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Chapter 1

Modular arithmetic over integers

1.1 Euclidean division and congruences

Theorem 1.1.1 (Euclidean division). For a, b ∈ Z, b 6= 0, there exist a unique couple q, r ∈ Z s.t.
a = bq + r and 0 ≤ r < |b|. The integer r is the remainder in the division of a by b, and q is the
quotient.

Definition 1.1.2 (Divisibility). Let a and b two integers. Then a divides b (or b is a multiple of a)
if there exists an integer c such that b = a · c. This is denoted a|b.

Definition 1.1.3 (Congruence). Let x, y, n ∈ Z. Then x is congruent to y modulo n if their remain-
ders in the division by n are the same.

In particular

x = y mod n ⇔ n|(x− y)

⇔ ∃k ∈ Z, x = kn+ y

Property 1.1.4. 1. This is an equivalence relation (reflexive, transitive and symmetric)

2. Compatibility with addition and multiplication mod n: for all integers a, b, a′, b′ s.t. a = a′ mod n
and b = b′ mod n, then a+ b = a′ + b′ mod n and ab = a′b′ mod n.

3. Other interesting properties :

• a = b mod n⇔ ac = bc mod nc

• a = b mod mn⇒ (a = b mod m and a = b mod n)

The congruence equivalence relation partitions the set Z into equivalence classes:

Definition 1.1.5 (Residue classes modulo n). Z/nZ is the set of equivalence classes or residue classes
modulo n for the congruence relation. For any integer m in a residue class, we call m a representative
of that class.

Note that there are precisely n distinct residue classes modulo n, given for example by 0, . . . , n − 1
(corresponding to the remainders in the Euclidean division by n).

Property 1.1.6. (Z/nZ,+, ·) is a (commutative and unit) ring. See next chapter.
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CHAPTER 1. MODULAR ARITHMETIC OVER INTEGERS V.Vitse

Modular exponentiation

Question: given x ∈ Z/nZ and e ∈ N∗, how to compute xe mod n?

An obvious way is to iteratively multiply by x a total of e times, reducing modulo n at each step. The
complexity is then in O(e log(n)2). Another (much faster) way is to apply the “square-and-multiply”
algorithm; the idea is based on the following mathematical property:

Property 1.1.7. Let e = (e`−1 . . . e0)2 be the binary expansion of e, that is e =
∑`−1

i=0 ei2
i. Then

xe =
`−1∏
i=0

(x2i mod n)ei =
`−1∏

i=0,ei 6=0

(x2i mod n).

This yields the following algorithm:

Algorithm 1: “Right-to-left” algorithm for modular exponentiation

Input : x ∈ Z/nZ, e, n ∈ N∗
Output: y = xe mod n
y ← 1
t← x
while e 6= 0 do

if e%2 = 1 then
y ← y · t mod n

e← e� 1
t← t2 mod n

return y

Exercise 1. Propose another algorithm which reads the bits of e from “left-to-right”. Show that all
these algorithms have polynomial complexity.

Remark. Given n ∈ N∗, g ∈ Z/nZ and x ∈ Z, it is easy to compute gx mod n (there exist algo-
rithms with polynomial complexity). However, there is no efficient algorithm which computes x given
n, g, gx mod n : this problem is called discrete logarithm problem and is useful for many asymmetric
cryptographic protocols.

1.2 Extended Euclid algorithm

Definition 1.2.1 (gcd, lcm, coprimality). For a, b ∈ Z, we note gcd(a, b) or a∧b the greatest common
divisor of a and b and lcm(a, b) or a∨ b their least common multiple. We say that a and b are coprime
if gcd(a, b) = 1.
More generally, the gcd of {a1, . . . , an} ⊂ Z is the greatest common divisor of a1, . . . , an.

The gcd of two integers can be expressed as a linear combination of these integers:

Lemma 1.2.2 (Bézout lemma). For a, b ∈ Z, there exist u, v ∈ Z such that au+ bv = gcd(a, b).
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UJF - Master SCCI 1.3 Modular inverse

Proof. Consider the non zero element of S = {au + bv : u, v ∈ Z} with minimal absolute value and
show that this element is necessarily the gcd of a and b

Obviously, this proof is not very helpful for the computation of gcd. Euclid’s algorithm will remedy
this and give a constructive proof. We use the fact that if r is the remainder in the Euclidean division
of a by b, then

a ∧ b = b ∧ r.

Now let r0 := a and r1 := b. We compute iteratively

r0 = r1 q1 + r2 with 0 ≤ r2 < |r1| → a ∧ b = r0 ∧ r1 = r1 ∧ r2

r1 = r2 q2 + r3 with 0 ≤ r3 < r2 → r1 ∧ r2 = r2 ∧ r3
...

...
rn−2 = rn−1 qn−1 + rn with 0 ≤ rn < rn−1 → rn−2 ∧ rn−1 = rn−1 ∧ rn
rn−1 = rn qn + rn+1 with rn+1 = 0 → rn−1 ∧ rn = rn

In particular, a ∧ b is equal to the last non-zero remainder rn. To get u and v we explicitly introduce
the sequences (ui), (vi) such that rn = ui ri + vi ri+1, given by (backward) induction :

• rn = 0 · rn−1 + 1 · rn, so

{
un−1 = 0

vn−1 = 1

• if rn = ui ri + vi ri+1, we use that ri−1 = ri qi + ri+1. Then rn = ui ri + vi (ri−1 − ri qi) =

vi ri−1 + (ui − vi qi) ri, so that we take

{
ui−1 = vi

vi−1 = ui − vi qi

Note that you can also write it directly by introducing the sequences (si), (ti) such that sia+ tib = ri.

• Initialisation:

{
s0 = 1 t0 = 0

s1 = 0 t1 = 1

• Induction hypothesis:

{
si−1a+ ti−1b = ri−1

sia+ tib = ri

Writing ri+1 = ri−1 − riqi = si−1a+ ti−1 − (sia+ tib)qi = (si−1 − qisi)a+ (ti−1 − qiti)b, you get{
si+1 = si−1 − qisi
ti+1 = ti−1 − qiti

1.3 Modular inverse

Definition 1.3.1. Let x, n > 0 two integers. We say that x admits a multiplicative inverse modulo n
if there exists y ∈ Z such that x · y = 1 mod n; this is denoted by y = x−1 mod n.
Similarly, x ∈ Z/nZ is invertible if there exists y ∈ Z/nZ such that xy = 1 mod n.

Remark. If a ∈ Z is invertible modulo n and if a′ = a mod n then a′ is also invertible modulo n.
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CHAPTER 1. MODULAR ARITHMETIC OVER INTEGERS V.Vitse

Theorem 1.3.2. An integer a is invertible modulo n iff a and n are coprime.

Proof. Direct application from Bézout: ua+ vn = 1⇒ u = a−1 mod n.

Remark. If p is prime, then every element of (Z/pZ)∗ is invertible. In particular, Z/pZ is a field ; it
is in fact the unique field (up to isomorphism) with p elements, and will be denoted GFp.

Algorithm 2: Computation of inverse modulo n

Input : a ∈ Z, n ∈ N∗
Output: a−1 mod n
s0 ← 1 s1 ← 0; while b 6= 0 do

tmp← a
a← b
b← tmp%a
q ← tmp/a
tmp← s0 − qs1 s0 ← s1 s1 ← tmp

return s0

Exercise 2. Solve 35x = 7[43].

1.4 Prime numbers

Definition 1.4.1 (Prime numbers). A prime number is a positive integer p 6= 1 that is only divisible
by ±1 and ±p. The set of prime numbers is denoted P; P = {2, 3, 5, 7, 11, 13, 17, . . .}. A positive
integer that is not a prime is called composite.

The largest known prime number (last record of 2013) is 257885161 − 1 (with almost 17 millions of
digits).

Theorem 1.4.2 (Fundamental theorem of arithmetic).
Every nonzero integer n can be written as a product of primes:

n = ±1 . pα1
1 pα2

2 . . . pαk
k , pi ∈ P, αi ∈ N.

This decomposition is unique if p1 < p2 < · · · < pk and αi > 0 for all i.

The uniqueness of decomposition relies on the following Lemma:

Lemma 1.4.3 (Euclid’s lemma). Let p be a prime number and a, b two integers. Then p|ab⇒ p|a or
p|b.

Existence can be obtained by considering non trivial divisors of n and using induction. Note that you
can obtain the decomposition by trial division by the prime numbers lower than

√
n, which in turn

can be obtained using Eratosthenes sieve.

The fundamental theorem of arithmetic gives a naive algorithm for computing gcd /lcm of two num-
bers.
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UJF - Master SCCI 1.4 Prime numbers

Property 1.4.4. If a = pα1
1 . . . pαn

n and b = pβ11 . . . pβnn , then{
a ∧ b = p

min(α1,β1)
1 . . . p

min(αn,βn)
n

a ∨ b = p
max(α1,β1)
1 . . . p

max(αn,βn)
n

In particular,
(a ∧ b)× (a ∨ b) = ab

Exercise 3. Write algorithms that compute gcd’s and Bézout coefficients.

In particular,
x|a and x|b⇔ x|(a ∧ b),

a|m and b|m⇔ (a ∨ b)|m.

We easily deduce from the fundamental theorem another interesting result:

Property 1.4.5 (Gauss lemma). If p, q are coprime and x is an integer s.t. p|qx, then p|x.

As a last application of the extended Euclid’s algorithm, we give a method to solve congruential
systems using the famous Chinese Remainder theorem.

Theorem 1.4.6 (Chinese Remainder Theorem – CRT). Let n,m be two coprime integers and a, b
two integers. Then the system {

x = a mod n

x = b mod n

admits a unique solution x mod mn.

Proof. From Bézout, there exist u, v s.t. un + vm = 1 and x0 = bun + avm is a particular solution.

If x1 is another solution of the previous system then

{
x1 − x0 = 0 mod n

x1 − x0 = 0 mod m
. From Gauss lemma, we

deduce that x0 = x1 mod mn.

Exercise 4. Solve the following system {
35x = 7 [4]

22x = 33 [5]

Exercise 5.

1. Let a, b, c ∈ Z such that (a, b) 6= (0, 0). Show that the equation

ax+ by = c (1.1)

has a solution iff a ∧ b divides c.

2. Find all the integer solutions of the following equations: 7x− 9y = 6, 11x+ 17y = 5.

Exercise 6 . In a country named ASU where the currency is the rallod, the national bank issues
banknotes of 95 rallods and coins of 14 rallods.
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CHAPTER 1. MODULAR ARITHMETIC OVER INTEGERS V.Vitse

1. Show that it is possible to pay any integer amount (provided that each participant has access
to as many coins and banknotes as needed).

2. Suppose that you need to pay an amount S and that you have access to as many coins and
banknotes as needed, but that your creditor cannot give the change. Thus it is possible for
example to pay S = 14 rallods but impossible to pay 13 or 15 rallods. Show that it is always
possible to pay any large enough amount.

Exercise 7. A rooster costs 5 silver coins, a hen 3 coins and a set of 4 chicks 1 coin. Someone bought
100 chickens for 100 coins. How many pieces of each kind has he bought?

The end of this section is devoted to some results about the repartition of prime numbers.

Theorem 1.4.7. There are infinitely many prime numbers. Let π(n) be the number of primes smaller
than n, then π(n) ∼ n/ log n.

