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Advanced Cryptology Final exam - (3 h)

Documents allowed. No computer.

Exercise 1. Consider the elliptic curve E : y? = 2% + z over F,, where p is the prime
p = 3" +15880.

Let ¢ be a primitive 4-th root of unity in F, and ¢ be the automorphism of E defined by
w : (xvy) = (_$7Cy)

1. Write down a point of order 2 in E(F,).
2. Check that 1 is indeed an automorphism of E. What is its characteristic polynomial?

3. Let &, : (z,y) — (2P, yP) be the Frobenius endomorphism of E. Show that ®, 01 # 1o ®,, and
hence show that #E(F,) = p + 1.

4. Knowing that the prime factorization of this cardinality is #E(F,) =4 - 11 - r where
r = 35139376413546227116122349756746904956961876861,

compute the embedding degree k£ with respect to r and p.

5. Is the elliptic curve F pairing-friendly?

Exercise 2. Let E be the elliptic curve defined over Fy of equation y? +xy = 3 + 22 + 1. We denote
by ®, : E(Fs) — E(Fs2), (z,y) — (22,9?) its Frobenius endomorphism.

1. Show that the characteristic polynomial of ®3 is X2 — X + 2.

2. Compute the cardinality of E(F4), E(Fg), E(F16) and E(Fs2).

3. Use Hasse’s bound to prove that #F(Fom) < #E(Fom+1) for any m > 5. Combine with the
result of the previous question to show that this inequality is true for any m > 1.

4. Explain why #FE(Fam) cannot be prime for any m > 2. Show that if #FE(Fam) is twice a prime
integer then m is a prime.

5. Let 7 be a complex root of X? — X + 2. Give the fundamental discriminant of the imaginary
quadratic field K = Q(7) and its ring of integers Ok.

6. Show that the endomorphism ring of E is isomorphic to the ring Z[7] = {a + b7 : a,b € Z}.

d
We will admit that any integer n € Z has a 7-adic expansion of the form n = Z ¢, with ¢; € {0,1}
i=0
and d approximately equal to logs(n).
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4. Use this result to show that the multiplication by n map can be computed as

[n]P= ) (2:)'(P) VPEeE.

P Ci=1

Explain why this is faster than the standard double-and-add algorithm.

Exercise 3. In order to speed up point multiplication, it is convenient to work with elliptic curves
having an easily computable endomorphism (other than a multiplication by m map), as in the previous
exercises. This exercise investigates a construction of Galbraith, Lin and Scott.

Let E' : y?> = 23 + ax + b be an elliptic curve defined over a prime field F, (p = 5) with j-invariant
different from 0 and 1728.

1. Let m be a positive integer and u a non-square in F,m. Show that the elliptic curve defined
over F,m of equation y? = 23 + auz + bu? (the quadratic twist of E' over [F,m) is isomorphic to
E' over F2m but not over Fym. Show that any curve defined over Fpm whose j-invariant equals
J(E") is isomorphic over Fym to either E' or its twist.

Let E be the quadratic twist of E’ over 2. We suppose that there exists a (large) prime integer r
such that r divides #E(F,2) but r? does not divide #E(F,1). Let ¢ be the Fji-isomorphism from F
to E' and @, : (x,y) — (2P, yP) the Frobenius endomorphism of E’. Finally, let ¢ =11 o &, 0.

2. Show that ¢ belongs to Endg , (E).

3. Show that ¢*(P) = P for any P € E(F,), and that ¢* —t'¢ + p = 0 where ¢ is equal to
p+1—#E'(F,).

4. Show that ¢?(P) = —P for any P € E(F,) (hint: write down equations for ¢ and ¢).

5. Show that there exists an integer A such that ¢(P) = [A]P for all P € E(F,2)[r], and that
A2 = —1modr.

Let n be an integer in [1,7 — 1]. We will admit that there exist two (easily computable) integers a
and b of size approximately half the size of r such that n = a + bA mod r.

