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1 Homomorphic encryption

Most public key cryptosystems rely on algebraic structures: groups, rings, lattices, polynomial sys-
tems. .. As a consequence they often have a homomorphic property, as in the RSA example.

Example. Let (N,e) be the public key of a RSA cryptosystem, which operates on the ring Z/NZ.
If mi,my € Z/NZ are two plaintexts, the corresponding ciphertexts are ¢y = m§ mod N and
ca = m§ mod N respectively. So ci.ca = m§.m§ = (m1.m2)¢ mod N, i.e. ci.co is the ciphertext
corresponding to the plaintext mi.my: the encryption map is a group morphism from ((Z/NZ)*, x) to
itself.

This is a special case of a property called malleability: an encryption algorithm is malleable if, given
an encryption c of a plaintext m, it is possible for an adversary to generate another ciphertext ¢’ which
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decrypts to f(m) for a known function f, without necessarily knowing or learning m. This is usually
considered as an undesirable property, and malleable cryptosystems usually require extra precautions
such as message padding to avoid e.g. forgery attacks.

Exercise 1. Find the homomorphic property of the ElGamal encryption scheme.

But the homomorphic property could actually be an advantage. A growing trend is to delegate data
storage to remote servers (the “cloud”), and the same is true for computing power. For privacy
reasons, it is sensible to store only encrypted data on remote servers, but then the processing of data
is problematic:

e cither the user has to retrieve the data on his own servers, decrypt it, process it, re-encrypt the
result and upload it to the remote servers, but this prevents the use of remote computing power;

e or the user has to entrust a remote server with his private key, but this threatens his privacy
and security.

Fully homomorphic encryption aims at solving this dilemma, and was in fact proposed by Rivest,
Adleman and Dertouzos back in 1978; but the first secure (though impractical) implementation was
found by C. Gentry in 2009. For the following definition, we consider a subset F of the set of all
functions with fixed number of variables, i.e. a subset of the union for n € N of the spaces of functions
{0,1}" — {0, 1}.

Definition 1.1. A homomorphic encryption scheme with respect to F consists of the following algo-
rithms:
e KeyGen, which takes as input a security parameter \ and oulputs a secret key (in a symmetric

setting) or a pair of public and private keys (in an asymmetric setting);

e Encrypt, which takes as input a (secret or public) key and a plaintext and outputs the corre-
sponding ciphertext;

e Decrypt, which takes as input a (secret or private) key and a ciphertext and outputs the corre-
sponding plaintext;

e Evaluate, which takes as input a function of F and a number of ciphertexts (and possibly a
public key) and outputs a ciphertext, such that

Decrypt(sk,Evaluate(f,ci,...,c,,pk)) = f(Decrypt(sk,ci),...,Decrypt(sk,cy))

where sk and pk are a pair of private/public keys.

Such a scheme has the compact ciphertexts property if the outputs of Evaluate have the same length
as the outputs of Encrypt and are as hard to decrypt. It is called efficient if the four algorithms have
polynomial complexity in A; for Evaluate, its complexity must also be polynomial in terms of the
“size” of the function f (see below).

An encryption scheme is fully homomorphic (Fully Homomorphic Encryption scheme, FHE) if it has
compact ciphertexts, is efficient and F consists of all functions.

In other words, (fully) homomorphic encryption allows a non-trusted party to operate on encrypted
data without loss of confidentiality. Note that in the context of remote storage and computing, the
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distinction between the symmetric and the asymmetric settings is blurred since it is often the same
entity that encrypts and decrypts its own data.

Some remarks:

e By security parameter A\, we mean that the attacks on the encryption scheme must have a
complexity that is exponential in A.

e The purpose of the compact ciphertexts condition is to ensure that it is indeed the remote server
that does the computation. Otherwise, it is possible to construct “trivial” FHE schemes, where
the output of Evaluate(f,cy,...,cy, pk) is some encryption of f and its arguments that basically
tells the function Decrypt to decrypt ¢y, ..., ¢, and compute f on these decrypted values.

e The size of the function f must measure not only its running time but also the length of its
description. A way of doing that is to consider the size of a boolean circuit that computes f,
i.e. its number of elementary AND, OR and NOT gates. We will see that it is actually a quite
accurate measure in our context.

e In the above description, it is also possible to encrypt in some way the description of the function
f € F, so that the remote server not only does not know on what data it operates, but does not
even know what computation it is doing.

