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ABSTRACT

We study some properties of the varieties of deformations of free groups

in compact Lie groups. In particular, we prove a conjecture of Margulis

and Soifer about the density of non-virtually free points in such variety,

and a conjecture of Goldman on the ergodicity of the action of Aut(Fn)

on such variety when n ≥ 3.

Introduction

For n > 1, a generic n–tuple of elements in a connected compact non-abelian

Lie group G generates a free group. G. A. Margulis and G. A. Soifer conjectured

(cf. [So]) that every such tuple can be slightly deformed to one which generates

a group which is not virtually free. In this note we prove this conjecture, and

actually show that for n ≥ 3 and for an arbitrary dense subgroup Γ, with some

restriction on the minimal size of a generating set, the set of deformations of

Fn whose image coincides with Γ is dense in the variety of all deformations.

The idea is to move a given (almost arbitrary) n-tuple into any open subset of

Gn by applying Nielsen transformations. Using the same idea we also prove a

∗ The author was partially supported by NSF grant DMS-0404557, BSF grant

2004010, and the ’Finite Structures’ Marie Curie Host Fellowship, carried out
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conjecture of W. M. Goldman [Go] on the ergodicity of the action of Out(Fn) on

Hom(Fn, G)/G when n ≥ 3. For n = 2, we prove the Margulis–Soifer conjecture

by showing that any pair can be slightly deformed to one which generates an

infinite group which has Serre’s property (FA) and in particular is not virtually

free.

1. The case n > 2

We will say that a group Γ is k-generated if it has a generating set of size ≤ k.

Theorem 1.1: Let n ≥ 3. Let G be a connected compact Lie group, and let Γ ≤

G be an (n−1)-generated dense subgroup. Then any n elements s1, . . . , sn ∈ G

admit an arbitrarily small deformation t1, . . . , tn with Γ = 〈t1, . . . , tn〉. In other

words, the set

{f ∈ Hom(Fn, G) : f(Fn) = Γ}

is dense in Hom(Fn, G).

For example, Theorem 1.1 implies that if n is larger than the minimal size of

a generating set of SO5(Z[1/5]), then any n elements in SO5(R) can be slightly

deformed to a generating set of the group SO5(Z[1/5]) (recall that SO5(Z[1/5])

is dense in SO5(R) and has Kazhdan property (T), cf. [M]). Similarly, any 5

elements in SO3(R) can be deformed to a generating set of a surface group.

Let G be a connected compact Lie group. Since the topology of G is metriz-

able, we may assume that it is endowed with a metric d, and by averaging over

all left and right translations with respect to the Haar measure, we may assume

that d is left and right invariant. Let Γ ≤ G be an (n− 1)-generated dense sub-

group of G, let s1, . . . , sn be arbitrary n elements of G, and let ε > 0. We will

explain how to perturb the si to some ti which satisfy d(ti, si) < ε, i = 1, . . . , n

and 〈t1, . . . , tn〉 = Γ.

We will first treat the case where G is semisimple, since our proof in this case

gives more than what is stated in Section 1.1.

1.1. The semisimple case. Let G be a connected compact semisimple Lie

group. It is well-known that G admits a structure of an algebraic group over

R, and hence is equipped with a Zariski topology. Let g denote the Lie algebra

of G, write g =
⊕p

i=1 gi where gi are the simple factors of g, and set A =
⊕p

i=1 End(gi). Let Gi be the subgroup of G corresponding to gi; recall that
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G is an almost direct product of the Gi. Let Gi be the quotient of G by the

product of the Gj , j 6= i and let πi : G → Gi be the canonical projection. For

each i, the restriction of the Adjoint representation to Gi is irreducible on gi

and hence, by Burnside’s lemma, span(Ad(G)) = A. It is well-known that A is

generated by two elements which can be taken from Ad(G), for instance, one

can take two elements in Ad(G) which generate a dense subgroup (cf. [K]).

Lemma 1.2: Let m ∈ N and let g1, . . . , gm be arbitrary m elements in G. The

set

Ω(g1, . . . , gm) := {g ∈ G : Ad(g), Ad(g1), . . . , Ad(gm) generate A}

is Zariski open in G.

