some supplementary space to H which is bigger than the space of constant
functions. The following Lemma is the core fact.

Lemma 3. For all h ∈ H, we have InfessA(h) ≤ 0.

Let us prove that thing. We write

h =

N∑
k=1

((fk)tk − fk) ,

with fk ∈ L∞(S1) and t1, . . . , tk ∈ S1. We then pick x ∈ A such that for all

t ∈ Nt1 + Nt2 + . . .+ NtN ,
we have x+ t ∈ A. Such an x is legit by the Baire category theorem. Next we consider

T (x) :=
∑

α∈{1,...,M}N
h(x+ α1t1 + . . .+ αN tn).

If Infess(h) = ε > 0 then we get

T (x) ≥MN ε.

On the other hand, a telescoping series argument shows that

|T (x)| ≤
N∑
k=1

∣∣∣∣∣∑
α

(fk(x+ tk + α.t)− fk(x+ α.t)

∣∣∣∣∣ ≤ 2N max
k
‖fk‖L∞MN−1.
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We get a contradiction by choosing M large enough. �.

Going back to the main proof, we consider the sum

V := H ⊕ R1⊕ RχAc .
This sum is indeed direct by the preceding Lemma. We define ν uniquely on V by setting

ν(h+ α+ βχAc) := α.

Because we have (Lemma again)

|ν(h+ α+ βχAc)| = |α| ≤ SupessA|h+ α+ βχAc | ≤ ‖h+ α+ βχAc‖L∞ ,
we can use Hahn-Banach to extend the functional ν to L∞(S1) in such a way that

|ν(f)| ≤ ‖f‖L∞ .
Because we have obviously ν(1) = 1, it implies that ν is positive (exercise!). Obviously
ν(H) = 0 so ν is an invariant mean and

ν(Ac) = 0 6= λ(Ac) = 1− λ(A) > 0,

so ν is not Lebesgue measure. �

It turns out that this construction of ”exotic” measures is related to the ideas encountered
in the theory of amenable groups (which is a notion relevant for topological groups with
discrete topology). We will see later on that the only invariant mean is on Sn for n ≥ 2
is Lebesgue measure. Banach-Tarski paradox tells us something weaker: an invariant mean
has to be absolutely continuous with respect to Lebesgue, see Lubotzky [6], chapter 2. The
goal of this section is to show the following fact which connects clearly Ruziewicz problem to
existence of Hecke operators with spectral gaps.

Proposition 4. Assume that S = {γ1, γ2, . . . , γp, γ
−1
1 , . . . , γ−1

p } ⊂ SO(n + 1) and that the
associated Hecke operator

TS :=
1

|S|
∑
g∈S

δg : L2(SO(n+ 1))→ L2(SO(n+ 1))

has a spectral gap. Then Lebesgue measure on Sn is the only invariant mean.

Proof. The easiest proof proceeds through rather delicate abstract arguments of functional
analysis which we outline here. Since we have a diffeomorphism Sn ' SO(n+ 1)/SO(n), the
spectral gap property on L2(SO(n + 1)) implies a spectral gap on L2(Sn) and we will still
denote Hecke operators on the Sphere by

TS(f)(x) :=
1

|S|
∑
g∈S

f(g.x).

Observe that given an invariant mean ν ∈ L∞(Sn), we do have ν ∈ (L1(Sn))∗∗ the topological
bidual of L1. By weak-∗ density of L1 into its bidual (and convexity arguments) 1 we can find
a sequence 2 (hk) in L1(Sn) such that

1See Rudin’s functional analysis, chapter 3, Theorem 3.13.
2Here we are cheating a lot: the weak-∗ topology is not metrizable so ν may not be a weak-∗ limit of a

sequence of L1-elements. Hence, the correct proof needs to rely on the existence of a converging net (hα)α or on
Bourbaki’s delightful notion of filter. Since this does not change the main argument, we avoid this technicality
here.
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• limk→∞ hk = ν (in weak ∗ sense).
• For all k,

∫
hkdλ = 1.

• For all γ ∈ S, limk→∞ ‖hk ◦ γ − hk‖L1 = 0.
• For all k, hk ≥ 0.

We now set fk :=
√
hk. Obviously fk ∈ L2 and ‖fk‖L2 = 1. Since we have 3

‖fk ◦ γ − fk‖2L2 ≤ ‖hk ◦ γ − hk‖L1 ,

we also obtain that for all γ ∈ S, fk ◦ γ − fk → 0 in L2 as k → +∞. We now fix ε > 0. By
the spectral gap property, one can find N such that for all k,

‖TNs (fk)− 1‖L2 ≤ ε.

