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Exercise 1 . A monomial order on K X1, . . . , Xn is called an elimination order for X1, . . . , Xk

(k n) if the following property holds:

P K X1, . . . , Xn , LM P K Xk 1, . . . , Xn P K Xk 1, . . . , Xn

1. Show that this definition is equivalent to

m1 monomial K X1, . . . , Xk , m2 monomial K Xk 1, . . . , Xn , m2 m1

2. Show that the lexicographic order is an elimination order for X1, . . . , Xk, for any k. Are the
graded and reverse graded lex order elimination orders?

3. Let 1, resp. 2, be a monomial order on K X1, . . . , Xk , resp. K Xk 1, . . . , Xn . Show that
there exists on K X1, . . . , Xn an elimination order for X1, . . . , Xk, which is equal to 1, resp. 2

when restricted to monomials in first k variables, resp. last n k variables.

Exercise 2. Let Rn be the lexicographical order on Rn, i.e.

a1, . . . , an Rn b1, . . . , bn i s.t.

a1 b1
...

ai 1 bi 1

ai bi

Let M GL n,R . We define on monomials in X1, . . . , Xn the order M by

Xα1
1 . . . Xαn

n M Xβ1
1 . . . Xβn

n M

α1
...
αn

Rn M

β1
...
βn

1. Show that M is a total order, compatible with the multiplication of monomials, and give a
condition on M for M to be a monomial order.

2. Describe the monomial orders corresponding to the following matrices:

M1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

M2

1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 0

M3

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0
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M4

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

M5

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

M6

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

3. Show that two matrices M and M define the same order if

M

λ11 0 0

λ21 λ22
. . .

.

.

.

.

.

.
.
.
.

. . . 0

λn1 λn2 λnn

M where λii 0 i.

4. Give a necessary and sufficient condition on M for the corresponding monomial order to be

graded, i.e. m1 M m2 as soon as the total degree of m1 is smaller than the total degree of m2.

5. It can actually be proved that for any monomial order , there exists an invertible matrix M
such that is equal to M . Using this result and the previous questions, describe all graded

monomial order on K x, y, z with x y z.

Exercise 3.

1. Compute the remainder of the given polynomial f x7y2 x3y2 y 1 in the division by the

(ordered) set F xy2 x, x y3 , first with the graded lex order, then with the lex order.

Repeat with the order of F reversed.

2. Same question with f xy2z2 xy yz, F x y2, y z3, z2 1 and cyclic permutations

of F .

3. Check your result using a computer algebra system.

Exercise 4. Let f x3 x2y x2z x, f1 x2y z and f2 xy 1.

1. Using the graded lex order, compute r1, resp. r2, the remainder of f in the division by f1, f2 ,

resp. f2, f1 . The results should be different; where in the division algorithm did the difference

occur?

2. Is r r1 r2 in the ideal f1, f2 ? If yes, express r as a combination with polynomial coefficients

of f1 and f2. If no, explain why.

3. Compute the remainder of r in the division by f1, f2 . Was it possible to predict the answer

before doing the division?

4. Find another polynomial g f1, f2 such that the remainder in the division by f1, f2 is not

zero.
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Exercise 5.

1. Let f1 xy2 xz y, f2 xy z2, f3 x yz4, and let I f1, f2, f3 be an ideal of R x, y, z
endowed with the lex order. Find a polynomial g I such that

LM g LM f1 , LM f2 , LM f3 .

2. More generally, suppose that I f1, . . . , fs is a polynomial ideal such that LM f1 , . . . , LM fs
LM I . Show that there exists g I whose remainder in the division by f1, . . . , fs is not zero.

Exercise 6 . Let I K X1, . . . , Xn be a principal ideal. Show that a finite subset G I is a

Gröbner basis of I if and only if it contains a generator of I.

Exercise 7. Let f1 x z, f2 y z, and I f1, f2 K x, y, z .

1. Show that f1, f2 is a Gröbner basis of I for the lex order.

2. Divide g xy by f1, f2 (in that order) and then by f2, f1 . Are the remainders equal, and

why? Are the “quotients” equal?

Exercise 8. Determine if the following sets are Gröbner bases of the ideal they generate (this may

or may not require the use of a computer algebra system).

1. x2 y, x3 z for the graded lex order.

2. x2 y, x3 z for the lex order with z y x.

3. xy2 xz y, xy z2, x yz4 for the standard lex order.

Exercise 9. Let G be a Gröbner basis of an ideal I K X1, . . . , Xn and let P,Q be two polynomials.

1. Show that P
G

Q
G

P Q
G
.