Remark. So informally, the probability that a random integer n is prime is about 1/ log n. More
precisely,

π(x) ∼
x→∞

∫ x

2

dt

ln(t)
.

For example, about one number among 21 is prime near x = 1 000 000 000.

1.5 Euler-Fermat theorem and non-primality test

Euler-Fermat theorem is at the heart of the RSA cryptosystem. Let us first recall some notions:

Definition 1.5.1 (Euler’s totient function). Euler’s totient function (or Euler’s phi function) is
defined by

∀n ∈ N∗, ϕ(n) = |(Z/nZ)×|.

This equivalent to say that ϕ(n) is the number of integers between 0 and n− 1 that are coprime with
n.

Examples. ϕ(1) = 1;ϕ(2) = 1;ϕ(3) = 2;ϕ(4) = 2...

Computation of Euler’s totient function

Property 1.5.2. • ϕ(mn) = ϕ(m)ϕ(n) for all coprime positive integers n,m.

• ϕ(pe) = pe − pe−1 = pe(1− 1/p) for all prime p and positive integer e.

• ϕ(n) = n
∏r
i=1(1− 1/pi) where n = pe11 . . . pekk is the factorisation of n into primes.

Proof. • Consider the map a ∈ Z/nmZ 7→ (a mod n, a mod m) ∈ Z/nZ × Z/mZ which is well-
defined and a bijection according to CRT. Moreover a ∧mn = 1 iff (a ∧m = 1 and a ∧ n = 1),
so that the previous application gives a bijection between (Z/mnZ)∗ and (Z/nZ)∗ × (Z/mZ)∗.

• Among the pe elements between 0 and pe− 1, the only elements which are multiples of p are not
invertible; these are 0 · p, 1 · p, . . . , (pe−1 − 1) · p and there are precisely pe−1.
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UJF - Master SCCI 1.5 Euler-Fermat theorem and non-primality test

• Direct from the previous items.

Examples : ϕ(36) = ϕ(2232) = 36
(
1− 1

3

) (
1− 1

2

)
= 36× 2

3
× 1

2
= 12.

Theorem 1.5.3 (Euler-Fermat theorem). Let a, n (n ≥ 0) be two coprime integers, then

aϕ(n) = 1 [n]

Among other things, this theorem means that if a ∧ n = 1 and ϕ(n) is known, then it is possible to
simplify modular exponentiations: ax = ax0 [n], where x0 is the remainder in the Euclidean division
x par ϕ(n).

In practice however, the computation of ϕ(n) is difficult. For instance, if n is the product of two
distinct primes p and q, then the computation of ϕ(n) is as difficult as the factorization of n, and we
have mentioned that this is a hard problem. The proof will be seen in the exercises.

When p is prime, Euler-Fermat theorem (known as “Fermat’s little theorem” in this case) yields a
pseudo-primality test. The statement becomes:

Theorem 1.5.4. • If p is prime and a ∈ Z/pZ is such that p - a (i.e. a ∧ p = 1), then

ap−1 = 1 [p]

• If p is prime and a ∈ Z, then ap = a [p]

Proof. The first part is a direct application of Euler-Fermat for n = p. The second part is an obvious
consequence if a ∧ n = 1; otherwise, a is a multiple of p : the equality then can be rewritten as
0 = 0 [p]...

The converse of this theorem gives the following probabilistic primality test:

1. choose a at random between 1 and n− 1

2. n satisfies the test if an−1 = 1 [n]

If the test is satisfied for n, then n has a good probability of being prime. But if n does not satisfy
the test, then we know for sure that n is not prime:

225009996 = 13697276 [25009997]⇒ 25009997 is not prime.
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Chapter 2

Fundamental structures

2.1 Groups

Let G be a set. A binary operation (or composition law) is a map f : G×G→ G. Binary operations
are usually written in infix notations, i.e. a + b, a × b, a · b, . . . or simply by juxtaposition, i.e. ab,
instead of f(a, b).

Example. On the set N of natural integers + and × are binary operations, but − is not.

Definition 2.1.1. Let G be a set and · a binary operation on G. Then (G, ·) is a group if

1. the binary operation is associative: for all a, b, c ∈ G, (a · b) · c = a · (b · c)

2. there exists a (necessarily unique) element e ∈ G, called the neutral element or the identity, such
that for all a ∈ G, a · e = e · a = a

3. for each a ∈ G, there exists a (necessarily unique) element b ∈ G, called the group inverse of a,
such that a · b = b · a = e

A group is called abelian or commutative if its group law is commutative, i.e. a · b = b · a for all
a, b ∈ G.

The inverse of an element a is often denoted by a−1; similarly, the element a · a · a · . . . · a (n times) is
denoted by an. This notation can be extended to Z by setting a−n = (a−1)n and a0 = e.

Exercise 8. Which of the followings are groups ? abelian groups ?

• (Z,+), (Z,−), (Z,×)

• (R,+), (R,×), (R∗,×), (R∗+,×)

• (GLn(R), ·), (Bij(E), ◦), (R3,×) where × is the vector cross-product

• (Z/nZ,+), (Z/nZ,×)

• ∅, {e} (with their only possible composition law), ({True, False}, XOR)

10
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Definition 2.1.2 (Subgroup). Let (G, ·) be a group. A subset H of G is a subgroup of G, denoted
H < G, if · is a binary operation on H (i.e. a · b ∈ H for all a, b ∈ H) and (H, ·) is a group.

Exercise 9. Show that H < G if and only if H 6= ∅ and h1 · h−1
2 ∈ H for all h1, h2 ∈ H. Show that

the intersection of a family of subgroups is a subgroup.

Example. • Every group G admits {e} and G as subgroups.

• (Z,+) < (Q,+) < (R,+) < (C,+)

• ({1,−1},×) < (Q∗,×) < (R∗,×) < (C∗,×)

• The subgroups of (Z,+) are {0}, Z, and nZ = {kn : k ∈ Z} for all n ∈ N∗.

Definition 2.1.3. Let (G1, ·) and (G2, ∗) be two groups. A map φ : G1 → G2 is a homomorphism
(or group morphism) if for all a, b ∈ G1, φ(a · b) = φ(a) ∗ φ(b). The kernel of φ is the set kerφ =
{a ∈ G1 : φ(a) = eG2}; it is a subset of G1. The image of φ is the set Imφ = {φ(a) : a ∈ G1}; it is a
subset of G2. A bijective homomorphism is called an isomorphism. Two groups G1 and G2 are called
isomorphic if there exists an isomorphism G1 → G2; this is denoted G1 ' G2.

Example. • The natural logarithm is an isomorphism from (R∗+,×) to (R,+).

• If H < G, then the inclusion map ı : H → G is a morphism, with ker ı = {e} and Imı = H.

• Let G be a group and g a fixed element of G. Then the map n 7→ gn is a homomorphism from
(Z,+) to G. The conjugacy map x 7→ g · x · g−1 is homomorphism from G to G, equal to the
identity if G is abelian. The maps x 7→ x2 and x 7→ x−1 are homomorphisms from G to G iff G
is abelian.

• Let φ : R∗ → R∗, x 7→ x2. Then kerφ = {1,−1} and Imφ = R∗+.

Property 2.1.4. • Let φ : G1 → G2 a group morphism. Then kerφ is a subgroup of G1 and Imφ
is a subgroup of G2.

• φ is injective ⇔ kerφ = {eG1}

• The composition of two group morphisms φ : G1 → G2 and ψ : G2 → G3 is also a group
morphism ψ ◦ φ : G1 → G3

• The inverse function of an isomorphism G1 → G2 is an isomorphism G2 → G1.

Definition 2.1.5 (Product of group). Let (G1, ·) and (G2, ∗) be two groups. The direct product of
G1 and G2 is defined as the set G1 ×G2 endowed with the binary operation

(g1, g2) ? (g′1, g
′
2) = (g1 · g′1, g2 ∗ g′2).

One can check that (G1 ×G2, ?) is a group with neutral element (eG1 , eG2).

Exercise 10.

1. Show that (C,+) is isomorphic to the direct product of (R,+) with itself.

2. Write down a table for the group law of Z/2Z× Z/2Z. Is it isomorphic to Z/4Z ?

3. Let p, q be two coprime numbers. Show that there is a isomorphism between Z/pqZ and
Z/pZ× Z/qZ.
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CHAPTER 2. FUNDAMENTAL STRUCTURES V.Vitse

Definition 2.1.6 (Quotient by a subgoup). Let G a group and H a subgroup of G. We define on G
the binary relation

g ∼H g′ ⇔ g−1g′ ∈ H.

This is an equivalence relation (exercise). The equivalence class, or coset, of an element g ∈ G is the
set gH = {g h : h ∈ H}. The quotient G/H is defined as the set of equivalence classes for ∼H ; its
cardinality is called the index of H in G.

Theorem 2.1.7 (Lagrange’s theorem). Let H be a subgroup of a finite group G, then

|G| = |G/H| × |H|.

In particular, the cardinality of a subgroup always divides the cardinality of the group.

Example. If p is prime, then Z/pZ has no non-trivial subgroup.

Definition 2.1.8 (Normal subgroup). Let G a group. A subgroup H of G is called normal, denoted
by H / G, if

∀g ∈ G, ∀h ∈ H, g−1hg ∈ H.

Exercise 11. Let φ : G1 → G2 a group morphism. Show that kerφ is a normal subgroup of G1.

Proposition 2.1.9 (Quotient group). Let H be a normal subgroup of G. Then on the quotient G/H,
the binary operation

G/H ×G/H → G/H

(gH, g′H) 7→ (gg′)H

is well-defined and is a group law. The canonical projection map π : G → G/H, g 7→ gH is a group
morphism, whose kernel is precisely H.

Exercise 12. Show that nZ is a normal subgroup of Z. What is the quotient group ?

Theorem 2.1.10 (Isomorphism theorem). Let φ : G1 → G2 a surjective group morphism. Then there
exists a unique homomorphism φ̂ : G1/ kerφ→ g2, such that the following diagram is commutative:

G1
φ //

π
��

G2

G1/ kerφ
φ̂

::

i.e. φ = φ̂ ◦ π; furthermore φ̂ is an isomorphism.

Example. Let f : R→ C∗, x 7→ e2iπx, this is a morphism (from (R,+) to (C∗,×)). One has ker f = Z;
the above theorem implies that R/Z is isomorphic to Imf = T = {z ∈ C : |z| = 1}.

Definition 2.1.11. Let (G, ·) be a group and S a subset of G. The subgroup generated by S, denoted
〈S〉, is the smallest subgroup of G containing S, and one has

〈S〉 = {an1
1 · a

n2
2 · . . . · a

nk
k : k ∈ N, ai ∈ S, ni ∈ Z}.

If G = 〈S〉 we say that S is a set of generators of G. If G = 〈S〉 and S is finite then G is called
finitely generated.
A group generated by a unique element is called cyclic. The order of an element g in a group is the
cardinality of the cyclic subgroup 〈g〉 it generates.

12
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Property 2.1.12. 1. Let G be a group and g ∈ G an element of finite order d. Then d is the
smallest positive integer such that gd = e.

2. Let G be a finite group. Then for all g ∈ G, g|G| = e.

Exercise 13.