On the other hand for all k large enough we have

‖TNS (fk)− fk‖L2 ≤ ε.

Hence we have

lim
k→∞

‖fk − 1‖L2 = 0.

On the other hand, by Cauchy-Schwarz

‖hk − 1‖L1 ≤ ‖fk + 1‖L2‖fk − 1‖L2 ≤ 2‖fk − 1‖L2 .

We conclude therefore that for all ϕ ∈ L∞,

ν(ϕ) = lim
k→∞

∫
hkϕdλ = λ(ϕ).

The proof is done. �
The crucial fact we used here is that, in operator norm,

lim
N→+∞

‖TNS |L2
0
‖ = 0,

which is much weaker than the spectral gap property. An alternative way to obtain uniqueness
of invariant means is to rely on the so-called Kazhdan property (T).

Definition 5. A locally compact group G has Kazhdan property (T) if there exists ε > 0
and a non-empty compact subset K ⊂ G such that for all irreducible unitary representation
ρ : G→ Vρ, we have that for all v ∈ Vρ with ‖v‖ = 1,

‖ρ(k)v − v‖ ≥ ε,

for some k ∈ K.

The main observation is the following.

Proposition 6. Assume that one can find a finitely generated, Zariski dense subgroup Γ ⊂
SO(n+ 1) with property (T), then the only invariant mean on Sn is Lebesgue measure.

Proof. We give only the outline. Let S be a finite system of generators for Γ. First we start
as in the previous proof, until we come up with a sequence fk ∈ L2 with ‖fk‖L2 = 1 and such
that for all γ ∈ S,

fk ◦ γ − fk →L2 0.

3Which follows from the fact that for a, b ≥ 0, (a− b)2 ≤ |a2 − b2|.
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Using Peter-Weyl theorem and Plancherel formula, we can restrict ourself to the case when
fk is a sequence of coefficients of a fixed irreducible unitary non-trivial representation ρ of
SO(n+ 1). This means that

fk(x) = Tr(ρ(x)Ak),

for some matrices Ak ∈ End(Vρ). Computing ‖fk ◦ γ − fk‖L2 , we obtain that the Hilbert-
Schmidt norms

‖ρ(γ)Ak −Ak‖HS
must tend to 0 as k → +∞, for all γ ∈ S. Because Γ is Zariski dense in SO(n + 1) any
irreducible representation of SO(n+ 1) restricted to Γ is also irreducible. We also point out
that Kazdhan holds with S in place of K. It is now clear that

inf
k
‖Ak‖HS = 0,

otherwise we would get a contradiction with Kazhdan property which says that there exists
ε > 0 such that for all k there exists γk ∈ S with

‖ρ(γk)Ak −Ak‖HS ≥ ε.

Therefore, by passing to a subsequence (or a subnet), we get that

lim
k→+∞

‖fk − 1‖L2 = 0.

The end of the proof is the same. �
By considering arithmetic lattices in SO(n − 2, 2) × SO(n), Sullivan [8] was able to show

property (T) for certain finitely generated subgroups of SO(n) for all n ≥ 5 and thus solving
Ruziewicz problem for Sn with n ≥ 4. The case of S2 and S3 was solved by Drinfeld [4] using
sophisticated arguments based on Jacquet-Langlands correspondence.

3. Examples of operators with spectral gap for SU(2)

Our main goal in this section is to show how to construct Hecke operators with spectral gap
on SU(2) (and therefore SO(3)), following the elementary approach of Gamburd-Jakobson-
Sarnak [5].

3.1. A refresher on SU(2). Below we recall some facts on the representation theory of
SU(2). Recall that SU(2) is just the group of matrices

g =

(
α β

−β α

)
, α, β ∈ C s.t. |α|2 + |β|2 = 1.

Let Pm denote the complex vector space of Homegeneous polynomials of degree m with two
variables, i.e. the vector space of dimension m+ 1 spanned by

fj(u, v) := ujvm−j , j = 0, . . . ,m

The representation ρm : SU(2)→ Pm is defined by

ρm(g)f(u, v) := f(au+ cv, bu+ dv),

if we have

g =

(
a b
c d

)
.
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These representation are irreducible and exhaust (up to equivalence) all the irreducible rep-
resentations of SU(2). Given m ≥ 0, one defines the character of ρm by

χm(g) := Tr(ρm(g)).

Characters are central functions i.e. for all x, g ∈ SU(2) we have

χm(gxg−1) = χm(x).

By a classical linear algebra result (actually Cartan’s theorem on maximal torii), each element
g ∈ SU(2) is conjugate to a diagonal element

g(r) :=

(
eir 0
0 e−ir

)
.