6. Explain heuristically why this assumption is reasonable.

7. If Pis in E(F,2)[r], show that [n]P = [a]P + [b](P). Compare the computation of [n] P using
this formula with two double-and-add algorithms and using the standard method (with only one
double-and-add algorithm).
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To speed up the computation of [a] P + [b]¢(P), we can use the following Shamir’s trick:

Input : P, ¢(P), a, b
Express the binary representations (ay 1 ...ag) of @ and (by_1 ...bo) of b, padding the shorter
one with 0 on the left if need be

R« P+¢(P)

T—0O

for i = ¢ —1 down to 0 do
T(—[2]T
if a; =1 and b; = 0 then
LT(—T—i—P

if a; = 0 and b; = 1 then
| T« T+¢(P)

if a; =1 and b; = 1 then
| T<T+R

return 7'

8. Apply this algorithm step by step for a = 13 and b = 23.

9. What is the number of additions and/or doublings in this direct computation of [n]P = [a]P +
[b](P)? What is the speed-up as compared to the above methods?

10. Is it possible to modify Shamir’s trick into a right-to-left algorithm?

Exercise 4.

A Grobner basis with respect to a monomial order is usually not a Grobner basis for another monomial
order. The goal of this exercise is to show that for a given ideal I of k[X1,..., X, ], there are in fact
only finitely many possible reduced Grobner bases.

1. Let <; and <2 be two monomial orders. Let G = {g1,...,9:} be a Grobner basis for I with
respect to <1, and assume that LM, (g;) = LM.,(g;) for i = 1,...,¢. Prove that G is then also

a Grobner basis for I with respect to <o (hint: show that ?G’Q =0 for any fel).

2. Let <1 and <2 be two monomial orders such that LM, (I) = LM, (/). Show that the reduced
Grobner bases of I with respect to <; and <4 are equal.

Let T be the (infinite) set of all possible monomial orders on k[X7,...,X,] and let £ be the set of
the initial ideals of I with respect to the orders in 7. The goal of the next questions is to show by
contradiction that £ (and hence the set of possible reduced Grobner bases) is finite.

3. For each initial ideal in £, we choose one monomial order < in 7 which gives this initial ideal.
Let 7' < T be the set of these chosen monomial orders. By contradiction, we suppose that this
set 7' is infinite.

(a) Let {f1,..., fr} be a generating set of I. Prove that there exist only finitely many possi-
bilities for the set {LM(f1),...,LM(f,)}. Use the pigeonhole principle to show that there
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exists monomials my, ..., m, and an infinite set 7o = 7' such that {LM(f1),...,LM(f,)} =
{mi1,...,m,} for all monomial orders in 7p.

(b) Assume that {f1,..., fr} is not a Grobner basis for any order in 7y. Prove that there
exists fr41 € I such that m; { LM (f,41) for ¢ = 1,...,r and for any monomial order
< in 7g. Show that there exists a monomial m,,; and an infinite set 71 < 7y such that
{LM(f1),...,LM(fr41)} = {m1,...,my41} for all orders in T7.

(c) We can repeat this process, adding new polynomials f,1, ..., fr+x and monomials m, 1, ...,
my. 1, and constructing a decreasing sequence of infinite sets 7 < --- < 7y such that
{LM(f1),...,LM(frsx)} = {m1,...,m,yp} for all orders in Ty, as long as {f1,..., frer} 18
not a Grobner basis for any order in 7. Show that this process stops at some point.

(d) The previous question shows that there exists an integer ko and an order < in 7y, for which
{fi,---, fr+ko} is a Grobner basis of I. Use question 1 to prove that {fi,..., fr+k,} is then
a Grobner basis for any order in 7T, . Show that this implies that LM, (I) = LM, (I)
for any orders <; and <3 in Ty, and deduce a contradiction with the construction of 7.
Conclude.

. Show that the union of all the possible reduced Grébner bases of I is a universal Grébner basis,
i.e. a (non-minimal) Grobner basis of I for any monomial order.

. Find a universal Grobner basis for the ideal of Q[z,y] generated by x — y? and 2y — = (hint:
consider all possible leading terms at each stage of Buchberger’s algorithm).