1. Show that every cyclic group is isomorphic either to Z or to Z/nZ for some n ∈ N (hint: apply
the isomorphism theorem to the map Z→ 〈g〉, k 7→ gk).

2. Let p be a prime number. Show that up to isomorphism, there is a unique group of cardinality
p.

Proposition 2.1.13. Let G be a cyclic group of cardinality n. Then for any divisor d of n, there
exists a unique subgroup Hd < G of cardinality d, given by Hd = {x ∈ G : xd = e}; this subgroup is
cyclic. The quotient G/Hd is also a cyclic group, of cardinality n/d.

Proof. (Sketch). Let g a generator of G. Then Hd = 〈gq〉 where q = n/d. For the quotient, use the
isomorphism theorem with the map G→ 〈gd〉, x 7→ xd.

Theorem 2.1.14 (Structure of finitely generated abelian groups). Let G be a finitely generated abelian
group. Then there exist integers r, n1, n2, . . . , nk, n1|n2| . . . |nk, such that

G ' Zr × Z/n1Z× · · · × Z/nkZ,

and this decomposition is unique (if n1 > 1).

Exercise 14.

1. Show that ((Z/nZ)∗,×) is a group.

2. Prove Euler’s theorem: for any positive integer n and any integer a coprime to n

aϕ(n) = 1 mod n.

(In other words, the order of a mod n divides ϕ(n)).

3. Deduce Fermats’s little theorem:

∀a ∈ Z, p prime, ap = a mod p.

4. Application: show that 1763 is not a prime number.

2.2 Commutative ring

We suppose that all rings are unitary and commutative.

Definition 2.2.1. Let A be a set with two binary operations + and ·. Then (A,+, ·) is a ring if

1. (A,+) is a abelian group, with neutral element 0A;

13
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2. · is associative, i.e. (a · b) · c = a · (b · c) for all a, b, c ∈ A;

3. · is distributive over +, i.e. a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a for all a, b, c ∈ A;

4. there exists a unit element 1A such that a · 1A = 1A · a for all a ∈ A;

5. · is commutative, i.e. a · b = b · a for all a, b ∈ A.

Example. (Z,+,×) is a ring, as is (Z/nZ,+,×) for any n ∈ N∗. The set R[X] of polynomials with
real coefficients is a ring for the usual addition and multiplication laws. ({0},+,×) is also a ring,
called the zero ring: it is the only ring for which 1 = 0.

Remark. If A is a ring, then 0 · a = 0 for all a ∈ A

Definition 2.2.2. • A is a domain if A 6= {0} and ∀x, y ∈ A, x · y = 0⇒ x = 0 or y = 0.

• a is called a zero divisor if a 6= 0 and there exist a non-zero element b ∈ A such that ab = 0. In
particular, A is a domain if it has no zero divisors. A non-zero element a which is not a zero
divisor is called regular.

Example. • Z is a domain. Z/nZ is a domain if and only if n is prime.

• If A and B are two rings, the cartesian product A × B is a ring for the operations (a, b) +
(a′, b′) = (a + a′, b + b′) and (a, b) · (a′, b′) = (aa′, bb′). It is however never a domain since
(1A, 0B) · (0A, 1B) = (0A, 0B).

Definition 2.2.3. An element x ∈ A is called invertible if there exists y ∈ A s.t. x · y = 1.
The set of all invertible elements of A is denoted by A× and is a group for the binary operation ·.

Exercise 15.

1. Show that if a ∈ A is regular, then ab = ab′ ⇔ b = b′.

2. Show that a ∈ Z/nZ is regular if and only if it is invertible.

Definition 2.2.4. Let A and B two rings. A map f : A→ B is a ring morphism if f(1A) = 1B and
for all a1, a2 ∈ A, f(a1 + a2) = f(a1) + f(a2) and f(a1a2) = f(a1)f(a2). Ring morphisms are stable
under composition.

Example. For any ring A, there exists a morphism f : Z→ A defined by setting f(n) = 1+1+ · · ·+1
(n times).

Definition 2.2.5. A ring (A,+, ·) is a field if 0 6= 1 and every non-zero element is invertible, i.e. A× =
A∗ 6= ∅.

Example. Q, R, C are fields, but Z is not. For any prime p, Z/pZ is a field. The set R(X) of real
rational fractions is a field for the usual laws.

Definition 2.2.6 (Field of fractions). Let A be a domain. The field of fractions of A, denoted Frac(A),
is the set of equivalence classes of pairs A×A∗ for the relation (a, b) ∼ (a′, b′) iff ab′ = a′b. The class
of a pair (a, b) is usually denoted by a/b or a

b . The sum and product of two elements of Frac(A) are

defined by a
b + a′

b′ = ab′+ba′

bb′ and a
b .
a′

b′ = aa′

bb′ . Then (Frac(A),+, ·) is a field and there is a canonical
injective ring morphism A→ Frac(A) which sends a to a

1 .

Example. Frac(Z) = Q. If K is already a field then Frac(K) = K. The field of fractions of R[X] is
R(X), the field of real rational fractions.

14
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Definition 2.2.7. A subset I of a ring (A,+, ·) is an ideal if

1. (I,+) is a subgroup of (A,+),

2. for all x ∈ I and a ∈ A, ax ∈ I.

Example. • Every ring A admits {0} and A as ideals; they are called the trivial ideals.

• For any x ∈ A, the set xA = {x · a : a ∈ A} is an ideal.

• Let I be an ideal of A such that I contains an invertible element, then I = A.

• Let f : A→ B be a ring morphism. Then ker f = {a ∈ A : f(a) = 0B} is an ideal of A.

Property 2.2.8 (Operations on ideals). Let I, J two ideals of A, then

• I ∩ J is an ideal,

• I + J := {f + g : f ∈ I, g ∈ J} is an ideal. It is the smallest ideal containing I and J .

• I · J := {f1g1 + · · ·+ fkgk : fi ∈ I, gi ∈ J} is an ideal, included in I ∩ J .

Definition 2.2.9. • The ideal generated by x1, . . . , xn ∈ A is

(x1, . . . , xn) := x1A+ · · ·+ xnA = {x1a1 + · · ·+ xnan : a1, . . . , an ∈ A}.

An ideal is called principal if it is generated by one element.

• A ring is principal if all its ideals are principal.

Proposition 2.2.10 (Ideals of a field). A non-zero ring A is a field if and only if A has no non-trivial
ideals.

Definition 2.2.11 (Quotient ring). Let I an ideal of (A,+, ·). The quotient ring of A by I is
(A/I,+, ·), where (A/I,+) is the quotient subgroup of (A,+) by (I,+) and the binary operation ·,
given by (a+ I) · (a′ + I) = (a · a′ + I) is well defined.
The canonical projection map π : A→ A/I is a ring morphism, whose kernel is precisely I.

Property 2.2.12 (Ideals of a quotient). There is one-to-one correspondence between the ideals of
A/I and the ideals of A containing I:

{Ideals of A/I} ' {J ideal of A : I ⊂ J}
I 7→ π−1(I)

π(J) ←[ J

Theorem 2.2.13 (Isomorphism theorem). Let φ : A1 → A2 a surjective ring morphism. Then there
exists a unique homomorphism φ̂ : A1/ kerφ→ A2, such that the following diagram is commutative:

A1
φ //

π
��

A2

A1/ kerφ
φ̂

::

i.e. φ = φ̂ ◦ π; furthermore φ̂ is an isomorphism.

15
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Example. Let f : P (X) ∈ R[X] 7→ P (i) ∈ C. Then ker(f) is the ideal generated by X2 + 1 and one
has the isomorphism R[X]/(X2 + 1) = C.

Definition 2.2.14. An ideal I of a ring A is called prime if I 6= A and for all a, b ∈ I

ab ∈ I ⇒ a ∈ I or b ∈ I.

An ideal I is called maximal if I 6= A and for all ideal J s.t. I ⊂ J , either I = J or J = A.

Exercise 16.

1. Show that I is a prime ideal of A iff A/I is a domain.

2. Show that I is a maximal ideal of A iff A/I is a field.

3. Deduce that a maximal ideal is necessarily prime.

2.2.1 The rings Z and Z/nZ

1. Z is principal (from Euclidean division)

2. prime ideals are pZ (and so maximal since the quotient is a field)

3. aZ + bZ = (a ∧ b)Z

4. aZ ∩ bZ = (a ∨ b)Z

If n =
∏

(pi)
αi , then

1. Z/nZ '
∏

Z/pαi
i Z

2. Z/nZ× '
∏

(Z/pαi
i Z)×

3. ϕ(n) := #(Z/nZ×) =
∏
ϕ(pαi

i ) = n
∏

(1− 1/pi)

2.2.2 Polynomial rings

Definition 2.2.15. Let A be a ring. The ring of polynomials in n variables and coefficients in A is

A[X1, . . . , Xn] =

 ∑
α=(α1,...,αn)∈Nn

cαX
α1
1 . . . Xαn

n

 ,

where there are only finitely many non-zero coefficients cα ∈ A.

Property 2.2.16. 1. There is a canonical isomorphism A[X1, . . . , Xn] = A[X1, . . . , Xn−1][Xn].

2. The ring A[X1, . . . , Xn] is a domain if and only if A is a domain.

3. If A is a domain then A[X1, . . . , Xn]× = A×.

16



UJF - Master SCCI 2.2 Commutative ring

Proof. 2. Using 1., by induction on the number of variables it suffices to show that A[X] is a domain
if A is a domain (the “only if” part is clear since A ⊂ A[X]). So let P and Q be two non-zero
elements of A[X], A domain. Then the leading coefficient of the product PQ is the product of
the leading coefficients of P and Q, which cannot vanishes since A is a domain; in particular
PQ 6= 0.

3. By induction it suffices again to consider the case of A[X], which is settled by looking at the
leading coefficients.

Euclidean division : The Euclidean division algorithm in A[X] is similar to the algorithm in Z: at
each step, one tries to cancel out the highest order term of the dividend. For instance in Z[X], the
division of 3X5 + 2X4 −X3 − 7X + 5 by X2 −X + 2 is carried out as follows:

3X5 +2X4 −X3 −7X +5 X2 −X + 2

3X5 −3X4 +6X3 3X3 + 5X2 − 2X − 12
5X4 −7X3 −7X +5
5X4 −5X3 +10X2

−2X3 −10X2 −7X +5
−2X3 +2X2 −4X

−12X2 −3X +5
−12X2 +12X −24

−15X +29

⇒ 3X5 + 2X4 −X3 − 7X + 5 = (X2 −X + 2)(3X3 + 5X2 − 2X − 12)− 15X + 29.
This algorithm may fail when the leading coefficient of the divisor is not invertible: for instance in
Z[X] it does not work for the division of 3X2 + 1 by 2X. This is not an issue if A is a field.

Theorem 2.2.17. Let K a field.

1. Euclidean division: for all P1, P2 ∈ K[X], P2 6= 0, there exist unique Q,R ∈ K[X] s.t. P1 =
P2Q+R with degR < degP2.

2. K[X] is principal.

Proof. (Principality of K[X]). Let I 6= {0} be an ideal of K[X]. Let Pm be a polynomial in I such
that degPm = min{degP : P ∈ I, P 6= 0}; we want to show that I = (Pm). Let P be a polynomial
in I, then there exist Q,R such that P = PmQ + R, degR < degPm. Since Pm and P are in I,
P − PmQ = R is also in I. But degR < degPm = min{degP : P ∈ I, P 6= 0}, so R = 0 and
P = PmQ, i.e. P ∈ (Pm).