Proof. If Ω(g1, . . . , gm) is empty there is nothing to prove. Assume that

Ω(g1, . . . , gm) 6= ∅ and let g0 ∈ Ω(g1, . . . , gm). Let d = dim(A). It follows

from the definition of Ω(g1, . . . , gm) that there are d words with m + 1 letters

W1, . . . , Wd which, when evaluated at the point (Ad(g0), Ad(g1), . . . , Ad(gm)),

span A. The set

{g ∈ G : span{Wi

(

Ad(g), Ad(g1), . . . , Ad(gm)
)

: i = 1, . . . , d} = A}

is then a Zariski open subset of Ω(g1, . . . , gm) which contains g0. Since g0 is

an arbitrary element of Ω(g1, . . . , gm) it follows that Ω(g1, . . . , gm) is Zariski

open.

Suppose now that g1, . . . , gk ∈ G are such that Ad(g1), . . . , Ad(gk) generate

A, then for each 1 ≤ i ≤ k the set1 Ω(g1, . . . , ĝi, . . . , gk) is Zariski open, and

since it contains gi it is non-empty and hence Zariski dense in G as G is Zariski

connected. It follows that the set

Ω̃(g1, . . . , gk) :=

k
⋂

i=1

Ω(g1, . . . , ĝi . . . , gk)

is also Zariski open and non-empty, hence dense in G with respect to the hous-

dorff topology. Moreover, we have

Lemma 1.3: Let g1, . . . , gk ∈ G be k elements such that Ad(g1), . . . , Ad(gk)

generate A. The projection of 〈g1, . . . , gk〉 to each simple factor Gi, i = 1, . . . , p

1 The hat above the i-th element means that we exclude it.



18 TSACHIK GELANDER Isr. J. Math.

of G is either finite or dense. If for every i ≤ p this projection is infinite, then

〈g1, . . . , gk〉 is dense in G.

Proof. Let C be the closure of 〈g1, . . . , gk〉 and C◦ its identity connected com-

ponent. Then C◦ is a connected compact Lie subgroup of G and |C/C◦| < ∞.

Moreover, since the Lie algebra of C◦ is stable under the elements Ad(gi), i =

1, . . . , k which generate A, C◦ is normal in G. Since for i = 1, . . . , p, Gi is

almost simple, it follows that the compact connected normal subgroup πi(C
◦)

is either trivial or equal to Gi, which means that πi(〈g1, . . . , gk〉) is either finite

or dense. Finally, if πi(〈g1, . . . , gk〉) is infinite for each i ≤ p then the normal

subgroup C◦ projects onto every simple factor of G, and hence C◦ = G, i.e.

〈g1, . . . , gk〉 is dense.

We will also use the following well-known lemma.

Lemma 1.4: The set U of all pairs (x1, x2) ∈ G×G for which the group 〈x1, x2〉

is dense in G, is open, dense and of full Haar measure in G × G.

Proof. The second and third properties follow from the fact that U contains

the the following set which is clearly dense and has full Haar measure:

{(x1, x2) ∈ G × G : Ad(x1), Ad(x2) generate A,

and πj(x1) is non-torsion ∀j ≤ p}.

It is well-known that U contains an open subset V near the identity of G × G

(cf. [GZ] or [BG]). To see that U is open, note that if (x1, x2) ∈ U ,

then, as 〈x1, x2〉 is dense, there are two words in two letters W1, W2 such that
(

W1(x1, x2), W2(x1, x2)
)

belongs to V . It follows that if Ui, i = 1, 2 are suf-

ficiently small neighbourhoods of xi in G, then ((W1(y1, y2), W2(y1, y2)) ∈ V

for any (y1, y2) ∈ U1 × U2, which implies that 〈y1, y2〉 is dense in G. Therefore

U1 × U2 ⊂ U , and since (x1, x2) is arbitrary, U is open.

In order to prove Theorem 1.1 we will use repeatedly the so called product

replacement moves which allows replacing one generating set (γ1, . . . , γk) for

the group Γ by another generating set of the same cardinality by multiplying

one γi by some γ±1
j where j 6= i or, more generally, by an element of the group

〈γj : j 6= i〉. These operations are also called Nielsen transformations.

