
Introduction to Cryptography and Coding – M1 MOSIG

Vanessa Vitse

2015-2016

Contents

1 Modular arithmetic (15/02/16—17/02/16) 2

1.1 Prerequisites . 2

1.2 Congruences . 3

1.3 Modular exponentiation . 4

1.4 Extended Euclid algorithm . 4

1.5 Modular inverse . 6

2 Algebraic structures for cryptography (29/02/16—30/03/16) 7

2.1 Groups . 7

2.2 Applications to cryptography: DLP, DH and ElGamal 9

2.3 Fields . 9

2.4 Polynomial arithmetic . 10

3 Factorisation and RSA (04/04/16—06/04/16) 12

3.1 Factorisation as a hard problem . 12

3.2 RSA in confidentiality . 12

3.3 RSA in signature . 14

4 Attacks on factorization and DLP 27/04/2016-02/05/2016 14

4.1 Pohlig-Hellman reduction . 15

4.2 Baby-step Giant-step . 15

4.3 Pollard-Rho . 16

4.3.1 Pollard-Rho for DLP . 16

1

CONTENTS V.Vitse

4.3.2 Pollard-Rho for factoring . 17

1 Modular arithmetic (15/02/16—17/02/16)

1.1 Prerequisites

Basic properties of the integers

Definition 1.1 (Divisibility). Let a and b two integers. Then a divides b (or b is a multiple of a) if
there exists an integer c such that b = a · c. This is denoted a|b.

Property 1.2. 1. For all a ∈ Z, 1|a and a|a (reflexivity).

2. If a|b and b|c then a|c (transitivity).

3. If a|b and a|c then a|(b+ c).

4. For all integer c 6= 0, a|b⇔ ac|bc.

Definition 1.3 (Prime numbers). A prime number is a positive integer p 6= 1 that is only divisible by
±1 and ±p. The set of prime numbers is denoted P; P = {2, 3, 5, 7, 11, 13, 17, . . .}. A positive integer
that is not a prime is called composite.

Theorem 1.4. There are infinitely many prime numbers. Let π(n) be the number of primes smaller
than n, then π(n) ∼ n/ log n.

Remark. So informally, the probability that a random integer n is prime is about 1/ log n.

Theorem 1.5 (Fundamental theorem of arithmetic).
Every nonzero integer n can be written as a product of primes:

n = ±1 . pα1
1 pα2

2 . . . pαkk , pi ∈ P, αi ∈ N.

This decomposition is unique if p1 < p2 < · · · < pk and αi > 0 for all i.

Lemma 1.6 (Euclid’s lemma). Let p be a prime number and a, b two integers. Then p|ab ⇒ p|a or
p|b.

Asymptotic notations and complexity basics

f, g real functions, g is positive

• f = O(g) if there exists a constant c s.t. |f(x)| ≤ cg(x) for all sufficiently large x.

• f = o(g) if f/g → 0 as x→∞.

• f ∼ g if f/g → 1 as x→∞.

• f = Θ(g) if there exist constants c1, c2 s.t. c1g(x) ≤ f(x) ≤ c2g(x) for all sufficiently large x.

• f = Ω(g) if there exists a constant c s.t. f(x) ≥ cg(x) for all sufficiently large x.

2

UGA - Master MOSIG 1.2 Congruences

Some properties:

Property 1.7. 1. f = o(g)⇒ f = O(g) and g 6= O(f)

2. f ∼ g ⇔ f = (1 + o(1))g

• The size of an integer a is the number of bits in the binary representation of |a|, that is blog2 |a|c+
1

• Polynomial-time algorithm: algorithm whose running time is bounded by a polynomial in the
length of the input, otherwise said the complexity is in nO(1) where n is the size of the input.

• Exponential-time algorithm: algorithm whose running time is exponential in the binary length
of the input, that is in exp(O(1)n).

• Subexponential-time algorithm: the complexity is “in between” polynomial and exponential com-
plexities, more precisely the complexity is in

Ln(α) = exp(O(1)(nα(log n)1−α)

where 0 < α < 1 and n is the size of the input. Note that if α = 1, then the complexity is
exponential and when α = 0 it is exponential.

Example. Addition, multiplication, Euclidean division of integers are polynomial algorithms.

1.2 Congruences

Theorem 1.8 (Euclidean division). For a, b ∈ Z, b 6= 0, there exist unique q, r ∈ Z s.t. a = bq + r
and 0 ≤ r < |b|. The integer r is the remainder in the division of a by b, and q is the quotient.

Definition 1.9 (Congruence). Let x, y, n ∈ Z. Then x is congruent to y modulo n if their remainders
in the division by n are the same.

In particular

x = y mod n ⇔ n|(x− y)

⇔ ∃k ∈ Z, x = kn+ y

Property 1.10. 1. This is an equivalence relation (reflexive, transitive and symmetric)

2. Compatibility with addition and multiplication mod n: for all integers a, b, a′, b′ s.t. a = a′ mod n
and b = b′ mod n, then a+ b = a′ + b′ mod n and ab = a′b′ mod n.

