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Advanced Cryptology Final exam - (3 h)
Documents allowed. No computer.

Exercise 1. Consider the elliptic curve E : y2 � x3 � x over Fp, where p is the prime

p � 3101 � 15880.

Let ζ be a primitive 4-th root of unity in Fp and ψ be the automorphism of E defined by

ψ : px, yq ÞÑ p�x, ζyq.

1. Write down a point of order 2 in EpFpq.

2. Check that ψ is indeed an automorphism of E. What is its characteristic polynomial?

3. Let Φp : px, yq ÞÑ pxp, ypq be the Frobenius endomorphism of E. Show that Φp �ψ � ψ �Φp, and
hence show that #EpFpq � p� 1.

4. Knowing that the prime factorization of this cardinality is #EpFpq � 4 � 11 � r where

r � 35139376413546227116122349756746904956961876861,

compute the embedding degree k with respect to r and p.

5. Is the elliptic curve E pairing-friendly?

Exercise 2. Let E be the elliptic curve defined over F2 of equation y2�xy � x3�x2� 1. We denote
by Φ2 : EpF2q Ñ EpF2q, px, yq ÞÑ px2, y2q its Frobenius endomorphism.

1. Show that the characteristic polynomial of Φ2 is X2 �X � 2.

2. Compute the cardinality of EpF4q, EpF8q, EpF16q and EpF32q.

3. Use Hasse’s bound to prove that #EpF2mq   #EpF2m�1q for any m ¥ 5. Combine with the
result of the previous question to show that this inequality is true for any m ¥ 1.

4. Explain why #EpF2mq cannot be prime for any m ¥ 2. Show that if #EpF2mq is twice a prime
integer then m is a prime.

5. Let τ be a complex root of X2 � X � 2. Give the fundamental discriminant of the imaginary
quadratic field K � Qpτq and its ring of integers OK .

6. Show that the endomorphism ring of E is isomorphic to the ring Zrτ s � ta� bτ : a, b P Zu.

We will admit that any integer n P Z has a τ -adic expansion of the form n �
ḑ

i�0

ciτ
i, with ci P t0, 1u

and d approximately equal to log2pnq.
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4. Use this result to show that the multiplication by n map can be computed as

rnsP �
¸

i : ci�1

pΦ2q
ipP q @P P E.

Explain why this is faster than the standard double-and-add algorithm.

Exercise 3. In order to speed up point multiplication, it is convenient to work with elliptic curves
having an easily computable endomorphism (other than a multiplication by m map), as in the previous
exercises. This exercise investigates a construction of Galbraith, Lin and Scott.
Let E1 : y2 � x3 � ax � b be an elliptic curve defined over a prime field Fp (p ¥ 5) with j-invariant
different from 0 and 1728.

1. Let m be a positive integer and u a non-square in Fpm . Show that the elliptic curve defined
over Fpm of equation y2 � x3 � au2x� bu3 (the quadratic twist of E1 over Fpm) is isomorphic to
E1 over Fp2m but not over Fpm . Show that any curve defined over Fpm whose j-invariant equals
jpE1q is isomorphic over Fpm to either E1 or its twist.

Let E be the quadratic twist of E1 over Fp2 . We suppose that there exists a (large) prime integer r
such that r divides #EpFp2q but r2 does not divide #EpFp4q. Let ψ be the Fp4-isomorphism from E
to E1 and Φp : px, yq ÞÑ pxp, ypq the Frobenius endomorphism of E1. Finally, let ϕ � ψ�1 � Φp � ψ.

2. Show that ϕ belongs to EndFp4
pEq.

3. Show that ϕ4pP q � P for any P P EpFp4q, and that ϕ2 � t1ϕ � p � 0 where t1 is equal to
p� 1�#E1pFpq.

4. Show that ϕ2pP q � �P for any P P EpFp2q (hint: write down equations for ψ and ϕ).

5. Show that there exists an integer λ such that ϕpP q � rλsP for all P P EpFp2qrrs, and that
λ2 � �1 mod r.

Let n be an integer in r1, r � 1s. We will admit that there exist two (easily computable) integers a
and b of size approximately half the size of r such that n � a� bλ mod r.