Let (γ1, . . . , γn−1) be a generating set for Γ. Applying Selberg’s lemma to the

projection of Γ to any simple factor Gi of G and taking the intersection, we see
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that Γ contains a subgroup of finite index Γ0 such that the projection of any

element of Γ0 to any simple factor of G is either trivial or non-torsion. Since Γ is

dense and G is connected, Γ0 is also dense. Pick γn ∈ Γ0∩ Ω̃(γ1, . . . , γn−1) with

πj(γn) 6= 1, for all j ≤ p. Then from Lemma 1.3 and the assumption that Γ is

dense we get that 〈γ1, . . . , γ̂i, . . . , γn〉 is dense in G for every 1 ≤ i ≤ n. Fix two

open sets Ui ⊂ Bε(si), i = 1, 2 such that U1 ×U2 ⊂ U , and U1 ⊂ Ω̃(γ2, . . . , γn),

where U ⊂ G × G is the set defined in Lemma 1.4. Since 〈γ2, . . . , γn〉 is dense

in G there is some γ̂1 ∈ 〈γ2, . . . , γn〉 for which t1 := γ̂1γ1 ∈ U1. Since t1

belongs to Ω̃(γ2, . . . , γn), it follows from Lemma 1.3 and the property of γn

that the group 〈t1, γ3, . . . , γn〉 is dense in G. Chose γ̂2 ∈ 〈t1, γ3, . . . , γn〉 such

that t2 = γ̂2γ2 lies in U2. It follows that 〈t1, t2〉 is dense in G and we can pick

γ̂i ∈ 〈t1, t2〉, i = 3, . . . , n so that ti := γ̂iγi ∈ Bε(si). This completes the proof

of Theorem 1.1 in the semisimple case.

Remarks 1.5: (1) The argument above, with some simple modifications, can

be applied also to dense subgroups Γ of the form Γ = 〈∆, γ〉 where ∆ is an

(n−1)-generated dense subgroup of G, and γ ∈ G\∆. It is therefore natural to

ask wether any n-generated dense subgroup of G is of that form. This question

makes sense for every n ≥ 3, and the answer may depend on n and G. Nir Avni

pointed out that for every G there is some integer n(G) such that the answer

is affirmative for all n ≥ n(G). It is of interest whether n(G) is always 3 or

some other constant independent of G. For n ≥ n(G) one can assume that Γ is

n-generated in Theorem 1.1.

(2) It was shown in [GZ] that any k-generated dense subgroup Γ of a connected

semisimple Lie group G admits a generating set of cardinality (k +2) which lies

arbitrarily close to the identity of G, and hence there is no uniform Kazhdan

constant for generating sets of size k + 2 for the natural representation of Γ on

L2(G). It follows from Theorem 1.1 that when G is compact, one can replace

k + 2 by k + 1. In view of the previous remark, for k ≥ n(G) one can even omit

the “+1”.

(3) The argument above can be also applied for some non-connected compact

groups. M. Abert and L. Pyber have shown me that using results from [D] one

can prove the following: Let G be a topologically k-generated pro-finite-soluble

group and Γ a (k+1)-generated dense subgroup of G. Then for any k+1 elements

s1, . . . , sk+1 which topologically generate G and any open normal subgroup

N C G, one can choose ti ∈ siN, i = 1, . . . , k + 1 such that Γ = 〈t1, . . . , tk+1〉.
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Moreover, any k-generated profinite group has a k+1-generated dense subgroup

which is not virtually free.

(4) For non-compact Lie groups E. Ghys asked the following related ques-

tion: Let H be a connected non-compact simple Lie group. Does every n-tuple

(s1, . . . , sn) which generates a dense subgroup of H admit an arbitrarily small

deformation (t1, . . . , tn) for which the group 〈t1, . . . , tn〉 is not free? We refer to

[So] for other related problems.

1.2. The ergodicity of Aut(Fn) on Hom(Fn, G). By fixing a free gen-

erating set for the free group Fn we may identify the deformation variety

Hom(Fn, G) with Gn. The automorphism group Aut(Fn) acts on Hom(Fn, G)

by pre-compositions. The Nielsen operations on generating sets (the prod-

uct replacement moves) when applied to the generators of the free group Fn

correspond to elements of Aut(Fn). Let us denote by Li,j the operation of re-

placing the j-th generator by its product from the left with the i-th generator,

e.g. L2,1(g1, g2, . . . , gn) = (g2g1, g2, . . . , gn). Arguing as above one can show

that the Aut(Fn)-orbit of almost any point in Gn is dense. More precisely, let

Y ⊂ Gn be the set of n-tuples consisting of n elements, such that the Adjoint

of any n − 1 of them generate the algebra A and the projection of each to any

simple factor of G is non-torsion, and let Y0 =
⋂

σ∈Aut(Fn) σ(Y ). Then Y0 is

Aut(Fn)-invariant, has full measure and the orbit of any element in Y0 is dense

in Gn. Furthermore, we have

Theorem 1.6: Let G be a compact connected semisimple Lie group and n ≥ 3.