FHE can be used for many applications; we just list a few of them.

e Processing of sensitive data: in this typical scenario, the user asks a company to perform some
analysis (that the user himself is not able or willing to perform) on his data. Homomorphic
encryption allows to preserve the privacy of the processed data. For instance, one can imagine
cloud services that provide DNA analysis for medical institutions and law enforcement authorities
while maintaining the confidentiality of DNA samples.

e Anonymous data processing: multiple users can send sensitive data, encrypted with some public
key, to a remote server. Using homomorphic evaluation, it is possible to extract statistical
information on the data set in encrypted form, without the remote server learning anything
about any user’s data. The encrypted anonymized results (and only those) are then delivered
to the final recipient, who can decrypt them with the private decryption key.

e e-voting: each voter encrypts his/her ballot with a public encryption key provided by the or-
ganizers. Because of this encryption, there is no need to secure the anonymity of the voters;
the encrypted ballots can be made public, and in particular every voter can check that his/her
vote is taken into account. Also, every user can check the encrypted result of the vote using
homomorphic evaluation. The organizers can now decrypt this result. Of course, other precau-
tions must be taken to ensure that the organizers can only decrypt the final result and not the
individual votes.

However, FHE is not well-suited for databases applications. For instance, encrypted search on a large
database (like those maintained by search engines) is problematic: it is not possible to ensure that the
server learns nothing about the result of a query without the whole database being scanned.

In the following, we will only consider schemes where the data is encrypted bitwise, i.e. each bit is
encrypted separately, independently from the others. In other words, we deal with block ciphers
in ECB mode with a block size of one bit. Then in order to evaluate any function, we just have
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to be able to evaluate the addition and the multiplication modulo 2, since in Z/2Z ~ {0,1} we
have AND(a,b) = a.b, OR(a,b) = a4+ b+ a.b and NOT(a) = 1 + a: an encryption scheme is fully
homomorphic as soon as we can add and multiply the underlying plaintexts.

Of course, a secure encryption function {0,1} — {0, 1}* cannot be deterministic: a very short brute
force attack would decrypt any data immediately! The encryption function must be probabilistic, and
ideally, for security no identical bit should have the same ciphertext. In practice, we ask that the
probability that two identical bits have the same encryption is negligible unless the quantity of data
is very important (depending on the expected security level). This implies that each bit is translated
as a rather long string.

Exercise 2. A given FHE scheme encrypts probabilistically each bit as an n-bit ciphertext; for
simplicity, we assume that the ciphertexts have a uniform probability distribution inside the space of
n-bit strings. We want to store one Terabit of (plaintext) data. Approximately, what is the value of n
after which the probability of having two bits identically encrypted becomes negligible? What is the
size of the encrypted data?

Actually, current FHE schemes have much larger expansion factors, between 1000 and 10000. Obvi-
ously they are rather impractical and cannot be deployed for real-world applications.

Note that instead of encoding bitwise, we could consider a different alphabet from {0,1} ~ Z/2Z.
For instance, we could work with {0,...,p — 1} ~ Z/pZ, and in order to be fully homomorphic it is
sufficient to be able to add and multiply ciphertexts. But probabilistic encryption is still necessary,
even with large p. Indeed, the existence of an Evaluate algorithm means that FHE schemes are highly
malleable by design, and this can be exploited by an attacker: Boneh and Lipton showed in 1996 that
any deterministic, FHE scheme can be broken in sub-exponential time.

Exercise 3. Show that any function f : (Z/pZ)" — Z/pZ (with p a prime) admits a polynomial
expression (hint: use Lagrange interpolation).

2 Somewhat homomorphic encryption

Secure FHE schemes are quite difficult to devise (the first, impractical construction appeared thirty
years after the definition was proposed). On the other hand, many public-key cryptosystems are
already homomorphic with respect to only one operation (addition or multiplication). A first step
toward FHE is the construction of cryptosystems that allow a restricted number of manipulations on
the ciphertexts.

2.1 Boneh-Goh-Nissim encryption scheme

In 2005, Boneh, Goh and Nissim proposed a cryptosystem that allows any evaluation of homogeneous
polynomials of degree less than 2. It is based on elliptic curves whose group order are hard to factorize
and relies on pairings for the multiplication step.

1. Key generation: select two large primes q; and go and let n = ¢q1q2. Find the smallest integer
¢ € 3N such that p = fn—1 is prime (and equals 2 mod 3). Then the elliptic curve E : y? = 2341,
defined over F,, is super-singular and has exactly ¢n rational points. Let P be a random point
of order n and @ = [kq2] P a random multiple of P of order ¢;. Since F is super-singular, there
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exists a pairing (the modified Weil pairing) e : (P) x (P) — F,2. The public key is (n, E, P,Q, ¢)
and the private key is ¢1. The message space consists of integers in the range {—7/2,...,T/2},
with T' < ¢, and the cryptogram space is E(F,) U F,2; there are thus two distinct types of
ciphertexts.

2. Encryption: to encrypt a message m, choose a random r € {1,n — 1} and output the ciphertext

C = [m]P + [r]Q € E(F,).

3. Addition: if Cy = [m1|P + [r1]Q and Cy = [mg]P + [r2]@ are ciphertexts in E(F,) that encrypt
my and my respectively, then C1 + Cy + [r]Q € E(F,) (for a random r € {1,n —1}) is a
re-randomized encryption of mq + mao.

4. Multiplication: let Cy and Cy be two ciphertexts in E(IF,) that encrypt m; and my respectively.
Then the encryption of the product mimsg is C = e(C1,C2).e(Q,Q)" € Fj2 (for a random
re{l,n—1}).

