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ABSTRACT

We introduce and study an open set of PSL2(C) characters of a nonabelian

free group, on which the action of the outer automorphism group is prop-

erly discontinuous, and which is strictly larger than the set of discrete,

faithful convex-cocompact (i.e. Schottky) characters. This implies, in par-

ticular, that the outer automorphism group does not act ergodically on

the set of characters with dense image. Hence there is a difference between

the geometric (discrete vs. dense) decomposition of the characters, and a

natural dynamical decomposition.

1. Introduction

Let Fn be the free group on n ≥ 2 generators. Its automorphism group

Aut(Fn) acts naturally, by precomposition, on Hom(Fn, G) ≡ Gn for any

group G. The outer automorphism group Out(Fn) = Aut(Fn)/Inn(Fn) acts

on the quotient Hom(Fn, G)/G, where G is understood to act by inner auto-

morphisms. When G is a Lie group we consider instead the character variety

X (Fn, G) ≡ Hom(Fn, G)//G, the quotient in the sense of geometric invariant

theory.

When G is a compact Lie group and n ≥ 3, Gelander [19] showed that this

action is ergodic, settling a conjecture of Goldman [23], who had proved it for

G = SU(2). When G is noncompact, the situation is different because there is a
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natural decomposition of X (Fn, G), up to measure 0, into (characters of) dense

and discrete representations, and in the cases of interest to us the action on the

discrete set is not ergodic, indeed even has a nontrivial domain of discontinuity.

See Lubotzky [33] for a comprehensive survey on the dynamics of represen-

tation spaces, from algebraic, geometric and computational points of view.

We will focus on the case of G = PSL2(C), where the interior of the discrete

set is the set of Schottky representations. In this case one can ask if the action

is ergodic, or even topologically transitive, in the set of dense representations,

but this turns out to be the wrong question. In particular:

Theorem 1.1: There is an open subset of X (Fn,PSL2(C)), strictly larger

than the set of Schottky characters, which is Out(Fn) invariant, and on which

Out(Fn) acts properly discontinuously.

In other words, the natural “geometric” decomposition of X (Fn,PSL2(C)),

in terms of discreteness vs. density of the image group, is distinct from the

“dynamical” decomposition, in terms of proper discontinuity vs. chaotic action

of Out(Fn).

The subset promised in Theorem 1.1 will be the set of primitive-stable

representations (see definitions below). It is quite easy to see that this set is

open and Out(Fn) invariant, and that the action on it is properly discontinuous

(Theorems 3.2, 3.3). Thus the main content of this note is the observation, via

a lemma of Whitehead on free groups and a little bit of hyperbolic geometry,

that it contains non-Schottky (and in particular nondiscrete) elements. This

will be carried out in Section 4.

One should compare this with results of Goldman [22] on the rank 2 case for

SL2(R) characters, and with work of Bowditch [5] on the complex rank 2 case.

Bowditch, and Tan–Wong–Zhang [46] and [47], studied a condition very similar

to primitive stability; we will compare the two in Section 5.

Acknowledgments. Bill Goldman and Alex Lubotzky got the author inter-

ested in this question, and Lubotzky pointed out the notion of “redundant

representations”, whose negation leads (eventually) to the primitive-stable con-

dition. Mark Sapir and Vladimir Shpilrain pointed the author to Whitehead’s

lemma and Corollary 4.3. The author is also grateful to Dick Canary, Hossein

Namazi and Juan Souto for interesting conversations and perspectives. Juan
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Souto in particular pointed out the connection to Otal’s work. The referee made

a number of helpful and incisive suggestions.

2. Background and notation

In the remainder of the paper we fix n ≥ 2 and let G = PSL2(C). We also fix

a free generating set X = {x1, . . . , xn} of Fn.

Note that Hom(Fn, G) can be identified with Gn via ρ �→ (ρ(x1), . . . , ρ(xn))

once the generators are fixed. The quotient X (Fn) = Hom(Fn, G)//G, which

we denote X (Fn, G) or just X (Fn), is obtained by considering characters of rep-

resentations, which in our case corresponds to trace functions. This quotient

naturally has the structure of an algebraic variety, and differs from the purely

topological quotient Hom(Fn, G)/G only at reducible points, i.e. representa-

tions whose images fix a point on Ĉ (see Kapovich [26] or Morgan–Shalen [40]).

Characters of reducible representations form a subset of measure 0 outside all of

the sets we shall be considering, and so we shall be able to ignore the distinction

between these two quotients.

Geometric decomposition. There is a natural Out(Fn)-invariant decomposition

of X (Fn) in terms of the geometry of the action of ρ(Fn) on H3. Namely, let

D(Fn) = D(Fn, G) denote the (characters of) discrete and faithful represen-

tations, and let E(Fn) = E(Fn, G) denote those of representations with dense

image in G.

It is fairly well-known (see [6, 7]) that

Lemma 2.1: E(Fn) is nonempty and open, D(Fn) is closed, and

X (Fn) \ (D(Fn) ∪ E(Fn))

has measure 0.

The idea of the measure 0 statement is this: If ρ is not faithful it satisfies

some relation; this is a nontrivial algebraic condition, so defines a subvariety

of measure 0. There are a countable number of such relations. If ρ is not

discrete, consider the identity component of the closure of ρ(Fn) in G. This is

a connected Lie subgroup of G and hence is either all of G (so ρ(Fn) is dense),

or solvable (i.e. elementary, fixing a point in the Riemann sphere), or conjugate

to PSL2(R). The latter cases are again detected by algebraic conditions.
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Openness of E(Fn) follows from the Kazhdan–Margulis–Zassenhaus lemma

[27], which furnishes a neighborhood U of the identity in G in which any set of

n elements generates either an elementary or an indiscrete group. Generating

an elementary group is a nontrivial algebraic condition on Un ⊂ Hom(Fn, G)

(for n ≥ 2), and as above for an indiscrete group not to be dense is also a

nontrivial algebraic condition. Hence an open dense subset W of Un consists of

dense representations. Now given any ρ with dense image, there exist elements

h1, . . . , hn ∈ Fn such that (ρ(h1), . . . , ρ(hn)) ∈ W , and since W is open the

same is true for ρ′ sufficiently close to ρ — hence ρ′ also generates a dense

subgroup.