The character formula says that for each g(r) we have

χm(g(r)) =
sin((m+ 1)r)

sin(r)
,

with the obvious convention that

χm(g(kπ)) = (−1)mk(m+ 1).

3.2. Hecke operators. Given a symmetric set S = {γ1, γ2, . . . , γk, γ
−1
1 , . . . , γ−1

k }, we asso-
ciate the Hecke operator

Tm : Pm → Pm

defined by

Tm(f) :=
∑
γ∈S

ρm(γ)f.

Endowing Pm with an inner product which make each ρm(g) unitary, we observe that Tm is
self-adjoint. What we would like is to exhibit some sets S such that we have, uniformly for
all m large enough,

‖Tm‖Pm ≤ 2k − ε
for some ε > 0.

We start with a combinatorial observation. Let Γ be the group generated by S and we
assume in the latter that Γ is free. A word in γα ∈ Γ given by

γα := γα1γα2 . . . γαn

is called reduced iff γαj+1 6= γ−1
αj for all j = 1, . . . , n− 1. The length n is denoted by |α|. Set

p = 2k − 1 and let Un(X) be the Tchebychev polynomial of the second kind 4 such that

Un(cos(θ)) =
sin((n+ 1)θ)

sin(θ)
,

for all θ ∈ R. A key observation is the following.

pn/2Un

(
Tm
2
√
p

)
=
∑

0≤k≤n
k≡n[2]

∑
|α|=k

α reduced

ρm(γα).

4We have U0(X) = 1, U1(X) = 2X, and for all n ≥ 2,

Un+1(X) = 2XUn(X)− Un−1(X).
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The proof is elementary by induction on n, exploiting the inductive formula for Un(X). We
will write the eigenvalues of Tm as λj = 2

√
p cos(θj,m), j = 0, . . . ,m, having in mind that θj,m ∈ [0, π] if |λj | ≤ 2

√
p

θj,m = iξj,m ∈ iR+ if λj > 2
√
p

θj,m = π + iξj,m ∈ π + iR+ if λj < −2
√
p
.

All eigenvalues with |λj | ≤ 2
√
p will correspond to the bulk of the spectrum whereas the others

will be called exceptional. The starting point of the strategy of Gamburd-Jakobson-Sarnak
is to compute the traces (using the character formula):

pn/2
m∑
j=0

sin((n+ 1)θj,m)

sin(θj,m)
=

′∑
|α|≤n

sin((m+ 1)rα)

sin(rα)
,

where the right sum is understood over all reduced words with length ≡ n [2]. Assuming n
even, we have ∑

ξj,m except.

sinh((n+ 1)ξj,m)

sinh(ξj,m)
+O(nm) =

1

pn/2

′∑
|α|≤n

sin((m+ 1)rα)

sin(rα)
.

Let us stare at this formula for a while. As n becomes large, the contribution of exceptional
eigenvalues is magnified since we have an exponential growth (in n) coming from sinh((n+1)ξ).
On the other hand, the bulk of the spectrum will contribute only to polynomial growth in n.
Let us prove an actual statement out of this observation.

Definition 7. Let Γ be the free group generated by S. We say that Γ satisfies condition (A)
iff there exists D > 0 such that for all reduced word γα ∈ Γ \ {Id} we have

γα ∼ ±
(
eirα 0

0 e−irα

)
,

with rα ∈ [D−|α|, π −D−|α|].

This is a diophantine-like condition: we ask that non-trivial elements in Γ cannot approach
too fast ±Id. We will see that this condition is satisfied for groups with algebraic generators.

Proposition 8. Assume that Γ satisfies (A), then for all r > 2
√
p, there exists ε(r) > 0 such

that as m→ +∞.

N(r) := #{λj,m : p+ 1 ≥ |λj,m| ≥ r} = O(m1−ε).

Proof. We set n = [β logm] where β > 0 will be adjusted later on. Using the trace formula
we have the bound

CN(r)enr̃ ≤ O(m log(m)) +O

m−α log(p)/2
′∑

|α|≤n

sin((m+ 1)rα)

sin(rα)

 ,

where r̃ > 0 is such that
2
√
p cos(ir̃) = r.

We therefore have

N(r) = O
(

log(m)m1−βr̃
)

+O

m−β log(p)/2
′∑

|α|≤n

sin((m+ 1)rα)

sin(rα)

 .
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Using condition (A), we write 5 (we must isolate the identity term from the other ones)∣∣∣∣∣∣
′∑

|α|≤n

sin((m+ 1)rα)

sin(rα)

∣∣∣∣∣∣ ≤ m+ 1 +O (npnDn) = O
(
m+ log(m)m+β(log(p)+log(D))

)
.

