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Abstract

This paper deals with sub-Riemannian metrics in the quasi-contact case. First, in any

even dimension, we construct normal coordinates, a normal form and invariants, which

are the analogs of normal coordinates, normal form and classical invariants in Riemannian

geometry. Second, in dimension 4, and thanks to this ”normal form”, we study the local

singularities of the exponential map.

1. Introduction

This paper is a continuation of a series of papers ([C-G-K], [A-C-G-K], [A-C-G],
[A-G], [A-C-G-Z]) dealing with contact metrics. In these papers, the authors con-
struct normal coordinates, a canonical field of normal frames and invariant tensors.
These objects are the analogs of normal coordinates, normal frame and classical
invariant tensors (such as the curvature tensor) in Riemannian geometry. They do
this in any odd dimension. They also study in details the exponential map, the
wave-front, the cut locus and the conjugate locus in dimension 3.

In this paper, we construct the same type of normal coordinates, canonical field
of normal frame and invariant tensors in the quasi-contact case in any even
dimension. We also study the exponential map and the conjugate locus in the
4-dimensional case.

A quasi-contact structure, on a (2n + 2)-manifold M , is a sub-bundle ∆ of the
tangent bundle, of codimension 1, such that, if ∆ is the kernel of a 1-form ω, then
the kernel of dω|∆ has dimension 1. A quasi-contact sub-Riemannian metric on a
(2n+2)-manifoldM is the data of a couple (∆, g), with ∆ a quasi-contact structure
and g a non-degenerate Riemannian metric on ∆.

Almost everywhere in the paper, the study is local, that is, we consider germs
of quasi-contact sub-Riemannian structures at a point.

1.1. Invariants. Let us fix q in M and let us choose ω, defined locally, such
that kerω = ∆. It is defined up to a non vanishing function on a neighborhood of
q. The kernel ker dω|∆ is defined without ambiguity and has dimension 1. Let us
denote by ∆0 the orthogonal for g in ∆ of this kernel. We ask ω to satisfy that
(dω|∆0

)n = Volg|∆0
. Now ω is determined up to sign.

Let Aq : ∆q → ∆q be defined by dω|∆(X,Y ) = g(Aq(X), Y ), where Aq is skew-
symmetric wrt g. For a generic quasi-contact structure and outside a codimension
3 closed stratified subset, Aq has a set of eigenvalues of the form:

{−iα1, . . . ,−iαn, 0, iαn, . . . , iα1},
1
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where 0 < αn < . . . < α1 and
∏
αi = 1

n! because (dω|∆0
)n = volg . For i = 1 . . . n,

let us denote by δi the distribution defined as the 2-dimensional invariant space
associated with αi. First remark that [δi, δi] is not contained in ∆ (see lemma 4 in
appendix). We denote by δ the orthogonal of δ1 for dω. It is easy to check that the
intersection of [δ1, δ1] and δ has dimension 1 and is transversal to ∆. We choose ν
the vector field in this intersection such that ω(ν) = 1.
Remark: first, the eigenvalues of Aq are the first invariants of the problem. Sec-
ond, α1 plays a special rôle because it determines the first non trivial term in the
asymptotics of the conjugate time, defined in the next section. Third, for a generic
sub-Riemannian structure, the set of points q where at least two eigenvalues of Aq

are equal is a codimension 3 closed stratified subset. In all the sequel we will
consider such a generic sub-Riemannian quasi-contact structure and we
will assume that the pole q is outside this stratified set.

In the sequel of this section and all along the paper, we use some terminology
and some preliminaries that are the purpose of the next section.

A consequence of more general results from section 3 is:

Theorem 1. In a neighborhood of a point q where the αi are all distinct and non
zero, there exists a local coordinate system (x1, y1, . . . , xn, yn, z, w), called a normal
coordinate system, such that:

• Along the w-axis we have ∂
∂w = ν.

• span( ∂
∂xi

, ∂
∂yi

) = δi, dω( ∂
∂xi

, ∂
∂yi

) > 0 and span( ∂
∂z ) = ker dω|∆ along the

w-axis.
• The lines contained in a set Sw0

= {w = w0} and containing (0, w0)
are geodesics of the sub-Riemannian structure, that minimize the sub-
Riemannian distance to the w-axis. The distance between (xi, yi, z, w) and

the w-axis is
√
z2 +

∑
i x

2
i + y2

i

• If we denote by Pw0
the orthogonal projection on Sw0

in this coordinate
system, then its differential at a point of Sw0

maps the metric g on ∆ at
this point to a non-degenerate metric gw0

on Sw0
. The sectional curvatures

of gw0
, relative to the 2-planes δi(0, w0) all vanish at (0, w0).

This normal coordinate system is unique up to rotations in the spaces δi(q) hence
up to elements of a maximal torus T n of SO(∆q). It should be noticed that this
situation is much more rigid, and is simpler, than that of Riemannian geometry:
in the Riemannian case, in normal coordinates, the remaining ”structure group” is
SO(TqM) (non Abelian). As a consequence, in our case, all the invariant tensors
can be reduced to complex numbers (characters).

In such normal coordinates, we are able to construct a unique natural normal
form for the metric, that is, a canonical choice of a field of orthonormal frames of
the distribution ∆. This normal form allows to obtain a family of invariants that
we discuss in section 4.

1.2. Caustic in dimension 4. As in Riemannian geometry we may consider the
geodesics issued from a fixed point q, that allow to define an exponential map.
The first singular value of the exponential map along a geodesic is called a first
conjugate point and the set of these points forms the first caustic. Contrarily to
the Riemannian case, the conjugate locus associated with a point q has q in its
closure. In the 4-dimensional case, with generic conditions on some invariants that
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we will discuss in section 4, a theorem, consequence of the main results in this
paper, is:

Theorem 2 (illustration of further results). 1) For a generic point q of a generic
sub-Riemannian quasi-contact structure, the local first singularities of the exponen-
tial map have type A2 (folds), A3 (cusps) and D+

4 .
2) The first caustic is as follows:

• In normal coordinates, if we cut the upper conjugate locus (the w > 0 part)
by a 3-plane z = z0 with z0 6= 0 small enough, we find a surface (see figure
1).

– The points where it is smooth are singular values where the singularity
of the exponential map has type A2 (folds).

– The points where the surface is not smooth are cusp points (A3) except
at two points which are of type half D+

4
1.

Figure 1. Intersection with a plane {z = z0 6= 0}

• In normal coordinates, the section of the first caustic by the plane {z = 0}
is the same as the 3-dimensional contact generic caustic: see [C-G-K] and
figure 2.

Figure 2. Intersection with the plane {z = 0}
1half D+

4
corresponds to the first conjugate time and the second half to the second conjugate

time: at such points, they are equal.
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• In normal coordinates, if we cut the conjugate locus by a 3-plane w = w0

with w0 6= 0 small enough, we find an other surface (see figure 3), such
that the points where it is smooth are folds of the exponential map and the
singular points of the surface are cusps.

Figure 3. Intersection with a 3-plane {w = w0 6= 0}

Some computations in this paper are difficult to handle. In particular to com-
pute the jets of the exponential map, we have used the formal calculus language
Mathematica.

2. Preliminaries

2.1. The Control Theory point of view. Let q0 be a fixed point, {Fi} a field
of orthonormal frames of the distribution ∆ and U = L2(R+,R

2n+1). With an
element u of U , called the control function, one can associate the curve issued
from q0 obtained by integrating ẋ(t) =

∑
i ui(t)Fi(x(t)). The set of all such curves

issued from any point of M is the set of the admissible curves. In particular, almost
everywhere, such a curve γ satisfies γ̇(t) ∈ ∆(γ(t)). The length of such a curve,
between the times t1 and t2, is:

L(γ) =

∫ t2

t1

√∑

i

u2
i (t)dt,

that may also be written:

L(γ) =

∫ t2

t1

√
g(γ̇(t), γ̇(t))dt.

A geodesic is an admissible curve being locally optimal for the problem of min-
imizing the length between two points. As in Riemannian geometry, it is a direct
consequence of the Cauchy Schwarz inequality that we can search the geodesics as

the trajectories minimizing the energy E(γ) =
∫ t2

t1

∑
i u

2
i (t)dt in fixed time. Now,

the Pontryagin Maximum Principle gives the candidates, called extremals, that are
of two types: normal and abnormal. A strictly abnormal extremal is an abnormal
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one that cannot be realized as a normal one. Normal extremals are always locally
C0-optimal. In our case, there is no strictly abnormal geodesic (see lemma 4 in
appendix), hence we have to compute the normal geodesics only.

Let us consider the canonical fibration π : T ∗M → M and the canonical sym-
plectic structure on T ∗M . The Hamiltonian:

H(ψ) =
1

2
sup

v∈∆\{0}
(
ψ(v)

‖v‖ )2 =
1

2

∑

i

(ψx(Fi(x))
2),

is a smooth function on T ∗M hence we can define its symplectic gradient
−→H for the

canonical symplectic structure. Now, the fact that any geodesic can be realized as
a normal extremal, together with the Maximum Principle of Pontryagin, allow to
check that the geodesics are the projections, on the basis of the fibration π, of the

integral curves of
−→H in T ∗M .

2.2. Some geometrical objects. This last fact allows to define the exponential
map:

expq0
: T ∗

q0
M → M
ψ 7→ π(Φ−→H(ψ)),

where Φ−→H is the flow at time 1 of
−→H . This map is smooth since it is the composition

of two smooth maps.
Now, we can state some definitions:

Definition 1 (Sub-Riemannian objects). • The sphere S(q0, r) of center q0
and radius r is the set of all the points the distance of which to q0 is r.

• The wave front of center q0 and radius r is the set of endpoints of the
geodesics issued from q0 and with length r.

• The conjugate locus is the set of the singular values of the exponential map-
ping. We also call it the caustic.

• The cut locus is the set of points where a geodesic loses its global optimality.
• Let us take ψ0 ∈ T ∗

q0
M , then it can exist a time s ∈ R∗

+ being the smallest
time such that expq0

is singular at sψ0. Then expq0
(sψ0) is called a first

conjugate point and the set of all the first conjugate points is called the first
conjugate locus or first caustic.

2.3. Symplectic considerations. [see [A-V-G]] Any fiber of π is lagrangian for
the canonical symplectic structure of T ∗M hence we say that π is a lagrangian
fibration. Let us recall that a lagrangian mapping is the composition of an embed-
ding in a lagrangian fibration, the image of which is a lagrangian submanifold, with
the canonical projection on the basis of the fibration.

Now, the exponential map expq0
appears clearly to be a lagrangian mapping:

actually, the flow Φ−→H preserves the symplectic structure and T ∗
q0
M is a lagrangian

submanifold hence Φ−→H(T ∗
q0
M) is a symplectic submanifold and, as a consequence,

the exponential map being the composition of the flow, restricted to T ∗
q0
M , with

the fibration π, is a lagrangian map.