The fact that D(Fn) is closed follows from Jørgensen’s inequality [25], or

alternately from the Kazhdan–Margulis–Zassenhaus lemma. Lemma 2.1 in fact

holds for much more general target groups G — see [6, 7] for details.

Note, when G is compact D(Fn, G) is empty, and in this case Gelander proved

that Out(Fn) acts ergodically on X (Fn, G) and hence on E(Fn, G). Our main

theorem will show that, in general, the action on E(Fn, G) is not ergodic.

Schottky groups. A Schottky group (or representation) ρ is one which is ob-

tained by a “ping-pong” configuration in the sphere at infinity ∂H3. That is,

suppose that D1, D
′
1, . . . , Dn, D

′
n are 2n disjoint closed (topological) disks in

∂H3 and g1, . . . , gn ∈ PSL2(C) are isometries such that gi(Di) is the closure of

the complement of D′
i. Then {g1, . . . , gn} generate a free discrete group of rank

n, called a Schottky group. The representation sending xi �→ gi is discrete and

faithful, and moreover, an open neighborhood of it in Hom(Fn, G) consists of

similar representations. We let S(Fn) denote the open set of all characters of

Schottky representations.

Sullivan [45] proved that

Theorem 2.2: S(Fn) is the interior of D(Fn).

(This theorem is not known to hold for the higher-dimensional hyperbolic

setting; see §5.)
To obtain a geometric restatement of the Schottky condition, consider the

limit set for the action of any discrete group of isometries on H3, namely the

minimal closed invariant subset of ∂H3. The convex hull in H3 of this limit

set is invariant, and its quotient by the group is called the convex core of

the quotient manifold. The deep usefulness of the convex core in the study of



Vol. 193, 2013 ON DYNAMICS OF Out(Fn) ON PSL2(C) CHARACTERS 51

hyperbolic 3-manifolds was first exploited by Thurston. The Schottky condi-

tion on ρ is equivalent to the condition that the convex core of H3/ρ(Fn) is a

compact handlebody of genus n (see Marden [34, pp. 98–99] for a discussion

and references).

It is a well-known consequence of the deformation theory of Kleinian groups

(see e.g. Bers [3] for background) that Out(Fn) acts properly discontinuously

on S(Fn): that is, that the set {ψ ∈ Out(Fn) : ψ(K) ∩K 
= ∅} is finite for any

compact K ⊂ S(Fn). We note that this will also follow from Theorem 3.3.

3. Primitive-stable representations

Let Γ be a bouquet of n oriented circles labeled by our fixed generating set.

We let B = B(Γ) denote the set of bi-infinite (oriented) geodesics in Γ, as in

Bestvina–Feighn–Handel [4]. Each such geodesic lifts to an Fn-invariant set of

bi-infinite geodesics in ˜Γ, the universal covering tree (and the Cayley graph of

Fn with respect to X).

Let ∂Fn be the boundary at infinity of Fn, or the space of ends of the tree
˜Γ. We have a natural action of Fn on ∂Fn. Each element of B can be identified

with an Fn-invariant subset of ∂Fn × ∂Fn \Δ (with Δ the diagonal), i.e. the

pairs of endpoints of its lifts. Out(Fn) acts naturally on B (and in general on

Fn-invariant subsets of ∂Fn × ∂Fn \Δ).

Equivalently we can identify B with the set of bi-infinite reduced words in the

generators, modulo shift. To every conjugacy class [w] in Fn is associated an

element of B named w, namely the periodic word determined by concatenating

infinitely many copies of a cyclically reduced representative of w.

An element of Fn is called primitive if it is a member of a free generating

set, or equivalently if it is the image of a standard generator by an element of

Aut(Fn). Let P = P(Fn) denote the subset of B consisting of w for conjugacy

classes [w] of primitive elements. Note that P is Out(Fn)-invariant.

Given a representation ρ : Fn → PSL2(C) and a basepoint x ∈ H
3, there is

a unique map τρ,x : ˜Γ → H3 mapping the origin of ˜Γ to x, ρ-equivariant, and

mapping each edge to a geodesic segment. Every element of B is represented by

an Fn-invariant family of leaves in ˜Γ, which map to a family of broken geodesic

paths in H
3.
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Definition 3.1: A representation ρ : Fn → PSL2(C) is primitive-stable if there

are constants K, δ and a basepoint x ∈ H3 such that τρ,x takes all leaves of P
to (K, δ)-quasi geodesics.

Note that if there is one such basepoint then any basepoint will do, at the

expense of increasing δ. This condition is invariant under conjugacy and so

makes sense for [ρ] ∈ X (Fn). Moreover, the property is Out(Fn)-invariant since

P is Out(Fn)-invariant. Primitive-stability is a strengthening of the negation

of redundancy, whose relevance was explained to me by Alex Lubotzky (see

§5).
Let us establish some basic facts.

Lemma 3.2:

(1) If ρ is Schottky then it is primitive-stable.

(2) Primitive-stability is an open condition in X (Fn).

(3) If ρ is primitive-stable then, for every proper free factor A of Fn, ρ|A is

Schottky.

Proof. To see (1), note that if ρ is discrete and faithful, then τρ,x is the lift

to universal covers of a homotopy-equivalence from Γ to the quotient manifold

Nρ = H3/ρ(Fn). If ρ is Schottky, then the convex core of Nρ is compact and

hence its homotopy-equivalence to the image of Γ lifts to a quasi-isometry of

the convex hull of the group to τρ,x(˜Γ). It follows that all leaves in B map to

uniform quasi-geodesics, and in particular the primitive ones.

Next we prove (2). Let ρ be primitive-stable, and fix a basepoint x and

quasi-geodesic constants K, δ as in the definition. Let τ = τρ,x.

Let L be a primitive leaf, with vertex sequence {vi ∈ ˜Γ}, and let pi = τ(vi).

