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Out (Fn) and the Spectral Gap Conjecture

David Fisher

For n > 2, given ϕ1, . . . , ϕn randomly chosen isometries of S2, it is well known that the

group Γ generated by ϕ1, . . . , ϕn acts ergodically on S2. In 1999, Gamburd, Jakobson, and

Sarnak conjectured that for almost every choice of ϕ1, . . . , ϕn, this action is strongly er-

godic. This is equivalent to the spectrum of ϕ1 + ϕ−1
1 + · · · + ϕn + ϕ−1

n as an operator on

L2(S2) having a spectral gap, that is, all eigenvalues but the largest one being bounded

above by some λ1 < 2n. (The largest eigenvalue λ0, corresponding to constant functions,

is 2n.) In this paper, we show that if n > 2, then either the conjecture is true or almost

every n-tuple fails to have a gap. In fact, the same result holds for any n-tuple ϕ1, . . . , ϕn

in any compact group K that is an almost direct product of SU(2) factors with L2(S2) re-

placed by L2(X), where X is any homogeneous K space. A weaker result is proven for n = 2

and some conditional results for similar actions of Fn on homogeneous spaces for more

general compact groups.

1 Introduction

Let φ1, . . . , φn be any finite collection of elements of SU(2) and let L2
0(SU(2)) be the or-

thogonal complement of the constant functions in L2(SU(2)). The operator φ1 + φ−1
1 +

· · ·+φn +φ−1
n is a selfadjoint operator on L2

0(SU(2)) and has discrete spectrum which is a

subset of R
+. Let λ1 be the supremum of the eigenvalues for this operator. It is clear that

λ1 ≤ 2n. The following is conjectured in [6].
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2 David Fisher

Conjecture 1.1. For n ≥ 2 and almost every collection φ1, . . . , φn, we have λ1 < 2n for

φ1 + φ−1
1 + · · · + φn + φ−1

n . �

This conjecture is referred to as the spectral gap conjecture and is a question in

[14, 15]. The conjecture is only known for n-tuples which have, up to conjugacy in SU(2),

all matrix entries of all φi algebraic. This is a recent result of Bourgain and Gamburd

building on earlier work of Gamburd, Jakobson, and Sarnak [1, 6]. This set of n-tuples

for which the conjecture is known has zero measure. See [4, Theorem 3.2] and [11] and the

references there in for weaker related results.

The main result of this paper is the following.

Theorem 1.2. Assume n ≥ 3. Then either λ1 < 2n for almost every φ1, . . . , φn or λ1 = 2n

for almost every φ1, . . . , φn. �

In particular, by Theorem 1.2, to prove Conjecture 1.1 it suffices to establish a

spectral gap for any set of positive measure in SU(2)n.

It is well known that for almost every φ1, . . . , φn, the group generated by

φ1, . . . , φn is a free group on n generators, Fn. The space of n-tuples φ1, . . . , φn can be

parametrized as Hom(Fn, SU(2)). The main new ingredient in Theorem 1.2 is the use of

symmetries of Fn and in particular ergodicity of the action of Aut(Fn) on Hom(Fn, SU(2)),

where Aut(Fn) is the automorphism group of Fn.

Theorem 1.2 remains true when SU(2) is replaced by any compact Lie group K

which is an almost direct product of copies of SU(2) and SU(1). For any compact Lie group

with SU(1) = S1 factors, analogues of Theorem 1.2 are not interesting, as it is easy to see

in that case that there is no spectral gap on a set of full measure.

The interest in spectral gaps for finite collections of elements in SU(2) originally

derives from the Banach-Ruscewiecz conjecture and its proof. This states that, for m >

1, the unique finitely additive rotationally invariant measure on Sm is the Haar mea-

sure. Rosenblatt showed that this was equivalent to finding a finite subset φ1, . . . , φn

in Isom(Sm) with a spectral gap for the action on L2
0(Sm) [19]. For n > 1, a spectral

gap for φ1, . . . ,φn in Isom(Sm) on L2
0(Sm) is easily seen to be equivalent to a spectral

gap for φ1, . . . ,φn on L2
0(Isom(Sm)) since the same representations of Isom(Sm) occur in

L2
0(Sm) and L2

0(Isom(Sm)), just with different multiplicities. Similarly, Conjecture 1.1 is

equivalent to the same conjecture with SO(3) in place of SU(2). For n > 3, Sullivan and