2.4. Stability of the exponential map. [see [A-V-G]] In this paper we will study
the local stability, on an open set of its domain, of the exponential map. For this
we may consider the exponential map either as a smooth map or as a lagrangian
map. Hence we may study either its C∞-stability or its lagrangian stability:
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Definition 2. • A smooth map f is said to be C∞-stable in a neighborhood
of a point q if there exist a neighborhood Vq of q and a neighborhood Uf of
f|Vq

(C∞-topology) such that for any g in Uf , there exist diffeomorphisms
ϕ1 and ϕ2 such that ϕ1 ◦ g ◦ ϕ2 = f on Vq.

• A lagrangian equivalence of lagrangian fibrations is a diffeomorphism be-
tween lagrangian fibrations mapping the symplectic structure to the sym-
plectic structure and fibers to fibers.

• Two lagrangian mappings are Lagrange-equivalent if there exists a la-
grangian equivalence between the two corresponding lagrangian fibrations
mapping the first lagrangian submanifold on the second one.

• A lagrangian mapping f is said to be Lagrange-stable in a neighborhood of
a point q if there exist a neighborhood Vq of q and a neighborhood Uf of f|Vq

for C∞-topology such that any g lagrangian in Uf is Lagrange-equivalent to
f|Vq

.

Let us take a (smooth or lagrangian) map f . We may consider its (smooth or
Lagrange) equivalence class, that is the class of maps being equivalent (for C∞ or
Lagrange equivalence) to f . In this class, we can choose a special map that we
consider as the representative of the class. We call it the normal form of the class.

In this paper we will consider three particular singularities, or classes of maps,
defined in a neighborhood of a point q.

• The first one is A2. It is both a lagrangian equivalence class and a smooth
equivalence class. It has the normal form:

{
x 7→ x2

R → R

at 0. If a map from Rk to Rk is equivalent to

(x1, . . . , xk−1, xk) 7→ (x1, . . . , xk−1, x
2
k)

at 0, we still say that it has singularity A2. If a map f from Rk to Rk is
such that there is a variable xi satisfying

Jac(
∂f

∂x1
, . . . ,

∂f

∂xk
)(0) = 0 but Jac(

∂f

∂x1
, . . . ,

∂2f

∂x2
i

, . . . ,
∂f

∂xk
)(0) 6= 0

then it has singularity A2 at 0. A map with singularity A2 at a point q may
always be seen locally as a lagrangian map and is stable in a neighborhood
of the point q for both C∞ and lagrangian stabilities.

• The second one is A3. It is both a lagrangian equivalence class and a
smooth equivalence class. It has the normal form:

{
(x, y) 7→ (x3 + xy, y)
R2 → R2

at 0. If a map from Rk to Rk is equivalent to

(x1, . . . , xk−1, xk) 7→ (x1, . . . , xk−1, x
3
k + xk−1xk)

at 0, we still say that it has singularity A3. If a map f from Rk to Rk

is such that we can find a coordinate system (x1, . . . , xk) with Ek−1 =

span( ∂
∂x1

, . . . , ∂
∂xk−1

) having dimension k − 1 and ( ∂
∂xk

, ∂2

∂x2
k

) are in Ek−1

but ∂3f
∂x3

k

and ∂2f
∂xk∂xk−1

are not in Ek−1, then f has singularity A3. A map



QUASI-CONTACT S-R METRICS 7

with singularity A3 at q may always be seen locally as a lagrangian map and
is stable in a neighborhood of the point q for both C∞ and lagrangian
stabilities.

• The last one is D+
4 . It has the normal form:

{
(x, y, z) 7→ (x, yz, z2 + y2 + xz)

R3 → R3

at 0. If a map from Rk to Rk is equivalent to

(x1, . . . , xk−1, xk) 7→ (x1, . . . , xk−2, xk−1xk , x
2
k + x2

k−1 + xk−2xk)

at 0, we still say that it has singularity D+
4 at (x1, . . . , xk−3, 0, 0, 0). A map

with singularity D+
4 at a point q is locally a smooth and a lagrangian map

because it is equivalent to the normal form which is a lagrangian map. It
is not stable as smooth map from R3 to R3, but it is lagrangian
stable.

Important fact: the singularity A2 is 2-determined, i.e., if a map has the same
2-jet as the normal form of A2 at a point q, then it has singularity A2 at point
q. A3 is 3-determined. D+

4 is 2-determined, i.e., if a lagrangian map has the same
2-jet as the normal form of D+

4 at a point q, then it has singularity D+
4 at a point

q.

2.5. Nilpotent approximation. [see [B] for more details] In the following, we
will need the definition of the nilpotent approximation.

Let us go back to the general sub-Riemannian situation. Let ∆ be a distribution
on a manifold Mn satisfying the Chow condition (its Lie algebra evaluated at any
point is the whole tangent space at this point). We define Ls(q) =

∑
i≤s ∆i(q)

and we construct a coordinate system (z1, . . . , zn) on M such that dz1, . . . , dzn is
adapted to the flag L1(q) ( L2(q) ( . . . ( Lr(p) = TqM and we define the sequence
(of weights):

w1 ≤ . . . ≤ wn

by wi = s if ∂
∂zi

belongs to Ls(q) but do not belong to Ls−1(q). Let (X1, . . . , Xk)
be a field of orthonormal frame of the distribution ∆. We say that a function has
order s if all its derivatives of order less than s w.r.t. the Xi are zero but at least
one derivative of order s is not zero.

Theorem 3. There exist coordinate systems (z1, . . . , zn) (called privileged coordi-
nate systems), centered at q, such that zi has order wi. They satisfy:

d(0, (z1, . . . , zn)) � |z1|
1

w1 + . . .+ |zn|
1

wn .

Our normal coordinate system, described in the introduction, is a privileged coor-
dinate system. The coordinates xi, yi and z have weight 1, the coordinate w has
weight 2.

These weights induce gradations in C∞(M), X∞(M),
∧∞(M) and C∞(T ∗M)

in the usual way. These gradations are consistent in particular with the Lie bracket

and the Poisson bracket. For instance, a monomial zβ1

1 . . . zβn
n has order w1β1 +

. . . + wnβn, a function has order k at a point q if the monomial of smaller order
appearing in its Taylor expansion has order k, and a vector field ∂

∂zi
has order −wi.



8 G. CHARLOT

Now, if we denote by {Fi} a field of orthonormal frames of the distribution and

F̃i the homogeneous part of smallest degree (-1) of Fi, then {F̃i} is said to be the
nilpotent approximation of {Fi} at q.

Theorem 4. In the quasi-contact case, in the normal coordinates, the nilpotent
approximation constructed from our ”normal form” is:

(
∂

∂x1
+ α1

y1
2

∂

∂w
,
∂

∂y1
− α1

x1

2

∂

∂w
, . . . ,

∂

∂xn
+ αn

yn

2

∂

∂w
,
∂

∂yn
− αn

xn

2

∂

∂w
,
∂

∂z
).

It is an invariant of the quasi-contact metric and the only invariants of the nilpo-
tent approximation are the invariants αi already defined. In particular, in the
4-dimensional case, there is no invariant for the nilpotent approximation.

The proof is a direct consequence of the construction of the ”normal form” which
is done in the next section.
Remark: let us denote by v the dual coordinate to w in T ∗M . It may be proved
that for the nilpotent approximation, any geodesic γ parameterized by arclength
and such that γ̇(0) 6= ± ∂

∂z has conjugate time equal to 2π
α1v (in any dimension).

3. Normal form in the quasi-contact case

We assume again that we are at a generic point as defined in the introduction.
The form ω and the vector field ν satisfy the same conditions as in the introduction.

3.1. normal coordinates. The purpose of this subsection is the construction,
from the structure (M,∆, g), of a normal coordinate system around q0. For this,
we follow an idea very similar to the idea of the construction of normal forms in
Riemannian geometry.

First, we define the curve Γ around which we will construct the coordinates:

Γ(0) = q0,

dΓ(t)

dt
= ν(Γ(t)).

It is transversal to the distribution. Now, we can define the subspace AΓ(t) of
T ∗

Γ(t)M by AΓ(t) = {ψ ∈ T ∗
Γ(t)M | ψ(ν(Γ(t))) = 0}, and AΓ = ∪t∈]−ε,ε[AΓ(t).

Proposition 1. In a neighborhood of a point q0, there exists a smooth coordinate
system (p1, . . . , p2n, p2n+1, w) such that:

(1) Γ(w) = (0, w);
(2) The geodesics starting from Γ(w0) and satisfying the transversality Condi-

tions to Γ are straight lines contained in Sw0
= {w = w0};

(3) For s small enough Cs = {∑j p
2
j = s2} = {q| d(q,Γ) = s}.

Proof: first remark that AΓ is the union of all the impulses along Γ satisfying the
Pontryagin’s Transversality Condition for the problem of the minimization of the
distance to Γ.

Let us choose (Fi) a field of orthonormal frames of ∆ in a neighborhood of q0
and denote by < ., . > the metric on T ∗M :

< ψ1, ψ2 >=
1

2

2n+1∑

i=1

ψ1(Fi)ψ2(Fi),

(ψ1(w), . . . , ψ2n+1(w)) an orthonormal frame of AΓ(w) for <,> and E the map map-
ping (p1, . . . , p2n+1, w) to the point obtained by following the geodesic issued from
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AΓ(w) with the impulse ψ =
∑
piψi during the time 1. E is a local diffeomorphism

hence (p1, . . . , p2n+1, w) can be used as a coordinate system.
The geodesics considered all satisfy the Transversality Condition because their

impulses at time 0 are in AΓ. Because of this, the points 1 and 2 are satisfied.
For the point 3, we know that the map we have just defined is a local diffeomor-

phism hence two different geodesics transversal to Γ can not reach the same point
for a distance s small enough. Therefore there is no cut locus, for the local problem
of minimizing the distance to Γ, close to 0. This is enough to conclude. �

Such a coordinate system (p1, . . . , p2n+1, w) is said to be adapted to Γ. It is
unique up to a change of coordinates such that:

w̃ = w,

(ζ̃, z̃) = U(w)(ζ, z), U(w) ∈ O(2n+ 1).

We denote qw = (0, w) and we take a coordinate system adapted to Γ.
Now we consider the coordinate systems (x1, y1, . . . , xn, yn, z, w), adapted to Γ

and such that δi(qw) = span{ ∂
∂xi

, ∂
∂yi

}(qw), dω( ∂
∂xi

, ∂
∂yi

) > 0, ∂
∂z is a normalized

generator of kerdω|∆ along Γ. Such a coordinate system is said to be reduced to Γ.
It is unique up to a change of coordinates such that:

w̃ = w,
z̃ = z,

ζ̃ = T (w)ζ, T (w) ∈ T n,

where, for each w, T (w) is a block diagonal matrix with (2 × 2)-blocks, and T n is
a maximal torus of SO(2n+ 1).
Remark: if we change ω for −ω, w is changes for −w, the orientation on each δi

is changed, therefore if we want to keep the same orientation on M 2n+2, if n is odd
we leave z invariant, and, if n is even, we change z for −z.

