Processus Stochastiques — Examen final

17 mai 2018

Tous documents interdits.

Exercice 1 — Inégalité de Hoeffding et concentration

- 1. Soit $(M_n)_{n\in\mathbb{N}}$ une martingale pour la filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$. On suppose que $M_0=0$ et on note pour tout $n\geq 0$, $D_n=M_{n+1}-M_n$. On suppose pour toute la suite qu'il existe c>0 tel que $P(|D_n|\leq c)=1$ pour tout $n\geq 0$.
 - a) Soit s > 0. Montrer que si on définit, pour tout $n \ge 0$,

$$N_n = \exp\left(sM_n - \sum_{i=1}^n \ln E(e^{sD_i} \mid \mathcal{F}_i)\right)$$

(avec $N_0 = 1$) alors $(N_n)_{n \in \mathbb{N}}$ est une martingale positive pour la filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$.

b) Montrer que pour tout $x \in [-1, 1]$ et tout $s \ge 0$, $e^{sx} \le \frac{1-x}{2}e^{-s} + \frac{1+x}{2}e^{s}$. En déduire que si X est une variable aléatoire réelle telle que $|X| \le c$ p.s. et E(X) = 0, alors pour tout s > 0, on a

$$E(e^{sX}) \le \operatorname{ch}(cs) \le e^{s^2c^2/2}.$$

- c) Montrer alors que $E(e^{sM_n}) \le e^{ns^2c^2/2}$.
- d) En remarquant que $P(M_n > t) \le e^{-st} E(e^{sM_n})$, en déduire que

$$P(M_n > t) \le e^{-2t^2/(nc^2)}$$
.

2. Soit X_1, \ldots, X_n une suite de v.a. indépendantes à valeur dans un espace mesurable $(\mathcal{X}, \mathcal{B})$ et soit $g: \mathcal{X}^n \to \mathbb{R}$ une fonction mesurable telle que pour tout (x_1, \ldots, x_n) et tout (x'_1, \ldots, x'_n) dans \mathcal{X}^n , on a

$$|g(x_1,\ldots,x_n)-g(x_1',\ldots,x_n')| \le c \sum_{i=1}^n \mathbf{1}_{x_i \ne x_i'}.$$

- a) Montrer que $P(g(X_1,\ldots,X_n)-E(g(X_1,\ldots,X_n))>t)\leq e^{-2t^2/(nc^2)}$ (On pourra considérer $M_k=E(g(X_1,\ldots,X_n)\mid X_1,\ldots,X_k)-E(g(X_1,\ldots,X_n))$ pour tout $1\leq k\leq n$ et $M_0=0$).
- b) Que dit le résultat précédent lorsque $\mathcal{X} = \mathbb{R}$ et $g(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i$?

Exercice 2 — Couplage depuis le passé

Dans tout l'exercice on se donne une chaîne de Markov sur E fini, de probabilités de transition p_{ij} , et que l'on suppose irréductible; on fera de plus l'hypothèse que $p_{ii} > 0$ pour tout $i \in E$. Une telle chaîne de Markov converge en loi vers son unique mesure stationnaire μ ; le but de l'exercice est de décrire un algorithme permettant de construire une variable aléatoire de loi μ .

- **1.** Rappeler comment on peut construire des fonctions $f_i : [0,1] \to E$ de telle sorte que pour une variable aléatoire U de loi uniforme sur [0,1] on ait pour tous $i,j:P[f_i(U)=j]=p_{ij}$.
- 2. Soit (U_n) une suite de variables aléatoires de loi uniforme sur [0,1], indépendantes, et soit $X_0 \in E$. Vérifier que l'on obtient bien une chaîne de Markov de probabilités de transition (p_{ij}) en définissant par récurrence $X_{n+1} = f_{X_n}(U_n)$.

