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Exercise

1. Let E be an elliptic curve defined over Fq such that the Frobenius map Φq ∈ End(E) has a trace
equal to zero, and let N be a positive integer.

(a) Show that if there exists a point P in E(Fq) of order N , then all the N -torsion E[N ] is
included in E(Fq2) (indication: consider the action of Φ2

q over E[N ]).

(b) What can you say about the security of the discrete logarithm problem over E(Fq)?

2. Let E be an elliptic curve defined over F2 by y2 + y = x3 + x.

(a) Show that this curve is supersingular by computing its cardinality E(F2).

(b) Give the characteristic polynomial of the Frobenius Φ2 ∈ End(E). Deduce that Φ4
2 = [−4].

(c) Compute the cardinalities #E(F4) and #E(F16). Does the result of 1.(a) still hold in this
case?

Problem

The goal of this problem is to study some practical aspects of the implementation of a simplified
version of Boneh and Franklin’s scheme for identity-based encryption. In this setting, the trusted
authority (TA) publishes system parameters {E,G1, G2, G3, e, P0, Ppub, n,H1, H3, N} where

• E is an elliptic curve defined over Fq (of characteristic different from 2 and 3) with a distinguished
point O, with a cardinality divisible by a large prime integer n and a corresponding embedding
degree k > 1; we suppose moreover that k ∧ n = 1 and that n3 - #E(Fqk),

• G1 = E(Fq)[n], G2 = 〈P0〉 ⊂ E(Fqk)[n] where P0 ∈ E(Fqk) \ E(Fq) has order n, and G3 = µn is
the subgroup of (Fqk)∗ of the n-th roots of unity,

• e : G1 ×G2 → G3 is a non-degenerate bilinear pairing,

• Ppub = [s]P0 where s is the private master key,

• H1 : {0; 1}∗ → G1 is a hash function from the set of binary strings to G1 and H3 : G3 → {0; 1}N
is a hash function from G3 to the set of messages of size N .

To encrypt a message m of size N addressed to Alice, Bob needs to

a) obtain the public key of Alice by computing the hash value of her identity H(idA);



b) choose a random integer r ∈R {1; . . . ;n− 1};

c) compute the ciphertext (C1, C2) =
(
[r]P0,m⊕H3(e(H1(idA), [r]Ppub))

)
and send it to Alice.

To decrypt (C1, C2), Alice computes C2 ⊕H3(e(SidA , C1)) where SidA = [s]H(idA) is the private key
she obtained from the TA.

Questions

0. Check that the scheme is correct, i.e. that Alice indeed recovers the plaintext.

1. We first consider the special case (proposed by Boneh and Franklin in their original paper) where
E is given by a Weierstrass equation of the form y2 = x3 + b with b ∈ Fq and q = 2 mod 3.

(a) Explain why it is possible to consider in this context a “symmetric” pairing

e : G1 ×G1 → G3.

Indication: compute the cardinality of E(Fq) by showing that the cube map x 7→ x3 is a
bijection over Fq and prove that E is supersingular.

(b) Given a cryptographic hash function h : {0; 1}∗ → {0; . . . ; q−1}, construct an explicit hash
function H that sends any string of {0; 1}∗ to a point in G1.

In the following questions, E : y2 = x3 + ax + b is supposed to be a pairing-friendly ordinary curve
defined over Fq with j(E) 6= 0, 1728.

2. We propose the following construction for the hash function H.
Let Q ∈ E(Fq)[n] a point of order n, i.e. such that G1 = 〈Q〉, and let h : {0; 1}∗ → {1; . . . ;n−1}
be any cryptographic hash function; we define the hash value of an identity id by H(id) =
[h(id)]Q.
Suppose that Eve has already asked her private key SidE = [s]H(idE) to the TA. Then, show
that she is able to compute the private key of any user.

3. We propose in this question a point compression technique using the trace zero subgroup and
quadratic twists.

Let Φq ∈ End(E(Fqk)) be the Frobenius map. The trace map (relative to the extension Fqk/Fq)
is the group morphism defined as:

tr : E(Fqk) → E(Fq)

P 7→
∑k−1

i=0 Φqi(P )

(a) Check that the image of tr is indeed a subset of E(Fq) and that its restriction to the
n-torsion tr|E(F

qk
)[n] : E(Fqk)[n]→ E(Fq)[n] is well-defined.

(b) Show that the kernel of the restricted trace map tr|E(F
qk

)[n] is a group of order n different

from G1, called the trace zero subgroup. In particular, show that the Weil and Tate pairings
from G1 ×G2 to G3 are non degenerate when G2 is equal to this trace zero subgroup.

We suppose in what follows that k is even and we denote by E′ the quadratic twist of E defined
over Fqk/2 , i.e. E′ is such that there exists an isomorphism ϕ : E′ → E defined over Fqk but
there is no isomorphism between E′ and E defined over Fqk/2 .



(c) Let ti be the trace of the i-th Frobenius Φqi = Φi
q. Show that tk = tk/2tk/2−2qk/2 and that

#E(Fqk) = #E(Fqk/2)×#E′(Fqk/2). Deduce that E′(Fqk/2)[n] ' Z/nZ.

(d) Let u ∈ Fqk/2 be a non quadratic residue and let v ∈ Fqk \Fqk/2 be a square root of u. Give
a Weierstrass equation of the twist E′ and the expression of the isomorphism ϕ in terms of
a, b and v.

(e) Prove that Φqk/2(ϕ(P )) = −ϕ(P ) for any point P ∈ E′(Fqk/2). Deduce that ϕ(E′(Fqk/2)[n]) =
ker(tr|E(F

qk
)[n]).

(f) Explain how this last result allows to reduce by 2 the size of the representations of elements
of G2.

4. The aim of this last question is to device a fault attack against the simplified Boneh-Franklin
IBE scheme when we take for e the Weil pairing

wn : E(Fq)[n]× E(Fqk)[n] → µn ⊂ (Fqk)∗

(P,Q) 7→ wn(P,Q) = (−1)n fP (Q)
fQ(P ) ,

where fP (Q) (resp. fQ(P )) is computed with the following algorithm:

Algorithm 1: Miller’s algorithm

Input : E, n = (nl...n0)2 ∈ N∗, P ∈ E[n], Q ∈ E
Output: fP (Q) where divfP = n(P )− n(O)
T ← P , f ← 1
for k = l − 1 down to 0 do

`← tangent at T ; v ← vertical line at [2]T ; T ← [2]T ; f ← f2`(Q)/v(Q)
if nk = 1 then

`← line through T and P ; v ← vertical line at T +P ; T ← T +P ; f ← f`(Q)/v(Q)

return f

We suppose that the decryption is done on a smart card. We will assume that the attacker is
able to inject a fault during the computation of the pairing w(Sid, C1), so that the final step in
the loop of Miller’s algorithm is not performed. We will also assume that the attacker is able to
extract the value of the pairing during the decryption of a message of its choice.

(a) Let w̃(Sid, C1) = −f̃Sid
(C1)/f̃C1(Sid) be the result of the faulty pairing computation. Show

that

w(Sid, C1) = − f̃Sid(C1)
2τrSid

(C1)

f̃C1(Sid)2τrC1(Sid)

where τP (x, y) = 0 is the equation of the tangent of E at the point P and r = (n− 1)/2.

(b) Show that the attacker can recover τrSid
(C1)/τrC1(Sid). Explain why this information allows

to deduce the value of the secret key Sid.

(c) Why is this attack no longer possible when the Tate pairing

〈P,Q〉n = fP (Q)
qk−1

n

is used instead?