The congruence equivalence relation partitions the set Z into equivalence classes:

Definition 1.11 (Residue classes modulo n). Z/nZ is the set of equivalence classes or residue classes
modulo n for the congruence relation. For any integer m in a residue class, we call m a representative
of that class.

Note that there are precisely n distinct residue classes modulo n, given for example by 0, . . . , n − 1
(corresponding to the remainders in the Euclidean division by n).

Property 1.12. (Z/nZ,+, ·) is a (commutative and unit) ring. See next chapter.

3

CONTENTS V.Vitse

1.3 Modular exponentiation

Question: given x ∈ Z/nZ and e ∈ N∗, how to compute xe mod n?

An obvious way is to iteratively multiply by x a total of e times. The complexity is then in O(e log(n)2).
Another (much faster) way is to apply the “square-and-multiply” algorithm; the idea is based on the
following mathematical property:

Property 1.13. Let e = (e`−1 . . . e0)2 be the binary expansion of e, that is e =
∑`−1

i=0 ei2
i. Then

xe =
`−1∏
i=0

(x2
i

mod n)ei =
`−1∏

i=0,ei 6=0

(x2
i

mod n).

This yields the following algorithm:

Algorithm 1: “Right-to-left” algorithm for modular exponentiation

Input : x ∈ Z/nZ, e, n ∈ N∗
Output: y = xe mod n
y ← 1
t← x
while e 6= 0 do

if e%2 = 1 then
y ← y · t mod n

e← e� 1
t← t2 mod n

return y

Exercise 1. Propose another algorithm which reads the bits of e from “left-to-right”. What is the
complexity of these algorithms ?

1.4 Extended Euclid algorithm

Definition 1.14 (gcd, lcm, coprimality). For a, b ∈ Z, we call gcd(a, b) or a∧ b the greatest common
divisor of a and b and lcm(a, b) or a∨ b their least common multiple. We say that a and b are coprime
if gcd(a, b) = 1.

In particular,
x|a and x|b⇔ x|(a ∧ b),

a|m and b|m⇔ (a ∨ b)|m.

Property 1.15. If a = pα1
1 . . . pαnn and b = pβ11 . . . pβnn , then{

a ∧ b = p
min(α1,β1)
1 . . . p

min(αn,βn)
n

a ∨ b = p
max(α1,β1)
1 . . . p

max(αn,βn)
n

In particular,
(a ∧ b)× (a ∨ b) = ab

4

UGA - Master MOSIG 1.4 Extended Euclid algorithm

Property 1.16 (Gauss lemma). If p, q are coprime and x is an integer s.t. p|qx, then p|x.

Lemma 1.17 (Bézout lemma). For a, b ∈ Z, there exist u, v ∈ Z such that au+ bv = gcd(a, b).

Proof. Constructive proof. We use the fact that if r is the remainder in the Euclidean division of a
by b, then

a ∧ b = b ∧ r.

Now let r0 := a and r1 := b. We compute iteratively

r0 = r1 q1 + r2 with 0 ≤ r2 < |r1| → a ∧ b = r0 ∧ r1 = r1 ∧ r2
r1 = r2 q2 + r3 with 0 ≤ r3 < r2 → r1 ∧ r2 = r2 ∧ r3

...
...

rn−2 = rn−1 qn−1 + rn with 0 ≤ rn < rn−1 → rn−2 ∧ rn−1 = rn−1 ∧ rn
rn−1 = rn qn + rn+1 with rn+1 = 0 → rn−1 ∧ rn = rn

In particular, a ∧ b is equal to the last non-zero remainder rn. To get u and v we explicitly introduce
the sequences (si), (ti) such that sia+ tib = ri.

• Initialisation:

{
s0 = 1 t0 = 0

s1 = 0 t1 = 1

• Induction hypothesis:

{
si−1a+ ti−1b = ri−1

sia+ tib = ri

Writing ri+1 = riqi − ri−1 = (sia+ tib)qi − (si−1a+ ti−1) = (si−1 − qisi)a+ (ti−1 − qiti)b, you get{
si+1 = si−1 − qisi
ti+1 = ti−1 − qiti

Exercise 2. Write algorithms that compute gcd’s and Bézout coefficients.

Theorem 1.18 (Chinese Remainder Theorem – CRT). Let n,m be two coprime integers and a, b two
integers. Then the system {

x = a mod n

x = b mod n

admits a unique solution x mod mn.

Proof. From Bézout, there exist u, v s.t. un + vm = 1 and x0 = bun + avm is a particular solution.

If x1 is another solution of the previous system then

{
x1 − x0 = 0 mod n

x1 − x0 = 0 mod m
. From Gauss lemma, we

deduce that x1 = x2 mod mn.

Exercise 3.

5

CONTENTS V.Vitse

1. Let a, b, c ∈ Z such that (a, b) 6= (0, 0). Show that the equation

ax+ by = c (1)

has a solution iff a ∧ b divides c.