5. Addition (again): if C1 and Cy are ciphertexts in F,2 that encrypts m; and mg respectively,
then C' = C1.C2.¢(Q,Q)" € Fp2 (for a random r € {1,n — 1}) is a re-randomized encryption of
my + mg

6. Decryption: if the ciphertext C' is in E(F,), compute P = [¢]P, C = [¢1]C, and output

m' =logp(C). If C'is in F2, compute § = e(P, P)?, C = C%, and output m/ = log;(C).

We leave it as an exercise to show the correction of this cryptosystem. Only one multiplication is sup-
ported because it changes the nature of the ciphertext, and there is no pairing on finite fields to pursue
this construction further. The main idea is that the ciphertexts live in an order n group (generated by
either P or e(P, P)) but are only well-defined modulo the subgroup of order ¢; (generated by either
Q or e(P,Q)); the obfuscation of the plaintexts is achieved by choosing random representatives. The
security of this scheme is based on the difficulty of the following subgroup decision problem: given a
cyclic group G of known order n and a proper subgroup H C G, determine if an element g € G is in
the subgroup H. For cyclic groups, this is easy if the factorisation of n if known, but it is not clear
if it can be solved without factoring the group order. To see why this is actually the problem the
security relies on, observe that the discrete log of C in base P can be recovered as the smallest positive
integer m’ such that C' — [m’] P belongs to the subgroup generated by @ (and this adapts trivially to
a ciphertext in ).

The drawback of Boneh-Goh-Nissim construction is the decryption step, which requires the computa-
tion of a discrete logarithm in the subgroup of order ¢ generated by Por g. The size of p must be such
that the discrete log problem in E(FF,) and in F . is hard; otherwise, n can be factored by computing
ged(n,logp(Q)) or ged(n,log.p p)(e(P,Q))). But then the DLP in the subgroup of order gz is also
hard, even if its size is smaller by a factor of about 2. Indeed, the index calculus method available
on ]F;2 is not easier in a subgroup than in the whole multiplicative group, and if g2 is small enough
so that generic algorithms are efficient then n cannot be hard to factor using sieve algorithms. The
solution is that only small values of the plaintext are allowed and can be deciphered: the messages lie
not in Z/qs2Z, but in an interval [—7'/2,T/2] whose size T is small enough so that generic algorithms
(e.g. Pollard rho) can solve the DLP, with complexity in O(v/T).

But this means that this scheme is not completely homomorphic. Indeed, one can add and perform
one multiplication on the ciphertexts, but decryption will be possible only if the resulting plaintext
remains relatively small: the larger the plaintext, the harder the decryption. This is particularly an
issue for the multiplication. One workaround is to start with even smaller messages, in order that
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decryption remains possible unless many operations are performed. This works well if the number of
requested additions is known in advance.

2.2 van Dijk-Gentry-Halevi-Vaikuntanathan somewhat homomorphic encryption
scheme over the integers

Boneh, Goh and Nissim’s construction lead to the recognition of the importance of somewhat homo-
morphic encryption schemes (SHE), which are basically the same thing as FHE except that only a
limited number of operations (additions and multiplications) can be performed before either decryp-
tion fails or returns a wrong answer. In other word, a SHE scheme can only evaluate functions whose
complexity, expressed as a number of logical gates, does not exceed a certain value D. We will start by
studying the SHE scheme proposed by van Dijk, Gentry, Halevi and Vaikuntanathan in 2009, which
is conceptually simple (it only uses elementary arithmetic) yet secure, but blatantly impractical. The
encryption is bitwise: the message space is thus {0,1} ~ Z/2Z and the ciphertexts are integers. The
symmetric version works as follows; its security depends on a parameter \.

1. Key generation: the secret key is a random A%-bit odd integer p.

2. Encryption: to encrypt a message m € {0, 1}, choose a random A\>-bit integer ¢, a random A-bit
integer r, and output ¢ = m + 2r + pq.

3. Decryption: to decrypt a ciphertext ¢, compute m = (¢ mod p) mod 2, where the notation
¢ mod p stands for the only integer in (—p/2,p/2] congruent to ¢ modulo p.

4. Evaluation: addition and multiplication of underlying plaintexts are simply given by the addition
and the multiplication of the ciphertexts.

In this scheme, the ciphertexts are “near-multiple” of p, and it is the parity of the “noise” m + 2r that
allows to recover the plaintext. As regards the Evaluate procedure, we check that if ¢ = m + 2r + pg
and ¢ =m’ + 2r' + pg, then

ct+cd =m+m)+20r+7")+plg+q), and

e =mm' +2(rm’ + r'm + 2rr") + p(gm + 2qr" + ¢'m + 2¢'r + q¢').