6. Explain heuristically why this assumption is reasonable.

7. If P is in EpFp2qrrs, show that rnsP � rasP � rbsϕpP q. Compare the computation of rnsP using
this formula with two double-and-add algorithms and using the standard method (with only one
double-and-add algorithm).
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To speed up the computation of rasP � rbsϕpP q, we can use the following Shamir’s trick:

Input : P , ϕpP q, a, b
Express the binary representations pa`�1 . . . a0q of a and pb`�1 . . . b0q of b, padding the shorter
one with 0 on the left if need be
RÐ P � ϕpP q
T Ð O
for i � `� 1 down to 0 do

T Ð r2sT
if ai � 1 and bi � 0 then

T Ð T � P

if ai � 0 and bi � 1 then
T Ð T � ϕpP q

if ai � 1 and bi � 1 then
T Ð T �R

return T

8. Apply this algorithm step by step for a � 13 and b � 23.

9. What is the number of additions and/or doublings in this direct computation of rnsP � rasP �
rbsϕpP q? What is the speed-up as compared to the above methods?

10. Is it possible to modify Shamir’s trick into a right-to-left algorithm?

Exercise 4.

A Gröbner basis with respect to a monomial order is usually not a Gröbner basis for another monomial
order. The goal of this exercise is to show that for a given ideal I of krX1, . . . , Xns, there are in fact
only finitely many possible reduced Gröbner bases.

1. Let  1 and  2 be two monomial orders. Let G � tg1, . . . , gtu be a Gröbner basis for I with
respect to  1, and assume that LM 1pgiq � LM 2pgiq for i � 1, . . . , t. Prove that G is then also

a Gröbner basis for I with respect to  2 (hint: show that f
G, 2

� 0 for any f P I).

2. Let  1 and  2 be two monomial orders such that LM 1pIq � LM 2pIq. Show that the reduced
Gröbner bases of I with respect to  1 and  2 are equal.

Let T be the (infinite) set of all possible monomial orders on krX1, . . . , Xns and let L be the set of
the initial ideals of I with respect to the orders in T . The goal of the next questions is to show by
contradiction that L (and hence the set of possible reduced Gröbner bases) is finite.

3. For each initial ideal in L, we choose one monomial order   in T which gives this initial ideal.
Let T 1 � T be the set of these chosen monomial orders. By contradiction, we suppose that this
set T 1 is infinite.

(a) Let tf1, . . . , fru be a generating set of I. Prove that there exist only finitely many possi-
bilities for the set tLMpf1q, . . . ,LMpfrqu. Use the pigeonhole principle to show that there
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exists monomials m1, . . . ,mr and an infinite set T0 � T 1 such that tLMpf1q, . . . ,LMpfrqu �
tm1, . . . ,mru for all monomial orders in T0.

(b) Assume that tf1, . . . , fru is not a Gröbner basis for any order in T0. Prove that there
exists fr�1 P I such that mi - LM pfr�1q for i � 1, . . . , r and for any monomial order
  in T0. Show that there exists a monomial mr�1 and an infinite set T1 � T0 such that
tLMpf1q, . . . ,LMpfr�1qu � tm1, . . . ,mr�1u for all orders in T1.

(c) We can repeat this process, adding new polynomials fr�1, . . . , fr�k and monomialsmr�1, . . . ,
mr�k and constructing a decreasing sequence of infinite sets Tk � � � � � T0 such that
tLMpf1q, . . . ,LMpfr�kqu � tm1, . . . ,mr�ku for all orders in Tk, as long as tf1, . . . , fr�ku is
not a Gröbner basis for any order in Tk. Show that this process stops at some point.

(d) The previous question shows that there exists an integer k0 and an order   in Tk0 for which
tf1, . . . , fr�k0u is a Gröbner basis of I. Use question 1 to prove that tf1, . . . , fr�k0u is then
a Gröbner basis for any order in Tk0 . Show that this implies that LM 1pIq � LM 2pIq
for any orders  1 and  2 in Tk0 and deduce a contradiction with the construction of T 1.
Conclude.

4. Show that the union of all the possible reduced Gröbner bases of I is a universal Gröbner basis,
i.e. a (non-minimal) Gröbner basis of I for any monomial order.

5. Find a universal Gröbner basis for the ideal of Qrx, ys generated by x � y2 and xy � x (hint:
consider all possible leading terms at each stage of Buchberger’s algorithm).