2. Find an exemple such that PQ
G

P
G
Q

G
. Prove that however PQ

G
P

G
Q

G
G

Exercise 10 . We recall that for P K X1, . . . , Xn of total degree d, its homogenization is the

polynomial

P h Xd
0 P

X1

X0
, . . . ,

Xn

X0
K X0, . . . , Xn .

Reciprocally, for Q homogeneous in K X0, . . . , Xn , its deshomogenization is

Q Q 1, X1, . . . , Xn K X1, . . . , Xn .

To a monomial order on K X1, . . . , Xn , we associate an order h on K X0, . . . , Xn defined by

m1 h m2

degm1 degm2

or

degm1 degm2 and m1 m2
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1. Show that h is indeed a monomial order. What are the orders associated to lex and reverse

graded lex?

2. Show that for any homogeneous polynomial Q K X0, . . . , Xn ,

LM Q LM h Q

3. Let f1, . . . , fr K X1, . . . , Xn , and let g1, . . . , gs be a Gröbner basis of the ideal fh
1 , . . . , f

h
r

K X0, X1, . . . , Xn composed of homogeneous polynomials. Prove that g1 , . . . , gs is a Gröbner

basis of f1, . . . , fr K X1, . . . , Xn .

Exercise 11 . A polynomial P K X1, . . . , Xn is called symmetric if it is invariant under any

permutation of the variables, i.e. P Xσ 1 , . . . , Xσ n P X1, . . . , Xn σ Sn. It is well-known

that any symmetric polynomial can be expressed in terms of the elementary polynomials

e1 X1 Xn, . . . ek
1 i1 ik n

Xi1 . . . Xik , . . . en X1 . . . Xn,

i.e. for any symmetric polynomial P , there exists a unique polynomial Q such that

P X1, . . . , Xn Q e1 X1, . . . , Xn , . . . , en X1, . . . , Xn .

1. Let P and Q be as above. We consider the ideal I K X1, . . . , Xn, Y1, . . . , Yn spanned by

Y1 e1 X1, . . . , Xn , . . . , Yn en X1, . . . , Xn . Show that P X1, . . . , Xn Q Y1, . . . , Yn I
(hint: write Q Y1, . . . , Yn as Q Y1 e1 e1, . . . , Yn en en ).

2. Deduce from the previous question a method for computing Q, knowing P (hint: use elimination

theory).

Exercise 12. Use Buchberger’s algorithm to find a Gröbner basis for each of the following ideals, first

with the lex, then the graded lex order, and compare your results. Give the corresponding minimal

reduced basis in each case. You may use a computer algebra system to compute S-polynomials and

remainders.

1. I x2y 1, xy2 x .

2. I x2 y, x4 2x2y y2 3 . What does the result indicate about the corresponding variety?

3. I x z4, y z5 .

Exercise 13. (Buchberger first criterion.) Let f, g be two polynomials in K X1, . . . , Xn such that

LM f LM g 1 (f and g are called foreign polynomials). Show that the remainder of S f, g in

the division by f, g is zero (hint: write LT f as f f with LM f LM f and similarly for

LT g ). How can this be used to simplify Buchberger’s algorithm?

Exercise 14. Let I be an ideal of K X1, . . . , Xn . The staircase of I (with respect to a monomial

order ) is defined as the set of monomials m that are not in LM I :

Staircase I m K X1, . . . , Xn monomial : f I, LM f � m .
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1. Explain how to determine the staircase from a Gröbner basis of I. Draw a picture of the

staircases of the ideals in Exercise 12. Explain how to determine from the staircase the number

of elements in a minimal Gröbner basis.

2. Show that the quotient R K X1, . . . , Xn I is a K-vector space. Prove that the (equivalence

classes of the) monomials in the staircase of I form a basis of R as a K-vector space. Deduce

that the cardinality of the staircase is independent of the monomial order .

Exercise 15. (Ideals of dimension 0.)

1. Let I be an ideal of K X1, . . . , Xn . Show that the following properties are equivalent:

(a) K X1, . . . , Xn I is a finite dimensional vector space.

(b) The staircase of I contains a finite number of monomials.

(c) i 1, n , k N, Xk
i LM I .

(d) V I K̄n
is a finite set.

An (non-trivial) ideal is said to have dimension 0 if it satisfies these properties. You may have

to use a weak form of the Nullstellensatz: if a polynomial f vanishes identically on an algebraic

set V I K̄n
, then there exists k N such that fk I.