The difference with a multiple of p has the correct parity, but the noise has increased, especially in
the case of a multiplication. However, for the decryption to work this noise has to be smaller than
p/2 in absolute value; to put it another way, in the above formula we need the multiple of p on the
right to be the closest to ¢+ ¢/, resp. cc/, to be sure that the deciphered value is the correct one. This
is why this scheme is only somewhat homomorphic: the more operations we perform, the noisier the
ciphertexts become, until decryption yields spurious results.

We can give a safety bound on the number of allowed operations. Indeed, it is not difficult to see that
addition increases the size of the noise by at most one bit, whereas multiplication roughly adds the
size of the noises. Since “fresh” ciphertexts have a A-bit noise, we can multiply approximatively A\ of
them before the noise reaches a size of A% bits, comparable with p.

The security of this cryptosystem is based on the approximate GCD problem: recovering p from many
“near multiples” of p. With the above parameters, the complexity of the best known attacks is
exponential in the security parameter X\. Note however that this problem has garnered attention only
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recently, so it is conceivable that much better algorithms for this problem will appear in the future.
The obvious drawback of van Dijk-Gentry-Halevi-Vaikuntanathan construction is the fact that the
ciphertexts are much larger than the plaintexts; furthermore, the size of the ciphertexts increases with
the number of performed operations (linearly in the number of multiplications).

Exercise 4. Find the three-digit approximate GCD of the numbers 195051, 257797, 328385 and
360776 (hint: test all possible small noises on a pair of numbers until their ged is large enough, then
check with the remaining integers).

This scheme can be modified to become an asymmetric one. The ciphertexts are still near-multiple of
a secret integer p, with the message being hidden in the parity of the noise; in particular, evaluation
and decryption are the same as in the above setting.

1. Key generation: the private key is a random A2-bit odd integer p. The public key consists of a
Ad-size list {x1,...,2x} of “encryptions of zero”, i.e. random integers of the form 27 4 pq with
r and q of size A bits and A\® bits respectively.

2. Encryption: to encrypt a message m € {0,1}, choose a random subset S C {1,...,N} and a
A-bit integer r, and output ¢ = m +2r + 3, s ;.

Since the x; have a small, even noise, the “fresh” ciphertext c still has a small noise, with the correct
parity. Now the security of this public-key version is a bit more difficult to analyze but still relies on
the approximate GCD problem.

It is possible to modify slightly this scheme in order to avoid the important increase in the size of
the ciphertexts. We add to the public key an element zy which is an exact multiple of p (instead
of another near-multiple). Then we can reduce each ciphertext modulo zy. This reduction amounts
to subtracting a multiple of xy to the ciphertext, but this does not modify the noise since zg is an
exact multiple of p, so the result is correct. Of course the price to pay is that this partial approximate
GCD problem becomes easier, but it can still be secure if the parameters are chosen accordingly (and
obviously z( should be hard to factorize).

2.3 Learning with errors and the Gentry-Sahai-Waters encryption scheme

The Learning With Errors problem (LWE), first introduced by Regev in 2005, is a versatile tool for
constructing cryptosytems. In particular it is the basis for the most promising (but still inefficient. . . )
SHE schemes today. We will not give in this lecture a precise analysis of its security, but it has been
shown by Brakerski, Langlois, Peikert, Regev and Stehlé that LWE is at least as secure as worst-case
instances of standard lattice problems.

2.3.1 Error distributions

In somewhat homomorphic encryption schemes, we often need to sample according to “error” prob-
ability distributions on Z (e.g. the “noise” in DGHV integer scheme) or Z/pZ, namely, we will need
random variables which stay “close” to zero in some adequate sense.

On Z, a common choice is the discrete Gaussian distribution. Recall that the continuous Gaussian
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distribution (or normal distribution) is defined by its probability density function

1 x?
= 6720'72

oV 2w

where the standard deviation o controls the “width” of the distribution. In the corresponding discrete
distribution, the probability of obtaining an integer m is proportional to f,(n). More precisely, a
integer-valued random variable X follows the discrete Gaussian probability if for all n € Z, P(X =
n) = fy(n)/c where c = >, ., f5(k). In order to obtain a Z/pZ-valued random variable, we just have

to consider the values of X modulo p. Note that this construction can actually be carried out starting
with any continuous distribution on R.

fo()

)

If the standard deviation of X is small compared to p, then with high probability, X (w) is comprised
between —p/2 and p/2, so no modular reductions are actually needed. On the other hand, when o
grows to infinity, the discrete Gaussian distribution modulo p converges to the uniform distribution
on Z/pZ.

2.3.2 LWE

We define on (Z/pZ)"N the “usual” bilinear form

(Z/p2)N x (Z/pZ)N — Z/pZ
N

(a,b) +— <a,b>:Zaz~bi

=1

Let xo be an error probability distribution on Z/pZ, i.e. the reduction modulo p of a centered dis-
tribution on Z, with standard deviation a. Let s € (Z/pZ)"™ be a secret vector. We consider many
couples of the form (a,by) € (Z/pZ)N x Z/pZ where ay, is chosen uniform randomly in (Z/pZ)" and
by, = (ak, s) + e, with e € Z/pZ being sampled with respect to the distribution x4.