Margulis independently exhibited such subsets with a spectral gap, each by finding a

homomorphism from a group Γ with property (T) of Kazhdan to Isom(Sm) [16, 22]. For

n = 2, 3, subsets of Isom(Sm) with a spectral gap were first exhibited by Drinfeld using

methods of automorphic forms [3]. Later work on the subject was motivated by the fact

that if φ1, . . . , φn have a spectral gap, then the orbits under the resulting action of Fn
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Out (Fn) and the Spectral Gap 3

on Sm equidistribute with exponential speed. In [14, 15], the authors show how to find

φ1, . . . ,φn with optimal equidistribution properties, again using deep results on auto-

morphic forms. In [6], the authors prove the existence of φ1, . . . ,φn in SU(2) with a spec-

tral gap without using heavy machinery from the theory of automorphic forms and also

discuss several related issues. For more discussion, see [6, 12, 20].

As mentioned above, the key step in the proof of all results here is to use the er-

godic theory of the action of Aut(Fn) on Hom(Fn, K). In fact, since it is easy to check that

the spectral gap is invariant under conjugation in SU(2), it is easier to work with the ac-

tion of Out(Fn) on Hom(Fn, SU(2))/ SU(2) instead. The group Aut(Fn) of automorphisms

of Fn acts on Hom(Fn, K) and this action descends to an action of the outer automorphism

group Out(Fn) on Hom(Fn, K)/K. The Aut(Fn) action preserves the measure on Hom(Fn, K)

given by identifying this space with Kn and taking Haar measure. The Out(Fn) action

preserves the measure on Hom(Fn, K)/K given by realizing Hom(Fn, K) as Kn, taking Haar

measure on each factor, and dividing by the conjugation action of K to obtain the quo-

tient Hom(Fn, K)/K. The dynamics of this action have received relatively little attention,

but the analogous action of the mapping class group on Hom(S, K)/K, where S is the fun-

damental group of a surface, has been studied more extensively, see the recent survey [10]

which is also a good introduction to dynamics of group actions on representation vari-

eties. Essentially the only known result for the action of Out(Fn) on Hom(Fn, K)/K is due

to Goldman who shows that the action is weakly mixing when k ≥ 3 and K is an almost

direct product of SU(2) and SU(1) factors. This is proven in [9] using the main results of

[8]. The remaining ingredient in the proof of Theorem 1.2 is to construct a measurable

function f on Hom(Fn, SU(2))/ SU(2) that is Out(Fn) invariant and takes the value 1 for

actions with a spectral gap and the value zero for actions without a spectral gap. We will

construct the function f in Section 3. In the next section, we state some other variants

of Theorem 1.2. and recall some results about the ergodic theory of actions on moduli

spaces from [8, 9, 17, 18]. In Section 3, we prove all of our results.

2 Further results and group actions on representation varieties

A key ingredient in our proof of Theorem 1.2 is the following result of Goldman.

Theorem 2.1 (Goldman). Let K be a compact group which is an almost direct product of

SU(2) and SU(1) factors. If n > 2, then the action of Out(Fn) on Hom(Fn, K)/K is ergodic.

�

When n = 2, there are nonconstant functions on Hom(F2, SU(2))/ SU(2) or even

Hom(Fn, K)/K which are easily seen to be Out(F2) = SL(2, Z) invariant. For K = SU(2), one
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4 David Fisher

such function is simply g(ρ) = Trace([ρ(a), ρ(b)]), where a, b are a basis for F2. In this

case, invariance follows from the fact that the set of commutators is Aut(F2) invariant

and that trace is conjugation invariant. For general K, we need a few facts before we can

define an analogous function. It is well known that every element of K is contained in a

maximal torus T < K and that all such tori are conjugate in K. This allows us to parame-

trize the conjugacy classes in K as T/W, where W < K is the Weyl group, that is, the nor-

malizer of T divided by the centralizer of T . Given K, we define g : Hom(F2, K)/K → T/W

by taking the representative of the conjugacy class of [ρ(a), ρ(b)]. Again this function is

invariant, since the commutator is Out(F2) invariant. The following result of Pickrell and

Xia is essentially [17, Theorem 2.1.4]. In the case where K is as in Theorem 2.1, the result

is contained in [8].

Theorem 2.2 (Pickrell-Xia). For any compact Lie group K, the map g : Hom(F2, K)/K →

T/W defined above is an ergodic decomposition for the action of Out(F2) on Hom(F2, K)/K.

�

In both [8, 17], Out(F2) is considered as the mapping class group of a once punc-

tured torus.

