Homework: square roots and factorization

For a positive integer n, an integer a is called a *quadratic residue* modulo n if $a \in \mathbb{Z}/n\mathbb{Z}^{\times}$ satisfies $x^2 = a \mod n$ for some integer x. In this case x is called a *square root* of $a \mod n$.

- 1. Compute square roots of 1 and -1 modulo 7 and modulo 13.
- 2. Check that the set $(\mathbb{Z}/n\mathbb{Z}^{\times})^2$ of quadratic residues modulo *n* is a subgroup of $\mathbb{Z}/n\mathbb{Z}^{\times}$.
- 3. Show that for any odd prime p, the number of quadratic residues modulo p is (p-1)/2 and that for any integer $a \in \mathbb{Z}/p\mathbb{Z}^*$, $a^{(p-1)/2} = \pm 1 \mod p$. Deduce that a is a quadratic residue modulo p iff $a^{(p-1)/2} = 1 \mod p$.
- 4. (a) Show that if a is a quadratic residue modulo p^e $(e \in \mathbb{N}^*)$ then $a^{(p-1)/2} = 1 \mod p$.
 - (b) Assume that a is a quadratic residue modulo p^e . Show that a is also a quadratic residue modulo p^{e+1} (hint: try to find x such that $(x_e + p^e x)^2 = a \mod p^{e+1}$, where $x_e^2 = a \mod p^e$).
 - (c) Deduce that a is a quadratic residue modulo p^e iff $a^{(p-1)/2} = 1 \mod p$.
 - (d) Application: compute the square roots of 67 modulo 81.
- 5. Compute the number of quadratic residues modulo an odd integer n.
- 6. Let p a prime number s.t. $p = 3 \mod 4$. Show that $a^{\frac{p+1}{4}}$ is the square root of $a \mod p$. Are the integers 106 and 97 quadratic residues modulo 139? If they are, compute their square roots.
- 7. Let now p be any odd prime, and s and t the two integers such that $p-1 = 2^s t$ and t is odd. For this exercice we will use the fact that $\mathbb{Z}/p\mathbb{Z}^{\times} = \mathbb{Z}/p\mathbb{Z}^*$ is a cyclic group. Let a be a quadratic residue modulo p.
 - (a) Devise a probabilistic algorithm that finds a non-quadratic residue $b \in \mathbb{Z}/p\mathbb{Z}^{\times}$. What is its expected complexity ?
 - (b) Show that a^t belongs to the subgroup of $\mathbb{Z}/p\mathbb{Z}^{\times}$ generated by $c = b^{2t}$. What is the order of this subgroup? If l is an integer such that $a^{-t} = c^l \mod p$, show that $x = b^{tl} a^{(t+1)/2}$ is a square root of a modulo p.
 - (c) Let $l = l_0 + 2l_1 + \dots + 2^{s-2}l_{s-2}$ an integer such that $a^{-t} = c^l \mod p$, where $l_0, \dots, l_{s-2} \in \{0, 1\}$. Suppose that l_0, \dots, l_i are already known for i < s 2. Show that $l_{i+1} = 1$ iff $(a^{-t} c^{-(l_0 + \dots + 2^i l_i)})^{2^{s-i-3}} = -1 \mod p$.
 - (d) Use the previous questions to write down, in pseudo-language, an algorithm that computes square roots modulo *p*. What is its (expected) complexity ?
 - (e) Application: compute the square roots of 41 modulo 113.
- 8. Let n = pq a product of two odd primes.
 - (a) Show that if one knows how to compute square roots modulo p and modulo q, then one knows how to compute square roots modulo n. Application: compute the square roots of 106 modulo 417.
 - (b) Deduce that if one is able to factorize, then one can compute the square roots of any integers modulo n.
- 9. Suppose that you have access to an algorithm \mathcal{A} that computes efficiently a square root modulo an odd integer n (in other words \mathcal{A} has polynomial complexity in the size of n). Find a probabilistic algorithm that gives the factorization of n.
- 10. What can be said about quadratic residue and square roots modulo $2^e, e \in \mathbb{N}^*$?