The computational LWE problem is:
Given many couples (ag,bx) = (ax, (ak, s) + ex), recover s.

The decisional LWE problem consists of distinguishing the distribution (ag,by) as above from the
uniform distribution on (Z/pZ)N x Z/pZ.

The parameter « clearly plays an important role in the difficulty of these problem. If o = 0, there
are no errors, and recovering s from (more than) n couples just amounts to solving a linear system of
equations. If « is very small, then ey is often zero and the resolution is still easy. On the other hand, if
« is of the magnitude of p or bigger, then y, is very close to the uniform probability distribution and
solving the decisional problem becomes impossible. In the following o will be in-between, sufficiently
big so that the LWE problem is computationnally hard, but otherwise as small as possible.

It turns out that there exist reductions between the computational and decisional versions. Indeed,
assume first that we have access to a solver for the computational problem, and that we are given
samples (ax,br) € (Z/pZ)" ' which are either uniformly or LWE-distributed. The computational-
LWE solver outputs a corresponding vector s. Then the sequence (by — (ax, s)) is distributed either
according to X, or uniformly on Z/pZ, and if « is not to big it is not difficult to distinguish between
the two cases.

On the other hand, assume that we have access to a solver for the decisional problem and that we are
given many couples of the form (ag, b)) = (ag, (ag, s) +ex). Then we can try to guess each cooordinate
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of s =(s1,...,8y) as follows. For all : € {1,...,n}, let u; = (0,...,0,1,0,...,0) be the i-th vector of
the canonical basis. For all t € Z/pZ, we consider the sequence (ay, b)) = (ar + cxu;, b + tcg) where
the ¢ are uniformly distributed. Then

(al,s) = (ak, s) + cks; = by — ep + cxs; = b, — g + cr(s; — t).

If t = s;, then b}, = (a},s) + e, and the sequence is LWE-distributed; otherwise it is uniformly
distributed. We can thus recover s with pn calls to the decisional solver (for comparison, a brute-force
attack on s requires & p” trials).

Another feature of the LWE problem is random self-reducibility, which states that it is as difficult in
the worst case as in the average case. Indeed, we can transform any specific LWE instance (ag, by) =
(ak, (ag,s) + er) into another, random instance by choosing a uniform random t € (Z/pZ)" and
computing (ak, (ag,t) + bi) = (ak, (ag, s + t) + er). Using this transformation, any instance of LWE
reduces to a random instance, implying that the wort-case complexity is the same as the average-case
complexity.

The LWE problem can also be expressed using matrices. The equalities by, = (ax, s)+eg, k € {1,...,m}
can be summed up as b = As + e, where

b1 a1,1 -.. Q1n €1
b= bk N A= ag1  --- Qkn y e = (%
bm Am,1 - (mp em

Alternatively, if we define s’ = (s,1) € (Z/pZ)"™! and A’ = (A| — b) € Mupmni1(Z/pZ), we obtain
A's’ = e; since e is small, this can restated by saying that s’ is approximately in the kernel of
A’. The last coordinate of s’ is 1, but this can be relaxed by setting s” = As’ and A” = (\)~tA’ for
X € (Z/pZ)*.

In this context, the computational LWE problem becomes:
Given A € My, 41(Z/pZ), find an approximate kernel vector of A, i.e. s such that As is small

and the decisional problem consists of distinguishing matrices admitting such vectors from uniformly
random one.

2.3.3 Regev encryption scheme

It is not difficult to turn LWE in a symmetric encryption scheme. The secret key is a vector s €
(Z/pZ)N where the values of p and N depend on the desired security level. To encrypt a bit m € {0,1},
one selects a uniformly random vector a € (Z/pZ)Y, a random small element r € Z/pZ distributed
according to X, (the “noise”), and outputs (a, (a,s) +r + m|p/2])). Decryption is quite simple: on
receiving (a,b), one computes b — (a, s) and outputs 0 or 1 depending on whether the result is closer
to 0 or p/2. This simple scheme is naturally (somewhat) homomorphically additive: if (a1,b1) and
(ag2,by) encrypt the bits m; and meo, it is easy to see that (a; + ag, by + b2) encrypts my + mg, but
with a potentially larger noise. As before, decryption fails when the noise becomes too large, more
precisely when the sum of the noises exceed p/4 in absolute value.

This partial homomorphic property allows to construct an asymmetric version; we describe it using
the matrix representation.
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1. Key generation: the private key is a random s € (Z/pZ)"*! whose last coordinate is equal to
1. The public key consists of a matrix A € My, n4+1(Z/pZ), constructed as above, such that
As = e € (Z/pZ)™ has small coefficients (distributed according to xq)-

2. Encryption: to encrypt a message m € {0, 1}, choose a uniformly random vector r € {0,1}"™ and
output ¢ = 'Ar+m|p/2|u,1, where u, 1 is the last vector of the canonical basis of (Z/pZ)"*+1.