2. Let V be a finite set in Kn
such that no points of V have a common n-th coordinate. Show

that the minimal reduced lex order Gröbner basis of the (zero-dimensional) ideal of V has the

following form (shape lemma position):

X1 g1 Xn , X2 g2 Xn , . . . , Xn 1 gn 1 Xn , gn Xn

with deg gi deg gn for all i n.
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1 Basic algebraic geometry

Exercise 1.

1. Construct P2 F 2 and list all its lines.

2. Compute the number of points of Pn F q .

3. How many points are there in each projective line of Pn F q ? Compute the number of projective

lines of Pn F q .

Exercise 2. Let K be an algebraic closed field. What are the algebraic sets of K1
?

Exercise 3. Prove that an affine algebraic set V Kn
is irreducible if and only if the ideal I I V

is prime in K X1, . . . , Xn .

Exercise 4 . Let C V Y 2 X3 X2
an affine algebraic subset of K2

and φ X, Y X Y ,

ψ X, Y Y X 1 . What can be said about ϕ, ϕ2
and ψ at the points P1 0, 0 and P2 1, 0 .

Exercise 5. We consider the curve C of equation x4 2x2y2 y4 x3 3xy2 0.

1. Plot the curve (it has the polar equation r cos 3θ ).

2. What (if any) are the singular points of C?

3. Show that the local ring at 0, 0 is not principal.

Exercise 6. Let P x0, y0 be a smooth point on an algebraic plane curve of equation f x, y 0.

We recall that the maximal ideal of the local ring at P is principal and is generated by x x0, y y0 .

Let T x, y x x0
f
x x0, y0 y y0

f
y x0, y0 , so that T x, y 0 is the equation of the tangent

at P .

1. Show that ordP T 2.

2. Let a, b K2
0, 0 and l x, y a x x0 b y y0 be such that the line of equation

l x, y 0 is not the tangent at P . Prove that l is an uniformizer at P (hint: show that

x x0, y y0 T, l ).

Exercise 7. Let C : Y 2 X3 X. Compute the order of Y , X, 2Y 2 X at the point P 0, 0 .
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Exercise 8.

1. Let D and D be two divisors on an algebraic curve C. Show that if D D then there is an

isomorphism between L D and L D .

2. Let D be a divisor such that degD 0. Show that L D 0 .

Exercise 9. Let C be an algebraic curve.

1. Let D Div C a divisor and P a point of C. Show that if the dimension of the vector space

L D is finite, then L D P also has finite dimension and � D P � D 1.

2. Use the result of the previous section to prove by induction that L D has finite dimension for

any divisor D and give an upper bound on � D .

Exercise 10.

1. Show that the genus of P1
is equal to zero and that Pic

0 P1
is trivial.

2. Show that if O is a distinguished point of a curve C with genus g, then any divisor D Pic
0 C

can be written as D P1 Pg g O for some points P1, . . . , Pg C.

2 Elliptic and hyperelliptic curves

Exercise 11. Let E : y2 x3 Ax B be an elliptic curve defined over an odd characteristic field

such that j E 0 (resp. j E 1728). Show that E has sextic or cubic twists (resp. quartic twist).

Exercise 12. Let H : y2 h0 x y h1 x be an imaginary hyperelliptic curve of genus g and O be

the point at the infinity.

1. Check that the order of x and y at O are 2 and 2g 1 respectively.

2. Show that P ı P 2 O is principal.

Exercise 13. Let H : y2 x5 1 be a curve defined over F3. Check that H is a genus 2 hyperelliptic

curve. Using Cantor’s algorithm, show that x2 x 1, x 1 x 1, 0 x2 x 1, x 1 .

Exercise 14 . Show that it is possible to recover the classical elliptic curve law from Cantor’s

algorithm.

Exercise 15. Let E : y2 x3 77x 28 be an elliptic curve defined over F157. Apply Pohlig-Hellman

reduction to compute the discrete logarithm of the point Q 2, 70 in base P 9, 115 (which has

order 162 2 3
4
).

Exercise 16. Let H : y2 x7 4x5 3x3 4x2 3x 4 be a genus 3 hyperelliptic curve defined

over F5. We want to apply the index calculus method to solve discrete logarithms in the Jacobian

of this curve using a smoothness bound B equal to 1 (this exercise requires the use of either Sage or

Pari/GP on a computer).
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1. Compute the set of F5-rational points of H and give a convenient factor basis for the index

calculus.

2. Let D0 x3 4x2 3x 3, x2 2x 2 and D1 x3 x2 4x 2, 2x2 x 2 be divisors

in the Jacobian of H. Check that their order is 263.