It is now clear that by taking β > 0 small enough so that

β(log(p)/2 + log(D)) < 1

we have obtained

N(r) = O(m1−ε),

for some ε(r,D, p) > 0. We have not attempted to optimize the exponents, but they can be
made explicit for sure. �

The above proposition clearly shows that for the large m limit, which corresponds to a semi-
classical limit in geometric quantization, the majority of the eigenvalues will concentrate in
the bulk [−2

√
p, 2
√
p]. Proving a spectral gap now requires that we are able to catch some

cancellations in the sums
′∑

|α|≤n

sin((m+ 1)rα)

sin(rα)
,

for n � log(m).
To this end, we will ”average over the representation parameter m” in the following way.

Let ϕ ∈ C∞0 ((1/2, 3/2) be a positive test function such that ϕ(1) = 1. We have the following
fact.

Lemma 9. Let 0 < r < π, m0 ≥ 1 and 0 < δ < 1. For all A ∈ N0, we have

∑
m∈Z

ϕ

(
m+ 1

m0 + 1

)
sin((m+ 1)r)

sin(r)
=

 O(m2
0) if 0 < r < mδ−1

0

OA

(
m−A0 (sin(r))−1

)
if r ∈ (mδ−1

0 , π)

Proof. The first case is a crude estimate. For the second claim, use Poisson summation
formula and then integrate by parts as much times as needed. �

When applying Lemma 9 to the trace identity, we will gain cancellations for all words α
with rα large enough. Thus the main obstacle is now to estimate how many ”bad words” α
with |α| ≤ n contribute to the small angles rα. Let us show which adhoc estimate implies a
spectral gap.

Definition 10. Let Γ be the free group generated by S. We say that Γ satisfies condition (B)
iff for all 0 < δ < 1, there exists C > 0 such that for all m0 and n large we have

#
{
|α| ≤ n : rα ∈ (0,mδ−1

0 ]
}
≤ C pn

m3−3δ
0

.

5We simply bound each character contribution by∣∣∣∣ sin(m+ 1)θ)

sin(θ)

∣∣∣∣ ≤ min

{
m+ 1,

1

| sin(θ)|

}
.
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This definition is plausible as long as one is aware of the following fact. Let f ∈ C∞(G)
be a central function i.e. a function that lives on the maximal torus{(

eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

}
.

Then f can be expanded in Fourier series (with uniform convergence) as

f(θ) =
∞∑
m=0

a(m)χm(θ),

with (by a well known formula for Haar measure induced on the maximal torus)

a(m) =

∫
G
f(g)χm(g)dg =

2

π

∫ π

0
f(θ)χm(θ) sin2(θ)dθ.

Set Cn :=
∑′
|α|≤n 1. Then the trace identities (for m fixed and n→∞) say that for all m ≥ 1,

lim
n→∞

1

Cn

′∑
|α|≤n

χm(rα) = 0

This fact combined with Fourier expansion actually shows that the angles rα become equidis-
tributed in the large n limit according to Haar measure:

lim
n→∞

1

Cn

′∑
|α|≤n

f(rα) = a(1) =
2

π

∫ π

0
f(θ) sin2(θ)dθ.

If f(θ) = 1[0,ε], we obtain that as n→ +∞,

lim
n→∞

1

Cn

′∑
rα∈[0,ε]

= O(ε3),

which explains the exponent 3 in the definition of condition (B). Therefore (B) is a strength-
ening of this equidistribution property, where one is able to keep track of small intervals. It
is expected to hold generically. We can finally show the following:

Theorem 11. Assume that both (A) and (B) hold, then the Hecke operator has a spectral
gap.

Proof. Let ξmaxm0
≥ 0 be such that

2
√
p cosh(ξmaxm0

) = max{p+ 1 ≥ |λj,m0 | : |λj,m0 | ≥ 2
√
p}.

We have a spectral gap whenever uniformly as m0 →∞ we have

2
√
p cosh(ξmaxm0

) < 2k = p+ 1,

i.e.

ξmaxm0
<

log(p)

2
.

We will choose n = [γ log(m0)] where γ > 0 will be specified later on. Combining Lemma 9
plus both (A) and (B), we get

sinh((n+ 1)ξmaxm0
)

sinh(ξmaxm0
)

= O(nm2
0) +O(m−∞0 ) +O(pn/2m−1+3δ

0 ),
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which shows that we must have for all m0 large,

γξmaxm0
≤ max{2 + ε,

γ

2
log(p)− 1 + ε},

therefore choosing any

γ >
4

log(p)

will do the job. One can even obtain some explicit estimates for the spectral gap (see [5])
which show that

max
j
|λj,m| ≤

√
p(p1/3 + p−1/3) + ε. �

Now it remains to exhibit some group generators which satisfy both (A) and (B). This is
where number theory is involved.