3. Decryption: to decrypt ¢, compute (¢, s) = ( tAr+m/|p/2|un+1,8) = (r, As)+m|p/2] (unt1,s) =
(r,e) +m|p/2|. Since e is small and the coefficients of r are only zeroes and ones, the scalar
product (r,e) is also small, so m = 0 or 1 according to whether {c, s) is closer to 0 or p/2.

Actually, each row of A can be seen as an encryption of zero, and left multiplication by ‘r corresponds
to taking the sum of a subset of them. This is completely similar to what we have done for the DGHV
integer scheme.

The difficulty is to make this scheme (somewhat) homomorphically multiplicative. This has been first
achieved by Brakerski and Vaikunthanatan using a relinearization technique, at the cost of longer
keys; we will not give the details here but present a conceptually simpler scheme instead.

2.3.4 Approximate eigenvectors and the GSW encryption scheme

Approximate eigenvectors

The main idea behind the Gentry-Sahai-Waters scheme (2013) is to use approximate eigenvectors.
Informally, it works as follows. Let v be a secret vector in (Z/pZ)™. Assume that for each small integer
A, we are able to construct a random-looking matrix C' € M,,,(Z/pZ) such that v is an approximate
eigenvector of C, i.e. Cv = Av+e where the error vector e has small coefficients (distributed according
to some error probability distribution). The matrix C'is the ciphertext corresponding to the plaintext
A, and recovering A knowing C' and v is easy. Is such a system somewhat homomorphic? If C, C’ are
encryptions of A and ), then

(C+CYWw=Cv+Cv= +e+Nv+e =A+N)v+ (e+¢),
which decrypts as A + X\ as long as the errors are small enough. On the other hand,
(CCY=CNv+€)=NCv+Ce =XNw+e)+Ce =N\v+ (Ne+ Cé).

This decrypts as AN only if Ne + Ce’ is small, which implies that A\ must be small, and more
importantly, C' must have small coefficients.

Thus in order to obtain a SHE scheme from this idea, we need to be able to construct matrices
with small coefficients and prescribed approximate eigenvectors. But even then, if we do matrix
multiplications the coefficients will soon become too large. If we want to perform a non negligible
number of homomorphic multiplications, we need a way to “flatten” ciphertexts, i.e. a method to
transform a matrix C' with approximate eigenvector v into another matrix C’, with small coefficients,
and same approximate eigenvector and eigenvalue.

Bit expansion and flattening

10
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Let n be a positive integer, k = |logp| and m = (n+ 1)(k + 1). Let G € My, +1(Z/pZ) be the
“gadget matrix”

ok 0 .0
ok—1 0 0
20 0 ... 0
0 ok .0
0 211 0
G = :
0 20 0
0 0 ok
0 0 ok—1
0 0 20

The map M, (Z/pZ) — My n+1(Z/pZ), M — MG is clearly onto. Indeed, for any N € My, n4+1(Z/pZ),
there exists a matrix M € My, ,,(Z/pZ) whose coefficients are only 0 and 1 and such that MG = N;
this matrix is obtained by replacing each coefficient of N by its binary expansion. We denote by G~*
this bit-expansion transformation, so that for all N € M, n41(Z/pZ) we have (G71(N))G = N. We
give an example for p=T7and n+1 = 2:

40 2 4 010100
2 0 5 3 101011
{10 o s o |00 0101
=10 4 N=11 6 M=o o1110
0 2 30 01 1000
01 14 001100

Now let C € M,,(Z/pZ) be a matrix having an approximate eigenvector z, i.e. ¢ = Cx — Az has small
coefficients. Assume furthermore that x is in the image of G, i.e. there exists s € (Z/pZ)"*! such that
x = Gs. Then

G HCG)xr = (GHCG)Gs = CGs = Cxz = Az +e,

which means that z is also an approximate eigenvector of ¢/ = G~1(CQ), with the same eigenvalue
and error term. Furthermore the coefficients of C’ are small by design, since they are only 0’s and 1’s.
Thus the “flattening” map C — G~1(CG) gives us the possibility to work only with matrices having
small coefficients, while preserving the approximate eigenvectors.

GSW scheme

We can now describe the approximate eigenvector scheme of Gentry, Sahai and Waters. We first
choose parameters p,n,m = (n+ 1)[logp| and « such that the LWE problem in (Z/pZ)™ with error
distribution xq is difficult. The ciphertext is My, ({0,1}) C M (Z/pZ). We also fix a message space
M C Z/pZ (usually {0, 1}, see discussion below).

1. Key generation: the private key is a random vector s € (Z/pZ)" ' whose last coordinate is equal
to 1. The public key consists of a matrix A € My, n+1(Z/pZ), constructed as above, such that
As = e € (Z/pZ)™ has small coefficients (distributed according to xq ).

11
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2. Encryption: to encrypt a message A € M, choose a uniformly random matrix R € M,,({0,1})
and output C = G71(RA + \G).