The polynomial Pm is called the minimal polynomial of I; it is unique if it is required to be monic
(i.e. its leading coefficient equals 1).

Remark. A[X] is never principal if A is not a field. In particular K[X1, . . . , Xn] is not principal if
n ≥ 2 (consider the ideal (X1, X2)).

Since K[X] is principal, we can define gcd’s and lcm’s as in the integer case. These notions are only
well-defined up to multiplication by a non-zero constant, so we will require polynomials to be monic.
We will not develop here the theory in several variables.

17
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Definition 2.2.18 (Gcd and lcm). Let P1, P2 be two polynomials in K[X]. The gcd of P1 and P2

is the monic polynomial G = P1 ∧ P2 such that (G) = (P1) + (P2). The lcm of P1 and P2 is the
monic polynomial L = P1 ∨ P2 such that (L) = (P1) ∩ (P2). The polynomials P1 and P2 are coprime
if P1 ∧ P2 = 1.

Property 2.2.19. • Q|P1 and Q|P2 ⇔ Q|(P1 ∧ P2).

• P1|Q and P2|Q ⇔ (P1 ∨ P2)|Q.

• Gauss: if P and Q are coprime and P |QR, then P |R.

• Bézout: there exist U, V ∈ K[X] such that UP1 + V P2 = (P1 ∧ P2)

Gcd’s and Bézout coefficients can be computed with the extended Euclid algorithm, as in the integer
case.

Exercise 17.

1. Compute the gcd of X5 +2X4 +2X3 +3X2 +4X+4 ∈ Z/7Z[X] and X4 +3X3 +5X2 +3X+1 ∈
Z/7Z[X]. (Answer: X2 + 4X + 1).

2. Compute the Bézout coefficients of P1 = X3 +2X2 +2X+1 ∈ Z/3Z[X] and P2 = X3 +X2 +2 ∈
Z/3Z[X]. (Answer: (2X + 1)P1 +XP2 = 1).

We can also define a congruence relation for polynomials in an obvious fashion, so that working
modulo a polynomial P ∈ K[X] is equivalent to working in K[X]/(P ). In particular, using the
Euclidean division we see that the elements of K[X]/(P ) (i.e. the residue classes modulo P ) are in
one-to-one correspondence with the set of polynomials of K[X] of degree strictly smaller than degP .

Property 2.2.20. • Chinese remainder theorem: let P1 and P2 two coprime polynomials in K[X],

then for any polynomials Q1, Q2, the equations

{
P = Q1 mod P1

P = Q2 mod P2

have a solution, unique

modulo P1P2.

• Modular inverse: a polynomial Q ∈ K[X] is invertible modulo P (i.e. there exists R s.t. QR =
1 mod P ) iff Q and P are coprime.

Exercise 18.

1. Find a polynomial P in Z/3Z[X] such that

{
P = X2 +X mod X3 + 2X2 + 2X + 1

P = 2X + 1 mod X3 +X2 + 2

2. In Z/2Z[X], is X3 +X + 1 invertible modulo X4 +X2 + 1 ? If so, compute its modular inverse.
(Answer: yes, X3 +X2 + 1).

Definition 2.2.21. A polynomial P ∈ K[X1, . . . , Xn] is irreducible if degP > 0 and P is not a
product of two non-invertible polynomials, i.e.

P = P1P2 ⇒ P1 ∈ K∗ or P2 ∈ K∗.

Example. The irreducible polynomials of C[X] (or more generally K[X] where K is algebraically
closed) are exactly the degree one polynomials. In R[X], the irreducible polynomials are the degree
one polynomials and the degree 2 polynomials of negative discriminant.

18
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Theorem 2.2.22 (Unique factorization). Any non-zero polynomial P ∈ K[X] can be written as

P = c Pα1
1 . . . Pαk

k ,

where c = LC(P ) ∈ K∗, αi ∈ N, and the polynomials Pi are monic irreducible. This decomposition is
unique up to permutation and terms with exponent zero.

Remark. This theorem is also true for polynomials in several variables. The gcd and lcm of two
polynomials can be recovered from this factorization as in the integer case.

Exercise 19.

1. List all the irreducible polynomials of Z/2Z[X] of degree up to 4.

2. Factorize X7 + 1 ∈ Z/2Z[X].

Proposition 2.2.23. The following are equivalent:

1. I is a prime ideal of K[X];

2. I is a maximal ideal of K[X];

3. I = (P ) where P ∈ K[X] is irreducible.

Proposition 2.2.24 (Roots). • Let A be a ring and P ∈ A[X]. Then (X − a)|P if and only if
P (a) = 0.

• Let A be a domain. Then a polynomial P ∈ A[X] has at most degP distinct roots.

Proof. For the first statement, we write the Euclidean division of P by X − a (which is possible since
LC(X − a) = 1): P = (X − a)Q+ c, where c ∈ A since deg c < 1. Then P (a) = (a− a)Q(a) + c = c,
so P (a) = 0 iff P = (X − a)Q.
In the case A is a field, the second part follows from the unique factorization of P . To prove the
general case it suffices to work in the field of fractions of A.

Remark. Things can go quite wrong when A is not a domain. For instance in Z/12Z[X], X2 − 1 =
(X + 1)(X − 1) = (X − 5)(X − 7).

2.2.3 Vector spaces

Definition 2.2.25. Let K be a field. Let E be a set endowed with a binary operation + and a scalar
multiplication, i.e. a map K ×E → E, (a, x) 7→ a · x. Then E, together with this two operations, is a
K-vector space if:

1. (E,+) is an abelian group;

2. for all a ∈ K and x, y ∈ E, a · (x+ y) = a · x+ a · y;

3. for all a, b ∈ K and x ∈ E, (a+ b) · x = a · x+ b · x;

4. for all a, b ∈ K and x ∈ E, (ab) · x = a · (b · x);
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5. for all x ∈ E, 1 · x = x.

Example. For n ≥ 1, the set of n-tuples Kn has a natural K-v.s. structure, for the operations
(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) and a · (a1, . . . , an) = (a a1, . . . , a an).

Definition 2.2.26. Let E be a K-vector space. A family {u1, . . . , un} of elements of K is linearly
independent if

∀a1, . . . , an ∈ K, a1u1 + . . . anun = 0 ⇒ a1 = · · · = an = 0.

A family that is not linearly independent is called linearly dependent; equivalently, {u1, . . . , un} is
linearly dependent if there exist a1, . . . , an ∈ K, at least one of which is not zero, such that a1u1 +
. . . anun = 0.

Definition 2.2.27. A K-vector space E is called finite-dimensional if there exists a (finite) family
{u1, . . . , un} of elements of E such that every element of E is a linear combination of the ui, i.e.

∀v ∈ E, ∃ a1, . . . , an ∈ K, v = a1u1 + · · ·+ anun.

Such a family is called a spanning set of E.

Definition 2.2.28. Let E be a finite-dimensional K-vector space. A basis of E is a spanning set
{u1, . . . , un} which is also linearly independent. Equivalently, {u1, . . . , un} is a basis of E if for any
v ∈ E, there exists a unique tuple (a1, . . . , an) ∈ Kn s.t. v = a1u1 + · · ·+ anun.

Theorem 2.2.29. Let E be a finite-dimensional K-vector space. Then E admits a basis. Furthermore,
all bases of E contains the same number of elements, called the dimension of E.
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Chapter 3

Elementary field theory

3.1 Characteristic, prime fields

Lemma 3.1.1. For any ring A, there exists a unique ring morphism f : Z→ A.

Proof. By definition, f(1) = 1A, so for any n ≥ 0, f(n) = f(1+· · ·+1) = f(1)+· · ·+f(1) = 1A+· · ·+1A
(n times) and f(−n) = −f(n).

Definition 3.1.2. The characteristic of a ring A is the integer char(A) ≥ 0 such that ker(f) =
char(A)Z.

In particular, the isomorphism theorem shows that A contains a subring isomorphic to Z/char(A)Z.
If the morphism f is injective then char(A) = 0 and A contains a copy of Z as a subring.

Proposition 3.1.3. The characteristic of a field (or of a domain) is either 0 or a prime number p.
Every field K contains a subfield, called its prime field, either isomorphic to Q if char(K) = 0 or
isomorphic to Z/char(K)Z otherwise.

Proof. If the characteristic of a ring A is equal to a composite number n = n1n2, then f(n1) · f(n2) =
f(n1n2) = f(n) = 0 but f(n1) 6= 0 and f(n2) 6= 0, so that A is not a domain. For the second part,
the positive characteristic case has already been discussed. If char(K) = 0 then K contains a subring
isomorphic to Z, but it must also contains the inverses of all the elements of this subring and finally
all fractions of Q.

Example. The characteristic of the fields Q, R, C, R(X) is zero. Examples of characteristic p fields
are Z/pZ and Z/pZ(X) (the field of rational fractions with coefficients in Z/pZ).

3.2 Field extension

Lemma 3.2.1. Let K,L be two fields and f : K → L a ring morphism. Then f is injective.

Proof. We know that ker f = {x ∈ K : f(x) = 0L} is an ideal of K. But K is a field, so its only ideals
are the trivial ones {0} and K. Since f(1K) = 1L, ker f is strictly smaller than K and so is equal to
{0}: f is injective.
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Definition 3.2.2. Let K be a subfield of a field L. Then L is called an extension of K, which is
denoted by L/K.
If K1 and K2 are two fields and there exists a ring morphism K1 → K2, then we can identify K1

with its image in K2 and consider the extension K2/f(K1); when the context is clear this will also be
simply denoted by K2/K1 and we will also say that K2 is an extension of K1.

Proposition 3.2.3. Let L/K be a field extension. Then L has a natural K-vector space structure.
The dimension of L as a K-vector space is denoted [L : K] and is called the degree of this extension.

Indeed, the scalar multiplication of l ∈ L by k ∈ K ⊂ L is just the field product k · l in L.

Corollary 3.2.4. Every finite field has a cardinality of the form pn where p is prime and n ∈ N.

Proof. Let K be a field whose cardinality is finite. It cannot contain a subfield isomorphic to Q, which
is infinite, so its characteristic is a prime number p and its prime field K0 is isomorphic to Z/pZ.
Obviously K is an extension of K0. Let n be the degree of the extension K/K0; n is finite since
otherwise K would be infinite. So K is a dimension n vector space over K0 ' Z/pZ; in particular its
cardinality is pn.

We will see later that in fact, for any p and n, there exists up to isomorphism a unique field with pn

elements.

Theorem 3.2.5 (Multiplicative formula for degrees). Let M/L and L/K two field extensions, then
M/K is an extension field and

[M : K] = [M : L] · [L : K].

Proof. Check that if {e1, . . . , en} is a basis of M over L and {f1, . . . , fm} is a basis of L aver K then
{eifj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of M over K.

Definition 3.2.6. Let L/K be an extension and A ⊂ L. We define K(A) (resp. K[A]) as the
smallest subfield (resp. subring) of L containing K and A; the field K(A) is of course an extension of
K. If A is a finite set {a1, . . . , an} then K(A) (resp. K[A]) is more usually denoted by K(a1, . . . , an)
(resp. K[a1, . . . , an]).