The action of Aut(Fn) on Gn is ergodic.

Proof. Assume the contrary, and let A ⊂ Gn = G×G×· · ·×G be an Aut(Fn) al-

most invariant measurable subset which is neither null nor conull. Since Aut(Fn)

is countable we may assume that A is invariant rather than almost invariant.

Now since the action of G on itself by left translations is clearly ergodic, it

follows from our assumption that A is not (almost) invariant under the action

by left translations of one of the n factors, say the first, of Gn. Thus by Fu-

bini’s theorem, for a set of positive measure of (g2, . . . , gn) ∈ Gn−1 we have

that {g ∈ G : (g, g2, . . . , gn) ∈ A} is neither null nor conull in G. Let us fix

a point (g2, . . . , gn) in this subset such that the pair consisting of the first two

components (g2, g3) belongs to the set of full measure U ⊂ G×G introduced in

Lemma 1.4. Note that the orbits of the action of 〈g2, g3〉 by left translations on
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G coincide with (the projection to the first factor of) the orbits of 〈L2,1, L3,1〉

on {(g, g2, . . . , gn) : g ∈ G}. Set

A1 := {g ∈ G : (g, g2, . . . , gn) ∈ A}.

By our assumption, A1 is neither null or conull. This however is a contradiction

since the group 〈g2, g3〉 is dense in G and hence acts ergodically on G.

Theorem 1.6 clearly implies, and is actually equivalent to (see [Go] Lemma

3.1):

Theorem 1.7: Let G be a compact connected semisimple Lie group and n ≥ 3.

Then the action of Out(Fn) on Hom(Fn, G)/G is ergodic.

Theorem 1.7 was conjectured by W. M. Goldman in [Go], and was proved

there under the assumption that G = SU(2). As explained in the last paragraph

of [Go], the general case follows from the semisimple one, i.e., one can omit the

assumption that the connected compact Lie group G is semisimple in Theorems

1.6 and 1.7. As pointed out in [Go] the assumption that n ≥ 3 is necessary,

since the function trace([x, y]) is Aut(F2) invariant on G2.

Applying the conclusions of Theorems 1.6 and 1.7 to G2 instead of G we

obtain furthermore:

Theorem 1.8: Let G be a compact connected Lie group and n ≥ 3. Then the

action of Aut(Fn) on Hom(Fn, G), and the action of Out(Fn) of Hom(Fn, G)/G

are weakly mixing.

Proof. Since Hom(Fn, G) × Hom(Fn, G) is canonically isomorphic to

Hom(Fn, G×G), and since Hom(Fn, G)/G×Hom(Fn, G)/G is canonically iso-

morphic to Hom(Fn, G×G)/G×G, the assertions follows by applying Theorems

1.6 and 1.7 to the connected compact Lie group G × G.

Remark 1.9: An (n ≥ 2)-tuple (g1, . . . , gn) ∈ Gn is said to have a spectral

gap if the maximal eigenvalue of the corresponding Hecke operator on L2(G) is

isolated in the spectrum, or equivalently, if the group 〈g1, . . . , gn〉 acts strongly

ergodically, by left multiplications, on G. D. Fisher [F] showed that Goldman’s

theorem about the ergodicity of the Aut(Fn) action on SO(3)n implies that for

n ≥ 3 the set of n-tuples in SO(3) which posses a spectral gap is either null

or conull. Indeed, this set is measurable and Aut(Fn)-invariant. Theorem 1.6

implies that the same conclusion holds when SO(3) is replaced by any compact
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connected Lie group G. Furthermore, Theorem 1.1 implies that if G admits one

(n ≥ 2)-tuple with a spectral gap, then the set of (n + 1)-tuples with spectral

gap is dense in Gn+1.

1.3. The proof of Theorem 1.1 in the case where G is not necessar-

ily semisimple. Let us come back to the proof of Theorem 1.1 in the general

case. Let G be an arbitrary connected compact Lie group. Then G is an al-

most direct product of G′ and Z where G′ is the commutator group of G and

is semisimple, and Z is the center of G. We do not assume that G′ and Z

are non-trivial. Let D ⊂ G × G be the set of all pairs which generate a dense

subgroup of G.

Lemma 1.10: D is dense in G × G.

Proof. Let V ⊂ G×G be the pre-image of the open dense subset of G/Z×G/Z

that one gets from Lemma 1.4 applied to the semisimple group G/Z (if G = Z

take V = G × G). If (x1, x2) ∈ V , then 〈x1, x2〉 ∩ G′ is dense in G′.