The condition that τ |L is quasi-geodesic is equivalent to the following state-

ment: there exist constants c > 0 and k ∈ N such that, if Pi is the hyperplane

perpendicularly bisecting the segment [pi, pi+k], then for all j Pjk separates

P(j−1)k from P(j+1)k, and d(Pjk, P(j+1)k) > c. This is an easy exercise, and we

note that K, δ determine k, c, and vice versa.

Now consider a representation ρ′ close to ρ, and let τ ′ = τρ′,x. Up to the

action of Fn there are only finitely many sequences of tree edges of length 2k,

and hence the relative position (i.e. up to isometry) of Pi and Pi+k, over all

primitive leaves and all i, is determined by the ρ image of a finite number of

words of Fn. These images each vary continuously with ρ, and hence for ρ′
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sufficiently close to ρ, we have that the separation and distance properties for

the P ′
i still hold, with modified constants. Hence the primitive leaves are still

(uniformly) quasi-geodesically mapped by τ ′.
Finally we prove (3). Let A be a proper free factor, so that Fn = A ∗ B

with A and B nontrivial. Suppose ρ is primitive-stable. If A is cyclic, then

ρ|A being Schottky is equivalent to A’s generator having loxodromic image, and

this is an immediate consequence of having a quasi-geodesic orbit. Hence we

may now assume A has rank at least 2. By (2), there is a neighborhood U of ρ

consisting of primitive-stable elements. Suppose ρ|A were not Schottky. Since

S(A) is the interior of D(A) by Sullivan’s theorem 2.2, and since D(A) ∪ E(A)
is dense in X (A) by Lemma 2.1, we can perturb ρ|A arbitrarily slightly to

get a dense representation. Leaving ρ|B unchanged we obtain ρ′ ∈ U with

ρ′|A dense. Now let gm ∈ A be an infinite sequence of reduced words with

ρ′(gm) → id. For any generator b of B, a sequence of elementary automorphisms

multiplying b by generators of A (Nielsen moves) takes b to gmb, which therefore

is primitive. Note that each gmb is cyclically reduced, so primitive-stability of ρ′

implies that the axes of gmb are uniformly quasi-geodesically mapped by τρ′,x.

But this contradicts the fact that ρ′(gm) → id while the length of gm goes to

infinity.

Let

PS = PS(Fn) ⊂ X (Fn)

be the set of conjugacy classes of primitive-stable representations. We have

shown that PS is an open Out(Fn) invariant set containing the Schottky set.

In fact,

Theorem 3.3: The action of Out(Fn) on PS(Fn) is properly discontinuous.

Proof. Let �ρ(g) denote the translation length of the geodesic representative of

ρ(g) for g ∈ Fn, and let ||g|| denote the minimal combinatorial length, with

respect to the fixed generators of Fn, of any element in the conjugacy class of

g (equivalently it is the word length of g after being cyclically reduced).

Let C be a compact set in PS(Fn). For each [ρ] ∈ C we have a positive lower

bound for �ρ(w)/||w|| over primitive elements of Fn, and a continuity argument

as in part (2) of Lemma 3.2 implies that a uniform lower bound

�ρ(w)

||w|| > r > 0
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holds over all [ρ] in C. Now, on the other hand, an upper bound on this ratio

holds trivially for any ρ by the triangle inequality applied to any τρ,x. Continuity

again gives us a uniform upper bound

�ρ(w)

||w|| < R

for [ρ] ∈ C (here, one should choose a compact preimage of C in Hom(Fn, G),

which is easy to do).

Now if [Φ] ∈ Out(Fn) satisfies [Φ](C) ∩ C 
= ∅, we apply the inequalities to

conclude, for [ρ] in this intersection, that

||Φ(w)|| ≤ (1/r)�ρ(Φ(w)) = (1/r)�ρ◦Φ(w) ≤ (R/r)||w||.

The proof is then completed by the lemma below.

Lemma 3.4: For any A, the set

{f ∈ Aut(Fn) : ||f(w)|| ≤ A||w|| ∀ primitive w}

has finite image in Out(Fn).

Proof. In fact much less is needed; it suffices to have the inequality only for w

with ||w|| ≤ 2. Let x1, . . . , xn be generators of Fn, and consider the action of

Fn on the tree ˜Γ (its Cayley graph). For any i, j ≤ n, let D denote the distance

between the axis of f(xi) and the axis of f(xj). A look at the action on the tree

indicates, if D > 0, that ||f(xixj)|| = 2D + ||f(xi)|| + ||f(xj)||. Hence, since

||f(xixj)|| ≤ 2A, we get an upper bound on D.

An upper bound on the pairwise distances between the axes of the f(xi)

implies that there is a point on ˜Γ which is a bounded distance from all the axes

simultaneously (minimize the sum of distances to the axes, which is proper and

convex unless all the axes coincide). After conjugating f we may assume that

this point is the origin. Now the bound ||f(xi)|| ≤ A implies a finite number of

choices for f .

4. Whitehead’s lemma and indiscrete primitive-stable representations

In this section we will prove that PS is strictly bigger than the set of charac-

ters of Schottky representations. In particular, we will define the notion of a

blocking curve on the boundary of a handlebody, and show
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Theorem 4.1: Let ρ : Fn → G be discrete, faithful and geometrically finite

with one cusp c, which is a blocking curve. Then ρ is primitive-stable.

We will see below (Lemmas 4.4 and 4.5) that blocking curves are a non-

empty class. Using the deformation theory of hyperbolic 3-manifolds one can

then obtain primitive-stable points in the boundary of Schottky space — see

the end of the section for details.

Note that, since PS(Fn) is open, this implies the existence of a rich class

of primitive-stable representations, including dense ones (by Lemma 2.1), as

well as discrete faithful ones with degenerate ends (since these are topologically

generic in the boundary of Schottky space — see [11] and [12, Cor. A]).

First let us recall Whitehead’s criterion and define the notion of blocking.

Whitehead studied the question of which elements in the free group are prim-

itive. He found a necessary combinatorial condition, as part of an algorithm

that decides the question of primitivity.