The key generation is exactly the same as in Regev encryption scheme. The encryption is also similar:
in fact, each row of RA is a different encryption of 0 according to Regev scheme, which is then used
to hide the message A\. The important point is that v = Gs is an approximate eigenvector, with
eigenvalue A, of the “fresh” ciphertexts thus created. Indeed,

Cv=CGs=(RA+ \G)s = \v+ Re,

and since the coefficients of R are only 0’s and 1’s, the coefficients of Re are still small.

Exercise 5. Show that A is the only approximate eigenvalue corresponding to v. More precisely,
show that if the coordinates of the “noise” C'v — Av are all smaller than p/6 in absolute value, then
for any X # A, Cv — Nv has at least one coefficient whose absolute value is greater than p/6 (hint:
consider the last (k + 1) coordinates of v = Gs).

3. Decryption: to decrypt C, compute Cv = CGs and find the value A € M such that Cv — \v
has the smallest coefficients.

We have seen that as long as the coordinates of the noise remain smaller than p/6, there is a unique
such approximate eigenvalue associated to A, so the output of the decryption is correct. In practice
M is small, so one can test all possible values of A (see however exercice @

Exercise 6. Devise a decryption algorithm, that recovers A knowing C' and v (assuming that the
noise is smaller than p/6).

4. Evaluation: if C' encrypts A and C” encrypts A, then the homomorphic addition is the matrix
addition C' + C’, and the homomorphic multiplication is the matrix multiplication followed by
flattening : C” = G~1(CC'G).

(Note that addition can also be followed by flattening if one wants to keep the coefficients in {0, 1}).
Both operations will yield correct results if v is still an approximate eigenvector with the correct
eigenvalue and a small enough noise. Let e, resp. €/, be the noise in the encryption of A, resp. \. If
C"=C+C (or GH(C+CQG)), then C"v = Mv+e+Nv+e = (A+N)v+(e+¢€'); thus C” is a valid
encryption of A 4+ ) and the size of the noise has increased by at most 1 bit. If ¢ = G~1(CC'G),
then

C"v=CCv=CNv+é€)=N+e)+Ce =N+ e+ Ce.

Since the coefficients of C' are zeroes and ones, we see that the size of the resulting noise is [Ae+Cé’|s <
1+ max(|A|2 + |e|2, |m|2 + |€/]2). If we assume an a priori bound B on the size of the plaintexts, this
implies that the size of the noise grows linearly for additions as well as multiplication. This is much
better than with the DGHYV integer scheme, for which multiplications incurred a doubling of the size
of the noise. In particular, the GSW scheme is still only somewhat (and not fully) homomorphic, but
it can evaluate much more complicated functions.

There remains the issue of the growth of the plaintexts. Indeed, even if we only ever encrypt small
plaintexts, there is no guarantee that they will remain small after several homomorphic evaluations.
The workaround is to restrict homomorphic evaluations to functions for which given a bound on the

12
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size of the inputs, we have the same bound on the size of the output as well as a bound on the size of
all auxiliary computed values. A special case is to restrict the message space to {0,1} (i.e. a bitwise
encryption scheme) and to evaluate homomorphically only the product (i.e. the logical AND) and the
map A — 1 — A (i.e. the logical NOT). Since all boolean functions can be expressed with these two
operations, this does not actually restrict the computing capabilities of the scheme.

Exercise 7. Order of operations, homomorphic computation of mymemsmy.

Exercise 8. Homomorphic multiplexing.

2.4 Other SHE schemes

To produce a somewhat homomorphically multiplicative scheme, it is easier to work in a (finite) ring
R instead of (Z/pZ)N. The LWE problem can be transposed in the ring setting and is then called
the Ring-Learning With Errors problem (R-LWE). To fix notation, we take R = (Z/pZ)[x]/(f(z)),
i.e. the ring of polynomials with coefficients in Z/pZ, modulo a polynomial f (which is usually of the
form x2" 4 1). We are again given an “error” probability distribution x, concentrated on polynomials
whose coefficients are all small (in absolute value) compared to p. Let s € R be a secret element;
we now consider couples of the form (ay,by) = (ag,ars + ex) € R x R where ay, is chosen uniformly
randomly in R while e is sampled with respect to x. The R-LWE problem is then:
Given many couples (ag, br) = (ag, ars + er), recover s.

Similarly to the LWE problem, it is at least as hard as worst-case instances of lattices problems, but
for ideal lattices. As such, it is expected to be easier than the LWE problem.

SHE schemes relying on the R-LWE problem are based on the following outline (proposed by Brakerski
and Vaikunthanatan). The secret key is an element s € R = (Z/pZ)[z]/(f(x)). Here the message
space, instead of being only {0, 1}, now consists of polynomials of degree (deg f) — 1 with coefficients
in {0,1}, i.e. we encode several bits at once (and the multiplication is given modulo 2 and modulo f).
The ciphertexts are elements of R[X], i.e. polynomials with coefficients in R.