- 3. Soient X_0 et Y_0 deux éléments de E; on construit un couplage entre deux chaînes de Markov (X_n) et (Y_n) issues de ces deux points, comme à la question précédente, en utilisant la même suite (U_n) : autrement dit on pose $X_{n+1} = f_{X_n}(U_n)$ et $Y_{n+1} = f_{Y_n}(U_n)$. On pose $\tau = \inf\{n : X_n = Y_n\}$. Montrer que τ est un temps d'arrêt.
- 4. τ est-il presque sûrement fini? (On pourra chercher à construire un exemple où il ne l'est pas.) Indice : $\mathbb{Z}/n\mathbb{Z}$.
- 5. Un exemple. Dans cette question on se donne n un entier supérieur ou égal à 2, et on regarde le cas particulier où $E = \{0, \ldots, n\}$ et où les fonctions f_i sont données par

$$f_i(u) = \begin{cases} \max(i-1,0) & \text{si } u \in [0,0.4], \\ i & \text{si } u \in]0.4, 0.6[, \\ \min(i+1,n) & \text{si } u \in [0.6,1]. \end{cases}$$

Calculer les valeurs des p_{ij} , et déterminer la mesure μ . (On pourra utiliser la notion de réversibilité.) Montrer que dans cet exemple $\tau < \infty$ presque sûrement, et que de plus la valeur commune $X_{\tau} = Y_{\tau}$ est égale soit à 0 soit à n. En déduire que la loi de X_{τ} n'est pas μ .

Dans toute la suite, on suppose que la chaîne et les fonctions f_i sont telles que τ soit fini presque sûrement pour tous points de départ; on se donne une suite $(U_n)_{n\in\mathbb{Z}}$ de variables aléatoires indépendantes uniformes sur [0,1].

6. On définit les fonctions (aléatoires) $\varphi_n: E \to E$ par récurrence pour $n \ge 0$ en posant $\varphi_0(i) = i$

$$\varphi_{n+1}(i) = f_{\varphi_n(i)}(U_n).$$

Vérifier que la suite $(\varphi_n(i))_{n\in\mathbb{N}}$ est une chaîne de Markov de probabilités de transition (p_{ij}) , et qu'en particulier $P[\varphi_n(i)=j]=P[X_n=j|X_0=i]$. En déduire que pour tous $i,j\in E$, $P[\varphi_n(i)=j]\to \mu(\{j\})$ quand $n\to\infty$.

- 7. Expliquer le lien entre les fonctions φ_n et le couplage de la question 3. Montrer en particulier que pour tous $i, j \in E$, $P[\varphi_n(i) = \varphi_n(j)] \to 1$ quand $n \to \infty$. En déduire qu'il existe un temps d'arrêt N fini presque sûrement tel que la fonction φ_N soit constante sur E, et qu'alors pour tout $n \ge N$ et pour tout $i, j \in E$ on a $\varphi_n(i) = \varphi_n(j)$.
- 8. On définit les fonctions (aléatoires) $\psi_n: E \to E$ par récurrence pour $n \geqslant 0$ en posant $\psi_0(i) = i$ et

$$\psi_{n+1}(i) = \psi_n(f_i(U_{-n-1})).$$

Montrer que pour tout n, $\psi_n(i)$ et $\varphi_n(i)$ ont la même loi. Pourquoi parle-t-on de couplage depuis le passé dans le cas de ψ_n ?

- 9. Montrer qu'il existe avec probabilité 1 un entier N tel que la fonction ψ_N soit constante sur E, et que pour tout n > N et tous $i, j \in E$ on a alors $\psi_N(i) = \psi_n(j)$. Attention la conclusion est différente de celle de la question 7 : non seulement les ψ_n pour n assez grand sont constantes, mais en plus elles prennent toutes la même valeur.
- 10. Déduire des questions précédentes que pour tous $i, j \in E$, $P[\psi_n(i) = j] \to \mu(\{j\})$ quand $n \to \infty$, puis que $P[\psi_N(i) = j] = \mu(\{j\})$.

On a donc obtenu notre algorithme pour fabriquer une variable de loi μ : on part des fonctions f_i , on tire des variables (U_n) , on calcule les fonctions ψ_n jusqu'à en trouver une qui soit constante sur E, et sa valeur a exactement pour loi la mesure μ .

- 11. En reprenant l'exemple de la question 5, montrer que les fonctions ψ_k sont toutes croissantes sur $\{0,\ldots,n\}$ et qu'en particulier ψ_k est constante si et seulement si $\psi_k(0) = \psi_k(n)$.
- 12. Toujours dans ce cas, comment peut-on alors implémenter la construction précédente sans calculer explicitement les fonctions ψ_n ? Comparer à la question 5 et justifier la phrase "le couplage vers le futur ne marche pas, mais le couplage depuis le passé fonctionne"