Now, we consider a coordinate system reduced to Γ. We denote Sw0
=

{(ζ, z, w)|w = w0} and Pw0
: (ζ, z, w) 7→ (ζ, z, w0), the vertical projection on Sw0

.
In a neighborhood of 0, the differential of Pw0

, at a point of Sw0
, is a bijection in

restriction to ∆(ζ,z,w0). It allows to push g to a Riemannian metric gw0
on Sw0

.
We have the formula:

gw0
(X,Y ) = g((dPw0

|∆)−1(X), (dPw0
|∆)−1(Y )), ∀X,Y ∈ T(ζ,z,w0)Sw0

.

We denote Si
w0

= {(ζ, z, w)| z = xj = yj = 0 if j 6= i and w = w0}.
Proposition 2. Up to a change of coordinates, we can assume that this coordinate
system, reduced to Γ, is such that the curvature of gw|Si

w
at qw is 0. It is unique up

to a change of coordinates such that:

w̃ = w,
z̃ = z,

ζ̃ = Tζ, T ∈ Tn.

where T is a (2×2)-blocks diagonal matrix and T n is a maximal torus of SO(2n+1).
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Proof: we will consider changes of coordinates reduced to Γ:

w̃ = w,
z̃ = z,
x̃j = xj cos(δj(w)) − yj sin(δj(w)),
ỹj = xj sin(δj(w)) + yj cos(δj(w)).

Observation 1: if we denote by C(r) the circle in Si
w, whose center is qw and of

radius r for gw, then we have:

lengthgw
(C(r)) = 2π(r − c(w)r3

6
+ O(r4)),

where c(w) is the curvature of gw |Si
w

at qw. X

Observation 2: if (ri, θi) are polar coordinates in Si
w, associated with the coordinate

system (xi, yi), then the property 2 of the Γ-adapted coordinate systems allows to
claim that ri

∂
∂ri

is in ∆. But locally we can write ω = f(dw −∑j(µxj
dxj +

µyj
dyj) − µzdz), therefore we have µxi |Si

w
xi + µyi |Si

w
yi = 0, that implies:

µxi |Si
w

= αi

2 yi,

µyi |Si
w

= −αi

2 xi,

with αi
|Γ = αi because dω|Γ =

∑
j αjdxj ∧ dyj . Now, computations in the other

coordinate system gives, at a point of Si
w:

ω = f



(

1 − αiδ̇i(w)r2i
2

)
dw̃ −

∑

j

(µfxj
dx̃j + µ eyj

dỹj) − µezdz̃


 .

X

Observation 3: the length of C(ri) for gw is:

∫ 2π

0

√
gw(ri

∂

∂θi
, ri

∂

∂θi
) dθi.

The circle of radius ri is the same for the two metrics gw and gew because it is the
intersection of Si

w and of {q|d(q,Γ) = ri}. Then we have the same formula for g ew:

lengthg ew (C(ri)) =

∫ 2π

0

√
gew(ri

∂

∂θi
, ri

∂

∂θi
) dθi.

X

Now, we will compute the pull back of ri
∂

∂θi
by the two projections to compare

their norms for the two metrics:

(Pw |∆)−1(ri
∂

∂θi
) = ri

∂

∂θi
− αir2i

2

∂

∂w
,

and

(Pew |∆)−1(ri
∂

∂θi
) = ri

∂
∂θi

− (
αir2

i

2
∂

∂ ew )/(1 − αi δ̇i(w)r2
i

2 )

= (ri
∂

∂θi
− αir2

i

2
∂

∂w )/(1 − αi δ̇i(w)r2
i

2 ).
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As a consequence:

‖ri ∂
∂θi

‖g ew = ‖ri ∂
∂θi

‖gw
/(1 − αiδ̇i(w)r2

i

2 )

= ‖ri ∂
∂θi

‖gw
× (1 +

αiδ̇i(w)r2
i

2 + O(r3i )).

Now αi = αi + O(ri) hence we find:

ci(w̃) = ci(w) − 3αiδ̇i(w).

So, if we want to annihilate the curvatures, we have to choose:

δ̇i(w) =
ci(w)

3αi
, ∀i = 1, . . . , n.

The δi(w) are then uniquely determined by (δ1(0), . . . , δn(0)), solving this ordinary
differential equation. �

This coordinate system is the normal coordinate system, which is defined up to
an element of T n.

3.2. Normal form. Now, computing in a normal coordinate system, we want to
construct a field of normal frames F of the distribution:

F =

(
Q
L

)

where Q is a (2n+1)× (2n+1)-block and L is a 1× (2n+1)-block. The columns of
the matrix are the vector fields of the frame F , written in the normal coordinates.

Let K be the matrix of the metric gw in the basis ( ∂
∂x1

, ∂
∂y1

, . . . , ∂
∂xn

, ∂
∂yn

, ∂
∂z ).

Proposition 3. K is symmetric and K(ζ, z, w)(ζ, z) = (ζ, z).

Proof: the fact that K is symmetric is obvious.
Observation: The lines t 7→ (tζ, tz, w) are geodesics for the metric gw on Sw. Indeed,
if it would existed a smaller trajectory between qw and (ζ, z, w) for gw, its lifting
would be a shorter trajectory between Γ and {q|d(q,Γ) = |(ζ, z)|} for g, which is
impossible because our system of coordinates is adapted to Γ. X

hence the vector ζ ∂
∂ζ + z ∂

∂z is orthogonal to the sphere of radius |(ζ, z)| for gw.

Now, this sphere is {q = (ζ, z, w)|∑ ζ
2

i + z2 =
∑
ζ2
i + z2}, which implies that

ζ ∂
∂ζ +z ∂

∂z is orthogonal for gw to its orthogonal for the Euclidean metric associated

with the coordinate system. Therefore K(ζ, z, w)(ζ, z) is collinear to (ζ, z). On
the other hand, the way we have built the coordinates adapted to Γ allows us to

assume that t 7→ (t (ζ,z)
|(ζ,z)| , w) is parameterized by arclength and, as a consequence,

that ζ ∂
∂ζ + z ∂

∂z has norm |(ζ, z)|. Hence K(ζ, z, w)(ζ, z) = (ζ, z). �

We can take Q =
√
K−1. Then L is determined by ω. We denote:

F = (F1, G1, . . . , Fn, Gn, E).

We have Fi|Γ = ∂
∂xi

, Gi|Γ = ∂
∂yi

, E|Γ = ∂
∂z .

The nilpotent approximation gives weight 1 to ζ and z, and weight 2 to w.
We denote by Qk and Lk the homogeneous part with order k, in the variables ζ, z

and w (wrt their weights), of Q and L, K ii et Qii the ith blocks 2×2 on the diagonals
of K and Q, Lii the ith couple of coordinates of L and ζi = (0, . . . , 0, xi, yi, 0, . . . , 0).
Now we can state the result:
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Theorem 5 (Normal form). There is a field of orthonormal frame F , which can
be defined, as above, by a couple (Q,L) written in the normal coordinates, unique
once the normal coordinates are fixed (hence unique up to an element of T n)such
that the matrices Q and L satisfy the properties:

(1) Q is symmetric,
(2) Q0 = Id2n+1,
(3) Q(ζ, z, w)(ζ, z) = (ζ, z),
(4) Q1 = 0,

(5) Qii(ζi, w) =

(
1 + y2

i βi(ζi, w) −xiyiβi(ζi, w)

−xiyiβi(ζi, w) 1 + x2
i βi(ζi, w)

)
, with βi(0, w) = 0,

(6) L(ζ, z, w)(ζ, z) = 0,
(7) L0 = 0,
(8) L1 = (α1y1

2 ,−α1x1

2 , . . . , αnyn

2 ,−αnxn

2 , 0),

(9) ∂2L2(2n+1)
∂x2

1

+ ∂2L2(2n+1)
∂y2

1

= ∂2L2(1)
∂x1∂z + ∂2L2(2)

∂y1∂z ,

(10) ∀j 6= 1

0 = α1

(
∂2L2(2j − 1)

∂x2
1

+
∂2L2(2j − 1)

∂y2
1

− ∂2L2(1)

∂x1∂xj
− ∂2L2(2)

∂y1∂xj

)
+

+αj

(
∂2L2(1)

∂y1∂yj
− ∂2L2(2)

∂x1∂yj

)
,

0 = α1

(
∂2L2(2j)

∂x12
+
∂2L2(2j)

∂y12
− ∂2L2(1)

∂x1∂yj
− ∂2L2(2)

∂y1∂yj

)
+

+αj

(
∂2L2(2)

∂x1∂xj
− ∂2L2(1)

∂y1∂xj

)
,

(11) nλz =
∑

i
1
αi

(
∂L2(2i)

∂xi
− ∂L2(2i−1)

∂yi

)
, where λ = ∂f

∂z (0).

Proof: we denote by Ok the terms of order k in ζ, z and w.

(1) by definition Q is symmetric.
(2) K(0, w) = Id2n hence Q(0, w) = Id and Q0 = Id.
(3) K(ζ, z, w)(ζ, z) = (ζ, z) henceQ−2(ζ, z, w)(ζ, z) = (ζ, z) that is

(Q2(ζ, z, w)−Id)(ζ, z) = 0. Hence (Q(ζ, z, w)+Id)(Q(ζ, z, w)−Id)(ζ, z) = 0.
But near Γ, (Q+ Id) is invertible. Hence Q(ζ, z, w)(ζ, z) = (ζ, z).

(4) We denote by Q1(i, j, k) the coefficient of the kth coordinate of (ζ, z)
in Q1(i, j). Then, because Q1(ζ, z, w).(ζ, z) = 0, we have Q1(i, j, k) =
−Q1(i, k, j) and, because Q1 is symmetric, Q1(i, j, k) = Q1(j, i, k), for all
(i, j, k) ∈ (R2n)3 :

Q1(i, j, k) = −Q1(i, k, j) = −Q1(k, i, j) = Q1(k, j, i)
= Q1(j, k, i) = −Q1(j, i, k) = −Q1(i, j, k).

Hence, for all (i, j, k) ∈ (R2n)3 Q1(i, j, k) = 0, that means Q1 = 0.

(5) The fact that (Qii(ζi, w)−Id2)ζi = 0 and that (Qii(ζi, w)−Id2) is symmetric
give:

Qii(ζi, w) − Id2 =

(
y2

i βi(ζi, w) −xiyiβi(ζi, w)

−xiyiβi(ζi, w) x2
i βi(ζi, w)

)
.
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Hence:

Kii(ζi, w) =

(
1 + y2

i βi(ζi, w) −xiyiβi(ζi, w)

−xiyiβi(ζi, w) 1 + x2
i βi(ζi, w)

)
,

where:

βi =
−2βi − β2

i (2x2
i + 2y2

i + (x2
i + y2

i )2)

(1 + (x2
i + y2

i )βi)2
.