The quotient G/G′, being a connected compact abelian Lie group, is isomor-

phic to a product of circle groups, and it is well-known that in such a group the

set of elements which generate a dense cyclic subgroup is dense. In fact, an ele-

ment in U(1)m generates a dense cyclic subgroup iff its normalized coordinates

are independent together with 1 over the rational. Let π : G → G/G′ denote

the canonical projection. The set

{(x1, x2) ∈ V : 〈π(x1)〉 is dense in G/G′}

is clearly dense in G × G and contained in D.

Fix a pair (g1, gn) ∈ D ∩ (B ε

2
(s1)×B ε

2
(sn)), and choose finitely many words

Wj , j = 1, . . . , k in two letters, such that the set {Wj(g1, gn) : j = 1, . . . , k}

form an ε/2-net in G. Then fix ε1 < ε/2 sufficiently small so that for any

(x1, xn) ∈ Bε1(g1)×Bε1(gn) the set {Wj(x1, xn) : j = 1, . . . , k} is an ε-net in G.

Let {γ1, . . . , γn−1} be a generating set for the dense subgroup Γ. We will use

the following

Claim 1.11: The set X = {x ∈ G : 〈γ2, . . . , γn−1, x〉 is dense in G} is dense in

G.

Indeed, X contains every x which satisfies the following conditions:

(1) Ad(γ2), . . . , Ad(γn−1), Ad(x) generate the algebra span(Ad(G)).
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(2) The projection of x to every simple factor of G is non-torsion.

(3) The projection of x to G/G′ generates a dense subgroup of G/G′.

Condition (1) defines an open dense subset of G, while the set of elements which

satisfies (2) and (3) is clearly dense.

Fix xn ∈ X ∩ Bε1(gn) and let W be a word in n − 1 letters such that

W (γ2, . . . , γn−1, xn) ∈ Bε1(g1)γ
−1
1 . Since Γ is dense in G we can pick tn ∈

Γ ∩ Bε1(gn) sufficiently close to xn so that W (γ2, . . . , γn−1, tn) still lies in

Bε1(g1)γ
−1
1 . Then t1 := W (γ2, . . . , γn−1, tn)γ1 lies in Bε1(g1). It follows that

the set

{Wj(t1, tn) : j = 1, . . . , k}

is an ε-net in G. Since the metric on G is invariant under right translations,

there are n − 2 (not necessarily distinct) elements of this ε-net: Wji
(t1, tn),

i = 2, . . . , n−1 such that the elements ti := Wji
(t1, tn)γi, i = 2, . . . , n−1 belong

to Bε(si) respectively. Since (t1, . . . , tn) was obtained from (γ1, . . . , γn−1, tn) by

product replacement moves, (t1, . . . , tn) generates Γ and the theorem is proved.

1.4. A concrete example. We will now give a concrete example: Let G be

a connected compact Lie group with center Z, and let a, b, c ∈ G be arbitrary

three elements. Slightly deforming a and b to a′, b′ we may assume that:

(1) a′ is regular and non-torsion;

(2) the group 〈a′Z, b′Z〉 is dense in G/Z.

The centralizer A = ZG(a′) of a′ is a maximal torus in G. Since all maximal

tori of G are conjugate and their union is equal to G, we can find γ ∈ 〈a′, b′〉

such that γAγ−1 passes arbitrarily close to c. Then we can slightly deform

c to some c′ ∈ γAγ−1 such that c′ and γa′γ−1 are independent over Z, i.e.,

〈c′, γa′γ−1〉 ∼= Z
2. The group 〈a′, b′, c′〉 is not virtually free since it contains a

copy of Z
2.

2. The case n = 2

The argument above, using the product replacement method, does not apply

for n = 2. In this case we prove the following:

Theorem 2.1: Let G be a compact connected semisimple Lie group, and let

a, b ∈ G. There is an arbitrarily small deformation a′, b′ of a, b such that 〈a′, b′〉
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is dense2 in G and has Serre’s property (FA). In particular 〈a′, b′〉 is not virtually

free.

Recall that a group Γ has Serre’s property (FA) if every action of Γ on a tree

admits a global fixed point.

A finitely generated infinite virtually non-abelian-free group, being quasi iso-

metric to F2, has infinitely many ends, and hence by Stalling’s theorem splits

over a finite group, and therefore acts minimally on some tree with finite edge

stabilizers. Additionally, it is well-known that an infinite virtually cyclic group

admits a transitive action on the linear tree. Therefore, an infinite group with

property (FA) is not virtually free.