By viewing g as an ergodic decomposition, we are writing the measure on

Hom(F2, K)/K as an integral over T/W of measures on the level sets of g. In fact, level

sets of g are generically smooth submanifolds and these measures are smooth measures.

It is clear that we can view g as a function on Hom(F2, K) instead. In the following result,

λ1 is again the supremum of eigenvalues for the operator ρ(a) + ρ(b) + ρ(a)−1 + ρ(b)−1 on

L2
0(K).

Theorem 2.3. Let a, b be a basis for F2 and let K be any compact group. Let X be the sub-

set of Hom(F2, K) such that λ1 < 4 for ρ(a) + ρ(b) + ρ(a)−1 + ρ(b)−1. Then for almost every

a in the image of g (with the pushforward measure), the set X ∩ g−1(a) has either zero

measure or full measure in g−1(a). �

This theorem is proven exactly as Theorem 1.2, using Theorem 2.2 in place of

Theorem 2.1. The main obstruction to a variant of Theorem 1.2 for general K is the lack of

an analogue of the main result of [9] for general K. The following conditional result also

follows from the proof of Theorem 1.2.

Theorem 2.4. Let a1, a2, . . . , an be a basis for Fn. Let X be the subset of Hom(Fn, K) such

that λ1 < 2n for ρ(a1) + ρ(a−1
1 ) + · · · + ρ(an) + ρ(an)−1. Then if n > 2, the measure of X is

either 0 or 1 provided the Out(Fn) action on Hom(Fn, K)/K is ergodic. �
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Out (Fn) and the Spectral Gap 5

3 Proofs of the main results

The proofs of all results here depend on another, equivalent, definition of the spectral

gap. The following discussion and the first two lemmas of this section are standard, but

we include them for completeness. We can define the spectral gap for a unitary represen-

tation ρ of a finitely generated group Γ with generating set S on a Hilbert space H to be

the largest ε such that for each v ∈ H there is some γ in S such that

∥
∥v − ρ(γ)v

∥
∥ ≥ ε‖v‖. (3.1)

Note that the spectral gap depends on the generating set S. This is because a

choice of generating sets determines a particular basis of neighborhoods of the trivial

representation in the Fell topology. That having a nonzero spectral gap in this sense is

equivalent to the definition of spectral gap given above is more or less immediate from

the definition of the Fell topology on the unitary dual of group, but we give a proof below

for completeness.The following standard lemma shows that having a nonzero spectral

gap is independent of generating set.

Lemma 3.1. Let Γ be a finitely generated group and let S1 and S2 be two generating sets

for Γ . Then Γ has nonzero spectral gap for S1 if and only if it has a nonzero spectral gap

for S2. �

Proof. Let ε be the spectral gap for (Γ, S1). Let n be the smallest integer such that every

element of S1 can be written as a word of length n in the generators S2. Then we claim

that the spectral gap for (Γ, S2) is at least ε/n. If not, we have a vector v in a representation

σ of Γ on a Hilbert space H such that

∥
∥σ(γ)v − v

∥
∥ <

ε

n
(3.2)

for all γ in S2. Writing any γ̃ ∈ S1 as γ1, . . . ,γi, where i ≤ n, and using a standard tele-

scoping sum argument, this implies that

∥
∥σ(γ̃)v − v

∥
∥ < ε, (3.3)

a contradiction. Reversing the roles of S1 and S2 completes the proof. �

The following standard lemma implies that our two definitions of spectral gap

are equivalent.
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6 David Fisher

Lemma 3.2. Let Γ be a finitely generated group with generators g1, g2, . . . , gn and ρ a uni-

tary representation of Γ on a Hilbert space H. Then ρ has a spectral gap if and only if the

norm the operator ρ(g1) + · · · + ρ(gn)−1 is strictly less than 2n. �

Proof. If we adjoin the identity to any generating set as γn+1, the norm of the operator

ρ(g1)+ · · ·+ρ(gn+1)−1 is simply 2 plus the norm of the operator ρ(g1)+ · · ·+ρ(gn)−1. Com-

bined with Lemma 3.1, this means that it suffices to prove the current lemma for gener-

ating sets that contain the identity. This reduces to the following elementary fact about

Hilbert spaces: given k unit vectors v1, . . . , vk not all of which are equal, ‖(1/k)
∑

vk‖ <

1 − f(v1, . . . , vk), where f is a positive function of the diameter of the set v1, . . . , vk which

goes to zero only when the diameter goes to zero. (It is not too hard to write down f ex-

plicitly.) �

We now prove a lemma that suffices to prove all the theorems in the previous

section.