Remark. Let L/K be a field extension and a ∈ L. Then

K[a] = {P (a) : P ∈ K[X]} and K(a) = {P (a)/Q(a) : P,Q ∈ K[X], Q(a) 6= 0}.

Definition 3.2.7. Let L/K be a field extension and a ∈ L. Let φ : K[X] → L the map that sends a
polynomial P to P (a); it is a ring morphism.

• If φ is injective (i.e. kerφ = {0}) then a is called transcendental over K.

• If φ is not injective then a is called algebraic over K. The minimal polynomial of the (principal)
ideal kerφ is called the minimal polynomial of a over K; by definition, it is the smallest degree
monic polynomial Pm ∈ K[X] such that Pm(a) = 0.

Example. The real numbers π and e are transcendental over Q. For any field K, the element X
of K(X) is transcendental over K. The real numbers

√
3, i, 3
√

2 are algebraic over Q: their minimal
polynomials are respectively X2 − 3, X2 + 1 and X3 − 2.
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Proposition 3.2.8. Let a be a transcendental element over K. Then K[a] ' K[X] and K(a) ' K(X);
in particular, K[a] 6= K(a).

Theorem 3.2.9. Let L/K be a field extension and a ∈ L. The following are equivalent:

1. a is algebraic over K;

2. K[a] = K(a);

3. [K(a) : K] <∞.

Proof. 3 ⇒ 1 and 2 ⇒ 1: we have seen that if a is not algebraic over K then K[a] 6= K(a) and
K(a) ' K(X), which is infinite-dimensional as a K-vector space.
1 ⇒ 2 and 1 ⇒ 3: let Pm be the minimal polynomial of a over K. Then Pm is irreducible; indeed, if
Pm = P1P2 where P1 and P2 are non-constant polynomials, then Pm(a) = 0 = P1(a)P2(a), so either
P1(a) = 0 or P2(a) = 0, which contradicts the minimality of Pm. Now the isomorphism theorem shows
that K[a] ' K[X]/(Pm). Since Pm is irreducible the ideal (Pm) is maximal, so K[X]/(Pm) ' K[a] is a
field, and thus K[a] is equal to K(a). In particular, every element of K(a) is of the form P (a) for some
P ∈ K[X]. But the Euclidean division of P by Pm shows that P (a) = Q(a)Pm(a) + R(a) = R(a), so

in fact every element of K(a) is of the form R(a) =
∑degR

i=1 cia
i for some R ∈ K[X] of degree strictly

smaller than degPm. This implies that {1, a, a2, . . . , adegPm−1} is a spanning set of the K-vector space
K(a), which is thus finite-dimensional.

Remark. It is actually not difficult to show that if a is algebraic over K, then degPm = [K(a) : K]
and {1, a, . . . , adegPm−1} is a K-basis of K(a). If n = [K(a) : K] we say that a is algebraic of degree
n.

Exercise 20. Let a be an algebraic element of minimal polynomial Pm ∈ K[X] and P an element of
K[X] such that P (a) ∈ K(a) is different from 0. How can one compute a polynomial Q ∈ K[X] such
that Q(a) = (P (a))−1 ?

Definition 3.2.10. An extension L/K is called finite if [L : K] <∞.
An extension L/K is called algebraic if every element of L is algebraic over K.

A finite extension cannot contain transcendental elements and so is algebraic. The converse is not true:
an algebraic extension of K may not be finite (if it is generated by an infinite number of elements).

Exercise 21 . Show that if L/K is finite then there exist elements a1, . . . , an ∈ K such that L =
K(a1, . . . , an).

Proposition 3.2.11. Let K be a field. The following are equivalent:

1. every non-constant polynomial P ∈ K[X] admits a root in K;

2. every non-constant polynomial P ∈ K[X] is a product of degree 1 polynomials;

3. the irreducible polynomials of K[X] are the X − a, a ∈ K;

4. if L/K is an algebraic extension then L = K.

A field K is called algebraically closed if it satisfies these properties.

23



CHAPTER 3. ELEMENTARY FIELD THEORY V.Vitse

Exercise 22. Show the equivalence of the four points above.

Example. The field C is algebraically closed (fundamental theorem of algebra). For any prime p, the
field Z/pZ is not algebraically closed: the polynomial

∏p−1
a=0(X − a) + 1 has no roots.

Theorem 3.2.12. Let K be a field. Then there exists an algebraically closed field K̄ containing K
and such that the extension K̄/K is algebraic. Such a field K̄ is called an algebraic closure of K.

Example. C is an algebraic closure of R. It is however not an algebraic closure of Q since the extension
C/Q is not algebraic (the algebraic closure of Q is strictly contained in C).

Definition 3.2.13. Let L/K a field extension and a1, . . . , an ∈ L. The family {a1, . . . , an} is called
algebraically independent (over K) if there is no non-trivial polynomial relation over K between its
elements, i.e.

∀P ∈ K[X1, . . . , Xn], P (a1, . . . , an) = 0 ⇒ P = 0.

The transcendence degree of the extension L/K is the largest cardinality of an algebraically indepen-
dent family in L.

Example. • An element a ∈ L is transcendental over K iff the family {a} is algebraically inde-
pendent. The transcendence degree of an extension is zero iff the extension is algebraic.

• It is not known if the family {π, e} is algebraically independent over Q. It is however possible
to show that the transcendence degree of R/Q is infinite (otherwise R would be countable).

• The family {X1, . . . , Xn} in K(X1, . . . , Xn) is algebraically independent over K, and the tran-
scendence degree of this extension is n.

Property 3.2.14. The transcendence degree of an extension L/K is n if and only if there exists
a subfield M , K ⊂ M ⊂ L, such that the extension L/M is algebraic and M is isomorphic to
K(X1, . . . , Xn).

Definition 3.2.15. An automorphism of a field K is a bijective ring morphism K → K. If L/K
is an extension, then a map f : L → L is K-automorphism of L if it is an automorphism of L and
f(k) = k for all k ∈ K.
If L/K and M/K are two extensions, a ring morphism f : L→M is called a K-morphism if it fixes
every element of K, i.e. f(k) = k for all k ∈ K.

Exercise 23.

1. Show that the only R-automorphisms of C are the identity and the complex conjugation. (There
exist however many more automorphisms of C.)

2. Let K be a field and K0 its prime field. Show that every automorphism of K is a K0-
automorphism.

3. Let f be an automorphism of R, show that f is the identity (hint: show that f is strictly
increasing).

Definition 3.2.16. Let L be a field and P =
∑d

i=0 ciX
i a polynomial in L[X]. Let σ be an automor-

phism of L. Then the image of P by σ is the polynomial

P σ =
d∑
i=0

σ(ci)X
i ∈ L[X].

In particular, for any a ∈ L one has σ(P (a)) = P σ(σ(a)).

24



UJF - Master SCCI 3.3 Rupture field and splitting field

Definition 3.2.17. The Galois group of an extension L/K is the set Gal(L/K) of K-automorphisms
of L; it is a group for the composition law. The absolute Galois group of a field K is the Galois group
of the extension K̄/K where K̄ is the algebraic closure of K.

Remark. Sometimes the term “Galois group” is restricted to a specific kind of extensions (Galois
extensions) and the more general term “K-automorphism group”, denoted AutK(L), is used. The aim
of Galois theory is to relate the subgroups of the Galois group with the sub-extensions of L/K, but
this will not be discussed in these lectures.

Theorem 3.2.18. Let L/K be a finite field extension, then |Gal(L/K)| ≤ [L : K].

Proof. We will only show this for extensions generated by a unique element, i.e. for L = K(a) for
some a ∈ L. Let Pm be the minimal polynomial of a and n = [K(a) : K] its degree; we know that
every element x ∈ K(a) can be written as x =

∑n−1
i=0 cia

i where c0, . . . , cn−1 are in K. Let σ be
a K-automorphism of K(a). Then σ(x) = σ(

∑n−1
i=0 cia

i) =
∑n−1

i=0 σ(ci)σ(a)i =
∑n−1

i=0 ciσ(a)i. This
shows that a K-automorphism of K(a) is completely determined by the image of a, namely, if σ and
τ are two K-automorphisms such that σ(a) = τ(a) then σ = τ . But the value of σ(a) cannot be
arbitrary. Indeed, since Pm(a) = 0, one must have σ(Pm(a)) = P σm(σ(a)) = σ(0) = 0. But P σm = Pm
because Pm has coefficients in K, so Pm(σ(a)) must be zero. Since Pm has at most n distinct roots,
this implies that there are at most n distinct K-automorphisms of K(a).

Definition 3.2.19. Let K be a field and S a set of automorphisms of K. Then the fixed field of S is
the set

KS = {k ∈ K : σ(k) = k for all σ ∈ S}.

Remark. It is immediate to show that KS is indeed a field. It is also clear that if G is the group of
automorphisms generated by S then KS = KG.

3.3 Rupture field and splitting field

Definition 3.3.1. Let P =
∑d

i=0 aiX
i be a polynomial of K[X]. Its (formal) derivative is the poly-

nomial P ′ =
∑d

i=0(i.ai)X
i−1, where i.ai is a shorthand for ai + · · ·+ ai (i times).

Property 3.3.2. The formal derivative satisfies the usual derivative properties: for all P,Q ∈ K[X]
and a ∈ K, (P +Q)′ = P ′ +Q′, (aP )′ = a(P ′), and (PQ)′ = P ′Q+Q′P .

Exercise 24. Determine all the polynomials whose derivatives is zero.

Proposition 3.3.3. Let K be a field and K̄ its algebraic closure. Let P be a non-zero polynomial in
K[X] and α ∈ K̄ a root of P . Then α is a multiple root of P if and only if P ′(α) = 0. In particular,
P has no multiple root in K̄ if and only if gcd(P, P ′) = 1.

Definition 3.3.4. Let P be a polynomial in K[X] and L/K a field extension. The field L is called
a rupture field of P if there exists an element α ∈ L such that P (α) = 0 and L = K(α). The field
L is called a splitting field of P if there exist α1, . . . , αdegP ∈ L such that P = c

∏
(X − αi) and

L = K(α1, . . . , αdegP )

In other words, a rupture field for P is obtained by adjoining to the base field a root of P , while a
splitting field is obtained by adjoining all the roots of P . Note that rupture fields are usually defined
only for irreducible polynomials since otherwise there is an ambiguity on the irreducible factor whose
root is adjoined.
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Theorem 3.3.5. Let P ∈ K[X] be an irreducible polynomial. There exists a rupture field L for P .
Furthermore, if L and L′ are two rupture fields for P then there exists a K-isomorphism L′ → L,
i.e. the rupture field is unique up to isomorphism.

