Advanced Cryptology Final exam - (3 h)

Documents allowed. No computer.

Exercise 1. Consider the elliptic curve $E: y^{2}=x^{3}+x$ over \mathbb{F}_{p}, where p is the prime

$$
p=3^{101}+15880 .
$$

Let ζ be a primitive 4 -th root of unity in $\overline{\mathbb{F}}_{p}$ and ψ be the automorphism of E defined by

$$
\psi:(x, y) \mapsto(-x, \zeta y) .
$$

1. Write down a point of order 2 in $E\left(\mathbb{F}_{p}\right)$.
2. Check that ψ is indeed an automorphism of E. What is its characteristic polynomial?
3. Let $\Phi_{p}:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ be the Frobenius endomorphism of E. Show that $\Phi_{p} \circ \psi \neq \psi \circ \Phi_{p}$, and hence show that $\# E\left(\mathbb{F}_{p}\right)=p+1$.
4. Knowing that the prime factorization of this cardinality is $\# E\left(\mathbb{F}_{p}\right)=4 \cdot 11 \cdot r$ where

$$
r=35139376413546227116122349756746904956961876861,
$$

compute the embedding degree k with respect to r and p.
5. Is the elliptic curve E pairing-friendly?

Exercise 2. Let E be the elliptic curve defined over \mathbb{F}_{2} of equation $y^{2}+x y=x^{3}+x^{2}+1$. We denote by $\Phi_{2}: E\left(\overline{\mathbb{F}}_{2}\right) \rightarrow E\left(\overline{\mathbb{F}}_{2}\right),(x, y) \mapsto\left(x^{2}, y^{2}\right)$ its Frobenius endomorphism.

1. Show that the characteristic polynomial of Φ_{2} is $X^{2}-X+2$.
2. Compute the cardinality of $E\left(\mathbb{F}_{4}\right), E\left(\mathbb{F}_{8}\right), E\left(\mathbb{F}_{16}\right)$ and $E\left(\mathbb{F}_{32}\right)$.
3. Use Hasse's bound to prove that $\# E\left(\mathbb{F}_{2^{m}}\right)<\# E\left(\mathbb{F}_{2^{m+1}}\right)$ for any $m \geqslant 5$. Combine with the result of the previous question to show that this inequality is true for any $m \geqslant 1$.
4. Explain why $\# E\left(\mathbb{F}_{2^{m}}\right)$ cannot be prime for any $m \geqslant 2$. Show that if $\# E\left(\mathbb{F}_{2^{m}}\right)$ is twice a prime integer then m is a prime.
5. Let τ be a complex root of $X^{2}-X+2$. Give the fundamental discriminant of the imaginary quadratic field $K=\mathbb{Q}(\tau)$ and its ring of integers \mathcal{O}_{K}.
6. Show that the endomorphism ring of E is isomorphic to the ring $\mathbb{Z}[\tau]=\{a+b \tau: a, b \in \mathbb{Z}\}$.

We will admit that any integer $n \in \mathbb{Z}$ has a τ-adic expansion of the form $n=\sum_{i=0}^{d} c_{i} \tau^{i}$, with $c_{i} \in\{0,1\}$ and d approximately equal to $\log _{2}(n)$.
4. Use this result to show that the multiplication by n map can be computed as

$$
[n] P=\sum_{i: c_{i}=1}\left(\Phi_{2}\right)^{i}(P) \quad \forall P \in E .
$$

Explain why this is faster than the standard double-and-add algorithm.

Exercise 3. In order to speed up point multiplication, it is convenient to work with elliptic curves having an easily computable endomorphism (other than a multiplication by m map), as in the previous exercises. This exercise investigates a construction of Galbraith, Lin and Scott.
Let $E^{\prime}: y^{2}=x^{3}+a x+b$ be an elliptic curve defined over a prime field $\mathbb{F}_{p}(p \geqslant 5)$ with j-invariant different from 0 and 1728.