2. Find all the integer solutions of the following equations: 7x− 9y = 6, 11x+ 17y = 5.

Exercise 4 . In a country named ASU where the currency is the rallod, the national bank issues
banknotes of 95 rallods and coins of 14 rallods.

1. Show that it is possible to pay any integer amount (provided that each participant has access
to as many coins and banknotes as needed).

2. Suppose that you need to pay an amount S and that you have access to as many coins and
banknotes as needed, but that your creditor cannot give the change. Thus it is possible for
example to pay S = 14 rallods but impossible to pay 13 or 15 rallods. Show that it is always
possible to pay any large enough amount.

Exercise 5. A rooster costs 5 silver coins, a hen 3 coins and a set of 4 chicks 1 coin. Someone bought
100 chickens for 100 coins. How many pieces of each kind has he bought?

1.5 Modular inverse

Definition 1.19. Let x, n > 0 two integers. We say that x admits a multiplicative inverse modulo n
if there exists y ∈ Z such that x · y = 1 mod n; this is denoted by y = x−1 mod n.
Similarly, x ∈ Z/nZ is invertible if there exists y ∈ Z/nZ such that xy = 1 mod n.

Remark. If a ∈ Z is invertible and if a′ = a mod n then a′ is also invertible modulo n.

Theorem 1.20. An integer a is invertible modulo n iff a and n are coprime.

Proof. Direct application from Bézout: ua+ vn = 1⇒ u = a−1 mod n.

Remark. If p is prime, then every element of (Z/pZ)∗ is invertible.

Algorithm 2: Computation of inverse modulo n

Input : a ∈ Z, n ∈ N∗
Output: a−1 mod n
s0 ← 1 s1 ← 0; while b 6= 0 do

tmp← a
a← b
b← tmp%a
q ← tmp/a
tmp← s0 − qs1 s0 ← s1 s1 ← tmp

return s0

Exercise 6. Solve the following system {
35x = 7 [4]

22x = 33 [5]

6

UGA - Master MOSIG 2 Algebraic structures for cryptography (29/02/16—30/03/16)

Remark. Given n ∈ N∗, g ∈ Z/nZ and x ∈ Z, it is easy to compute gx mod n (there exist algo-
rithms with polynomial complexity). However, there is no efficient algorithm which computes x given
n, g, gx mod n : this problem is called discrete logarithm problem and is useful for many asymmetric
cryptographic protocols.

Definition 1.21 (Euler’s totient function). Euler’s totient function (or Euler’s phi function) is defined
by

∀n ∈ N∗, ϕ(n) = |(Z/nZ)∗|.

This equivalent to say that ϕ(n) is the number of integers between 0 and n− 1 that are coprime with
n.

Examples. ϕ(1) = 1;ϕ(2) = 1;ϕ(3) = 2;ϕ(4) = 2...

Computation of Euler’s totient function

Property 1.22. • ϕ(mn) = ϕ(m)ϕ(n) for all coprime positive integers n,m.

• ϕ(pe) = pe − pe−1 = pe(1− 1/p) for all prime p and positive integer e.

• ϕ(n) = n
∏r
i=1(1− 1/pi) where n = pe11 . . . pekk is the factorisation of n into primes.

Proof. • Consider the map a ∈ Z/nmZ 7→ (a mod n, a mod m) ∈ Z/nZ × Z/mZ which is well-
defined and a bijection according to CRT. Moreover a ∧mn = 1 iff (a ∧m = 1 and a ∧ n = 1),
so that the previous application gives a bijection between (Z/mnZ)∗ and (Z/nZ)∗ × (Z/mZ)∗.

• Among the pe elements between 0 and pe− 1, the only elements which are multiples of p are not
invertible; these are 0 · p, 1 · p, . . . , (pe−1 − 1) · p and there are precisely pe−1.

• Direct from the previous items.

2 Algebraic structures for cryptography (29/02/16—30/03/16)

2.1 Groups

Let G be a set. A binary operation (or composition law) is a map f : G×G→ G. Binary operations
are usually written in infix notations, i.e. a + b, a × b, a · b, . . . or simply by juxtaposition, i.e. ab,
instead of f(a, b).

Example. On the set N of natural integers + and × are binary operations, but − is not.

Definition 2.1. Let G be a set and · a binary operation on G. Then (G, ·) is a group if

1. the binary operation is associative: for all a, b, c ∈ G, (a · b) · c = a · (b · c)

2. there exists a (necessarily unique) element e ∈ G, called the neutral element or the identity, such
that for all a ∈ G, a · e = e · a = a

7

CONTENTS V.Vitse

3. for each a ∈ G, there exists a (necessarily unique) element b ∈ G, called the group inverse of a,
such that a · b = b · a = e

A group is called abelian or commutative if its group law is commutative, i.e. a · b = b · a for all
a, b ∈ G.

Examples. (Z/nZ,+), (Z/nZ,×) are finite groups, but (Z∗,×) is not (no inverse).