Whence:

gw(ri
∂

∂θi
, ri

∂

∂θi
) =

(
−yi

xi

)t

Kii

(
−yi

xi

)
,

which gives gw(ri
∂

∂θi
, ri

∂
∂θi

) = (r2i )(1 + (r2i )βi) and then |(−yi, xi)|gw
=

ri(1 +
(r2

i )βi

2 ). We deduce that ci(w) = −3βi(0, w) = 6βi(0, w). As a
consequence βi(0, w) = 0.

(6) Because Q(ζ, z, w)(ζ, z) = (ζ, z) we deduce that
∑

i xiFi + yiGi + zE and∑
i xi

∂
∂xi

+yi
∂

∂yi
+z ∂

∂z , which are both in ∆(ζ, w), have the same projection

on Sw and then that they are equal. The coordinate on ∂
∂w of

∑
i xiFi +

yiGi + zE is then 0. But this is L(ζ, z, w)(ζ, z).
(7) This comes immediately from ω|Γ = dw.
(8) Locally, ω has the form f(dw−∑i(µxi

dxi +µyi
dyi)−µzdz). Now iνdω = 0

implies that df|Γ = 0. Which gives dω|Γ =
∑

i(dxi∧dµxi
+dyi∧dµyi

)+dz∧
dµz . Now, because Q0 = Id2n+1, we have (µxi

, µyi
) = (L1(2i−1), L1(2i))+

O2, µz = L1(2n + 1), which gives dω|Γ =
∑

i(dxi ∧ dL1(2i − 1) + dyi ∧
dL1(2i)) + dz ∧ dL1(2n+ 1) =

∑
i αi(dxi ∧ dyi).

On the other hand, L1(ζ, z) = 0. With those two results, we find:

L1 = (
α1y1

2
,−α1x1

2
, . . . ,

αnyn

2
,−αnxn

2
, 0).

(9) We set:
• x1

i (V ), y1
i (V ), z1(V ) and w1(V ) the homogeneous part of order 1 in

the variable ζ,z and w of order 1, 1 and 2, of the coordinates of a
vector field V ,

• Z the vector field in ker(dω|∆) such that g(Z,Z) = 1 and Z|Γ = ∂
∂z .

• (Xi, Yi) an orthonormal frame of δi which coincides with (Fi, Gi) along
Γ.

• Ok the terms of order k in ζ, z and w of order 1, 1 and 2.
Yet we know that:

Fi = (1 + O2) ∂
∂xi

+ (αiyi

2 + L2(2i− 1) + O3) ∂
∂w ,

Gi = (1 + O2) ∂
∂yi

+ (−αixi

2 + L2(2i) + O3) ∂
∂w ,

E = (1 + O2) ∂
∂z + (L2(2n+ 1) + O3) ∂

∂w .

Now we calculate the coordinates of Z to the order 1:

dω|∆ =
∑

i

(αidxi ∧ dyi + dxi ∧ dL2(2i− 1) + dyi ∧ dL2(2i))+

+dz ∧ dL2(2n+ 1) + O2,

hence:

0 = dω(Fj , Z) = αjy
1
j (Z) + ∂L2(2i−1)

∂z − ∂L2(2n+1)
∂xj

+ O2,

0 = dω(Gj , Z) = −αjx
1
j (Z) + ∂L2(2i)

∂z − ∂L2(2n+1)
∂yj

+ O2,
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which implies:

αjy
1
j (Z) + ∂L2(2i−1)

∂z − ∂L2(2n+1)
∂xj

= 0,

−αjx
1
j (Z) + ∂L2(2i)

∂z − ∂L2(2n+1)
∂yj

= 0.

On the other hand g(X1, Z) = g(Y1, Z) = 0 gives:

z1(X1) = −x1
1(Z) = 1

α1
(∂L2(2n+1)

∂y1
− ∂L2(2)

∂z ),

z1(Y1) = −y1
1(Z) = 1

α1
(∂L2(1)

∂z − ∂L2(2n+1)
∂x1

).

Now we can calculate the coordinate on ∂
∂z along Γ of [X1, Y1], which has

to be zero because [∆1,∆1]|Γ = span( ∂
∂x1

, ∂
∂y1

, ∂
∂w ). which gives the point

9.
(10) For j 6= 1, the system:

0 = g(X1, Xj) = x1
1(Xj) + x1

j (X1) + O2,
0 = g(X1, Yj) = x1

1(Yj) + y1
j (X1) + O2,

0 = g(Y1, Xj) = y1
1(Xj) + x1

j (Y1) + O2,
0 = g(Y1, Yj) = y1

1(Yj) + y1
j (Y1) + O2,

0 = dω(X1, Xj) = α1y
1
1(Xj) − αjy

1
j (X1) + ∂L2(1)

∂xj
− ∂L2(2j−1)

∂x1
+ O2,

0 = dω(X1, Yj) = α1y
1
1(Yj) + αjx

1
j (X1) + ∂L2(1)

∂yj
− ∂L2(2j)

∂x1
+ O2,

0 = dω(Y1, Xj) = −α1x
1
1(Xj) − αjy

1
j (Y1) + ∂L2(2)

∂xj
− ∂L2(2j−1)

∂y1
+ O2,

0 = dω(Y1, Yj) = −α1x
1
1(Yj) + αjx

1
j (Y1) + ∂L2(2)

∂yj
− ∂L2(2j)

∂y1
+ O2,

is invertible and we find in particular:

x1
j (X1) = α1

α2
1−α2

j

(
∂L2(2j−1)

∂y1
− ∂L2(2)

∂xj

)
− αj

α2
1−α2

j

(
∂L2(2j)

∂x1
− ∂L2(1)

∂yj

)
,

y1
j (X1) = α1

α2
1−α2

j

(
∂L2(2j)

∂y1
− ∂L2(2)

∂yj

)
+

αj

α2
1−α2

j

(
∂L2(2j−1)

∂x1
− ∂L2(1)

∂xj

)
,

x1
j (Y1) = − α1

α2
1−α2

j

(
∂L2(2j−1)

∂x1
− ∂L2(1)

∂xj

)
− αj

α2
1−α2

j

(
∂L2(2j)

∂y1
− ∂L2(2)

∂yj

)
,

y1
j (Y1) = − α1

α2
1−α2

j

(
∂L2(2j)

∂x1
− ∂L2(1)

∂yj

)
+

αj

α2
1−α2

j

(
∂L2(2j−1)

∂y1
− ∂L2(2)

∂xj

)
,

which allows us to calculate xj([X1, Y1])|Γ and yj([X1, Y1])|Γ which also
have to be zero. This gives formulas of point 10.

(11) Finally, We have:

αi(ζ, z, w) = dω(Xi, Yi)

= (1 + λz)αi + x1
i (Xi) + y1

i (Yi) + ∂L2(2i−1)
∂yi

− ∂L2(2i)
∂xi

+ O2,

and g(Xi, Xi) = g(Yi, Yi) = 1 implies x1
i (Xi) = y1

i (Yi) = 0, so, if we make
the product we find:

1
n! =

∏
i αi(ζ, z, w)

= (1 + nλz)
∏

i αi +
∑

i

(∏
j 6=i αj

)(
∂L2(2i−1)

∂yi
− ∂L2(2i)

∂xi

)
+ O2.

Then:

nλz =
∑

i

1

αi

(
∂L2(2i)

∂xi
− ∂L2(2i− 1)

∂yi

)
.
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�

In the 4-dimensional case, we give the first terms of L. In the sequel, it will
become clear that the Riemannian part (Q) does not play any rôle in the face of
the caustic.

L1 = (y
2 ,−x

2 , 0),

L2 = (−z(Re(Aeia(x+ iy)) +B cos(b)z+ λy
2 ), z(Im(Aeia(x+ iy)) +B sin(b)z+ λx

2 ,

Re[Aeia(x+ iy)2 +Beibz(x+ iy)]),

L3(1) = 1
2 (F2(−3y3 + x2y) + F3 sin(f3)(y

3 − 3x2y) + F3 cos(f3)(8xy
2)) + O(z, w),

L3(2) = 1
2 (F2(−x3 + 3xy2) + F3 sin(f3)(3x

3 − xy2) − F3 cos(f3)(8x
2y)) + O(z, w).

remark: This ”normal form” is the analog of the normal form obtained by [A-G]
in the contact case and it is very similar to it.

4. Invariants

4.1. In the general case. Let us remark that all the normal coordinate systems
define the same metric gw on Sw. Therefore we can define intrinsically the metric

Qw = g
− 1

2
w . Hence, if we denote:

B1
`,k :

{
S`(T0Sw=0) ⊗ S2(T0Sw=0) → R

(U1 � . . .� U`) ⊗ (V1 � V2) 7→ D`( ∂k

∂wk (Qw(V1, V2)))|0(U1 � . . .� U`)

where D` denote the `th derivative with respect to (ζ, z), then B1
`,k ⊗ ω⊗k is an

element of S`(T ∗
0 Sw=0) ⊗ S2(T ∗

0 Sw=0) ⊗ ω⊗k and it is invariant by the changes of
normal coordinates. Hence, if we move the basepoint of the whole construction, we

obtain a tensor field. In coordinates, B1
`,k = D`( ∂k

∂wkQ).
Let us denote by ge

w the Euclidean metric defined on Sw by the normal coor-
dinates (they all define the same), and, for any V , VQ the vector field such that
ge

w(VQ, .) = Qw(V, .). In terms of matrices, VQ = Q.V . Let us take the pre-image
of VQ = Q.V in ∆. Its w-coordinate is well defined, independently of the normal
coordinates. In terms of matrices, it is L.V . Hence, if we denote:

B2
`,k :

{
S`(T0Sw=0) ⊗ T0Sw=0 → R

(U1 � . . .� U`) ⊗ (V ) 7→ D`( ∂k

∂wk (L.V ))|0(U1 � . . .� U`)

then B2
`,k ⊗ ω⊗k is an element of S`(T ∗

0 Sw=0) ⊗ T ∗
0 Sw=0 ⊗ ω⊗k, and it is invariant

by all the changes of normal coordinates. Moving the basepoint, we obtain again a

tensor field. In coordinates, B2
`,k = D` ∂k

∂wk (L).

4.2. Decomposition of tensors. All the typical fibers of the tensor bundles under
consideration above have a metric structure inherited from g at 0. The action of
Tn on ∆0 induces a unitary representation of T n on these typical fibers. T n being
abelian and compact, these unitary representations are unitarily equivalent to a
finite direct sum of characters.

Therefore, all our invariant tensors can be reduced to real and complex numbers,
the modules of which are independent elementary invariants of the sub-Riemannian
structure. This decomposition can be done as follows.