Yves de Cornulier suggested to use the following result of Serre [Se]

Lemma 2.2 (Serre [Se]): Let Γ = 〈a, b〉 and suppose that a, b and ab are torsion.

Then Γ has property (FA).

For the sake of completeness let us give a proof for Lemma 2.2: Suppose

that Γ acts on a tree T , and let Ta, Tb be the fixed subtrees of a, b, which are

non-empty since a and b are torsion. Then Ta ∩ Tb is non-empty, for otherwise

the segment I connecting Ta to Tb would be oriented with (ab) · I which in turn

would imply that ab is hyperbolic, contrary to the assumption that it is torsion.

We will show that any two elements can be deformed to elements which satisfy

the conditions of Lemma 2.2 and generate a dense subgroup. For the sake of

simplicity let us assume that G is simple. The semisimple case follows easily

by considering simultaneously all simple factors of G. By Lemma 1.4 the set

of couples which generate a dense subgroup in G is open and dense in G × G.

Start with arbitrary a, b ∈ G. Slightly deforming them we may assume that:

(1) both a and b are torsion;

(2) both a and b are regular, in the sense that their centralizers are maximal

tori in G;

(3) the group 〈a, b〉 is dense in G.

We will show that it is possible to deform a and b within their conjugacy

class, i.e. find g, h ∈ G close to the identity, such that agbh = (gag−1)(hbh−1)

would be a torsion element.

2 By replacing the word “dense” with the word “infinite” in the conclusion of the theorem,

one may assume that G is only non-abelian rather than semisimple.
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Denote by Ta = ZG(a) the centralizing torus of a, by Tb the one of b and by

ta, tb the corresponding abelian Lie subalgebras of g = Lie(G).

Claim 2.3: ta ∩ tb = {0}.

Since ta∩ tb is in the null space of both Ad(a) and Ad(b) while 〈a, b〉 is dense,

the claim follows as the center of g is trivial.

For x ∈ G, let C(x) = {gxg−1 : g ∈ G} denote the conjugacy class of x.

We will derive Theorem 2.1 from the following proposition, in which we do not

require that G is compact:

Proposition 2.4: Let G be a connected simple Lie group and a, b ∈ G two

regular elements in general position, i.e., ta ∩ tb = {0}. The restriction of the

product map G×G → G to the conjugacy class C(a)×C(b) of (a, b) is open in

a neighbourhood of (a, b).

Proof. First note that ta = ker(Ad(a) − 1) and tb = ker(Ad(b) − 1). Now

(Ad(x−1) − 1)(g) =
(

ker(Ad(x) − 1)
)⊥

,

where the orthogonal complement is taken with respect to the Killing form,

which is non-degenerate as G is simple. Since ta ∩ tb = {0} it follows that

(1) (Ad(a−1) − 1)(g) + (Ad(b−1) − 1)(g) = g.

Since G admits a faithful linear representation, we my assume that it is linear.

Let us compute the tangent space to the conjugacy class C(a) at a, identified

via the Lie algebra of left invariant vector fields as a subspace of the tangent

space g = T1(G). For X ∈ g we have

d

dt

∣

∣

t=0
(exp(tX)a exp(−tX)) = Xa− aX,

and by multiplying from the left by a−1 we obtain:

La−1Ta(C(a)) = (Ad(a−1) − 1)(g),

where Ta(C(a)) denotes the tangent space of C(a) at a viewed as a subspace of

Ta(G). Similarly, Lb−1Tb(C(b)) = (Ad(b−1) − 1)(g).

Finally, the differential of the product map G × G → G at (a, b), again

identified via a left translation as a subspace of T(1,1)(G×G) = g⊕g, evaluated

at (X, Y ) is easily seen to be Ad(b−1)(X) + Y . It follows that the image of the
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differential at (a, b) of the product map C(a) × C(b) → G is

Ad(b−1)(Ad(a−1) − 1)(g) + (Ad(b−1) − 1)(g).

Since the second summand is Ad(b)-invariant, we derive from (1) that this

differential is onto. Therefore, the proposition follows from the implicit function

theorem.

Now since the torsion elements are dense in G, we can pick, by Proposition

2.4 and Lemma 1.4, g, h ∈ G arbitrarily close to 1 such that 〈ag, bh〉 is still

dense and agbh is torsion. This completes the proof of Theorem 2.1.
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