Proof. Existence: if d is the degree of P we can write P as
∑d

i=0 ciX
i. We start by considering the

polynomial P (T ) =
∑d

i=0 ciT
i ∈ K[T ] and the quotient ring L = K[T ]/(P (T )). Since P is irreducible,

the ideal (P (T )) is maximal so L is a field. Furthermore L contains K as the residue classes of the
constant polynomials, thus it is an extension of K. Let t be the residue class of T , i.e. its equivalence
class in the quotient; it is clear that L = K(t). We claim that t is a root of P ∈ K[X] ⊂ L[X] (note
that elements of the later ring are polynomials whose coefficients are themselves residue classes of
polynomials). Indeed, since t is the residue class of T , P (t) =

∑d
i=0 cit

i is the residue class of P (T ),
which is exactly the zero element of L.
Uniqueness: we will show that any rupture field L of P is isomorphic to K[T ]/(P (T )). Let α ∈ L be
a root of P such that L = K(α). Since P (α) = 0, P is a multiple of the minimal polynomial Pm of α,
and the irreducibility of P implies that P = Pm (possibly up to multiplication by a constant in K∗ if
P is not monic). Now we have already seen in the proof of Theorem 3.2.9 that K(α) is isomorphic to
K[X]/(Pm) ' K[T ]/(P (T )).

Remark. • The rupture field of an irreducible polynomial may or may not be also its splitting
field. For instance, the field Q( 3

√
2) is a rupture field for P = X3 − 2 ∈ Q[X], but it does not

contain the two other roots j 3
√

2 and j2 3
√

2, and P only factorizes as (X− 3
√

2)(X2+ 3
√

2X+( 3
√

2)2)
over Q( 3

√
2). On the other hand, the field Q(eiπ/4) is both a rupture field and a splitting field of

the polynomial X4 + 1 ∈ Q[X].

• The isomorphism between two rupture fields is not unique in general. For instance, as rup-
ture fields of X2 + 1 over R, R[T ]/(T 2 + 1) and C are isomorphic but there are two possible
isomorphisms, depending whether the class of T is sent to i or −i.

Theorem 3.3.6. Let P ∈ K[X] a polynomial. There exists a splitting field L for P . Furthermore, if
L and L′ are two splitting fields for P then there exists a K-isomorphism L′ → L, i.e. the splitting
field is unique up to isomorphism.

Proof. The existence of a splitting field follows from the existence of rupture fields. The idea is to
start with a irreducible factor (of degree > 1) of P and consider its rupture field L1. If P splits over
L1 then L = L1; otherwise we choose an irreducible factor in the decomposition of P over L1 and
consider its rupture field L2. We go on like that, enlarging the field K until P becomes a product
of degree 1 factors. Likewise, the uniqueness of the splitting field follows from the uniqueness (up to
isomorphism) of rupture fields.

Exercise 25 . Let L be the splitting field of a polynomial P ∈ K[X]. Show that [L : K] divides
(degP )!.

3.4 Finite fields

Proposition 3.4.1. Let p be a prime number, K a characteristic p field and K0 ' Z/pZ its prime
field. The map Φp : K → K, x 7→ xp is a morphism, called the Frobenius morphism, and its fixed
field KΦp is exactly K0.
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Proof. In order to show that the Frobenius map is a morphism we just have to check that (x+ y)p =
xp + yp for all x, y ∈ K. This results from the binomial formula (x+ y)p =

∑p
i=0

(
p
i

)
xiyp−i and from

the following easy lemma:

Lemma 3.4.2. Let p be a prime number and k an integer such that 1 ≤ k ≤ p − 1. Then p divides(
p
k

)
.

Now Φp(x) = x iff x is a root of Xp − X. But we already know that xp = x for all elements of
K0 ' Z/pZ (this is Fermat’s little theorem, see exercice 14). Thus the p roots of Xp −X are exactly
the elements of K0.

Remark. As a morphism between fields, the Frobenius morphism is always injective. In particular
if K is a finite field then Φp is a bijective map and is thus called the Frobenius automorphism. Note
however that Φp is not always surjective, as is the case for Z/pZ(X).

Theorem 3.4.3 (Existence and uniqueness of finite fields). Let p be a prime number and q = pn,
n ∈ N∗. Up to isomorphism, there exists a unique field with q elements, denoted by Fq or GF (q)
(where GF stands for Galois field).

Proof. First of all, it is clear that every field of cardinality p is isomorphic to Z/pZ = GF (p) and that
the isomorphism is unique (because it is completely determined by the fact that 1 is mapped to 1).
Existence: let L be the splitting field of the polynomial Pq = Xq−X overGF (p). Since (Xq−X)′ = −1,
Pq has no multiple roots and thus exactly q distinct roots in L. Let K = {x ∈ L : x is a root of Pq} =
{x ∈ L : xq = x}. But the map Φq : x 7→ xq is just the Frobenius automorphism iterated n times:
Φq = (Φp)

n. So Φq is an automorphism of L and its fixed field is LΦq = K. This shows that K is
actually a field, containing exactly q elements which are the q roots of Xq − X (so K is in fact the
splitting field of Xq −X, i.e. K = L).
Uniqueness: let K be a field with q elements. Then K∗ is a multiplicative group of order q − 1, and
in particular xq−1 = 1 for all x ∈ K∗ (see Property 2.1.12). In other words xq = x for all x ∈ K∗, and
in fact for all x ∈ K. The polynomial Xq −X ∈ GF (p)[X] is thus split over K, and obviously K is
a splitting field for this polynomial. Uniqueness follows from the uniqueness of the splitting field of
Xq −X up to isomorphism.

We have already seen the converse in Corollary 3.2.4, namely that the cardinality of a finite field is
necessarily of the form pn. In the following of these lectures q will always denote a prime power.

Theorem 3.4.4. If K is a field, any finite subgroup of K∗ is cyclic. In particular, the multiplicative
group GF (q)∗ is cyclic.

Proof. Let G be a finite subgroup of K∗ and m its order. The structure theorem for finitely gen-
erated abelian group (Theorem 2.1.14) shows that there exist n1, . . . , nk such that n1|n2| . . . |nk,
m = n1n2 . . . nk and G ' Z/n1Z × Z/n2Z × · · · × Z/nkZ (beware that the group law is the mul-
tiplication on the left hand side and the addition on the right hand side). In particular, the order of
every element of G divides nk, i.e. xnk = 1 for all x ∈ G. But the polynomial Xnk − 1 has at most
nk roots in K whereas G has m = n1 . . . nk elements. This implies that nk = m and k = 1, and so
G ' Z/mZ.
Note that it is possible to prove this theorem without relying on the structure theorem of abelian
groups; the key observation is still that because Xd − 1 has at most d roots, there are at most d
elements in G whose order divides d.
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Corollary 3.4.5. For any p prime and n ≥ 1, there exists α ∈ GF (pn) such that GF (pn) =
GF (p)(α). In particular, there exist irreducible polynomials of degree n in GF (p)[X] for any n. Fur-
thermore, for any irreducible polynomial P ∈ GF (p)[X] of degree n, the field GF (pn) is isomorphic
to GF (p)[X]/(P ).

Proof. Let α be a generator of GF (pn)∗, then it is clear that GF (p)(α) = GF (pn); its minimal
polynomial is irreducible and has degree [GF (pn) : GF (p)] = n. If P ∈ GF (p)[X] is an arbitrary
irreducible polynomial of degree n, then GF (p)[X]/(P ) is a field and a degree n extension of GF (p),
so it is actually GF (pn).

Remark. This corollary has several important consequences:

• In order to compute in GF (q) it is always possible to consider residue classes of polynomials
of GF (p)[X]. Thus working in GF (q) is no more difficult that working modulo an irreducible
polynomial and allows for efficient implementations.

• Any degree n irreducible polynomial can be used to define GF (pn). Of course, some of them
may be preferable for efficiency reasons.

Note also that in order to have GF (q) = GF (p)(α) it is not necessary that α is a generator of GF (q)∗.

Exercise 26.

1. Describe the fields GF (4), GF (8) and GF (9). Give the multiplicative order and the minimal
polynomial (over the prime field) of all the elements.

2. Let P ∈ GF (p)[X] be a degree n irreducible polynomial so that GF (pn) = GF (p)[X]/(P ). In
particular, any element of GF (pn) is the equivalence class of a polynomial of degree < n. Give
two different methods to compute the inverse of an element in this representation. Which one
is faster ?

Remark. Working in GF (pn) is not the same as working modulo pn! Z/pnZ is not equal to GF (pn)
when n > 1.

Proposition 3.4.6. The group Aut(GF (pn)) of automorphisms of GF (pn) is cyclic of order n and
is generated by the Frobenius automorphism Φp.

Proof. We have seen that any automorphism of GF (pn) fixes GF (p) (see Exercise 23), so that
Aut(GF (pn)) = Gal(GF (pn)/GF (p)), and Theorem 3.2.18 shows that the cardinality of this group is
bounded by n. Thus it is sufficient to prove that Φpk = (Φp)

k is different from the identity for any

1 ≤ k < n. So suppose that Φpk is the identity map. Then Φpk(x) = xp
k

= x for all x ∈ GF (pn),

i.e. every element of GF (pn) is a root of Xpk − X. But this polynomial has at most pk < pn roots,
which is a contradiction.

Proposition 3.4.7. Let p be a prime and m,n two positive integers. Then GF (pn) contains a subfield
isomorphic to GF (pm) if and only if m|n. Furthermore if m|n then GF (pn) has only one subfield
isomorphic to GF (pm), which is the fixed field of Φpm, and Gal(GF (pn)/GF (pm)) = 〈Φpm〉 ' Z/ nmZ.
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Proof. If GF (pm) is a subfield of GF (pn) then GF (pn) is a GF (pm)-vector space of dimension d =
[GF (pn) : GF (pm)], so pn = (pm)d = pmd and thus n = md.
Reciprocally, suppose that n = md, and consider the field K = GF (pn)Φpm . Its elements are exactly
the roots in GF (pn) of Xpm −X; in other words K consists of 0 and the roots of Xpm−1 − 1, i.e. the
elements of GF (pn)∗ whose order divides pm − 1. Now it is easy to check that pm − 1 is a divisor of
pn− 1 = pmd− 1, which is the cardinality of GF (pn)∗. Since GF (pn)∗ is a cyclic group, it has exactly
one subgroup of cardinality pm − 1, whose elements are precisely those of order dividing pm − 1 (see
Proposition 2.1.13). This shows that the finite field K has indeed pm elements, and also that it is the
only such subfield of GF (pn).
Finally, the proof that Gal(GF (pn)/GF (pm)) = 〈Φpm〉 ' Z/dZ is similar to the proof of Proposition
3.4.6.

Property 3.4.8. Let q = pn be a prime power and m a positive integer. There exists α ∈ GF (qm)
which generates the extension GF (qm)/GF (q), i.e. GF (qm) = GF (q)(α). In particular, there exist
irreducible polynomials of degree m in GF (q)[X] for any m.

Proof. As in the proof of Corollary 3.4.5, one can choose for α any generator of the cyclic group
GF (qm), and its minimal polynomial over GF (q) is irreducible.

Remark. This means that there are (at least) two different ways to represent elements in GF (pmn).
One can either work with polynomials in GF (p)[X] modulo a degree mn irreducible polynomial, or
with polynomials in GF (pn)[X] modulo a degree m irreducible polynomial.