All our tensors are covariant symmetric tensors over ∆. The space of covariant
symmetric tensors of degree k over ∆ can be canonically identified to the space
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Sk(∆∗) of homogeneous polynomial of degree k over ∆∗. This space can be identi-

fied to the set S̃k(∆∗) of real parts of homogeneous polynomials of degree k of the
complex variables zj = xj + iyj and z̄j (j = 1, . . . , n), and of the real variable z:

S̃k(∆∗) = {Re[Pk(z1, z̄1, . . . , zn, z̄n, z)]}.
The action of T n on these spaces is the natural one induced by

X (θ)zj = eiθjzj .

A decomposition of this action of T n on S̃k(∆∗) in characters is the following:

• A polynomial Pk(x1, y1, . . . , xn, yn, z) can be written in a unique way:

Pk(x1, y1, . . . , xn, yn, z) =
∑

I, J, `

` +
P

i Ii + Ji = k

Re(ΛI,J,`(
∏

i

zIi

i z̄
Ji

i )z`)

with ΛI,J,` = ΛJ,I,`.

• The character corresponding to z`
∏

i z
Ii

i z̄
Ji

i is e(I1−J1)θ1+...+(In−Jn)θn .

4.3. In dimension 4. Let us have a look to the special case of dimension 4 that
we will study in more details in the following. We define complex and real numbers

Aeia, Beib, Ceic, Deid and λ: the real λ =
∂ω( ∂

∂w
)

∂z (0); the complexes Aeia and Beib

are such that the third coordinate of L2 satisfies :

L2[3] = Re[Aeia(x + iy)2 +Beibz(x+ iy)];

the complexes Ceic and Deid are such that the two first coordinates of L3 satisfy :

L3[1] = Re[Ceic(x2 + y2)(x+ iy) +Deid(x+ iy)3] +O(z, w),

L3[2] = Re[iCeic(x2 + y2)(x+ iy) − iDeid(x+ iy)3] +O(z, w).

Actually, under a change of normal coordinates x̃ + iỹ = (x + iy)eiθ, L2[3]
is unchanged hence it is an invariant, as well as cos(θ)L3[1] + sin(θ)L3[2] and
− sin(θ)L3[1] + cos(θ)L3[2]. As a consequence, A, B, C, D and a − d are in-
variants of the sub-Riemannian structure. So we can define the invariant Inv =
Re[96Dei(d− a) − 45A2λ].

As for the first invariants (α1, . . . , αn), for a generic quasi-contact metric, outside
a codimension 1 closed stratified subset, we can assume that A, B and Inv are not
null. We will assume in the following that 0 is such a point.

From now, we are dealing with the 4-dimensional case.

5. Computation of exponential mapping jets

In this section, we describe how to compute the exponential mapping exp0 in
the 4-dimensional case: n = 1.

From now, we will set p̄, q̄, r̄ and v̄ the dual coordinates, in the fibers of T ∗R4,
of x, y, z and w.

As shown in lemmas 1 and 2, and thanks to Pontryagin Maximal Principle, it’s

enough to integrate the trajectories of
−→H in T ∗R4:

{
(ẋ, ẏ, ż, ẇ, ˙̄p, ˙̄q, ˙̄r, ˙̄v)(s) =

−→H(x, y, z, w, p̄, q̄, r̄, v̄),
(x, y, z, w, p̄, q̄, r̄, v̄)(0) = (0, 0, 0, 0, p̄0, q̄0, r̄0, v̄0),



QUASI-CONTACT S-R METRICS 17

where (p̄0, q̄0, r̄0, v̄0) is in H−1( 1
2 ) ∩ T ∗

0 R4. Actually, if we denote by E the map
mapping (p̄0, q̄0, r̄0, v̄0, s) to the point obtained by following the geodesic with initial
condition (p̄0, q̄0, r̄0, v̄0) during time s, then:

E(p̄0, q̄0, r̄0, v̄0, s) = exp0(sp̄0, sq̄0, sr̄0, sv̄0).

Hence we can construct all the geodesics only by considering those starting from
H−1( 1

2 ) ∩ T ∗
0 R4. They are parameterized by arclength.

5.1. First reparameterization. Our goal is to study the local conjugate locus.
Any geodesic being locally optimal, the geodesics that will have interest for us will
be those with v̄0 close to +∞ or −∞, which will create two parts of conjugate
locus, one for v̄0 near +∞, the other one for −∞. Hence, a natural change of
parameterization of the initial covector (or impulse) is to set ρ = 1

v̄ and ρ0 = 1
v̄0

.
Now we are working with ρ0 in a neighborhood of 0. We keep in mind that there
are two parts: 0 < ρ0 < ε and −ε < ρ0 < 0. We also denote p = ρp̄, q = ρq̄ and
r = ρr̄.

5.2. Reparameterization of time. Further calculation will show that the conju-
gate arclength will be close to 2πρ, hence there is a natural time-reparameterization
which is t =

∫ s

0
v̄ du, where we integrate along the geodesics. Because v̄ is not zero

along the geodesics we are looking at, this reparameterization is well defined and in-

vertible: s =
∫ t

0
ρdu. This change of time-parameterization will send the conjugate

time close to 2π.
Remark: in the sequel, we will study only the geodesics with ρ0 > 0 and t ≥ 0
(which are the same as those with ρ0 < 0 and t ≥ 0). The study of the geodesics
with t ≤ 0 is equivalent to the one we will do.

5.3. Two different parameterizations of the set of initial conditions. Now,
we set p0 = ρ0p̄0, q0 = ρ0q̄0 and r0 = ρ0r̄0. They satisfy p2

0 + q20 + r20 = ρ2
0. Hence

(p0, q0, r0) lives in S2(ρ0) and we can parameterize it locally by a couple of angles
(ϕ, θ) which will depend on the part of the sphere we are looking at.

Anyway, we can define a new exponential mapping:

exp2(ρ0, t, ϕ, θ) = expq0
(p̄0, q̄0, r̄0, v̄0)

In all the sequel, we will use two different parameterizations. The first one
(denoted by P1) is:

[−π
2 ,

π
2 ] → S2(ρ0)

(θ, ϕ) 7→ (p0 = ρ0 cos(θ) cos(ϕ), q0 = ρ0 cos(θ) sin(ϕ), r0 = ρ sin(θ)

which is not singular outside p0 = q0 = 0 (|θ| = π
2 ). The second one (denoted by

P2) is:

(θ, ϕ) 7→ (p0 = ρ0 cos(θ) sin(ϕ), q0 = ρ0 sin(θ), r0 = ρ0 cos(θ) cos(ϕ)),

and we will use it near p0 = q0 = 0 where it is not singular.

5.4. New differential system. The interest of the changes of variables we have
done in the previous subsections appears clearly in the form of the differential
system we have to integrate after these changes. Let us recall that we denote by
(F,G,E) our normal form, ψ̄ = (p̄, q̄, r̄, v̄) and ψ = (p, q, r, 1). Then:

H =
1

2

[
(ψ̄.F )2 + (ψ̄.G)2 + (ψ̄.E)2

]
.
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Now, with our new variables, easy computations show that we are integrating
the new differential system:




dx
dt = ψ.(FxF +GxG+ExE)
dy
dt = ψ.(FyF +GyG+EyE)
dz
dt = ψ.(FzF +GzG+EzE)

dw
dt = ψ.(FwF +GwG+EwE)
dp
dt = (ψ.F )(ψ.(p∂F

∂w − ∂F
∂x )) + (ψ.G)(ψ.(p ∂G

∂w − ∂G
∂x )) + (ψ.E)(ψ.(p ∂E

∂w − ∂E
∂x ))

dq
dt = (ψ.F )(ψ.(q ∂F

∂w − ∂F
∂y )) + (ψ.G)(ψ.(q ∂G

∂w − ∂G
∂y )) + (ψ.E)(ψ.(q ∂E

∂w − ∂E
∂y ))

dr
dt = (ψ.F )(ψ.(r ∂F

∂w − ∂F
∂z )) + (ψ.G)(ψ.(r ∂G

∂w − ∂G
∂z )) + (ψ.E)(ψ.(r ∂E

∂w − ∂E
∂z ))

dρ
dt = ρ

(
(ψ.F )(ψ.∂F

∂w ) + (ψ.G)(ψ.∂G
∂w ) + (ψ.E)(ψ.∂E

∂w )
)

with (x, y, z, w, p, q, r, ρ)(0) = (0, 0, 0, 0, p0, q0, r0, ρ0), p
2
0 + q20 + r20 = ρ2

0, and where
Kx, Ky, Kz and Kw denote the coordinates of K in R4.
Remark: we want to compute the jets of order k with respect to ρ0 of the map
exp2. From the considerations we had in introduction, we know that x, y and z
have weight 1 and w has weight 2.

Now, our differential system has the form:

Ẏ = A.Y +B2(Y ) + . . .+ Bm(Y ) +B(m+1)(Y ),

where A is linear, Bj is homogeneous of order j in the variables Y =
(x, y, z, w, p, q, r, ρ) with the weights (1,1,1,2,1,1,1,1), and B(j) is a Oj(Y ).

5.5. Integration of the new differential system. The solution satisfies:

Y (t) = exp(t.A).Y0 +

∫ t

0

exp((t− u)A).(B2 + . . .+Bm +B(m+1))(Y (u))du.

It allows us to compute by itering integration. Actually, with this formula, we
can see that, if we denote by Hg(m,G) the homogeneous part of order m of a map
G, with respect to ρ0, then:

Hg(1, Y (t)) = exp(t.A).Y0,

Hg(m,Y (t)) =
∑m

i=2

∫ t

0
exp((t− u)A).Hg(m,Bi(

∑m−i+1
j=1 Hg(j, Y (u))))du,

if m ≥ 2.
Now, we have a recursive method to construct the jets of the exponential mapping

exp2. You can find the Mathematica calculation at appendix 10.5. Before we
study it, we will first look again at the nilpotent approximation.

6. Nilpotent Approximation

The nilpotent approximation is the distribution given by its normal form (F =
{ ∂

∂x + y
2

∂
∂w}, G = { ∂

∂y − x
2

∂
∂w}, E = { ∂

∂z}). The results on the normal form show

that we can see the other sub-Riemannian normal forms as local perturbations of
this one. An easy computation gives exp2 in the nilpotent case:

xN (t, ϕ, θ, ρ0) = ρ0(sin(ϕ) − sin(ϕ− t)) cos(θ),
yN (t, ϕ, θ, ρ0) = ρ0(cos(ϕ− t) − cos(ϕ)) cos(θ),
zN (t, ϕ, θ, ρ0) = ρ0t sin(θ),
wN (t, ϕ, θ, ρ0) = 1

2ρ
2
0 cos(θ)2(t− sin(t)),
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Figure 4. Projected geodesic

which gives when parameterized by the arclength s:

xN (s, ϕ, θ, ρ0) = ρ0(sin(ϕ) − sin(ϕ− s
ρ0

)) cos(θ),

yN (s, ϕ, θ, ρ0) = ρ0(cos(ϕ− s
ρ0

) − cos(ϕ)) cos(θ),

zN (s, ϕ, θ, ρ0) = s sin(θ),
wN (s, ϕ, θ, ρ0) = 1

2ρ
2
0 cos(θ)2( s

ρ0
− sin( s

ρ0
)).