Lemma 3.3. Fix a finitely generated group Γ and a generating set γ1, . . . , γn. Define

the function gap(ρ) to be the spectral gap of (ρ(Γ), S) acting on L2
0(K), where K is com-

pact Lie group and ρ is in Hom(Γ, K). Then gap is a well-defined measurable function on

Hom(Γ, K)/K. �

Proof. Fix a Riemannian metric on K invariant under both left and right multiplications.

Let Δ be the associated Laplacian. Recall that L2
0(K) decomposes as a Hilbertian direct

sum

⊕λVλ, (3.4)

where λ runs over nonzero eigenvalues of Δ and each Vλ is a bi-K-invariant

finite-dimensional space of smooth functions on K. Let S(Vλ) be the unit sphere in Vλ.

The action of K on S(Vλ) is smooth, so for every representation ρ : Γ→K, we have a smooth

action ρλ of Γ on S(Vλ) and ρλ depends smoothly on ρ. Therefore, the function ρ(γi)v − v

is a smooth function on Hom(Γ, K) × S(Vλ). The function ‖ρ(γi)v − v‖ is continuous on

Hom(Γ, K)×S(Vλ) and so the function gapλ(ρ, γi) = minS(Vλ) ‖ρ(γi)v − v‖ is continuous on

Hom(Γ, K). Therefore,

g̃ap(ρ) = inf
λ

max
γ1,...,γn

gapλ

(

ρ, γi

)

(3.5)

is a measurable function on Hom(Γ, K). It is immediate from the definition that g̃ap(ρ) is

in fact the spectral gap for (ρ, S) and that it is invariant under conjugation. �
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Out (Fn) and the Spectral Gap 7

We now proceed to prove the theorems stated in the previous sections.

Proof of Theorems 1.2, 2.3, and 2.4. We define a function pgap(ρ) on the space Hom(Γ,

K)/K such that pgap(ρ) = 1 if gap(ρ) > 0 and pgap(ρ) = 0 otherwise. By Lemma 3.1 the

function pgap is Out(Fn) invariant, an automorphism of Fn simply changes the generat-

ing set for which we want a gap. By Lemma 3.3 the function pgap is measurable.

To complete the proof of Theorem 1.2 we note that by Theorem 2.1, the action of

Out(Fn) on Hom(Γ, K)/K is ergodic as long as K is locally a product of SU(2) and SU(1)

factors and n > 2. This implies that pgap is either almost everywhere one or almost ev-

erywhere zero. Similarly, to complete the proof of Theorem 2.3,we recall that by Theorem

2.2 the level sets of the function g defined in Section 2 are ergodic components for the ac-

tion of Out(F2) on Hom(F2, K)/K. This immediately implies the statement of the theorem.

The proof of Theorem 2.4 is the same as the proof of Theorem 1.2. �

4 Speculation and questions

Theorem 1.2 allows one to prove Conjecture 1.1 by proving the existence of a spectral gap

on any set of positive measure in Hom(Fn, SU(2)). It also leaves one with the impression

that the large group of symmetries of Fn might be relevant to a proof of Conjecture 1.1.

The following conjecture seems natural in the context of this work.

Conjecture 4.1. The representation of Out(Fn) on L2
0(Hom(Fn, K)/K) has a spectral gap

for n > 3. �

One can reformulate this as saying that the trivial representation is isolated in

the representation of Out(Fn) on L2(Hom(Fn, K)/K), in which case the conjecture also

makes sense for n = 2. It may be possible to prove Conjecture 4.1 for n large enough,

using the fact that Out(Fn) is generated by torsion elements, see, for example, [2, 23], and

an argument like the one given by Schmidt in [21] for strong ergodicity of the SL(2, Z)

action on T
2. In the case when K is abelian, the conjecture is true and originally due

to Rosenblatt [19]. When K is abelian, stronger statements in this direction, including

strong ergodicity of many subgroups, follow from work of Furman and Shalom [5]. It is

tempting to hope for some duality that links Conjecture 4.1 to Conjecture 1.1, but this

hope seems naive. Any attempt to link the two conjectures must take account of the fact

that Conjecture 4.1 is true when K is abelian, and the analogue of Conjecture 1.1 fails in

that setting.

It is also worthwhile to compare this paper to work where relations are sought

between spectral gaps in certain (or all) representations of Out(Fn) and expansion
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8 David Fisher

properties of various families of finite groups, see particularly [7, 13]. In particular, it

seems likely that a strong version of Conjecture 1.1 should imply Conjecture 4.1 via an

argument similar to the one in [7].
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