The Whitehead graph. As before, we fix a generating set X = {x1, . . . , xn}
of Fn. For a word g in the generators and their inverses, the Whitehead graph

Wh(g) = Wh(g,X) is the graph with 2n vertices labeled x1, x
−1
1 , . . . , xn, x

−1
n ,

and an edge from x to y−1 for each string xy that appears in g or in a cyclic

permutation of g. For more information see Whitehead [48, 49], Stallings [44]

and Otal [42].

Whitehead proved

Lemma 4.2 (Whitehead): Let g be a cyclically reduced word. If Wh(g) is

connected and has no cutpoint, then g is not primitive.

Define the “reduced” Whitehead graph Wh′(g) to be the same as Wh(g)

except that we do not count cyclic permutations of g. In other words, we do

not consider the word xy where x is the last letter of g and y is the first, so

Wh′(g) may have one fewer edge than Wh(g).

Let us say that a reduced word g is primitive-blocking if it does not appear

as a subword of any cyclically reduced primitive word. An immediate corollary

of Lemma 4.2 is:

Corollary 4.3: If g is a reduced word with Wh′(g) connected and without

cutpoints, then g is primitive-blocking.
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Let us also say that g is blocking if some power gk is primitive-blocking.

A curve on the surface of the handlebody of genus n is blocking if a reduced

representative of its conjugacy class in the fundamental group is blocking (with

respect to our given generators).

An instructive example of a blocking curve occurs for even rank, when the

handlebody is homeomorphic to the product of an interval with a surface with

one boundary component:

Lemma 4.4: Let Σ be a surface with one boundary component. The curve

∂Σ × {1/2} in the handlebody Σ × [0, 1] is blocking with respect to standard

generators of π1(Σ); in fact its square is primitive-blocking.

Proof. Using standard generators a1, b1, . . . , ak, bk for π1(Σ), the boundary is

represented by c = [a1, b1] · · · [ak, bk]. Wh′(c) is a cycle minus one edge (corre-

sponding to b−1
k a1), and Wh′(c2) contains the missing edge, and so by White-

head’s lemma is blocking.

One can construct other blocking curves on the boundary of any handlebody

by explicit games with train tracks. We omit this approach, and instead study

the relationship of the blocking condition to the Masur Domain in the measured

lamination space.

Laminations and the Whitehead condition. Let PML(∂H) denote

Thurston’s space of projectivized measured laminations on the boundary of

the handlebody [15, 18]. Within this we have the Masur domain O consisting

of those laminations that have positive intersection number with every lamina-

tion that is a limit of meridians of H [36]. This is an open set of full measure

in PML(∂H) [36, 28].

Using Otal’s work [42], we can extend Whitehead’s condition to laminations

on the boundary as follows. Any free generating set of Fn is dual to a system

of disks on H , which cut it into a 3-ball (Nielsen). Given such a system Δ =

{δ1, . . . , δn} of disks and a lamination μ, realize both μ and the disk boundaries

in minimal position — e.g. fix a hyperbolic metric on ∂H and make them

geodesics. Otal calls μ tight with respect to Δ if there are no waves on Δ

which are disjoint from μ. A wave on Δ is an arc properly embedded in ∂H \Δ,

which is homotopic, rel endpoints, through H but not through ∂H into Δ. In

particular, if μ is tight then no arcs of μ \ Δ are waves. Hence, if a closed
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curve is tight with respect to Δ, then its itinerary through the disks describes

a cyclically reduced word in Fn with respect to the dual generators.

We define Wh(μ,Δ) as follows: Cutting along Δ, ∂H becomes a planar

surface with 2n boundary components, each labeled by δ+i or δ−i . Let w(μ,Δ)

denote the union of the boundary components and the arcs of μ \ Δ. Then

Wh(μ,Δ) is obtained from w(μ,Δ) by making the boundary components into

vertices and identifying arcs of μ that connect the same boundary components.

In particular, Wh(μ,Δ) can be given a planar embedding (by choosing one arc

from each equivalence class). If μ is a single closed curve, Δ is dual to the

original generators and μ is tight with respect to Δ, then this is equivalent to

the original definition.

Otal proved the following in [42]. We give a proof, since Otal’s thesis is hard

to obtain.

Lemma 4.5 (Otal): If μ ∈ O(H), then there is a generating set with dual disks

Δ such that μ is tight with respect to Δ, and Wh(μ,Δ) is connected and has

no cutpoints.

Proof. First note that infδ{i(μ, δ)}, where δ runs over meridians ofH , is positive

and realized. For if {δi} is a minimizing sequence such that infinitely many of

the δi are distinct, then an accumulation point in PML(S) will have intersection
number 0 with μ, contradicting μ ∈ O(H). The same holds for disk systems, so

we may choose a disk system Δ that minimizes i(μ,Δ).

Now μ cannot have a wave with respect to Δ. If it did, then a surgery

along such a wave would produce a new Δ′ whose intersection number with μ

is strictly smaller, contradicting the choice of Δ.

If Wh(μ,Δ) is disconnected, then there is a loop β in the planar surface

P = ∂H \ N (Δ) which separates the boundary components, and does not

intersect μ (here N denotes a regular neighborhood). This gives a meridian

that misses μ in ∂H , again contradicting μ ∈ O(H).

IfWh(μ,Δ) is connected but has a cutpoint, this is represented by a boundary

component γ ⊂ ∂P , equal to one copy δ±i of a component of Δ (we are blurring

the distinction between the disks in Δ and their boundaries in ∂H). Let γ̄

denote the other copy. Then γ separates the planar complex w(μ,Δ), and we

may let X1 be a component of w(μ,Δ) \ γ which does not contain γ̄. Now

X1∪γ cuts P into a union of disks-with-holes, one of which, E, must contain γ̄.

Let β be the boundary component of E that separates γ̄ from X1. Any arcs of
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w(μ,Δ) passing through β must pass through γ (since γ separates the interior

of E from the rest of the graph), but arcs of X1 incident to γ do not meet β;

hence i(β, μ) is strictly less than i(γ, μ).

Because β separates γ from γ̄, cutting along β and regluing γ to γ̄ yields

again a connected planar surface — hence Δ ∪ {β} \ {γ} is a new disk system,

with strictly smaller intersection number with μ. Again this is a contradiction,

so we conclude that Wh(μ,Δ) is connected and without cutpoints.