Proposition 3.4.9. Let q be a prime power and P ∈ GF (q)[X] a degree d irreducible polynomial.
Then

1. P has no multiple roots (in an algebraic closure);

2. GF (qd) is both a rupture field and a splitting field for P .

Proof. Since P is irreducible then P and P ′ are coprime (and so P has no multiple roots) unless P ′ = 0.
If P ′ = 0 then P is of the form

∑
k akX

kp, see Exercise 24. But the Frobenius map x 7→ xp is bijective
on GF (q), so for any k there exists bk such that ak = bpk. It follows that P =

∑
k b

p
kX

kp = (
∑

k bkX
k)p,

which contradicts the fact that P is irreducible.
We know that a rupture field for P is GF (q)[T ]/(P (T )) ' GF (qd). Let t be the class of T ; it is a
root of P and generates the extension, i.e. GF (qd) = GF (q)(t). Let σ = Φq be the q-th Frobenius

automorphism. Then for all i with 0 ≤ i < d, σi(P (t)) = 0 = P σ
i
(σi(t)) = P (σi(t)) since P has

coefficients in GF (q). So t, σ(t), σ2(t), . . . , σd−1(t) are roots of P , and they are all distinct (because if
σi(t) = σj(t) then σi = σj on GF (qd) = GF (q)(t) and we know that σ has order d). So P has all its
roots in GF (qd), which is thus the splitting field of P .

Exercise 27. Let P ∈ GF (q)[X] be a polynomial of degree 5. Find all the possible extension degrees
of its splitting field (compare with Exercise 25).

Exercise 28. Give the factorization of Xq −X over GF (p), where q = pn.

Exercise 29. Let p be a prime number and q be an odd prime power.

1. Show that a ∈ GF (q)∗ is a square (i.e. there exists x ∈ GF (q)∗ such that a = x2) iff a(q−1)/2 = 1.
Can the algorithm that computes square roots modulo p be applied to GF (q)?
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2. Show that the following algorithm computes square roots modulo p:

Algorithm 3: Computation of square roots in Z/pZ∗

Input : a a quadratic residue modulo p
Output: x such that x2 = a mod p
Select b at random until (b2 − 4a)(p−1)/2 = −1 mod p
f ← X2 + bX + a

Compute r = X(p+1)/2 mod f with a square-and-multiply algorithm
return r

What is it complexity ? Can it be applied to GF (q)?

Exercise 30.

1. Show that for any a ∈ GF (2m), the equation x2 = a has a unique solution in GF (2m).

2. Let a ∈ GF (2m). Show that the equation x2 +x+a = 0 has a solution in GF (2m) iff
∑m−1

i=0 a2i =

0. (Hint: show that the maps f : x 7→ x2 + x and g : x 7→
∑m−1

i=0 x2i are GF (2)-linear and that
Im f = ker g).

Exercise 31. Let p be a prime. For n and m two integers such that n|m, we will consider GF (pn)
as a subfield of GF (pm).

• Show that K =
⋃
kGF (pk!) is a field (Note that the sequence GF (pk!) is increasing).

• Show that the extension K/GF (p) is algebraic.

• Show that K is algebraically closed.

• Deduce from the previous questions that K is an algebraic closure of GF (p), and in fact of
GF (pn) for all positive integers n.
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Chapter 4

Elliptic curves

In all this chapter, unless otherwise mentioned all fields considered are either characteristic zero fields,
finite fields or algebraically closed fields. We will use without proof the following fact:

Theorem 4.0.10. K[X1, . . . , Xn] is noetherian, i.e. its ideals are finitely generated: for all ideal
I ⊂ K[X1, . . . , Xn] there exist f1, . . . , fs ∈ K[X1, . . . , Xn] such that I = (f1, . . . , fs).

4.1 Basic algebraic geometry

Algebraic geometry (at its basic level) studies the properties of sets defined by polynomial equations.

Definition 4.1.1. A subset V ⊂ Kn is an affine algebraic set if there exists an ideal I ⊂ K[X1, . . . , Xn]
such that

V = {P = (x1, . . . , xn) ∈ Kn : ∀f ∈ I, f(x1, . . . , xn) = 0}.

This is denoted by V = V(I). If f1, . . . , fs ∈ K[X1, . . . , Xn] are a set of generators of I, i.e. I =
(f1, . . . , fs), then V is the set of solutions of the polynomial system

f1(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0

Example. The unit circle in R2 is an algebraic set; it is V(X2+Y 2−1). The algebraic set V(XZ, Y Z) ⊂

K3 is the union of the plane Z = 0 with the line of equation

{
X = 0

Y = 0

Exercise 32. What are the algebraic sets of K = K1 ?

Note that in general different ideals can define the same algebraic set, e.g. V(X) = V(X2), or in R2,
V(1) = V(X2 + Y 2 + 1) = ∅. But there is always a largest ideal defining a given algebraic set:

Proposition 4.1.2. Let V be an affine algebraic set. The set

I(V ) = {f ∈ K[X1, . . . , Xn] : ∀P = (x1, . . . , xn) ∈ V, f(x1, . . . , xn) = 0}

is an ideal of K[X1, . . . , Xn], and V(I(V )) = V .
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Definition 4.1.3. An (affine) algebraic set V is irreducible if it is not a non-trivial union of two
algebraic sets, i.e. for all algebraic sets V1 and V2 such that V = V1 ∪ V2, either V1 = V or V2 = V .
An affine variety is an irreducible affine algebraic set.

Example. The algebraic set V(XZ, Y Z) ∈ K3 of the previous examples is clearly not irreducible. A
point (x1, . . . , xn) is an algebraic set (it is V(X1 − x1, . . . , Xn − xn)) and is irreducible.

Proposition 4.1.4. An affine algebraic set V is irreducible if and only if I(V ) is a prime ideal.

Definition 4.1.5. Let V be an affine algebraic set. Its coordinate ring is the quotient ring

K[V ] = K[X1, . . . , Xn]/I(V ).

If V is a variety, then K[V ] is a domain and its fraction ring K(V ) = Frac(K[V ]) is called the
function field of V .

Remark. The idea behind this definition is that we want to identify two polynomials if they are equal
on V , i.e. if they differ by an element of I(V ). So the coordinate ring is in some sense the ring of
polynomial functions on V .

Definition 4.1.6. Let f ∈ K[V ] and P ∈ V , and F ∈ K[X1, . . . , Xn] an element in the class of f .
The value of f at P is f(P ) = F (P ); this is well-defined.
Let φ ∈ K(V ) and P ∈ V . If there exist f, g ∈ K[V ] such that φ = f/g and g(P ) 6= 0, then φ
is defined at P and its value is φ(P ) = f(P )/g(P ). If there exist f, g ∈ K[V ] such that φ = f/g
and f(P ) 6= 0, g(P ) = 0 then φ has a pole at P . If for all f, g ∈ K[V ] such that φ = f/g, one has
f(P ) = g(P ) = 0 then φ is undetermined at P .

Exercise 33. Let C = V(Y 2−X3−X2), ψ = Y/(X + 1) ∈ K(V ), and φ = X/Y ∈ K(V ). What can
be said of ψ, φ, and φ2 at P1 = (0, 0) and P2 = (−1, 0) ?

Definition 4.1.7. Let K be a field and K̄ its algebraic closure. An ideal I ⊂ K̄[X1, . . . , Xn] is defined
over K if there exist f1, . . . , fs ∈ K[X1, . . . , Xn] such that I = (f1, . . . , fs). If I is defined over K, we
set IK = I ∩K[X1, . . . , Xn]; it is an ideal of K[X1, . . . , Xn], generated by f1, . . . , fs.
An affine algebraic set V ⊂ K̄n is defined over K if I(V ) is defined over K; this is denoted by V|K .
In that case, the set V (K) = V ∩Kn is called the set of K-rational points of V .

Remark. • If f1, . . . , fs ∈ K[X1, . . . , Xn] generates the ideal I defined over K, then V (K) is
exactly the set of solutions in Kn of the system f1(x1, . . . , xn) = · · · = fs(x1, . . . , fs) = 0.

• If V is defined over K then it is also defined over any larger field L with K ⊂ L ⊂ K̄. In
particular it makes sense to speak of the set V (L) of L-rational points of V .

Example. Let n ≥ 3 an integer and V = V(Xn + Y n − 1) ⊂ Q̄2. It is an affine algebraic set defined
over Q, and Fermat-Wiles theorem states that the only Q-rational points of V are {(1, 0), (0, 1)} or
{(±1, 0), (0,±1)}.

4.2 Projective space

Introduction: the projective line. Consider in the plane the line D of equation x = 1. Let ∆ be
a line going through (0, 0). The ordinate of the intersection point of D and ∆ is exactly the slope of
∆, so that the point of D are in one-to-one correspondence with the lines passing through the origin,
except for the vertical one. However as ∆ comes close to being vertical, the intersection point of D
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and ∆ “goes to infinity”. If we add a “point at infinity” to D and call D̄ the result, we obtain a
complete one-to-one correspondence between the points of D̄ and the lines passing through the origin.
The “projective line” D̄ can thus also be defined as the set of lines of the plane passing through (0, 0).
With this definition, the “point at infinity” becomes no longer singular. In fact, we could have started
this construction with the line D′ of equation y = 1. Then the vertical line corresponds to the point
(0, 1) ∈ D̄′, and it is now the horizontal that appears to be “at infinity”. This will be made more
formal.

Introduction: the projective plane. We recall that the usual, affine plane P satisfies the following
axioms:

• any two distinct points lie on a unique line

• two lines are either parallel or intersect in exactly one point

• given a line and a point there is a unique line which contains a point and is parallel to the line

This distinction between parallel lines and intersecting lines is somewhat annoying. Furthermore,
anyone who has looked at train tracks knows that parallel lines do appear to intersect “at infinity”.
So we add to the affine plane “points at infinity”: actually we add one point for each line direction
(i.e. equivalence class of parallel lines). The projective plane P̄ so constructed satisfies the following
modified axioms:

• any two distinct points lie on a unique line

• any two distinct lines intersect in a unique point

Note that every line of P̄ is a projective line. Note also that by the first axiom two points at infinity
must belong to a line: this is the “line at infinity”, consisting of all the points we have added to P .
But if we just look at the axioms, we see that the points at infinity play exactly the same role as the
other points.

As for the projective line, the projective plane is in one-to-one correspondence with the set of lines
passing through the origin (0, 0, 0) in the 3-space. We can consider P as the plane of equation z = 1.
Then any line through the origin intersects P in exactly one point, except for those contained in the
plane of equation z = 0. But we know that the set of these lines is a projective line, which is exactly
the line “at infinity” we have added to construct P̄ from P .

Definition 4.2.1. Let K field. The projective n-space over K is the set of lines through the origin,
or one-dimensional linear subspace, of Kn+1. In other words,

Pn(K) = (Kn+1 − {0})/∼

where (x0, . . . , xn) ∼ (λx0, . . . , λxn) for any λ ∈ K∗. The equivalence class of (x0, . . . , xn) is denoted
by [x0 : · · · : xn]; this notation is called homogeneous or projective coordinates.

Definition 4.2.2. For 0 ≤ i ≤ n, the affine chart Ui ⊂ Pn(K) is the set {[x0 : · · · : xn] : xi 6= 0}.
The affine chart Ui is in one-to-one correspondence with the affine n-space via the map [x0 : · · · :
xn] 7→ (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi). Then the set {[x0 : · · · : xn] : xi = 0} is isomorphic to
Pn−1(K) and is the hyperplane at infinity in Ui.

Remark. More generally, if H is a projective hyperplane of Pn(K), then its complement Pn(K) \H
is an affine chart.
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Exercise 34.