The inverse of an element a is often denoted by a−1; similarly, the element a · a · a · . . . · a (n times) is
denoted by an. This notation can be extended to Z by setting a−n = (a−1)n and a0 = e.

In particular, we have that for any g ∈ G and a, b ∈ Z,

ga+b = gagb

gab = (ga)b

These properties will be extensively used in asymetric cryptographic protocols (El Gamal, RSA...).

Let (G,)̇ be a group with neutral element e.

Definition 2.2. The order of an element g ∈ G is defined by

ord(g) = min{n ∈ N∗ : gn = e}

Remarks:

1. If G is finite, then the order of any element of G is finite. Indeed, the sequence (gn) has value in
a finite set and is ultimately periodic, in particular there exists a > b integers such that ga = gb

and ord(g) ≤ a− b.

2. We have the following equivalence

gn = e⇔ ord(g)|n.

(sufficiency is clear, for the necessary condition make the euclidean division of n by ord(g)).

Theorem 2.3 (Lagrange).
∀g ∈ G, ord(g)|#G

In particular, we have the following corollary which is at the heart of RSA:

Corollary 2.4 (Euler-Fermat). Let a ∈ Z/nZ× be an invertible element modulo n. Then

aϕ(n) = 1 mod n.

In particulier if p is prime, for any a ∈ Z we have

ap = a mod p.

We denote by 〈g〉 the sub-group
{gn : n ∈ Z} ⊂ G.

If 〈g〉 is finite, then #〈g〉 = ord(g).

8

UGA - Master MOSIG 2.2 Applications to cryptography: DLP, DH and ElGamal

2.2 Applications to cryptography: DLP, DH and ElGamal

1. Discrete logarithm problem
Let G be a group and g ∈ G. If h = gx ∈ 〈g〉, the integer x (defined modulo the order of g) is
called the discrete logarithm of h in basis g.

The discrete logarithm problem consists in finding x given g and h. The difficulty of this problem
depends highly on the order of g and the group G considered. For example in G = (Z/nZ,+), the
computation of x (which is in this case obtained as the product of h and the multiplicative inverse
of g modulo n) can be obtained in polynomial time using the Extended Euclidean algorithm.
But if 〈g〉 = (Z/pZ∗,×), there is no efficient (i.e. polynomial time) algorithm to solve the
corresponding DLP. In this case, we say that the function x ∈ Z/(p − 1)Z 7→ gx ∈ Z/pZ∗ is a
”one-way-function” in the sense that there exist polynomial time algorithm (fast exponentiation)
to compute its values but there is no efficient algorithm to compute its inverse. Such one-way
functions are essential in asymetric cryptography.

2. Diffie-Hellman key exchange protocol

Alice and Bob want to share a secret using a public channel.

To do so, they first consider G = 〈g〉 where DLP is assumed to be hard (typically Z/pZ∗1).
Then, Alice chooses a secret integer a and sends Ka = ga to Bob. Bob chooses a secret integer
b and sends Kb = gb to Alice. Alice computes K = Ka

b and Bob computes K = Kb
a. Both Alice

and Bob have arrived at the same value K, because Ka
b = (gb)a = gab = (ga)b = Kb

a.

An eavesdropper has access to g,Ka,Kb but can neither deduce a or b (because DLP is difficult),
nor K (this is called the Diffie-Hellman problem, which is supposed to be as hard as DLP).

3. ElGamal encryption scheme

We can easily transform the previous key exchange protocol into an encryption scheme. Assume
that the setting is the same as in Diffie-Hellman and that Bob wants to send a message to Alice.
The three classical subroutines are

• Key-generation: Alice chooses a random integer a in between 2 and ord(g)−1 and publishes
her public key KA,pub = (g, h) where h = ga.

• Encryption: Bob chooses b in between 2 and ord(g)− 1 and computes (c1, c2) = (gb, hbm)
which is the encryption of m.

• Decryption: Alice decrypts (c1, c2) by computing c−a1 c2.

It is easy to check the correctness of this scheme: c−a1 c2 = g−abgabm = m. The security is similar
as in Diffie-Hellman.

2.3 Fields

Definition 2.5. A field is a set K together with two binary operations + and · such that

1. (K,+) is a commutative group with neutral element denoted by 0,

2. · is associative and commutative with neutral element denoted by 1 (which is assumed to be
different from 0),

1This group is cyclic, i.e. there always exists an integer g such that Z/pZ∗ = {gn : n ∈ N∗}.

9

CONTENTS V.Vitse

3. · is distributive over +,

4. every non zero element has an inverse for ·.

In particular if (K,+, ·) is a field, the (K∗,×) is a group.

Example. Q,R,C are fields. If p is prime, then Z/pZ is a field but if n is composite, then Z/nZ is
not a field! For example, 2 has no multiplicative inverse in Z/4Z.

Definition 2.6. A finite field is a field that has finite cardinality.

So far the only examples of finite field that we have seen is Z/pZ with p prime, but these are not the
only ones! The background given in the next section will allow us to construct other finite fields.