3. Find relations and deduce the discrete logarithm of D1 in base D0.

3 Rational maps and morphisms between curves

Exercise 17. Let E : Y 2Z X3 X2Z P2
be an elliptic curve and φ X : Y : Z Y X, 1

Y,X and ψ : P1 E, S : T S2T T 3
: S3 ST 2

: T 3
be two rational maps. Show that ψ φ

and ψ φ are the identity wherever they are defined. Are ψ or φ morphisms?

Exercise 18. Let φ1 : C1 C2 and φ2 : C2 C3. Show that

eφ2 φ1 P eφ1 P eφ2 φ1 P .

Exercise 19 . Let K be a field of characteristic different from 2 and 3, E : y2 x3 x be an

elliptic curve defined over K (with distinguished point O being the point at infinity) and φ : E P1
,

x, y x be a morphism.

1. Compute the degree of the morphism φ.

2. What is the ramification index of φ at P x, y (consider the cases where y 0 and y 0)?

at the point O?

3. Same questions but with the morphism ψ : E P1
, x, y y instead of φ.

Exercise 20. Let φ : P1 K P1 K , z zn be a morphism.

1. Compute the degree of the morphism φ.

2. What is the ramification index of φ at ? at a (consider the cases where a 0 and a 0)?

Exercise 21. Let C1, C2 be two smooth curves, D1, D2 two divisors of Div C1 and Div C2 respec-

tively, f a function of C2 and φ : C1 C2 a morphism. Show that

1. deg φ D2 deg D2 deg φ,

2. deg φ D1 deg D1 ,

3. φ φ D2 deg φ D2,

4. φ div f div φ f ,

5. div f f 0 , and in particular deg div f 0.
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4 Pairings

Exercise 22 . Let E Fq be an elliptic curve such that E Fq q 1, and assume that q 1 is

almost prime, i.e. is of the form cm where m is a prime and c is a small cofactor. Show that there is

a non-degenerate bilinear self-pairing G1 G1 G2 where G1 is a cyclic order m subgroup of E and

G2 is a cyclic order m subgroup of Fq .

Exercise 23 . Let P,Q E m and fP , fQ two functions such that div fP m P m O and

div fQ m Q m O . Show that

em P,Q
fP Q S

fP S

fQ S

fQ P S

for any S O,P, Q, P Q (hint: apply the definition with DP P S S and DQ

Q O , and observe that DP τS P O ).

Exercise 24. Let E : y2 x3 7 over F13.

1. Compute the cardinality of E F13 and the largest prime m such that m E F13 . Deduce the

corresponding embedding degree k.

2. Let P 11, 5 E, compute fP F13 E such that divfP m P m O with Miller’s

algorithm.

3. Let Q 4, 7t 10 E F132 7 where t F132 is such that t2 t 1 0. Compute the Tate

pairing evaluated at P and Q.

Exercise 25. Show that if E is defined over a prime field Fp with p 5 and is supersingular then

E Fp p 1.

5 Point counting

Exercise 26. Let E Fq
be an elliptic curve such that j E 0, 1728 (and p 5), and denote by t

its trace, so that E Fq q 1 t. Let E be the quadratic twist of E, i.e. E is isomorphic to E

over Fq2 but not over Fq. Show that the cardinality of E Fq is q 1 t.

Exercise 27. How many Koblitz curves are there over F2131? What are their cardinalities?

Exercise 28. Devise a point counting algorithm whose complexity is in Õ q operations in Fq.

Exercise 29. Assume that the cardinality of E Fq is a prime. Devise a (probabilistic) point counting

algorithm whose complexity is in O q1 2
operations in Fq.

Exercise 30. Assume that the cardinality of E Fq is a prime. Devise a (probabilistic) point counting

algorithm whose complexity is in O q1 4
operations in Fq (hint: think baby-step giant-step). Can it

be adapted to the case where E Fq is only assumed to be cyclic? More difficult: can it be adapted

to the general case?
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6 Point counting

Exercise 31. Let � be an Atkin prime for an elliptic curve E, and λ F�2 a root of the (irreducible)

characteristic polynomial X2 t�X q� F� X . We keep the notations introduced above.

1. Show that if r is even, then λr
is not a square in F�.

2. Show that if � 1 mod 4 and q is a quadratic residue modulo �, then r is odd. How can this be

used to speed up the SEA algorithm?

3. Assume that r is even and � 3 mod 4. Explain how to tell if λr q
r 2
� or λr q

r 2
� . Show

that s r 2 in the first case and s r in the second, and that this gives ϕ r choices for t� in

both cases.

4. Prove the formula: 1
� 1 r q

�
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