1. Construct P2(GF(2)) and list all its lines.

2. Compute the number of points of Pn(GF(q)).

4.3 Projective algebraic set

Definition 4.3.1. A polynomial f ∈ K[X0, . . . , Xn] is called homogeneous of degree d if for all λ ∈ K,
P (λX0, . . . , λXn) = λdP (X0, . . . , Xn). Equivalently, all the monomials of P have total degree d.
An ideal I ⊂ K[X0, . . . , Xn] is homogeneous if it is generated by homogeneous polynomials.

Definition 4.3.2. Let f ∈ K[X1, . . . , Xn] a polynomial of total degree d. Then fh = Xd
0f(X1/X0, . . . , Xn/X0)

is a degree d homogeneous polynomial in K[X0, . . . , Xn], called the homogenization of f (with respect
to X0.
Conversely, if g ∈ K[X0, . . . , Xn] is homogeneous, its deshomogenization (with respect to X0) is
g∗ = g(1, X1, . . . , Xn) ∈ K[X1, . . . , Xn].
Homogenization and deshomogenization are partial inverses : for all f , (fh)∗ = f , but for all homo-
geneous g, (g∗)h is equal to g only up to multiplication by a power of X0.

Definition 4.3.3. Let f ∈ K[X0, . . . , Xn] a homogeneous polynomial and P = [x0 : · · · : xn] ∈ Pn(K).
We say that f vanishes at P if f(x0, . . . , xn) = 0; this is denoted by f(P ) = 0 and is independent of
the choice of projective coordinates for P .
Let f, g ∈ K[X0, . . . , Xn] two homogeneous polynomials of same degree d and P = [x0 : · · · : xn] ∈
Pn(K) such that g does not vanish at P . Then the value of the rational fraction f

g at P is well-defined

and is equal to f
g (P ) = f(x0, . . . , xn)/g(x0, . . . , xn).

Remark. In general, it does not make sense to speak of the value of a polynomial (even homogeneous)
at a point P ∈ Pn(K).

Definition 4.3.4. A subset V ∈ Pn(K) is a projective algebraic set if there exists a homogeneous
ideal I ⊂ K[X0, . . . , Xn] such that

V = {P ∈ Pn(K) : f(P ) = 0 for all homogeneous f ∈ I}.

This is denoted by V = V(I). If f1, . . . , fs ∈ K[X1, . . . , Xn] are a set of homogeneous generators of
I, then V is the set of points P such that f1(P ) = · · · = fs(P ) = 0.
If V is a projective algebraic set, its associated homogeneous ideal is the ideal I(V ) generated by the
set {f ∈ K[X0, . . . , Xn] : f homogeneous, f(P ) = 0 ∀P ∈ V }. If I(V ) is prime then V is called a
projective variety.

Remark. Contrarily to the affine case, I(V ) is generated by (and thus larger than) the set of homo-
geneous polynomials that vanish on V . Also, there is no notion of coordinate ring for a projective
algebraic set.

Definition 4.3.5. Let V be projective variety. The function field of V is defined as

K(V ) = {f/g : f, g ∈ K[X0, . . . , Xn] are homogeneous of same degree and g /∈ I(V )}/ ∼

where f/g ∼ f ′/g′ if fg′ − f ′g ∈ I(V ). As in the affine case, a function φ ∈ K(V ) can be defined,
have a pole or be undetermined at a point P ∈ V ; in the first case its value φ(P ) is well-defined.
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Proposition 4.3.6. Let Kn the affine space, that we identify with the affine chart U0 ⊂ Pn(K). Let
V = (f1, . . . , fs) an affine algebraic set, where f1, . . . , fs ∈ K[X1, . . . , Xn]. Then V̄ = V(fh1 , . . . , f

h
s ) is

the smallest projective algebraic set containing V ⊂ U0 ⊂ Pn(K), and is called the projective closure of
V .
Furthermore, if V is a variety then V̄ is also a variety and K(V ) = K(V̄ ).

Definition 4.3.7. Let V ⊂ Pn(K) and V ′ ⊂ Pm(K) two varieties. A rational map φ : V → V ′ is the
data of (f0, f1, . . . , fm) ∈ K(V )m+1 such that for any P ∈ V where all the fi are defined and do not
all vanish, φ(P ) = [f0(P ) : f1(P ) : · · · : fm(P )] belongs to V ′. Two (m+ 1)-tuples (f0, . . . , fm+1) and
(f ′0, . . . , f

′
m+1) define the same rational map if there exists g ∈ K(V )∗ such that f ′i = gfi for all i.

A rational map φ = (f0, . . . , fm) is defined at a point P ∈ V if there exists g ∈ K(V ) such that the
gfi are all defined and do not vanish at P . A rational map that is defined everywhere is called a
morphism. A morphism φ : V → V ′ is an isomorphism if there exists a morphism ψ : V ′ → V such
that φ ◦ ψ and ψ ◦ φ are the identity map (of V ′ and V respectively).

4.4 Elliptic curves

Definition 4.4.1. A (projective or algebraic) variety V is a curve if its function field K(V ) has
transcendence degree 1 over K

In the following we will mostly deal with plane curves, i.e. curves whose affine part is defined by an
equation of the form f(x, y) = 0, where f ∈ K[x, y] is an irreducible polynomial.

Definition 4.4.2 (Smooth point). Let C a plane curve defined over K by f(x, y) = 0. A point
P = (x0, y0) ∈ C is smooth if the (formal) partial derivatives ∂f

∂x (x0, y0) and ∂f
∂y (x0, y0) do not vanish

simultaneously. The plane curve is called smooth or non-singular if all its points are smooth.
The tangent to C at a smooth point P = (x0, y0) is the line of equation (x − x0)∂f∂x (x0, y0) + (y −
y0)∂f∂y (x0, y0) = 0.

Remark. Note that for a projective plane curve to be smooth, its points “at infinity” must also be
smooth, which has to be checked in an other affine chart.

Definition 4.4.3. An elliptic curve E defined over K is a non-singular projective plane curve whose
equation in an affine chart is of the following form, called Weierstraß equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a2, a3, a4, a6 ∈ K.

More generally, any curve isomorphic to a curve admitting a non-singular Weierstraß equation is also
called elliptic.

Property 4.4.4. An elliptic curve admit a unique point “at infinity”, of projective coordinates [0 :
1 : 0]. This point is smooth and will be denoted by O.

The general Weierstraß equation can be simplified. In characteristic other than 2, with a change of
variable of the form y′ = y + a1x/2 + a3/2 the equation becomes

y′2 = x3 + a′2x
2 + a′4x+ a′6.

If the characteristic is also different from 3, another change x′ = x+ a′2/3 yields the more usual form

y′2 = x3 +Ax+B.

Other simplifications can be done in characteristic 2 (and 3, but we will leave this case aside).
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Proposition 4.4.5. Every elliptic curve admits an equation of the form

y2 = x3 + a4x+ a6 (4.1)

if the characteristic is different from 2 and 3, or

y2 + xy = x3 + a2x
2 + a6 (4.2)

or

y2 + a3y = x3 + a4x+ a6 (4.3)

in characteristic 2.
The equation of the form (4.1) is non-singular iff 4a3

4 + 27a2
6 6= 0, and similarly for the equations of

the form (4.2) and (4.3) iff a6 6= 0 and a3 6= 0 respectively.

Proposition 4.4.6. Let E be an elliptic curve defined over K and L a line. Then E ∩ L consists of
exactly three points in Pn(K̄), counted with multiplicity. If we restrict to K-rational points then the
intersection consists of zero, one or three points.

Remark. By multiplicity, we mean that a point P ∈ E ∩ L counts double if L is the tangent at P ,
and triple if furthermore P is an inflexion point (this happens in particular if P is O and L is the line
at infinity). Note also that every vertical line intersects E at O.

Theorem 4.4.7. Let E be an elliptic curve in Pn(K̄). Then there exists a unique abelian group law
on the set of points of E such that

• the neutral element is O;

• for any line L, the sum of the three points of L ∩ E is O.

If furthermore E is defined over a field K ⊂ K̄, then the set of K-rational points E(K) forms a
subgroup.

Proof. Let P = (x1, y1) a point of E. The vertical line of equation x = x1 also intersects E in
P ′ = (x1,−y1 + a1x + a3) and in O. The two axioms imply that P ′ is necessary the opposite of
P , denoted by −P . Now let P1 = (x1, y1) and P2 = (x2, y2) two points of E such that P2 6= −P1.
According to Proposition 4.4.6, the line passing through P1 and P2 (or the tangent at P1 if P1 = P2)
intersects E in a third point P3 = (x3, y3), which is K-rational if P1 and P2 are also K-rational. The
second axiom implies that P1 + P2 + P3 = O, so the sum P1 + P2 is necessary equal to the point
−P3 = (x3,−y3 + a1x3 + a3). Thus the operation law + on E (and on E(K) is well-defined and is
clearly commutative, the existence of a neutral element and of opposites is clear, and it only remains
to show that this law is associative. This can be computationally checked once the addition formulas
will be given.

Formulas for the addition law:

We have seen that if P = (x0, y0) then −P = (x0,−y0 + a1x + a3). One also has, obviously, that
P +O = P and P + (−P ) = O. So let P1 = (x1, y1) and P2 = (x2, y2) two points of E(K) \ O such
that P2 6= −P1. There are two cases :
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• If P2 6= P1, i.e. x2 6= x1: the line L through P1 and P2 has equation y = λx + µ where
λ = y2−y1

x2−x1 and µ = y1x2−x1y2
x2−x1 . Replacing y by λx + µ in the equation of E, we obtain a degree

3 polynomial equation x3 + (a2 − λ2 − a1λ)x2 + · · · = 0, of which x1 and x2 are already roots.
If P3 = (x3, y3) is the third intersection point of E and L then x3 is the third root of this
polynomial so that x1 + x2 + x3 = λ2 + a1λ+ a2, and y3 = λx3 + µ. The point P1 + P2 is then
−P3 = (x3,−y3 + a1x3 + a3). To sum up, if x1 6= x2 then P ′ = P1 + P2 has coordinates

x′ = λ2 + a1λ+ a2 − x1 − x2, y′ = −λx′ − µ+ a1x
′ + a3, λ =

y2 − y1

x2 − x1
, µ =

y1x2 − x1y2

x2 − x1
.

• If P1 = P2 only the equation of L changes since it is now the tangent at P1; its equation is

y = λx + µ where λ =
3x21+2a2x1+a4−a1y1

2y1+a1x1+a3
and µ = y1 − λx1. Thus the point P ′ = 2P has

coordinates

x′ = λ2+a1λ+a2−2x1, y′ = −λx′−µ+a1x
′+a3, λ =

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
, µ = y1−λx1.

Obviously these expressions are much simpler when using the reduced equations of Proposition 4.4.5

Theorem 4.4.8. Let q = pn be a prime power and E an elliptic curve defined over GF(q). Then
E(GF(q)) is a finite group, and one has the Hasse bound

−2
√
q ≤ |E(GF(q)| − q + 1 ≤ 2

√
q.

As a group,
E(GF(q)) ' Z/n1Z× Z/n2Z

where n1 and n2 are two integers such that n1|n2 and n1|q−1 (note that it is possible to have n1 = 1).
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