2.4 Polynomial arithmetic

Let K be a field. We define K[X] as the set of polynomials with coefficients in K. Addition and
multiplication of polynomials are supposed to be known; as a reminder, the euclidean division is also
available on polynomials:
for all P1, P2 ∈ K[X], P2 6= 0, there exist unique Q,R ∈ K[X] s.t. P1 = P2Q+R with degR < degP2.

Definition 2.7 (Gcd and lcm). Let P1, P2 be two polynomials in K[X]. The gcd of P1 and P2 is the
monic polynomial with highest degree dividing both P1 and P2. The lcm of P1 and P2 is the monic
polynomial with smallest degree that is a multiple of both P1 and P2. The polynomials P1 and P2 are
coprime if P1 ∧ P2 = 1.

Property 2.8. • Q|P1 and Q|P2 ⇔ Q|(P1 ∧ P2).

• P1|Q and P2|Q ⇔ (P1 ∨ P2)|Q.

• Gauss: if P and Q are coprime and P |QR, then P |R.

• Bézout: there exist U, V ∈ K[X] such that UP1 + V P2 = (P1 ∧ P2)

Gcd’s and Bézout coefficients can be computed with the extended Euclid algorithm, as in the integer
case.

Exercise 7.

1. Compute the gcd of X5+2X4+2X3+3X2+4X+4 ∈ Z/7Z[X] and X4+3X3+5X2+3X+1 ∈
Z/7Z[X]. (Answer: X2 + 4X + 1).

2. Compute the Bézout coefficients of P1 = X3 +2X2 +2X+1 ∈ Z/3Z[X] and P2 = X3 +X2 +2 ∈
Z/3Z[X]. (Answer: (2X + 1)P1 +XP2 = 1).

We can also define a congruence relation for polynomials in an obvious fashion, so that working
modulo a polynomial P ∈ K[X] is equivalent to working in K[X]/(P). In particular, using the
Euclidean division we see that the elements of K[X]/(P) (i.e. the residue classes modulo P) are in
one-to-one correspondence with the set of polynomials of K[X] of degree strictly smaller than degP .
As a consequence, if K is a finite field then #K[X]/(P) = Kdeg(P).

10

UGA - Master MOSIG 2.4 Polynomial arithmetic

Property 2.9. • Chinese remainder theorem: let P1 and P2 two coprime polynomials in K[X],

then for any polynomials Q1, Q2, the equations

{
P = Q1 mod P1

P = Q2 mod P2

have a solution, unique

modulo P1P2.

• Modular inverse: a polynomial Q ∈ K[X] is invertible modulo P (i.e. there exists R s.t. QR =
1 mod P) iff Q and P are coprime.

Exercise 8.

1. Find a polynomial P in Z/3Z[X] such that

{
P = X2 +X mod X3 + 2X2 + 2X + 1

P = 2X + 1 mod X3 +X2 + 2

2. In Z/2Z[X], is X3 +X + 1 invertible modulo X4 +X2 + 1 ? If so, compute its modular inverse.
(Answer: yes, X3 +X2 + 1).

Definition 2.10. A polynomial P ∈ K[X1, . . . , Xn] is irreducible if degP > 0 and P is not a product
of two non-invertible polynomials, i.e.

P = P1P2 ⇒ P1 ∈ K∗ or P2 ∈ K∗.

Example. The irreducible polynomials of C[X] (or more generally K[X] where K is algebraically
closed) are exactly the degree one polynomials. In R[X], the irreducible polynomials are the degree one
polynomials and the degree 2 polynomials of negative discriminant.

Theorem 2.11 (Unique factorization). Any non-zero polynomial P ∈ K[X] can be written as

P = c Pα1
1 . . . Pαkk ,

where c = LC(P) ∈ K∗, αi ∈ N, and the polynomials Pi are monic irreducible. This decomposition is
unique up to permutation and terms with exponent zero.

Exercise 9.

1. List all the irreducible polynomials of Z/2Z[X] of degree up to 4.

2. Factorize X7 + 1 ∈ Z/2Z[X].

An important remark is that if P ∈ K[X] is an irreducible polynomial then K[X]/(P) is a field.
Moreover,

Theorem 2.12 (admitted). If p is prime and n ∈ N∗, then there exists a irreducible polynomial
Q ∈ Z/pZ[X] of degree n.

In particular, there exists finite fields with pn elements for any prime p and any n ∈ N∗
and all finite fields are obtained with this construction.

11

CONTENTS V.Vitse

3 Factorisation and RSA (04/04/16—06/04/16)

3.1 Factorisation as a hard problem

Multiplication is the simplest example of a one-way function. Indeed, multiplying two integers
is easy, even for very large numbers. In terms of complexity, multiplying two n-bit integers costs
O(n2) basic operations with the standard algorithm, or down to O(n log(n) log log(n)) with modern
algorithms for very large numbers. But the converse operation, factoring an integer as a product of
two non-trivial numbers, is often much harder. This observation is the basis of several cryptosystems,
and in particular of the widespread Rivest-Shamir-Adleman (RSA) scheme.

