NTC Final exam - FHE schemes (50 min)

No document, no computer. The redaction of this part of the NTC exam must be written on a separate sheet.

The reduction of this part of the WTO exam must be written on a separate sheet.

Let p be a large prime number, and n be a large integer. In what follows, elements of $(\mathbb{Z}/p\mathbb{Z})^n$ are written in boldface; the scalar product of two elements $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ of $(\mathbb{Z}/p\mathbb{Z})^n$ is defined by $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^n x_i y_i$.

We consider the following bitwise private key encryption scheme:

- The secret key is $\boldsymbol{s} = (s_1, \dots, s_n) \in (\mathbb{Z}/p\mathbb{Z})^n$;
- To encrypt a bit $m \in \{0; 1\}$, we select randomly a *n*-tuple $\boldsymbol{a} \in (\mathbb{Z}/p\mathbb{Z})^n$ and an integer $r \in \{-\lambda; \ldots; \lambda\}$ where λ is small compared to p; the ciphertext is then

$$(\boldsymbol{c}, \boldsymbol{c}') = (\boldsymbol{a}, \langle \boldsymbol{a}, \boldsymbol{s} \rangle + m + 2r) \in (\mathbb{Z}/p\mathbb{Z})^n \times \mathbb{Z}/p\mathbb{Z}.$$

Questions

- 1. Explain how to decrypt a ciphertext $(c, c') \in (\mathbb{Z}/p\mathbb{Z})^n \times \mathbb{Z}/p\mathbb{Z}$. On which problem relies the security of this cryptosystem? Is it somewhat homomorphic? fully homomorphic?
- 2. Let (c, c') and (d, d') be the encryptions of the plaintexts m_1 and m_2 respectively (with $c = (c_1, \ldots, c_n)$ and $d = (d_1, \ldots, d_n)$). We consider

$$C = \left((c_i d_j)_{i,j \in \{1,\dots,n\}}, \ d' c' + c' d, \ c' d' \right) \in (\mathbb{Z}/p\mathbb{Z})^{n^2} \times (\mathbb{Z}/p\mathbb{Z})^n \times \mathbb{Z}/p\mathbb{Z}.$$

Explain how to recover $m_1.m_2$ from C knowing s. Is it possible to generalize this construction to more products?

To avoid ciphertext expansions, we use a *relinearization* technique: the idea is to introduce a new secret key $t \in (\mathbb{Z}/p\mathbb{Z})^n$ and to encode with t the needed information about s.

As a first step, we propose to publish the couples $(\boldsymbol{a}^{i}, b^{i})_{i \in \{1,...,n\}}$ and $(\boldsymbol{\alpha}^{ij}, \beta^{ij})_{i,j \in \{1,...,n\}}$ with $\boldsymbol{a}^{i}, \boldsymbol{\alpha}^{ij} \in (\mathbb{Z}/p\mathbb{Z})^{n}$ and $b^{i}, \beta^{ij} \in \mathbb{Z}/p\mathbb{Z}$ such that

$$\begin{cases} b^{i} = \langle \boldsymbol{a}^{i}, \boldsymbol{t} \rangle + s_{i} + 2r_{i} \\ \beta^{ij} = \langle \boldsymbol{\alpha}^{ij}, \boldsymbol{t} \rangle + s_{i}s_{j} + 2r_{ij} \end{cases}$$

with r_i, r_{ij} chosen randomly in $\{-\lambda; \ldots; \lambda\}$. To evaluate homomorphically $(\boldsymbol{c}, c') \cdot (\boldsymbol{d}, d')$, we output

$$\left(\sum_{i,j}c_id_j\boldsymbol{\alpha}^{ij} - \sum_i(c'd_i + d'c_i)\boldsymbol{a}^i, \ c'd' - \sum_i(c'd_i + d'c_i)\boldsymbol{b}^i + \sum_{i,j}c_id_j\beta^{ij}\right) \in (\mathbb{Z}/p\mathbb{Z})^n \times \mathbb{Z}/p\mathbb{Z}.$$

- 3. Show that if $r_i = r_{ij} = 0 \ \forall i, j$, then the above message decrypts indeed into $m_1.m_2$ with the secret key t.
- 4. Explain why with this system the decryption does not work in general.

To avoid this problem, we modify the relinearization technique in the following way:

- we introduce a new secret key $t \in (\mathbb{Z}/p\mathbb{Z})^n$
- we publish $(\boldsymbol{a}^{ik}, b^{ik})_{i \in \{1, \dots, n\}, k \in \{0, \dots, \lfloor \log p \rfloor\}}$ and $(\boldsymbol{\alpha}^{ijk}, \beta^{ijk})_{i,j \in \{1, \dots, n\}, k \in \{0, \dots, \lfloor \log p \rfloor\}}$ with $\boldsymbol{a}^{ik}, \boldsymbol{\alpha}^{ijk} \in (\mathbb{Z}/p\mathbb{Z})^n$ and $b^{ik}, \beta^{ijk} \in \mathbb{Z}/p\mathbb{Z}$ such that

$$\begin{cases} b^{ik} = \langle \boldsymbol{a}^{ik}, \boldsymbol{t} \rangle + 2^k s_i + 2r_{ik} \\ \beta^{ijk} = \langle \boldsymbol{\alpha}^{ijk}, \boldsymbol{t} \rangle + 2^k s_i s_j + 2r_{ijk} \end{cases}$$

with r_{ik}, r_{ijk} chosen randomly in $\{-\lambda; \ldots; \lambda\}$.

• To evaluate homomorphically $(c, c') \cdot (d, d')$, we develop in base 2 the quantities $c'd_i + d'c_i$ and c_id_j :

$$c'd_i + d'c_i = \sum_{k=0}^{\lfloor \log p \rfloor} h_{ik} 2^k$$
$$c_i d_j = \sum_{k=0}^{\lfloor \log p \rfloor} h_{ijk} 2^k$$

where the h_{ik} and the h_{ijk} belong to $\{0, 1\}$. We then output

$$\left(\sum_{i,j,k} h_{ijk} \boldsymbol{\alpha}^{ijk} - \sum_{i,k} h_{ik} \boldsymbol{a}^{ik}, \ c'd' - \sum_{i,k} h_{ik} b^{ik} + \sum_{i,j,k} h_{ijk} \beta^{ijk}\right).$$

5. Show that the above message decrypts correctly into $m_1.m_2$ with the key t.