Remark: we are using the parameterization P1 of S2, with θ ∈ [−π
2 ,

π
2 ], which is

singular at |θ| = π
2 . It only has consequences on the calculus of the Jacobian.

Proposition 4. The cut-time in the nilpotent case is t = 2π (s = 2πρ0) for the
geodesics with |θ| 6= π

2 .

Proof: first remark that, if we project a geodesic on the (x, y)-plane, it is an arc
of circle of length s cos(θ) for the Euclidean metric, and of radius ρ0 cos(θ). The
second thing is that w is the area described by the projection on the (x, y)-plane
(see figure 4).

Now, let us take a geodesic γ with cos(θ) 6= 0 and with s
ρ0
< 2π. Let us suppose

that there is a shorter geodesic γ̄ between 0 and γ(s). First, s sin(θ) = s̄ sin(θ̄)
because they have the same z-coordinate at γ(s). Because s̄ < s, we found sin(θ̄) >
sin(θ). But, because of the isoperimetric inequality, and because γ is an arc of
circle not closed, it is the smallest curve describing the area w. But γ̄ describes the
same area because w̄ = w. Therefore cos(θ̄) > cos(θ). This is in contradiction with
sin(θ̄) > sin(θ). Hence the geodesic γ is the shortest pass between 0 and γ(s).

Now, if we take t > 2π, the projection on (x, y) is no more a solution of the
isoperimetric problem so it cannot be optimal. �

Remark: for |θ| = π
2 , the trajectory does not depend on ϕ or ρ0. It is optimal

because any geodesic with |θ| < π
2 do not intersect the line {x = y = w = 0}.

Proposition 5. In the nilpotent case, the first conjugate time is t = 2π for the
geodesics with |θ| 6= π

2 .

Proof: the Jacobian of exp2 is 2ρ4
0t cos(θ)3(t cos( t

2 ) − 2 sin( t
2 )) sin( t

2 ). �

Remark: for |θ| = π
2 , the trajectory does not depend on ϕ or ρ0, hence the first

conjugate-time is 0.
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As a consequence, in the nilpotent case, the first conjugate-locus is the plane
{x = y = 0} and the cut-locus is {x = y = 0} − {x = y = w = 0}. The figure 5
shows a part of the intersection of a wavefront with the 3-plane {y = 0}.

Figure 5. Wave-front

It is easy to show that the z axis is an abnormal geodesic, which is not strict.
Generically, there will not be this abnormal geodesic (see the paper from Agrachev
and Gauthier [A-G2]).

7. Estimation of conjugate time

In this section, we prove the following:

Theorem 6. for any ε > 0 there exists a η > 0 such that for all ρ0 > 0 satisfying
ρ0 < η, then the Jacobian of the exponential map exp2 is positive for t ∈]0, 2π − ε]
and it has no more than 2 roots (counted with multiplicity) in ]2π − ε, 2π + ε[.

To prove that the Jacobian of the exponential map is positive for t positive close
to 0, we need the lemma:

Lemma 1. With the new differential system and the normal form, one can compute
that:

x = p0t+ q0

2 t
2 + t3

3 (p2 − p0r0A cos(a) − r20B cos(b) − q0r0

2 (λ− 2A sin(a))) + O(t4),

y = q0t− p0

2 t
2 + t3

3 (q2 + q0r0A cos(a) + r20B cos(b) + p0r0

2 (λ+ 2A sin(a))) + O(t4),
z = r0t+ O(t3)
p = p0 + t( q0

2 ) + t2p2 + O(t3)
q = q0 − t(p0

2 ) + t2q2 + O(t3)
r = r0 + O(t2).

with:

p2 = − 1
2 (Ar0(p0 cos(a) − q0 sin(a)) + λ

2 q0r0 +B cos(b)r20 + 1
2p0),

q2 = 1
2 (Ar0(p0 sin(a) + q0 cos(a)) + λ

2 p0r0 +B sin(b)r20 − 1
2q0).

In particular, we can write x = x1t + x2t2 + O(t3) with x1 and x2 polynomial of
degree 1, with respect to the variable ρ0. We can do the same for y and z. The
same method allows to compute w and to write it w = w3t3 +w4t4 +O(t5) with w3

and w4 polynomial of degree 2 and 3, with respect to the variable ρ0.
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Proof: one just have to integrate by iteration the trajectories of
−→H . Left to the

reader. �

Proof of the theorem: we will work on two different domains:

7.1. If cos(θ) > Mρ0, with M large enough (in the parameterization P1 of
S2(ρ0)). Because the parameterization is degenerate for cos(θ) = 0, it is clear that
we can factorize cos(θ) in the expression of the Jacobian. Computing the jets of
the Jacobian of exp2, one can found:

4ρ4
0 cos(θ)(cos(θ)2J4 + ρ0 cos(θ) jac5(t, ϕ, θ) + ρ2

0jac6(ρ0, t, ϕ, θ)).

where J4 = t(sin( t
2 ) − t

2 cos( t
2 )) sin( t

2 ), jac5 and jac6 are smooth functions.

Furthermore, the previous lemma 1 insure that we can factorize t6 in jac5 and
in jac6. Hence we can write the Jacobian:

4ρ4
0 t

5 cos(θ)3(J̃4(t) +
ρ0

cos(θ)
j̃ac5(t, ϕ, θ) +

ρ2
0

cos(θ)2
j̃ac6(ρ0, t, ϕ, θ)),

where J̃4(t) =
(sin( t

2
)− t

2
cos( t

2
)) sin( t

2
)

t4 is smooth as well as j̃ac5 and j̃ac6.
ρ0

cos(θ) is

bounded by 1
M .

The function J̃4 is strictly positive for t ∈ [0, 2π[, J̃4(2π) = 0 and J̃4

′
(2π) < 0.

Now, because j̃ac5 and j̃ac6 are bounded, as well as their derivatives with respect
to t, and because we can assume 1

M small enough, then the Jacobian have the same

property as J̃4: for any ε1, it exists η1 such that, if ρ0

cos(θ) < η1, the Jacobian has

only one root which is in [2π− ε1, 2π+ ε1], where its derivative with respect to t is
strictly negative. In fact it is possible to prove that, on this domain, the first time
can be written 2π + ρ0τ with τ smooth.

We have proved the theorem in restriction at this first domain. Let us prove it
on the second domain:

7.2. If θ2+ϕ2 < 2M2∗ρ2
0 (in the parameterization P2 of S2(ρ0)). In that case,

we can make a change of variables: ϕ̃ = ϕ
Bρ0

and θ̃ = θ
Bρ0

. Now, computations in

appendix show that we can write:

jac = ρ6
0(Ja(t, θ̃, ϕ̃) + ρ0jac7(ρ0, t, θ̃, ϕ̃)).

with Ja (denoted by FFFa in appendix) and jac7 smooth. We show, in appendix
10.6, that for t ∈ [0, 2π], Ja ≥ Jb (denoted by FFFb in appendix) where

Jb = 9 sin(
t

2
)2

(4t3 cos( t
2 ) + (12 − 12t2 + t4) sin( t

2 ) − 4 sin( 3t
2 ))

t( t
2 cos( t

2 ) − sin( t
2 ))

.

Let suppose as known that Jb is strictly positive for t ∈]0, 2π[ (we will show it
at the end of this section with lemma 2). Now, it is easy to show that we can write
Jb = t7Jc, with Jc smooth and strictly positive for t ∈ [0, 2π[: 7 is just the first

integer k such that ∂kJb

∂tk is not 0. Furthermore the lemma 1 allows to assume that

jac7 can be written t7j̃ac7, with j̃ac7 smooth.
Hence, for any ε2, if ρ0 is small enough, then ρ6

0(Jb + ρ0jac7) is strictly positive
for t ∈]0, 2π− ε2]. But it minimizes the Jacobian for t ∈ [0, 2π], hence the Jacobian
is strictly positive for t ∈]0, 2π − ε2].
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Now, computations show that (see appendix 10.6), if we set θ̄ = θ̃− 6 sin(b) and
ϕ̄ = ϕ̃+ 6 cos(b):

Ja(t = 2π) = 0,
dJa

dt
(t = 2π) = −4π2(ϕ̄2 + θ̄2),

∂2Ja

∂t2 (t = 2π) = 4π(18 − ϕ̄2 − θ̄2 − 6(ϕ̄+ πθ̄) cos(b) − 6(πϕ̄− θ̄) sin(b)).

Now if θ̄2 + ϕ̄2 ≤ 0.0001 we have ∂2Ja

∂t2 (t = 2π) > 4π ∗ 17. And, because

{(θ̄, ϕ̄)|θ̄2 + ϕ̄2 ≤ 0.0001} is compact, it is also true for t ∈ [2π − ε3, 2π + ε3] with
ε3 small enough. Hence, on the interval [2π − ε3, 2π + ε3], the Jacobian will be a
convex function of t, and hence it can not have more than 2 roots.

If θ̄2 + ϕ̄2 ∈ [0.0001,M2], then dJa

dt
(t = 2π) < −4π20.0001. Because {(θ̄, ϕ̄)|θ̄2 +

ϕ̄2 ∈ [0.0001,M2]} is compact, it is also true for t ∈ [2π− ε4, 2π+ ε4] with ε4 small
enough. As a consequence, on the interval [2π − ε4, 2π + ε4], the Jacobian will be
strictly decreasing, and hence it can not have more than 1 root.

Now, if we take, ε2 = min(ε3, ε4), we get the result: for ρ0 small enough, the
Jacobian has no root in the interval ]0, 2π− ε2] and no more than 2 in the interval
]2π−ε2, 2π+ε2[. Moreover, because the Jacobian is positive on the interval ]0, 2π−
ε2], its derivative is non-positive at the first conjugate time in the second interval,
if it has in the interval ]0, 2π + ε2].

Lemma 2. The function:

Jb = 9 sin(
t

2
)2

(4t3 cos( t
2 ) + (12 − 12t2 + t4) sin( t

2 ) − 4 sin( 3t
2 ))

t( t
2 cos( t

2 ) − sin( t
2 ))

is positive for t ∈]0, 2π[.

Proof: sin( t
2 )2/(t( t

2 cos( t
2 )− sin( t

2 ))) is negative for t ∈]0, 2π[ hence it’s enough to

prove that k(t) = (4t3 cos( t
2 ) + (12 − 12t2 + t4) sin( t

2 ) − 4 sin( 3t
2 )) is negative for

t ∈]0, 2π[. But k(0) = k′(0) = 0, hence it’s enough to prove that k” is negative for
t ∈]0, 2π[. k”(t) = (3t3 cos( t

2 ) + (−27 + 3t2 − t4/4) sin( t
2 ) + 9 sin( 3t

2 )).

Let us remark that (−27 + 3t2 − t4/4) ≤ 18 for any t.
First, if t ∈ [π, 3π/2], we have sin( t

2 ) ≥ 1√
2

and sin( 3t
2 ) ≤ 1√

2
therefore k”(t) ≤

−18√
2

+ 9√
2
< 0.