The simplest factorisation algorithm is trial division : to factor N , divide N by 2, 3, 4, 5, 6 ... until
a zero remainder is obtained. If no divisor is found before

√
N then N is prime. This works fine if N

has a small divisor, but in the worst case this requires O(
√
N) divisions, which is exponential in the

size of N .
An obvious improvement is to only test divisibility of N by prime numbers smaller than

√
N , but this

supposes the knowledge of those primes... They can be found using the sieve of Erathostenes.

factorisation records: L(1/3) complexity, 728-bit semi-prime factorisation in 2009 (2000 CPU-years)

Difficulty relies partially on the fact that there is a lot of prime numbers (recall density)

To construct factorisation challenges, need to be able to produce efficiently large prime numbers

Primality testing much easier that factorisation: in theory there exists a deterministic polynomial
algorithm for primality testing but not really practicable

Simplest test of primality: Fermat (non-)primality test gives a certificate of non-primality but no
information about the factorisation.

3.2 RSA in confidentiality

In cryptosystems based on RSA, we use the multiplicative group of Z/NZ where N = pq is a product of
two large primes. After choosing p, q, we also choose an encryption exponent e such that e∧ϕ(N) = 1
and compute its inverse d = e−1 mod ϕ(N). In particular, there exists an integer k such that ed =
1 + kϕ(N).

Theorem 3.1. Let p, q,N, e, d as previously defined. Then the maps

x ∈ Z/NZ 7→ xe ∈ Z/NZ

x ∈ Z/NZ 7→ xd ∈ Z/NZ

are inverses of each other.

Proof. ...

The first map is the encryption function in RSA and the second is obviously the decryption one.

Efficiency of RSA:

• modulus N: efficient primality tests allow to choose randomly and quickly large primes (in the
1024–4096 bit range), multiplying them is easy

12

UGA - Master MOSIG 3.2 RSA in confidentiality

• computation of d: use Extended Euclid algorithm

• encryption and decryption: use fast modular exponentiation algorithms

• to speed up encryption, e is often chosen as a relatively small integer with low Hamming weight,
i.e. few 1’s in is binary expansion; typically e = 65537 = 216 + 1 (which is prime)

• decryption can be sped up using CRT

Exercise 10. Alice wants to send the message m = 100 to Bob with a RSA encryption. The public
key of Bob is (N, e) = (319, 11). What do Alice and Bob need to compute ?

Security of RSA:

• It relies on the difficulty of computing e-th root modulo a non-prime integer N . So far, the only
known algorithm for this is to factorize N , compute the inverse d of e modulo ϕ(N) and proceed
as the private key owner.

• Note that the knowledge of e and d allows to recover a multiple of ϕ(N) and thus recover the
factorisation of N (see next exercise).

• RSA encryption is deterministic : it is easy to decrypt a value x chosen from a small subset (e.g.
the alphabet) simply by enumerating possible encryptions of elements of this subset.
For a secure implantation of RSA use the optimal asymmetric encryption scheme (OAEP) of
Bellare and Rogaway.

Exercise 11. RSA and factorisation
Let N = pq be a RSA modulus.

1. We know that ϕ(N) = 792, recover the factorisation of N = 851.

2. Show that the difficulty of computating ϕ(N) from N is polynomially equivalent to the difficulty
of factoring N .

Exercise 12. Common modulus
Alice and Bob choose a common modulus N but different keys (eA, dA) and (eB, dB) respectively.
Suppose that eA ∧ eB = 1.
Show that if Alice and Bob encrypt a same message M then anybody who listens the encryptions
CA = M eA mod N and CB = M eB mod N , can recover M .

Exercise 13. Common exponent
William, Jack and Averell public keys are (NW , 3), (NJ , 3) and (NA, 3) respectively. Joe sends a
confidential message M encrypted with their respective public keys. Show how Lucky Luke is able to
recover easily the message sent by Joe to his brothers.

Exercise 14. Let N = pq be a RSA modulus, and let d such that q − p = 2d > 0.

1. Show that N + d2 is a perfect square.

2. Show that if d is small, then it is easy to factorise N .

13

CONTENTS V.Vitse

Exercise 15. Ciphertext attack
Given access to a RSA decryption box, show that it is possible to decrypt efficiently messages not
submitted to this box (hint: use multiplicative property of RSA encryption).

3.3 RSA in signature

It is easy to convert the previous encryption scheme into a signature one.

4 Attacks on factorization and DLP 27/04/2016-02/05/2016

The difficulty of factorizing (more precisely finding a factor) of a given integer depends mostly on the
size of its smallest prime factor. It is generally admitted that the hardest case is when the integer is
a product of two large prime integers of similar size, typically RSA modulus.