1. Key generation: select a random element s € R.

2. Encryption: to encrypt a message m € (Z/2Z)[z]/(f(x)), we choose a random element a €
R, a random small element r € R (following some error probability distribution) and output
P(X) = as + 2r + m — aX. This is should be considered as being equivalent to the couple
(a,as+2r+m) € R x R, which is close to what we have seen in the DGHV and Regev schemes.

3. Evaluation: addition and multiplication of ciphertexts are just the usual addition and multipli-
cation of polynomials

4. Decryption: to decrypt a ciphertext P(X) = a9 + a1 X + -+ + a, X" € R[X], we compute
P(s) =Y, a;s' € R and take its representative in Z[z] which has degree smaller than deg f and
coefficients in (—p/2,p/2), then reduce each coefficient modulo 2.

This scheme is indeed somewhat homomorphic: for each “fresh” ciphertext P(X), its evaluation P(s)
is equal to the “noise” 2r+m which decrypts as m since r is small. Since the evaluation of polynomials
is compatible with their addition and multiplication, we see that addition and multiplication of ci-
phertexts correspond to the addition and multiplication of the corresponding noises, which guarantees
the correction of the decryption as long as the noises remain small.
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Note that as in the integer scheme, it is mainly the multiplications that increase the noise. In this
scheme, multiplications also have the drawback of increasing the length of the ciphertexts, i.e. the
degree of the polynomials. In any case, this degree is bounded by the maximum of operations D this
SHE scheme can support before ceasing to be homomorphic. It is also possible to keep the ciphertexts
small (basically just couples of elements) by using a relinearization technique, but this incurs an
expansion of the key size.

3 From somewhat homomorphic to fully homomorphic

What prevents a somewhat homomorphic encryption scheme to be fully homomorphic is the increase
of the size of the noise as more operations are performed on the ciphertexts. Thus, we need to find a
way to “refresh” the ciphertexts. The answer proposed by Gentry very simple yet intriguing: we just
have to evaluate the decryption function itself!

More precisely, let (pk1,sk1) and (pks, sk2) be two pairs of public/private key for a given somewhat
homomorphic encryption scheme, and let sk; be the encryption of (the bits of) sk; under pko. We
then consider the recryption of a ciphertext ¢ encoded under pk;.

Recrypt(pks, sk1,c) :
for all 7, ¢; = Encrypt(pka,¢;) where ¢; is the i-th bit of ¢;
output ¢ = Evaluate(Decrypt, ski,C1,. .., Cm, pk2).

Here Decrypt is considered as a boolean function (or a logical circuit) that takes as inputs the bits of
the secret key and of the ciphertext. So we have added an outer layer of encryption with the second
set of keys to the ciphertext ¢, then we have removed the inner encryption using the homomorphic
evaluation of the decryption function. The result is an encryption of the plaintext for the second set
of keys; we have thus eliminated the original noise (which is the purpose of Decrypt), but in doing
so we may have generated a large new noise; this is ok as long as this new noise is smaller than the
original one.

So all we need to construct a FHE scheme is a SHE scheme that can handle its own decryption function.
In fact, we need a little more: it must be able to handle its decryption function and at least one more
operation (otherwise this is useless). Such a SHE scheme is called bootstrappable. To evaluate a
function in the corresponding FHE scheme, we just have to periodically “refresh” the ciphertexts by
running the Recrypt procedure (and changing the key).

The periodic change of keys with this bootstrapping construction means that we need keys whose
length is proportional to the complexity of the functions we evaluate (following Gentry, this is called a
leveled FHE scheme). So we can opt instead for always keeping the same key, i.e. choosing (pkz, sko) =
(pk1,sk1) in the Recrypt procedure. But in doing so we reveal ski, which is an encryption of the
private key with its own corresponding public key. It is a problem if this information can be used to
attack the cryptosystem. Otherwise, i.e. if sk; does not leak any useful information, the encryption
scheme is called circularly secure. Actually, most known cryptosystems seem to satisfy this circular
security assumption.

Remark. The first step in the Recrypt procedure can usually be skipped. Indeed, it is not necessary

that G; is a safe encryption of ¢;; all is needed is that ¢; decrypts to ¢;. But in most SHE constructions,
0 and 1 simply decrypt to 0 and 1, so it is possible to take ¢; = ¢;.
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Bootstrapping can be rightfully considered as a rather contrived way to obtain fully homomorphic
encryption, but up to now all “pure” FHE schemes rely on this process and on circular security.
However, it is by far the main complexity bottleneck. A partial solution is batch bootstrapping:
in some schemes (typically R-LWE based) it is possible to “pack” ciphertexts and operate on them
simultaneously, in a SIMD fashion. The amortized cost of bootstrapping, or more generally any
homomorphic operation, is thus much smaller than for a single message. Besides, if we consider
leveled schemes, i.e. schemes in which the length of the key is proportional to the complexity of the
functions to evaluate, then there exist algorithms for which bootstrapping is only optional. But of
course, this requires to have an a priori bound on the function complexities.
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