Call a lamination λ blocking, with respect to Δ (or the dual generators), if

λ has no waves with respect to Δ, and there is some k such that every length

k subword of the infinite word determined by a leaf of λ passing across Δ does

not appear in a cyclically reduced primitive word. Note that, for simple closed

curves, this coincides with the previous definition of blocking. An immediate

corollary of the above lemma is:

Lemma 4.6: A connected Masur-domain lamination (e.g. a simple closed curve

or a filling lamination) on the boundary of a handlebody is blocking with respect

to some generating set.

Proof. Given μ ∈ O(H) let Δ be as in Lemma 4.5. In a connected measured

lamination every leaf is dense. Thus a sufficiently long leaf of μ would traverse

every edge of Wh(μ,Δ), and so the corresponding word is blocking by Corollary

4.3. Note for a simple closed curve this argument shows that its square is

primitive-blocking.

Blocking cusps are primitive-stable. We can now provide the proof of

Theorem 4.1, namely that a geometrically finite representation with a single

blocking cusp is primitive-stable.

Proof of Theorem 4.1. Let Nρ = H3/ρ(Fn) be the quotient manifold, and Cρ

its convex core. The geometrically finite hypothesis means that Cρ is a union of

a compact handlebody H and a subset of a parabolic cusp P (namely a vertical

slab in a horoball modulo Z) along an annulus A with core curve c in ∂H , which

we are further assuming is a blocking curve.

We will prove that all primitive elements of Fn are represented by geodesics

in a fixed compact set K ⊂ Cρ. The idea is that in order to leave a compact

set, a primitive element must wind around the cusp, and this will be prohibited

by the blocking property.
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Let γ be a closed geodesic in Nρ. Then γ ⊂ Cρ. The orthogonal projection

P → ∂P gives a retraction π : Cρ → H . Let γ̂ = π(γ).

Claim: γ̂ is uniformly quasi-geodesic in H , with constants independent of γ.

More precisely, the lift γ̃ of γ̂ to the universal cover ˜H is uniformly quasi-

geodesic with respect to the path metric. This follows from a basic fact about

any family Q of disjoint horoballs in H3:

Lemma 4.7: Let Q be a family of disjoint open horoballs in Hm, and let πQ :

Hm → Hm \ Q be given by orthogonal projection from Q to ∂Q and identity

in H
m \Q. If L is a geodesic in H

m, then πQ(L) is a quasi-geodesic in H
m \Q

with its path metric, with constants independent of Q or L.

Proof. This is closely related to statements in Farb [17] and Klarreich [29] and

can also be proved in greater generality, e.g. for uniformly separated quasi-

convex subsets of a δ-hyperbolic space. We will sketch a proof for completeness.

Note first, there is a constant r0 such that, if P1 and P2 are horoballs in Hm

with d(P1, P2) ≥ 1, then any two geodesic segments connecting P1 to P2 in their

common exterior lie within r0-neighborhoods of each other.

If Q′ ⊂ Q is obtained by retracting horoballs to concentric horoballs at depth

bounded by r0, then it suffices to prove the theorem for Q′. This is because any
arc on πQ(L) can be approximated in a controlled way by an arc on πQ′(L).

Moreover, given L it suffices to prove the theorem for the union QL ⊂ Q of

horoballs that intersect L, since πQ(L) = πQL(L) and Hm \Q ⊂ Hm \QL. We

can therefore reduce to the case that any two components of Q are separated

by distance at least 1, and L penetrates each component of Q to depth at least

r0.

Let β be a geodesic in Hm \ Q with endpoints on πQ(L). It is therefore a

concatenation of hyperbolic geodesics in H
m \Q with endpoints on ∂Q, alter-

nating with geodesics on ∂Q in the path (Euclidean) metric. Let α be one of the

hyperbolic geodesic segments, with endpoints on horoballs P1, P2 ∈ Q. Let α′

be the component of L \ (P1 ∪P2) with endpoints on P1 and P2, respectively —

then α and α′ are within r0 of each other. If α′ meets another component P3 of

Q, then it penetrates it by at least r0; but this means that α meets P3 as well, a

contradiction. Hence α′ is in fact a component of L \Q. This means that α can

be replaced by an arc traveling along ∂P1, L and ∂P2 of uniformly comparable

length. Replacing all hyperbolic segments in this way, and then straightening
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the arcs of intersection of the resulting path with ∂Q, we obtain a segment

of πQ(L) whose length is comparable with that of β. Since the endpoints of β

were arbitrary points of πQ(L), this gives uniform quasi-geodesic constants for

πQ(L).

Now, H retracts to a spine of the manifold which can be identified with

the bouquet Γ, so ˜H is naturally quasi-isometric to the Cayley graph ˜Γ of

Fn. In a tree, uniform quasi-geodesics are uniformly close to their geodesic

representatives.

Returning to our geodesic γ in Nρ, suppose that it travels a large distance

from the compact core H . In particular, a component a of γ ∩ P is very long,

so its image π(a) must wind many times around A (in fact the number of times

is exponential in the length of a). By Lemma 4.7, the lift γ̃ of γ̂ = π(γ) is

quasi-geodesic in ˜H . Since it contains a high power of the core curve of A, its

retraction to the tree contains a high power of some representative c′ of the curve
c. This subword (c′)m must be uniformly close to a segment of the form (c∗)m,

where c∗ is a cyclically reduced representative of c. It follows that the geodesic

representative of γ̃ in the tree is uniformly close to a segment of this form as

well. Since a tree is 0-hyperbolic, it follows that the geodesic representative of

γ̃ in the tree actually contains a high power of c∗.
But since c is blocking, this means that γ cannot have been primitive. We

conclude that all primitive geodesics are trapped in a fixed compact core of Cρ.

The retraction of this core to the spine of H therefore lifts to a quasi-isometry,

and stability of quasi-geodesics again implies that each primitive geodesic in the

tree is uniformly quasi-geodesic.