On the other hand, the difficulty of solving the DLP highly depends on the considered group. Let us
recall the definition of the general discrete logarithm problem (DLP) on a group G:

Problem. Let G be a group and g ∈ G be an element of finite order n. The discrete logarithm of
h ∈ 〈g〉 is the integer x ∈ Z/nZ such that h = gx.
Given g and h ∈ 〈g〉, the discrete logarithm problem consists in computing the discrete logarithm of h
in base g.

Exercise 16. Let g = 2 and h = 9. Find the discret log of h in base g for G = (Z/13Z,+) first and
then G = (Z/13Z∗,×).

Exercise 17 . Explain how to solve DLP when G = (Z/nZ,+). What is the complexity of the
proposed method?

We can distinguish essentially two kinds of DLP algorithms: the generic ones, available for any group,
and algorithms that take into account the group representation, thus specific to a family of group.

Definition 4.1. A DLP algorithm is generic when the only authorized operations are

• addition of two elements,

• opposite of an element,

• equality test of two elements.

In particular, generic attacks can be applied indifferently to any group, which is represented as a black
box.

Example. Brute force search: ∀x ∈ {0; · · · : n− 1}, test if gx = h. This algorithm has an exponential
complexity in the size of the group.

There is a lower bound on the complexity of a generic algorithm:

Theorem 4.2 (Shoup). The complexity of generic attacks on the DLP defined over G is in Ω(
√
p),

where p is the largest prime factor of #G.

14

UGA - Master MOSIG 4.1 Pohlig-Hellman reduction

We give below examples of algorithms with this optimal complexity. Consequently, to improve the
complexity, one has to use additional information on the given group.

4.1 Pohlig-Hellman reduction

We assume that the order n of the element g ∈ G is known together with its prime factorization
n =

∏N
i=1 p

αi
i . Since the discrete log in base g is defined modulo n, the idea is to use the Chinese

Remainder Theorem (CRT) and compute first the discrete log modulo pαii for each i. The basic outline
of Pohlig-Hellman is:

1. Work with the subgroup generated by gn/p
αi
i , of order pαii , to find the discrete logarithms modulo

pαii and use CRT to deduce the DL in G.

2. Further simplification: to obtain DL modulo pαii , compute iteratively its expression in base pi
by solving αi DLPs in the subgroup generated by gi = gn/pi , of order pi.

We illustrate this algorithm on the following example:

Let G = (Z/163Z)∗. We want to compute the DL of h = 129 in base g = 42. Note that 163 is
prime, so by Fermat’s theorem g162 = 1 mod 163 and the order of g is a divisor of 162 = 2 · 34. Since
g2 = g162/2 = −1 mod 163 and g3 = g162/3 = 104 mod 163, we see that g has order exactly 162.

1. Solving the DLP mod 2: we want to find x such that h3
4

= (g3
4
)x = gx2 ; as h3

4
= −1 = g2, we

deduce that x = 1 mod 2.

2. Solving DLP mod 34: we want to find x such that h2 = (g2)x, i.e. 15 = 134x. We compute
iteratively x0, . . . , x3 such that x = x0 +3x1 + · · ·+33x3. We first compute x0 by exponentiating
both elements by 33: 153

3
= (134x)3

3
= (1343

3
)x ⇒ 104 = 104x0 ⇒ x0 = 1. Then x1 satisfies

15 = 1341+3x1+32x2+33x3 , so (15 · 134−1)3
2

= (1343x1+32x2+33x3)3
2

= (1343
3
)x1 ⇒ 1 = 104x1 ⇒

x1 = 0. After similar iterative computations, we get x2 = 2 and x3 = 2, so that x = 73 mod 34

and x = 73 mod 162.

As illustrated on this example, we see that solving DLP in a group of size n is approximately as hard
as solving DLP in a group of size the largest prime factor of n.

4.2 Baby-step Giant-step

The basic idea behind BSGS is to use birthday paradox and space time trade-off to speed up exhaustive
search.

Let d = b
√

#Gc. The outline of the algorithm is composed of three steps:

1. Store the list L = {(gj , j) : 0 ≤ j ≤ d};

2. for 0 ≤ k ≤ #G/d, compute h(g−d)k and check if it appears in L;

3. search for a collision h(g−d)k = gj and deduce that the DL of h is j + dk.

15

CONTENTS V.Vitse

The complexity of this algorithm is clearly in O(
√

#G) in memory and time (considering that the cost
of membership test is in O(1) using an hash table).

Exercise 18. Use BSGS to compute in (Z/47Z)∗ the discrete log of 33 in base 45.

Exercise 19. Combine BSGS and Pohlig-Hellman to compute in (Z/137Z)∗ the discrete log of 55 in
base 3.

4.3 Pollard-Rho

This generic algorithm is an improvement of BSGS based on an iteration of pseudo-random functions,
that has the same time complexity but a memory cost in O(1). It is also interesting as a first example
of algorithm whose main idea can be applied both to factoring and to computation of discrete logs.