1. Let m be a positive integer and u a non-square in $\mathbb{F}_{p^{m}}$. Show that the elliptic curve defined over $\mathbb{F}_{p^{m}}$ of equation $y^{2}=x^{3}+a u^{2} x+b u^{3}$ (the quadratic twist of E^{\prime} over $\mathbb{F}_{p^{m}}$) is isomorphic to E^{\prime} over $\mathbb{F}_{p^{2 m}}$ but not over $\mathbb{F}_{p^{m}}$. Show that any curve defined over $\mathbb{F}_{p^{m}}$ whose j-invariant equals $j\left(E^{\prime}\right)$ is isomorphic over $\mathbb{F}_{p^{m}}$ to either E^{\prime} or its twist.

Let E be the quadratic twist of E^{\prime} over $\mathbb{F}_{p^{2}}$. We suppose that there exists a (large) prime integer r such that r divides $\# E\left(\mathbb{F}_{p^{2}}\right)$ but r^{2} does not divide $\# E\left(\mathbb{F}_{p^{4}}\right)$. Let ψ be the $\mathbb{F}_{p^{4}}$-isomorphism from E to E^{\prime} and $\Phi_{p}:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ the Frobenius endomorphism of E^{\prime}. Finally, let $\varphi=\psi^{-1} \circ \Phi_{p} \circ \psi$.
2. Show that φ belongs to $E n d_{\mathbb{F}^{4}}(E)$.
3. Show that $\varphi^{4}(P)=P$ for any $P \in E\left(\mathbb{F}_{p^{4}}\right)$, and that $\varphi^{2}-t^{\prime} \varphi+p=0$ where t^{\prime} is equal to $p+1-\# E^{\prime}\left(\mathbb{F}_{p}\right)$.
4. Show that $\varphi^{2}(P)=-P$ for any $P \in E\left(\mathbb{F}_{p^{2}}\right)$ (hint: write down equations for ψ and φ).
5. Show that there exists an integer λ such that $\varphi(P)=[\lambda] P$ for all $P \in E\left(\mathbb{F}_{p^{2}}\right)[r]$, and that $\lambda^{2}=-1 \bmod r$.

Let n be an integer in $[1, r-1]$. We will admit that there exist two (easily computable) integers a and b of size approximately half the size of r such that $n=a+b \lambda \bmod r$.
6. Explain heuristically why this assumption is reasonable.
7. If P is in $E\left(\mathbb{F}_{p^{2}}\right)[r]$, show that $[n] P=[a] P+[b] \varphi(P)$. Compare the computation of $[n] P$ using this formula with two double-and-add algorithms and using the standard method (with only one double-and-add algorithm).

To speed up the computation of $[a] P+[b] \varphi(P)$, we can use the following Shamir's trick:

```
Input \(: P, \varphi(P), a, b\)
Express the binary representations \(\left(a_{\ell-1} \ldots a_{0}\right)\) of \(a\) and \(\left(b_{\ell-1} \ldots b_{0}\right)\) of \(b\), padding the shorter
one with 0 on the left if need be
\(R \leftarrow P+\varphi(P)\)
\(T \leftarrow \mathcal{O}\)
for \(i=\ell-1\) down to 0 do
        \(T \leftarrow[2] T\)
        if \(a_{i}=1\) and \(b_{i}=0\) then
            \(T \leftarrow T+P\)
        if \(a_{i}=0\) and \(b_{i}=1\) then
            \(T \leftarrow T+\varphi(P)\)
        if \(a_{i}=1\) and \(b_{i}=1\) then
            \(T \leftarrow T+R\)
return \(T\)
```

8. Apply this algorithm step by step for $a=13$ and $b=23$.
9. What is the number of additions and/or doublings in this direct computation of $[n] P=[a] P+$ $[b] \varphi(P)$? What is the speed-up as compared to the above methods?
10. Is it possible to modify Shamir's trick into a right-to-left algorithm?

Exercise 4.

A Gröbner basis with respect to a monomial order is usually not a Gröbner basis for another monomial order. The goal of this exercise is to show that for a given ideal I of $k\left[X_{1}, \ldots, X_{n}\right]$, there are in fact only finitely many possible reduced Gröbner bases.