Secondly, if t ∈ [3π/2, 2π], cos( t
2 ) ≤ − 1√

2
hence k”(t) ≤ − 3t3√

2
+ 9 ≤ − 3(3π/2)3√

2
+

9 < 0.
Finally, for t ∈]0, π], it is a little more intricate. k” is equal to its Taylor series:

k”(t) =
∑

i≥3
(−1)it2i+1

2i+1 (32i+3 − 27− (2i+ 1)2i(16i2 + 24i− 4))

= P (t) +
∑

i≥7
(−1)it2i+1

2i+1 (32i+3 − 27− (2i+ 1)2i(16i2 + 24i− 4))

where P (t) = t7(p0 − p2t
2 + p4t

4 − p6t
6) with P (π) < 0, p0 < 0 and p2π

2 < p0 <
p4π

4 < p6π
6 < 0.

It is easy to show that
∑

i≥7
(−1)it2i+1

2i+1 (32i+3−27− (2i+1)2i(16i2+24i−4)) can

be written
∑

i≥7(−1)iai where (ai)i is a real sequence decreasing to 0, therefore it

is negative. For P , let us make the change of variable u = t/π. then Q(u) = P (t) =
u7(q0 − q2u

2 + q4u
4 − q6u

6) with Q(1) < 0, q0 < 0 and q2 < q0 < q4 < q6 < 0.
Q(1) < 0 implies −q2 < q6 − q0 − q4 hence we can write −q2 = q6 − q0 − q4 − ε with
ε > 0. Hence we find Q(u) = u7(1 − u2)(q0 − q4u

2 + q6u
2(1 + u2) − εu2) which is

clearly negative. Hence P (t) < 0 and k”(t) < 0. �
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Conclusion: Joining the two cases, we can see that, for any positive ε as small
as we want, if we suppose ρ0 > 0 small enough, then for any point of S2(ρ0), the
Jacobian is positive on the interval of time ]0, 2π − ε] and has no more than two
roots on the interval [2π − ε, 2π + ε]. The theorem is proved on both domains.

8. The first conjugate locus

In this section, we prove the following:

Theorem 7. For ρ0 > 0 small enough and for any initial condition (ϕ, θ) in S2(ρ0),
there is a first conjugate time Tc(ρ0, ϕ, θ), the exponential map is locally Lagrange
stable at (ρ0, ϕ, θ, Tc(ρ0, ϕ, θ)) and the only singularities existing are A2, A3, and
D+

4 .

For this, we work on the jets of the exponential map, computing with Math-
ematica. We separate four sub-domains of the set of initial conditions S2×]0, η[,
which union is S2×]0, η[. We need to work on different domains, first because we
need the parameterization to be smooth (this implies at least two domains); second
because on some part we know a priori the existence of conjugate time and on
some other we do not; and third because of the geometry of the problem: close to
the abnormal direction of the nilpotent approximation, the computation is different
because the first stable jet of the exponential map appears at a higher order than
for other initial conditions.

The domains will be defined as follows:

• First domain (with parameterization P1): θ ∈ [−π
3 ,

π
3 ].

• Second domain (with parameterization P1): θ ∈ [−π
2 +M2ρ0,−π

6 ]∪ [π
6 ,

π
2 −

M2ρ0], M2 being defined later. In fact we will work only on the second
interval, the calculus being the same on both interval and giving the same
results.

• Third domain (with parameterization P2): {(θ − 3Bρ0 sin(b)
π )2 + (ϕ +

3Bρ0 cos(b)
π )2 ≤ 2M2

2ρ
2
0}∩{(θ− 3Bρ0 sin(b)

π )2 +(ϕ+ 3Bρ0 cos(b)
π )2 ≥M4ρ

3
0}, M4

being defined later. In fact, we should also consider the symmetric domain
but, as for the previous domain, the computations are the same and leads
to the same results.

• Last domain (with parameterization P2): {(θ − 3Bρ0 sin(b)
π )2 + (ϕ +

3Bρ0 cos(b)
π )2 ≤ M4ρ

3
0}. As, in the two previous cases, we could consider

also the symmetric domain but it does not bring anything more.

Let us remark that the union of the four domain is really the complete sphere if
we fix M2 large enough.

The singularity D+
4 , which doesn’t appear in the generic cases of contact sub-

Riemannian structures of dimension 3 (see [A-C-G-K]), appears in the last domain,
close to the abnormal direction of the nilpotent case.

8.1. First domain: θ ∈ [−π
3 ,

π
3 ] in P1. We have proved in section 6 that, in this

domain, the first conjugate time exists and is close to 2π. But then, the Nilpotent
approximation allows to check that w = 1

2ρ
2
0 cos(θ)2(t− sin(t)) + ρ3

0W3(t, ϕ, θ, ρ0),

hence, close to t = 2π, we have w > 0 and ∂w
∂ρ0

> 0. Consequently we can change the

variable ρ0 for h =
√

w
π . Now, on the domain, thanks to nilpotent approximation,

we can check that, close to t = 2π, we have ∂z(h,θ,ϕ,t)
∂θ > 0 hence we can change θ

for z. In fact we will use the variable θ0 = arctan( z
2πh ).
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Now, if we denote by exp3 the new exponential map (after the double change of
variables), we have:

exp3(h, θ0, ϕ, t) = (x(h, θ0, ϕ, t), y(h, θ0, ϕ, t), 2πh tan(θ0), πh
2),

hence we just have to annihilate the Jacobian of exph,θ0
: (ϕ, t) →

(x(h, θ0, ϕ, t), y(h, θ0, ϕ, t)) to find the conjugate time.
We set T = t−2π

h and we compute with the jets of the Jacobian of exph,θ0
. We

find (in appendix 10.7) T = T1 + h T2 + O(hθ0, h
2), where:

T1 = 2π(πλ− 3A cos(a+ 2ϕ)) tan(θ0),
T2 = π

6 (−135A2 + 72F2 + 12F1π − 15λ2 − 2π2λ2 + 72F3 sin(f3)).

We want to study the first conjugate locus at (h, θ0, ϕ0) hence we set τ = T −
(T1(h, θ0, ϕ0)+h ∗T2(h, θ0, ϕ0)) and ϕ̃ = ϕ−ϕ0, and we still denote by exph,θ0

the
restricted exponential map. The computations of 10.7 show that we can write:

exph,θ0
(ϕ̃, τ) = exph,θ0

(ϕ̃, τ) + O(h3θ0, h
4),

where, if we make a good affine change of coordinates on (x, y) (depending on the
point we are looking at) and a good polynomial change of the variables (τ, ϕ̃) fixing
(0, 0), we have:

exph,θ0
(ϕ̃, τ) = (h2τ, h2ϕ̃τ+

h2

4
(ϕ̃2k(ϕ0)+

1

3
ϕ̃3k̇(ϕ0)))+h

2θ0O4(ϕ̃, τ)+h3O4(ϕ̃, τ)

and

k(ϕ0) = −36Aπ sin(a+ 2ϕ0) tan(θ0) + πh(72F3 cos(f3 − 2ϕ0) + 24F3 cos(f3 + 2ϕ0)

−48F2 sin(2ϕ0) + 45Aλ cos(a+ 2ϕ0)).

8.1.1. Let us first assume that θ0 6= 0. Then, denoting τ̃ = τ
tan(θ0)

, we can write:

exph,θ0
(ϕ̃, τ̃ ) = h2 tan(θ0)(app(ϕ̃, τ̃) +

h

tan(θ0)
R(h, θ0, ϕ̃, τ̃)),

where

app : (ϕ̃, τ̃) 7→ (τ̃ , ϕ̃τ̃ +
1

4
(ϕ̃2k1(ϕ0) +

1

3
ϕ̃3k̇1(ϕ0))) + O4(ϕ̃, τ),

k1(ϕ0) = −36Aπ sin(a + 2ϕ0) and all is smooth. The map app has singularity A2

when k1(ϕ0) 6= 0 and A3 when k1(ϕ0) = 0.
Now, let us consider the map:

(ϕ̃, τ̃) 7→ exph tan(θ0),θ0
(ϕ̃, τ̃)

h2 tan(θ0)
= app(ϕ̃, τ̃ ) +

h

tan(θ0)
R(h tan(θ0), θ0, ϕ̃, τ̃ ).

It exists η1 such that if | h
tan(θ0)

| ≤ η1 then this map is locally equivalent to app.

Therefore exph,θ0
is locally equivalent to app.
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8.1.2. Now we assume h ≥ η1 tan(θ0). If we denote τ̃ = τ
h , we can write:

exph,θ0
(ϕ̃, τ̃ ) = h3(app2(ϕ̃, τ̃ ) + hR2(h, θ0, ϕ̃, τ̃ )),

where:

app2 : (ϕ̃, τ̃ ) 7→ (τ̃ , ϕ̃τ̃ +
1

4
(ϕ̃2k2(ϕ0) +

1

3
ϕ̃3k̇2(ϕ0))) + O4(ϕ̃, τ̃ ),

k2(ϕ0) = −36Aπ sin(a+ 2ϕ0) tan(θ1) + π(72F3 cos(f3 − 2ϕ0) + 24F3 cos(f3 + 2ϕ0)

−48F2 sin(2ϕ0) + 45Aλ cos(a+ 2ϕ0))

and h tan(θ1) = tan(θ0) which implies | tan(θ1)| ≤ 1
η1

.

Lemma 3. For all θ1, k2 is not identically equal to 0.

Proof: we have:

k2(ϕ0) = π cos(2ϕ0)(−36A sin(a) tan(θ1) + (96F3 cos(f3) + 45A cos(a)λ))+

+π sin(2ϕ0)(−36A cos(a) tan(θ1) + (48F3 sin(f3) − 48F2 − 45A sin(a)λ)).

The function k2 can be identically equal to 0 only if the coefficients of cos(2ϕ0) and
sin(2ϕ0) can be 0 together. And this is possible only if the matrix:

(
A sin(a) 96F3 cos(f3) + 45A cos(a)λ
A cos(a) 48F3 sin(f3) − 48F2 − 45A sin(a)λ

)

has rank 1. But this condition is obtained only if Inv = 0 which is not the case for
us because of the assumption we made in section 4. �

Let us assume that we are in the generic situation. Because k2 satisfies k̈2+4k2 =
0 and is not identically equal to 0, k2(ϕ0) and k̇2(ϕ0) can not be both equal to 0.
Consequently the map app2 has singularity A2 when k2(ϕ0) is not zero and A3

when k2(ϕ0) is zero.
Now let us consider the map:

(ϕ̃, τ̃) 7→ exph,θ0
(ϕ̃, τ̃ )

h3
= app2(ϕ̃, τ̃) + hR2(h, θ0, ϕ̃, τ̃).