4.3.1 Pollard-Rho for DLP

Suppose we want to compute the discrete log of an element h in a group G in base g ∈ G. The key
ingredient of Pollard-Rho is the iteration of a map f : G→ G satisfying the following properties:

• the function f has to be easy to compute

• for any z ∈ G, if we know two integers a and b such that z = gahb, we can easily compute two
integers a′, b′ such that f(z) = ga

′
hb
′
;

• f behaves approximately like a random function.

A simple example is to divide G in three subsets G1, G2 and G3, for instance according to the values
of the least significant bits in a binary representation of the elements of G, and setting

f(z) =

gz if z ∈ G1

hz if z ∈ G2

z2 if z ∈ G3

More “randomness” can be achieved by dividing G in more subsets and having more different expres-
sions for f(z).

In order to compute the DL of h in base g, we start with an element z0 = ga0ha0 ∈ G where a0 and
b0 are random integers. We then compute the sequence z1, z2, . . . where zi+1 = f(zi); we compute
in parallel the sequences (ai), (bi) such that zi = gaihbi . Since G is finite, after some time we will
obtain a collision, i.e. find two different indices i and j such that zi = zj (note that this implies
zi+k = zj+k ∀k ≥ 0). Then gaihbi = gajhbj , so gai−aj = hbj−bi . From this we can recover the discrete
log of h if bj−bi is invertible modulo the order of g, or at least partial information if bj 6= bi; otherwise
we start again with a different z0.

In pratice, the sequence (zi) should not be stored. Different methods can be used in order to find
a collision with only O(1) memory requirement. Floyd’s cycle detection uses two sequences (zi) and
(wi) with wi = z2i and looks for equalities zi = wi = z2i for i > 0. Indeed, let i0 and j0 be the smallest
integers such that i0 < j0 and zi0 = zj0 , and let ` = j0− i0. Then for all i ≥ i0 and all k ∈ N∗ one has
zi = zi+k`. In particular, for k = di0/`e and i = k` (so that i0 ≤ i ≤ i0 +`), we obtain z2i = zi+k` = zi,
and a collision will be found after at most i0 + ` = j0 iterations.

16

UGA - Master MOSIG 4.3 Pollard-Rho

zi0+`−1
z0

z1 = f(z0)

zi0 = zi0+`

zi0−1

Figure 1: The sequence iterated by f from z0 in Pollard-Rho.

In order to analyze the complexity of this algorithm, we have to understand when appears the first
collision, i.e. the smallest integer j0 such that there exists i0 < j0 with zi0 = zj0 . For a random function
f , a birthday-paradox based argument shows j0 is in O(

√
#G) with overwhelming probability. Of

course f is not truly random, but the above estimate holds heuristically and is observed in practice.

4.3.2 Pollard-Rho for factoring

For factoring an integer n, we can also iterate a function f : Z/nZ→ Z/nZ. This time f must satisfy
the following properties:

• the function f has to be easy to compute

• for any divisor d of n, if x = y mod d then f(x) = f(y) mod d;

• f behaves approximately like a random function.

For the first condition, obviously we do not know the divisors of n... Usually f is given by a simple
polynomial expression, typically f(x) = x2 + 1 mod n. This is not very random, but when iterated it
is usually chaotic enough for our purpose.

In order to factorize n, we start with a random element x0 ∈ Z/nZ and compute the sequence x1, x2, . . .
where xi+1 = f(xi). After some time (on average in O(

√
n)) the sequence will start to repeat itself

modulo n. But we can also look at the sequence modulo p, where p is a factor of n. The sequence
(xi mod p) will also become periodic, on average after O(

√
p) iterations, hence much sooner than

modulo n. Now if xi = xj mod p but xi 6= xj mod p then gcd(xi − xj , n) gives a non-trivial divisor of
n. Combining with Floyd’s cycle detection, we obtain the following outline:

1. Pick a random integer x = y in Z/nZ.

2. x← f(x) mod n, y ← f(f(y)) mod n (so that after i steps, x = xi and yi = x2i).

3. Compute g = gcd(x− y, n).

(a) If g = 1 then go to step 2.

17

CONTENTS V.Vitse

(b) If g = n then start again with a different x or a different function f .

(c) If g 6= 1, n, then return g, a non-trivial factor of n

Exercise 20. Use this algorithm with f(x) = x2 + 1 and x0 = 0 to compute a factor of n = 5293.

18

	Modular arithmetic (15/02/16—17/02/16)
	Prerequisites
	Congruences
	Modular exponentiation
	Extended Euclid algorithm
	Modular inverse

	Algebraic structures for cryptography (29/02/16—30/03/16)
	Groups
	Applications to cryptography: DLP, DH and ElGamal
	Fields
	Polynomial arithmetic

	Factorisation and RSA (04/04/16—06/04/16)
	Factorisation as a hard problem
	RSA in confidentiality
	RSA in signature

	Attacks on factorization and DLP 27/04/2016-02/05/2016
	Pohlig-Hellman reduction
	Baby-step Giant-step
	Pollard-Rho
	Pollard-Rho for DLP
	Pollard-Rho for factoring