Proof of Theorem 1.1. In view of Lemma 3.2 and Theorem 3.3, all that remains

to prove is the existence of a non-Schottky primitive stable representation. By

Theorem 4.1, any discrete, faithful and geometrically finite representation with

a single blocking cusp would do.

Given a curve c on the boundary of a handlebody H , a sufficient condition

that it be realizeable as the single cusp of a geometrically finite representation

is that it be homotopically nontrivial in the handlebody, and that any homo-

topically nontrivial proper annulus in H with both boundary components on

c must be parallel into c. This is a consequence of Thurston’s geometrization

theorem (see e.g. [26]) or of Maskit [35].
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Otal [42] shows that any curve in the Masur Domain has complement sat-

isfying these topological conditions (even more strongly, that (H, ∂H \ c) is

acylindrical, so there are no essential annuli at all in (H, ∂H \ c)), and hence

can appear as the single cusp of a geometrically finite representation. By Lemma

4.6 such a curve is also blocking with respect to some generating set, and hence

gives us a primitive-stable representation.

When n is even the example of Lemma 4.4, where c = ∂Σ, also suffices, even

though c is not in the Masur domain. Note that we can explicitly construct

Fuchsian representations for which c is the unique cusp, and Lemma 4.4 provides

the blocking property.

5. Further remarks and questions

Having established that Out(Fn) acts properly discontinuously on PS(Fn), and

that PS(Fn) is strictly larger than S(Fn), one is naturally led to study the

dynamical decomposition of X (Fn). In particular, we ask if PS is the maximal

domain of discontinuity, and what happens in its complement. We have only

partial results in this direction.

Outside PS. The polar opposite of the primitive-stable characters are the

redundant characters R(Fn), defined (after Lubotzky) as follows: [ρ] is re-

dundant if there is a proper free factor A of Fn such that ρ(A) is dense. Note

that R(Fn) is Out(Fn)-invariant. Clearly R(Fn) and PS(Fn) are disjoint, by

Lemma 3.2.

The set E(Fn) of representations with dense image is open (Lemma 2.1),

and it follows (applying this to the factors) that R(Fn) is open. The action

of Out(Fn) on R(Fn) cannot be properly discontinuous, and in fact there is a

larger set for which we can show this.

Let PS ′(Fn) be the set of (conjugacy classes of) representations ρ which are

Schottky on every proper free factor. Hence PS(Fn) ⊂ PS ′(Fn) by Lemma 3.2,

and PS ′(Fn) is still in the complement ofR(Fn). LetR′(Fn) = X (Fn) \ PS ′(Fn).

Lemma 5.1:

(1) If n ≥ 3 then R(Fn) is dense in R′(Fn).

(2) No point of R′(Fn) can be in a domain of discontinuity for Out(Fn).

Equivalently, any open invariant set in X (Fn) on which Out(Fn) acts

properly discontinuously must be contained in PS ′(Fn).
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The proof is quite analogous to part (2) of Lemma 3.2. In fact we note that

part (2) of Lemma 3.2 is an immediate corollary of Lemma 5.1 and Theorem

3.3.

Proof. For (1), let [ρ] ∈ R′(Fn) and let A be a proper free factor such that ρ|A
is not Schottky. We may assume A has rank at least 2 since n ≥ 3. Hence (as

in the proof of Lemma 3.2) ρ|A is approximated by representations with dense

image. It follows that ρ itself is approximated by representations dense on A,

so R is dense in R′.
For (2), we will show that for every neighborhood U of [ρ] ∈ R′(Fn) there is

an infinite set of elements [φ] ∈ Out(Fn) such that [φ](U)∩U 
= ∅. Since X (Fn)

is locally compact, this implies [ρ] cannot be in any open set on which Out(Fn)

acts properly discontinuously.

Suppose first n ≥ 3. Since R(Fn) is dense in R′(Fn), it suffices to consider

the case that ρ ∈ R(Fn). Again let A be a proper free factor on which ρ is

dense. We can assume that Fn = A ∗B where B is generated by one element b.

Now let gm ∈ A be a sequence such that ρ(gm) → id, and let φm ∈ Aut(Fn) be

the automorphism that is the identity on A and sends b to gmb. Note that [φm]

has infinite order in Out(Fn). The number of powers of φm that take ρ to any

fixed neighborhood of itself goes to ∞ as m → ∞, because ρ(gm) → id. This

concludes the proof for n ≥ 3.

If n = 2, R(Fn) is empty. However, every [ρ] ∈ R′(Fn) has primitive element

mapping to a nonloxodromic, so ρ may be approximated by a representation ρ′

sending a generator to an irrational elliptic. The same argument as above can

then be applied to ρ′.

We remark that PS ′ is indeed strictly larger than PS, at least for even rank:

If n = 2g, represent the handlebody as an I-bundle over a genus g surface Σ

with one puncture, and let ρ : π1(Σ) → PSL2(C) be a degenerate surface group

with no nonperipheral parabolics (i.e. every parabolic in ρ(π1(Σ)) is conjugate

to the image of an element of π1(∂Σ), ρ is discrete and faithful, and at least one

end of the resulting manifold is geometrically infinite). The puncture cannot

be in any proper free factor of Fn, because it is represented by a curve on the

boundary of the handlebody whose complement is incompressible. Hence the

restriction of ρ to any proper free factor A has no parabolics. By the Thurston–

Canary Covering Theorem [14] and the Tameness Theorem [1, 10], ρ(A) cannot

be geometrically infinite, so it must be Schottky, and hence [ρ] ∈ PS ′(Fn).
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On the other hand, every nonperipheral nonseparating simple curve on Σ is

primitive, and the ending lamination of a degenerate end can be approximated

by such curves. Hence the uniform quasi-geodesic condition fails on primitive

elements, and [ρ] cannot be in PS(Fn).

Note that this example can be approximated by elements of PS(Fn), as well

as by R′(Fn) (the latter by using Cusps are Dense [37] or the Density Theorem

for surface groups [9]). This leads us to ask:

Question 5.2: Is PS(Fn) the interior of PS ′(Fn)?

In particular, in view of Lemma 5.1, a positive answer would imply

Conjecture 5.3: PS(Fn) is the domain of discontinuity of Out(Fn) acting on

X (Fn).

