Homework

Exercise 1.

- 1. Show that $((\mathbb{Z}/n\mathbb{Z})^{\times}, \cdot)$ is a group.
- 2. Prove Euler's theorem: for any positive integer n and any integer a coprime to n

 $a^{\varphi(n)} = 1 \mod n.$

(In other words, the order of $a \mod n$ divides $\varphi(n)$).

3. Deduce Fermats's little theorem:

 $\forall a \in \mathbb{Z}, p \text{ prime}, a^p = a \mod p.$

4. Application: show that 1763 is not a prime number.

Exercise 2. Square roots and factorization

For a positive integer n, an integer a is called a *quadratic residue* modulo n if $a \in \mathbb{Z}/n\mathbb{Z}^{\times}$ satisfies $x^2 = a \mod n$ for some integer x. In this case x is called a *square root* of $a \mod n$.

- 1. Compute square roots of 1 and -1 modulo 7 and modulo 13.
- 2. Check that the set $(\mathbb{Z}/n\mathbb{Z}^{\times})^2$ of quadratic residues modulo *n* is a subgroup of $\mathbb{Z}/n\mathbb{Z}^{\times}$.
- 3. Show that for any odd prime p, the number of quadratic residues modulo p is (p-1)/2 and that for any integer $a \in \mathbb{Z}/p\mathbb{Z}^*$, $a^{(p-1)/2} = \pm 1 \mod p$. Deduce that a is a quadratic residue modulo p iff $a^{(p-1)/2} = 1 \mod p$.
- 4. (a) Show that if a is a quadratic residue modulo p^e $(e \in \mathbb{N}^*)$ then $a^{(p-1)/2} = 1 \mod p$.
 - (b) Assume that a is a quadratic residue modulo p^e . Show that a is also a quadratic residue modulo p^{e+1} (hint: try to find x such that $(x_e + p^e x)^2 = a \mod p^{e+1}$, where $x_e^2 = a \mod p^e$).
 - (c) Deduce that a is a quadratic residue modulo p^e iff $a^{(p-1)/2} = 1 \mod p$.
- 5. Compute the number of quadratic residues modulo an odd integer n.
- 6. Let p a prime number s.t. $p = 3 \mod 4$. Show that $x^{\frac{p+1}{4}}$ is the square root of x mod p. Are the integers 106 and 97 quadratic residues modulo 139? If they are, compute their square roots. Note that more generally there exists a probabilistic algorithm that computes the square roots modulo any prime number.
- 7. Let n = pq a product of two odd primes.
 - (a) Show that if one knows how to compute square roots modulo p and modulo q, then one knows how to compute square roots modulo n. Application: compute the square roots of 106 modulo 417.
 - (b) Deduce that if one is able to factorize, then one can compute the square roots of any integers modulo n.
- 8. Suppose that you have access to an algorithm \mathcal{A} that computes efficiently the square roots modulo an odd integer n (in other words \mathcal{A} has polynomial complexity in the size of n). Find a probabilistic algorithm that gives the factorization of n.