It exists η2 such that if 0 < h ≤ η2 then the previous map is locally equivalent to
app2. Hence, if 0 < h ≤ η2 then exph,θ0

is locally equivalent to app2.

We have proved that for any (θ, ϕ) such that θ ∈ [−π
3 ,

π
3 ], it exists η(θ, ϕ) such

that if 0 < ρ0 < η(θ, ϕ) then the exponential map is locally equivalent to its jet
at (ρ0, θ, ϕ, Tc(ρ0, θ, ϕ)), and have singularity A2 or A3. But the set of (θ, ϕ) such
that θ ∈ [−π

3 ,
π
3 ] is compact hence we can find η such that if 0 < ρ0 < η then

the exponential map has only singularity A2 or A3 in the domain. The theorem is
proved in the first domain.

8.2. Second domain: θ ∈ [π
6 ,

π
2 −M2ρ0], again in P1.

As before, thanks to previous section, we know the existence of a first conjugate
time which is close to 2π hence the nilpotent approximation allows to check that
∂z
∂ρ0

> 0 close to the conjugate time if ρ0 is small enough. We change the variable

ρ0 for z. We denote by exp4 the new exponential map after this change of variable
and we have:

exp4(z, θ̃, ϕ, t) = (x(z, θ̃, ϕ, t), y(z, θ̃, ϕ, t), z, w(z, θ̃, ϕ, t)),

hence we just have to annihilate the Jacobian of

(θ̃, ϕ, t) 7→ (x(z, θ̃, ϕ, t), y(z, θ̃, ϕ, t), w(z, θ̃, ϕ, t))
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to compute the conjugate time. We denote by t1 its value of order 1 (computed with

the jet) with respect to z and we set τ = t−t1. We also change θ̃ for h = tan(θ̃) and
ϕ for ϕ̃ = ϕ−ϕ0. We study exp4 in a neighborhood of (z, h, ϕ0, τ = 0). Forgetting
the z-coordinate, we can write:

exp4,z(h, ϕ̃, τ) = z2(app3,1(h, ϕ̃, τ) + (zx3, zy3, zhw3 + z2w4)).

with x3, y3, w3 and w4 smooth. After some affine changes of coordinates on (x, y)
(depending on the point we are looking at) and polynomial changes of the variables
ϕ̃ and τ fixing (0, 0), the computation of 10.8 gives:

app3,1(h, ϕ̃, τ) = (x(z, h, ϕ̃, τ), y(z, h, ϕ̃, τ), w(z, h, ϕ̃, τ))

with
x(z, h, ϕ̃, τ) = hτ

2π ,

y(z, h, ϕ̃, τ) = −heϕ(−2t+6Aeϕ2 cos(a+2ϕ0)+9Aeϕ sin(a+2ϕ0))
4π ,

w(z, h, ϕ̃, τ) = h2

4π .

Now, w = z2h2

4π (1 + z
hW1 + z2

h2W2) with W1 and W2 smooth. Therefore, because
W1 and W2are bounded on the domain, if | z

h | is sufficiently small then w > 0 and we

have h̃ =
√

4πw
z2 = h(1+W̃ ) with W̃ a O(z, z

h and hence we can write h = h̃(1+H̃)

with H̃ = O(z, z
eh ). M2 is fixed such a way z

h is small enough on the domain. Now

we can write:

exp4,z(h̃, ϕ̃, τ) = z2(app3,1(h̃, ϕ̃, τ) + (zx3, zy3, 0)),

with

app3,1 = (
h̃τ

2π
,
−˜̃hϕ(−2t+ 6Aϕ̃2 cos(a+ 2ϕ0) + 9Aϕ̃ sin(a+ 2ϕ0))

4π
,
h̃2

4π
).

Therefore the singularity of the jet is A2 or A3 (if sin(a+ 2ϕ0) = 0, and then, if z
is small enough, the singularity of the exponential map is A2 or A3 at the point we
consider. But the set of (θ, ϕ) of the domain is a compact set hence we can conclude
that on the domain there is a η such that if 0 < z < η then the exponential map
has first singularity A2 or A3. Because ρ0 � z, we find the same condition on ρ0

on the domain. The theorem is proved on the domain.

From now, we use the second parameterization of S2.
Remark: in the sequel, we change a little our point of view. In the two first
domains, we knew the existence of the first conjugate time and the jets allowed to
estimate it. From now, we don’t know a priori the existence of the conjugate time.
We have informations about it in the case it exists but we don’t have yet the proof
of its existence. Hence we first study the jet, we find that it has first conjugate
time for any initial condition, we prove that its singularity at this first conjugate
time is stable, and finally, by stability, we obtain that the exponential map itself,
as a perturbation of the jet, has also singularity, of the same type.

8.3. Third domain: we look at the conjugate time of the jet close to 2π. First,
as for the previous domain, we can change ρ0 for z and t for τ = t− 2π.

Because we can ask ρ0 to be as small as we want, then |1 − z
ρ0
| can be as close

to 0 as we want on the domain. Therefore we can define this third domain with ρ0

or z equivalently.
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Then we change θ for θ̃ = − 3B sin(b)
π −L sin(l)+ θ

z , ϕ for ϕ̃ = 3B cos(b)
π −L cos(l)+ ϕ

z
and τ for τ̃ = τ

z − πλ + 3A cos(a + 2l) (hear, L and l determine the point we are
looking at in the domain and z(πλ− 3A cos(a+ 2l)) is the conjugate value for the
variable τ computed with the jet).
Remark: now the domain can be contained in the set of (L, l, z) such that L ∈
[
√

M4z
2 , 2M2] if ρ0 is small enough.
After a linear transformation depending on z one can find (we forget the z-

coordinate):

exp5(z, θ̃, ϕ̃, τ̃ ) = app4(θ̃, ϕ̃, τ̃ ) + (
z

L
x4,

z

L
y4,

z

L2
w5),

where x4, y4 and w5 are smooth functions. We make an affine change of coordinates
on (x, y, w) depending on (L, l, z) and some polynomial changes of the variables

(θ̃, ϕ̃, τ̃ ) fixing (0, 0, 0) (see appendix 10.9) and we find:

• when a+ 2l = π[2π], then:

app4(θ̃, ϕ̃, τ̃ ) = ((2 + 2ϕ̃− ϕ̃2)τ̃ , θ̃(3Aθ̃2 + τ̃ ), ϕ̃) + O4(θ̃, ϕ̃, τ̃).

app4 has singularity A3 at θ̃ = ϕ̃ = τ̃ = 0.
• when a+ 2l = 0[2π], then:

app4(θ̃, ϕ̃, τ̃) = (2 + 2ϕ̃− ϕ̃2)τ̃ , θ̃(−3Aθ̃2 + τ̃ ), ϕ̃) + O4(θ̃, ϕ̃, τ̃).

app4 has singularity A3 at θ̃ = ϕ̃ = τ̃ = 0.
• when sin(a+ 2l) 6= 0 then:

jac(
∂app4

∂ϕ̃
,
∂app4

∂τ̃
,
∂app4

∂θ̃
) = 0

and

jac(
∂app4

∂ϕ̃
,
∂app4

∂τ̃
,
∂2app4

∂θ̃2
) 6= 0.

This prove that app4 has singularity A2 at θ̃ = ϕ̃ = τ̃ = 0.

Now, at each point of the domain, we have that if z
L is small enough then the

exponential map is equivalent to its jet hence it has the same singularity. The set

of (L, l, z) such that L ∈ [
√

M4z
2 , 2M2] being compact, there is a common η such

that if z
h < η, then the first singularities of the exponential map are A2 and A3.

8.4. Last domain. In this case, we make the changes of variables as for the third

domain, to introduce L and l. Then we change z for U 2, L for L̃ = L
U , θ̃ for ϑ =

eθ
U

and ϕ̃ for ϕ = eϕ
U .

Remark: now the domain can be contained in the set of (L̃, l, U) such that L̃ ∈
[0, 2

√
M4].

After a linear transformation on the exponential map (depending on U), we
get(we forget the z coordinate):

exp6 = app5(ϑ, ϕ, t) + U(x8, y8, w11),

where x8, y8 and w11 are smooth functions.

After some linear changes of coordinates on (x, y, w) depending on (U, L̃, l) and
some polynomial changes of variables fixing (ϑ = 0, ϕ = 0) and sending the conju-
gate time for the jet to 0 (see 10.10), we find:
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• If a+ 2l = 0[2π]:

app5(ϑ, ϕ, t) = (Aϕ, tϑ− 6Aπ3ϑ3, t) + O4(ϑ, ϕ, t),

hence app5 has singularity A3 at (0, 0, 0).

• If a+ 2l = π[2π] and 27AB2 − 2L̃2π3 < 0:

app5(ϑ, ϕ, t) = (−Aϕ, tϑ− 6Aπ3ϑ3, t) + O4(ϑ, ϕ, t),

hence app5 has singularity A3 at (0, 0, 0).

• If a+ 2l = π[2π] and 27AB2 − 2L̃2π3 = 0:

app5(ϑ, ϕ, t) = (t, Aϕϑ, 3A(3ϕ2 + ϑ2) + 2ϕt) + O4(ϑ, ϕ, t),

hence app5 has singularity D+
4 at (0, 0, 0).

• If a+ 2l = π[2π] and 27AB2 − 2L̃2π3 > 0 and L̃ > 0:

jac(
∂app5

∂ϑ
,
∂app5

∂t
,
∂app5

∂ϕ
) = 0

and

jac(
∂app5

∂ϑ
,
∂app5

∂t
,
∂2app5

∂ϕ2
) 6= 0.

This implies that app5 has singularity A2 at (0, 0, 0).

• If sin(a + 2l) 6= 0 and L̃ > 0: app5,5 is such that, if we denote app5 =

(x̄, ȳ, w̄), υ1 = ∂ȳ
∂ϑ , υ2 = ∂ȳ

∂ϕ and if we use the new variables θ̄ and ϕ̄

such that ϑ = υ1θ̄ + υ2ϕ̄ and ϕ = −υ1ϕ̄ + υ2θ̄, then ∂app5

∂ϕ̄ = 0 but

Det(∂app5

∂θ̄
, ∂app5

∂t , ∂2app5

∂ϕ̄2 ) 6= 0, which implies that app5 has singularity A2

at (0, 0, 0).

In all the different cases, exp6 can be seen as a lagrangian perturbation of a stable

lagrangian map. The set of (L̃, l) being compact, we can find η such that if U < η

then for any (L̃, l, U), we have that the exponential map has only singularities of
type A2, A3 or D+

4 at the first conjugate locus. Therefore there is a η′ such that if
ρ0 < η′ we have the same conclusion.

This ends the proof of the theorem.
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9. Images of the conjugate locus

In this section, we present some pictures of the intersection of the first caustic
with two special 3-subspaces of R4.

In figure 6, one can find pictures of the intersection of the caustic with {z = z0}
with z0 6= 0. One can see two singularities of type D+

4 where two of the lines of
cusp points stop.

Figure 6. Pictures corresponding to the last domain