We remark that, a priori, there may not be any such domain, i.e. there may

be no maximal set on which the action is properly discontinuous.

Rank 2. For the free group of rank 2, we have already seen that some of our

statements are slightly different. In particular, R(F2) is empty since no one-

generator subgroup of PSL2(C) is dense. Moreover, PS ′(F2) is exactly the set

for which every generator is loxodromic, and this is dense in X (F2) since it is

the complement of countably many proper algebraic sets.

Question 5.2 in particular asks, therefore, whether PS(F2) is dense. It is not

clear (to the author) whether this is true, but there is some evidence against it

(see below).

Another important feature of rank 2 is that the conjugacy class of the com-

mutator of the generators, and its inverse, are permuted by automorphisms. It

follows that the trace of the commutator is an Out(F2)-invariant function on

X (F2), and one can therefore study level sets of this function.

The domain of discontinuity of Out(F2) was studied by Bowditch and Tan–

Wong–Zhang [46] and [47]. Bowditch defines the following condition on [ρ] ∈
X (Fn), which Tan–Wong–Zhang call condition BQ:

(1) ρ(x) is loxodromic for all primitive x ∈ F2.

(2) The number of conjugacy classes of primitive elements x such that

| tr(ρ(x))| ≤ 2 is finite.
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They show, using Bowditch’s work, that Out(F2) acts properly discontinuously

on the invariant open set BQ. It is still unclear whether BQ is the largest such

set.

Note that condition (1) is equivalent to membership in PS ′(F2). It is evident

that PS(F2) ⊂ BQ, and it seems plausible that they are equal.

Note also that computer experiments indicate that the intersection of BQ

with a level set of the commutator trace function is not dense in the level set

(see Dumas [16]). In particular, the slice corresponding to trace −2 consists

of type-preserving representations of the punctured-torus group, i.e. those

with parabolic commutator, and empirically it seems that BQ in this slice

coincides with the quasi-Fuchsian representations (which are all primitive-stable

too, by Theorem 4.1 combined with Lemma 4.4 ). Bowditch has conjectured

that this is in fact the case, and this seems to be a difficult problem. At any

rate this appears to be evidence against the density of PS(F2).

Ergodicity. The question of the ergodic decomposition of Out(Fn) on X (Fn)

is still open. Note, in rank 2, the decomposition must occur along level sets

of the commutator trace function. In rank 3 and higher our observations indi-

cate that the simplest possible situation is that, outside PS(Fn), the action is

ergodic, which we pose as a variation of Lubotzky’s original question:

Question 5.4: Let n ≥ 3. Is there a decomposition of X (Fn) into a do-

main where the action is properly discontinuous, and a set where it is ergodic?

More pointedly, does Out(Fn) act ergodically on the complement of PS(Fn) in

X (Fn)?

In Gelander–Minsky [20] we show that in fact the action on R(Fn) is ergodic

and topologically minimal. So if for example PS ′ \PS and R′ \R have measure

0, we would have a positive answer for the above question.

Understanding PS(Fn). It would also be nice to have a clearer understand-

ing of the boundary of PS(Fn), and of which discrete representations PS(Fn)

contains.

From Lemma 3.2 we know that any discrete faithful representation with cusp

curves that have compressible complement cannot be in PS(Fn). We’ve also

mentioned the degenerate surface groups which are in PS ′(Fn) but not PS(Fn).
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If, however, ρ is discrete and faithful without parabolics and is not Schottky,

then it has an ending lamination which must lie in the Masur domain, and

hence is blocking by Lemma 4.6. Hence it would be plausible to expect:

Conjecture 5.5: Every discrete faithful representation of Fn without parabol-

ics is primitive-stable.

More generally, a discrete faithful representation has a possibly disconnected

ending lamination, whose closed curve components are parabolics. All the ex-

amples we have considered suggest this conjecture:

Conjecture 5.6: A discrete faithful representation of Fn is primitive-stable

if and only if every component of its ending lamination is blocking.

Note: Since the first version of this article appeared, Jeon–Kim–Lecuire–Oshika

[24] gave a positive solution to Conjectures 5.5 and 5.6, using the work of Mj

[39] on Cannon–Thurston maps.

It might also be interesting to think about which representations with discrete

image (but not necessarily faithful) are primitive-stable. In [38] we construct

many primitive-stable representations whose images uniformize knot comple-

ments. What properties of a marked 3-manifold correspond to primitive stabil-

ity?

Another interesting question is:

Question 5.7: How do we produce computer pictures of PS(Fn)?

For rank n = 2, the character variety has complex dimension 2, and one can

try to draw slices of dimension 1. Komori–Sugawa–Wada–Yamashita developed

a program for drawing Bers slices, which are parts of the discrete faithful locus

[31, 30], and Dumas refined this using Bowditch’s work [16]. In particular, what

Dumas’ program is really doing is drawing slices of Bowditch’s domain BQ. If

indeed BQ = PS(F2), then this produces images of PS(F2) as well.

Other target groups. The discussion can be extended to other noncom-

pact Lie groups, with moderate success. Let us consider first the case of

Isom+(H
d) ∼= SO(d, 1) for all d ≥ 2, where d = 3 is the case we have been

considering. The definition of PS is unchanged, and stability of quasi-geodesics

works in all dimensions in the same way. Lemma 2.1 and Theorem 3.3 still
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hold. However, Sullivan’s theorem (Theorem 2.2) equating Schottky represen-

tations with those in the interior of D(Fn) is no longer available. Schottky

representations in higher dimensions can be replaced by convex-cocompact

representations: discrete and faithful, with convex hull of the limit set having a

compact quotient. Now the conclusions of Lemma 3.2 must be changed some-

what: A convex-cocompact representation is certainly still primitive-stable, but

it is not clear that int(D(Fn)) ⊂ PS(Fn). For a primitive-stable ρ, the proof of

Lemma 3.2 shows that ρ restricted to each proper free factor A is in int(D(A)),

but not that it is convex-cocompact.