Let HZ := {x0 + ix1 + jx2 + kx3 : x0, x1, x2, x3 ∈ Z} be the set of integral quaternions
with the well known relations

i2 = j2 = k2 = ijk = −1.

Given g = x0 + ix1 + jx2 + kx3 ∈ HZ, we denote by

N(g) := gg = x2
0 + x2

1 + x3
2 + x2

3.

There a multiplicative homomorphism (exercise!) I : HZ → SU2(C) defined by

I(g) :=
1√
N(g)

(
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

)
.

Let q ≥ 3 be a prime number. Then

#{g ∈ HZ : N(g) = q} = 8q + 8.

It is possible to pick a set g̃1, . . . , g̃k ∈ {g ∈ HZ : N(g) = q} such that

g1 := I(g̃1), . . . , gk := I(g̃k)

and their inverses generate a free group Γ. Given a reduced element

gα = gα1 . . . gαn = I(g̃α1 . . . g̃αn) ∈ Γ,

we have

2 cos(rα) = Tr(gα) =
2xα0
qn/2

,

so that

sin(rα) =

√
qn − (xα0 )2

qn/2
.

Therefore (A) is clearly satisfied since if gα 6= Id we must have (xα0 )2 6= qn, and thus

sin(rα) ≥ q−n/2.
To check condition (B) one has to count solutions of the diophantine equation

x2
0 + x2

1 + x3
2 + x2

3 = qn, (x0)2 6= qn,

with the additional constraint that√
qn − (xα0 )2

qn/2
≤ N−1+δ,
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for N large. This lead us to bound ∑
qn/2
√

1−N−2+2δ≤x0<qn/2

r3(qn − x2
0),

where r3(a) is the number of representations of a as a sum of three squares. Since

r3(a) = O(a1/2+ε)

this estimate ultimately leads to

#
{
|α| ≤ n : rα ∈ (0, N δ−1]

}
≤ C qn+ε

N3−3δ
,

and thus (B) is (almost) satisfied, provided we take 2k − 1 = p close enough to q, (which is
possible to do).

4. More recent results and open questions

In the paper [3], Bourgain and Gamburd manage to prove the following statement:

Theorem 12. Assume that Γ = 〈g1, . . . , gk, g
−1
1 , . . . , g−1

k 〉 as above satisfies (A), then the
operator

T =
∑
j

(δgj + δg−1
j

) : L2(G)→ L2(G)

has a spectral gap.

According to the previous §, it is enough to show that (B) always holds if (A) is assumed,
which is basically what they achieved here. Their proof relies heavily on additive combina-
torics. Since (A) is satisfied when the generators have algebraic entries, we therefore now that
there is a spectral gap for a ”dense set” of generators. But it is unknown if (A) is generic in
measure ! Bourgain and Gamburd then generalized their result to SU(d) for all d (see [2]).

In a recent paper, Yves Benoist and Nicolas de Saxcé obtained the following statement.

Theorem 13. Let G be a connected simple compact Lie group. Let µ be a symmetric Borel
probability measure on G. We say that µ is almost diophantine iff there exist C1, C2 > 0 such
that for all proper closed subgroups H of G, we have for all n ≥ 1,

µn({g ∈ G : d(g,H) ≤ e−C1n}) ≤ e−C2n.

Then Tµ : L2(G)→ L2(G) has a spectral gap off µ is almost diophantine.

This smart statement generalizes the result of Bourgain-Gamburd and characterizes oper-
ators with spectral gaps. The main issue here is to be able to check the almost diophantine
property: it is known to hold so far for generators with algebraic entries.

Below we list open questions that seem to be relevant.

• Is the almost diophantine property generic in measure ?
• Can one produce examples of spectral gaps for non algebraic generators ?
• In all of the operators studied above, symmetry of the measure (self-adjointness) has

been used in a critical way. Can one produce examples of spectral gaps for semi-groups
or non self-adjoint Hecke operators ?
• It can be shown, using a result of Kesten, that the continuous spectrum, in the

above examples, is given by [−2
√
p,+2

√
p]. Can one say something smart about the

peripheral spectrum before the spectral gap ?
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• In the SU2(C) case, the large m limit coincides with a semi-classical limit in geometric
quantization. Can one give a general semi-classical interpretation of this spectral gap
in term of trapped set and quantum resonances ? Can we view Hecke operators as
FIO with a simple canonical relation and use it efficiently ?
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