1. Let $<_{1}$ and $<_{2}$ be two monomial orders. Let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ be a Gröbner basis for I with respect to \prec_{1}, and assume that $\mathrm{LM}_{<_{1}}\left(g_{i}\right)=\mathrm{LM}_{<_{2}}\left(g_{i}\right)$ for $i=1, \ldots, t$. Prove that G is then also a Gröbner basis for I with respect to \prec_{2} (hint: show that $\bar{f}^{G,<_{2}}=0$ for any $f \in I$).
2. Let $<_{1}$ and $<_{2}$ be two monomial orders such that $\mathrm{LM}_{<_{1}}(I)=\mathrm{LM}_{<_{2}}(I)$. Show that the reduced Gröbner bases of I with respect to $<_{1}$ and $<_{2}$ are equal.

Let \mathcal{T} be the (infinite) set of all possible monomial orders on $k\left[X_{1}, \ldots, X_{n}\right]$ and let \mathcal{L} be the set of the initial ideals of I with respect to the orders in \mathcal{T}. The goal of the next questions is to show by contradiction that \mathcal{L} (and hence the set of possible reduced Gröbner bases) is finite.
3. For each initial ideal in \mathcal{L}, we choose one monomial order $<$ in \mathcal{T} which gives this initial ideal. Let $\mathcal{T}^{\prime} \subset \mathcal{T}$ be the set of these chosen monomial orders. By contradiction, we suppose that this set \mathcal{T}^{\prime} is infinite.
(a) Let $\left\{f_{1}, \ldots, f_{r}\right\}$ be a generating set of I. Prove that there exist only finitely many possibilities for the set $\left\{\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{r}\right)\right\}$. Use the pigeonhole principle to show that there
exists monomials m_{1}, \ldots, m_{r} and an infinite set $\mathcal{T}_{0} \subset \mathcal{T}^{\prime}$ such that $\left\{\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{r}\right)\right\}=$ $\left\{m_{1}, \ldots, m_{r}\right\}$ for all monomial orders in \mathcal{T}_{0}.
(b) Assume that $\left\{f_{1}, \ldots, f_{r}\right\}$ is not a Gröbner basis for any order in \mathcal{T}_{0}. Prove that there exists $f_{r+1} \in I$ such that $m_{i} \nmid \operatorname{LM}_{<}\left(f_{r+1}\right)$ for $i=1, \ldots, r$ and for any monomial order $<$ in \mathcal{T}_{0}. Show that there exists a monomial m_{r+1} and an infinite set $\mathcal{T}_{1} \subset \mathcal{T}_{0}$ such that $\left\{\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{r+1}\right)\right\}=\left\{m_{1}, \ldots, m_{r+1}\right\}$ for all orders in \mathcal{T}_{1}.
(c) We can repeat this process, adding new polynomials f_{r+1}, \ldots, f_{r+k} and monomials m_{r+1}, \ldots, m_{r+k} and constructing a decreasing sequence of infinite sets $\mathcal{T}_{k} \subset \cdots \subset \mathcal{T}_{0}$ such that $\left\{\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{r+k}\right)\right\}=\left\{m_{1}, \ldots, m_{r+k}\right\}$ for all orders in \mathcal{T}_{k}, as long as $\left\{f_{1}, \ldots, f_{r+k}\right\}$ is not a Gröbner basis for any order in \mathcal{T}_{k}. Show that this process stops at some point.
(d) The previous question shows that there exists an integer k_{0} and an order $<$ in $\mathcal{T}_{k_{0}}$ for which $\left\{f_{1}, \ldots, f_{r+k_{0}}\right\}$ is a Gröbner basis of I. Use question 1 to prove that $\left\{f_{1}, \ldots, f_{r+k_{0}}\right\}$ is then a Gröbner basis for any order in $\mathcal{T}_{k_{0}}$. Show that this implies that $\mathrm{LM}_{<_{1}}(I)=\mathrm{LM}_{<_{2}}(I)$ for any orders $<_{1}$ and $<_{2}$ in $\mathcal{T}_{k_{0}}$ and deduce a contradiction with the construction of \mathcal{T}^{\prime}. Conclude.
4. Show that the union of all the possible reduced Gröbner bases of I is a universal Gröbner basis, i.e. a (non-minimal) Gröbner basis of I for any monomial order.
5. Find a universal Gröbner basis for the ideal of $\mathbb{Q}[x, y]$ generated by $x-y^{2}$ and $x y-x$ (hint: consider all possible leading terms at each stage of Buchberger's algorithm).