For d ≥ 3, the natural embedding of Isom+(H
3) in Isom+(H

d) clearly pre-

serves primitive-stability and nondiscreteness, so it is still true that PS contains

indiscrete representations in higher dimension (and hence dense ones, by Lemma

2.1).

The case of d = 2 is slightly trickier. When n is even, we have given an

example of a blocking curve that is the boundary of a one-holed surface, and

so Theorem 4.1 shows that a finite-area Fuchsian structure on this surface,

which gives an element of X (Fn, Isom+(H
2)) = X (Fn,PSL2(R)), is primitive-

stable but not Schottky. However, when n is odd we have no such example,

and it is unclear to me if PS contains indiscrete elements. For n = 2 and

d = 2, Goldman [22] has given the ergodic decomposition for each level set of

the trace function. Our indiscrete primitive-stable examples in this case are

punctured-torus groups whose boundary curve is elliptic, associated to hyper-

bolic structures on the torus with one cone point. Goldman shows that the

action on the set of representations corresponding to cone structures is proper,

but we do not know if all of them are primitive-stable.

For other noncompact rank-1 semisimple Lie groups, namely isometry groups

of the nonhomogeneous negatively curved symmetric spaces, primitive-stability

can again be defined in the same way. The hyperbolic plane always embeds

geodesically in such a space, with its full isometry group acting. This is not

easily extracted from the literature but is well-known; see Mostow [41], Bridson–

Haefliger [8, Chap. II.10] and Allcock [2] for the requisite machinery, or note

that these spaces are just the real, complex, and quaternionic hyperbolic spaces,

and the Cayley plane, in all of which one can restrict to a real subspace. Thus,

in these cases our examples for F2g can be used.

Other cases, such as higher rank semisimple groups, presumably require a

rethinking of the definitions, but there is again no reason to think that the
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geometric decomposition of Lemma 2.1 should be the right dynamical decom-

position for the action of Out(Fn).

A completely different picture holds in the setting of nonlocally connected

groups. In the case of G = SL2(K), with K a non-Archimedean local field of

characteristic 
= 2, as well as G = Aut(T ) for a tree T , Glasner [21] has shown

that Aut(Fn) acts ergodically on Hom(Fn, G).

Other domain groups. If we replace Fn by π = π1(S) for a closed orientable

surface S, Out(Fn) is replaced by Out(π) = MCG(S), and the primitive ele-

ments are replaced by their natural analogue, the simple curves in the surface.

The Schottky representations are replaced by the quasi-Fuchsian representa-

tions QF (S). We can define PS(π) in a similar way, but now there is no good

reason to think that PS(π) is strictly larger than the quasi-Fuchsian locus.

Indeed, every boundary point of QF can be shown not to lie in PS(π) (nor

in any domain of discontinuity for MCG(S) — see also Souto–Storm [43] for

a related result), and this is because all parabolics are simple curves, and all

ending laminations are limits of simple curves. It is still open as far as I know

whether in fact PS(π) is equal to QF ; this is closely related to (but formally

weaker than) Bowditch’s conjecture in this setting.

The situation is different for a nonorientable surface S. Just recently, Lee has

shown [32] that in this case there are primitive-stable elements in the boundary

of QF, namely those representations corresponding to twisted I-bundles over S

for which no simple curve is parabolic.

One can also consider X (H,PSL2(C)) where H is any fundamental group of

a hyperbolic 3-manifold, and the dynamics are by Out(H); see Canary–Storm

[13] (which uses techniques quite different from ours). In some sense, the more

complicated the group, the weaker we should expect the correspondence between

the geometric and dynamical decompositions. An extreme example is when H

is a nonuniform lattice in PSL2(C). In this case X (H) has positive dimension,

while Mostow rigidity tells us that D(H) is a single point. On the other hand,

Mostow also tells us that Out(H) is finite in this case, so that it acts properly

discontinuously on the whole of X (H).
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Vol. 183, Birkhäuser Boston Inc., Boston, MA, 2001.

[27] D. Kazhdan and G. Margulis, A proof of Selberg’s conjecture, Mathematics of the USSR,

Sbornik 4 (1968), 147–152.

[28] S. P. Kerckhoff, The measure of the limit set of the handlebody group, Topology 29

(1990), 27–40.

[29] E. Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere,

American Journal of Mathematics 121 (1999), 1031–1078.

[30] Y. Komori and T. Sugawa, Bers embedding of the Teichmüller space of a once-punctured

torus, Conformal Geometry and Dynamics 8 (2004), 115–142 (electronic).

[31] Y. Komori, T. Sugawa, M. Wada and Y. Yamashita, Drawing Bers embeddings of the

Teichmüller space of once-punctured tori, Experimental Mathematics 15 (2006), 51–60.

[32] M. Lee, Dynamics on the PSL(2,C)-character variety of a twisted I-bundle, 2011,

preprint. arXiv:1103.3479.

[33] A. Lubotzky, Dynamics of Aut(Fn) actions on group presentations and representations,

in Geometry, Rigidity and Group Acctions, Chicago Lectures in Mathematics, University

of Chicago Press, Chicago, IL, 2011, pp. 609–643.

[34] A. Marden, Outer Circles: An Introduction to Hyperbolic 3-Manifolds, Cambridge Uni-

versity Press, Cambridge, 2007.

[35] B. Maskit, Parabolic elements on Kleinian groups, Annals of Mathematics 117 (1983),

659–668.

[36] H. A. Masur, Measured foliations and handlebodies, Ergodic Theory and Dynamical

Systems 6 (1986), 99–116.

[37] C. McMullen, Cusps are dense, Annals of Mathematics 133 (1991), 217–247.

[38] Y. Minsky and Y. Moriah, Discrete primitive-stable representations with large rank sur-

plus, 2010, preprint arXiv:1009.6212.

[39] M. Mj, Cannon–Thurston maps for Kleinian grups, 2010, preprint. arXiv:1002.0996.

[40] J. W. Morgan and P. B. Shalen, Valuations, trees, and degenerations of hyperbolic struc-

tures. I, Annals of Mathematics, Second Series 120 (1984), 401–476.

[41] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Annals of Mathematics

Studies, Princeton University Press, NJ, 1973.
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