TD3: Extensions de corps

Exercice 1. Soit $a \in \mathbb{C}$ algébrique sur \mathbb{Q} et P le polynôme minimal de a sur \mathbb{Q} . On suppose que a est racine d'un polynôme unitaire de $\mathbb{Z}[X]$ (autrement dit, a est un entier algébrique). Montrer que $P \in \mathbb{Z}[X]$.

Exercice 2. Soient k un corps et $f, g \in k[X, Y]$ deux polynômes premiers entre eux. On note

$$C_f = \{(x, y) \in k^2 : f(x, y) = 0\}$$
 et $C_g = \{(x, y) \in k^2 : g(x, y) = 0\},$

de sorte que C_f et C_g sont deux courbes de k^2 . On va montrer que l'intersection de ces deux courbes est un ensemble de cardinalité finie.

- 1. Soit $P \in k[X,Y] \simeq k[X][Y] \subset k(X)[Y]$. Expliquer comment déduire de la décomposition en produits d'irréductibles de P dans k[X][Y] celle dans k(X)[Y].
- 2. Montrer que f et g vus comme éléments de k(X)[Y] sont premiers entre eux.
- 3. Montrer que l'ensemble A des abscisses des points de $C_f \cap C_g$ est de cardinalité finie.
- 4. En déduire que $C_f \cap C_g$ est un ensemble fini.

Exercice 3. Soient $P = X^3 + 2X + 2$ et a une racine de P dans \mathbb{C} .

- 1. Montrer que P est irréductible sur $\mathbb{Q}[X]$. Que vaut $[\mathbb{Q}(a):\mathbb{Q}]$?
- 2. Exprimer $u = a^{-1}$, $v = a^6 + a^4 + 3a^3 a^2 + 3$ et $w = (a^2 + a + 1)^{-1}$ en fonction de 1, a et a^2 .
- 3. Quel est le polynôme minimal de v sur \mathbb{Q} ?

Exercice 4.

- 1. Montrer que i et j sont algébriques sur \mathbb{Q} et déterminer $[\mathbb{Q}(i):\mathbb{Q}], [\mathbb{Q}(j):\mathbb{Q}].$
- 2. Calculer $[\mathbb{Q}(\sqrt{3},i):\mathbb{Q}]$, $[\mathbb{Q}(\sqrt{3},j):\mathbb{Q}]$ et $[\mathbb{Q}(\sqrt{3},i,j):\mathbb{Q}]$.
- 3. Comparer $[\mathbb{Q}(\sqrt{3},i):\mathbb{Q}]$ et $[\mathbb{Q}(\sqrt{3}+i):\mathbb{Q}]$.
- 4. Déterminer le polynôme minimal de $\sqrt{3} + i \operatorname{sur} \mathbb{Q}$.

Exercice 5.

- 1. Déterminer $[\mathbb{Q}(\sqrt{3}, \sqrt{7}) : \mathbb{Q}]$. Donner une base du \mathbb{Q} -espace vectoriel $\mathbb{Q}(\sqrt{3}, \sqrt{7})$.
- 2. Comparer $[\mathbb{Q}(\sqrt{3}, \sqrt{7}) : \mathbb{Q}]$ et $[\mathbb{Q}(\sqrt{3} + \sqrt{7}) : \mathbb{Q}]$.
- 3. Déterminer le polynôme minimal de $\sqrt{3} + \sqrt{7}$ sur \mathbb{Q} .
- 4. Quelles sont les racines de $Irr(\sqrt{3} + \sqrt{7}, \mathbb{Q})$ dans \mathbb{C} ?

Exercice 6.

1. Les éléments de $\mathbb{Q}(\sqrt{2})$ ont-ils tous le même polynôme minimal sur \mathbb{Q} ?

- 2. Deux extensions de corps de même degré sont-elles nécessairement isomorphes?
- 3. Soient a et b deux entiers non nuls. Donner une condition nécessaire et suffisante pour que $\mathbb{Q}(\sqrt{a}) = \mathbb{Q}(\sqrt{b})$ (avec par convention $\sqrt{n} = i\sqrt{-n}$ si n < 0).

Exercice 7.

- 1. Déterminer $[\mathbb{Q}(\sqrt[3]{3}, \sqrt{5}) : \mathbb{Q}]$. Donner une base du \mathbb{Q} -espace vectoriel $\mathbb{Q}(\sqrt[3]{3}, \sqrt{5})$.
- 2. Comparer $[\mathbb{Q}(\sqrt[3]{3}, \sqrt{5}) : \mathbb{Q}]$ et $[\mathbb{Q}(\sqrt[3]{3} + \sqrt{5} : \mathbb{Q}]$.
- 3. Déterminer le polynôme minimal de $\sqrt[3]{3} + \sqrt{5}$ sur \mathbb{Q} .
- 4. Quelles sont les racines de $Irr(\sqrt[3]{3} + \sqrt{5}, \mathbb{Q})$ dans \mathbb{C} ?

Exercice 8. Soient $L \supset K \supset k$ une tour d'extension de corps et $a \in L$.

Montrer que si K est une extension algébrique de k et a est algébrique sur K, alors a est algébrique sur k.

Exercice 9. Soit α un élément algébrique sur un corps K.

- 1. Quels sont les degrés possibles de l'extension $K(\alpha) \supset K(\alpha^2)$?
- 2. Montrer que si $[K(\alpha):K]$ est impair, alors $K(\alpha^2)=K(\alpha)$. La réciproque est-elle vraie?

Exercice 10. Soient k un corps et $F \in k(X) \setminus k$; on pose $F = \frac{A}{B}$ avec $A, B \in k[X]$ premiers entre eux. On s'intéresse à k(F), le sous-corps de k(X) engendré par F.

- 1. Soit $P(X,T) = B(T)F(X) A(T) \in k[X,T]$. Montrer que P définit un élément non nul de k(F)[T], dont une racine est X.
- 2. En déduire que X est algébrique sur k(F), et donc que F est transcendant sur k.
- 3. Montrer que B(T)U A(T) est un polynôme irréductible de k[T,U], puis que c'est un polynôme irréductible de k(U)[T].
- 4. En déduire que P est le polynôme minimal de X sur k(F). Quel est le degré de l'extension $k(X) \supset k(F)$?

Exercice 11. Soient K, M deux corps et $\phi: K \to M$ un morphisme de corps.

- 1. Rappeler pour quoi ϕ est injective.
- 2. Montrer qu'il existe un surcorps $L\supset K$ ainsi qu'un morphisme de corps $\psi:L\to M$ tel que :
 - ψ est bijective
 - $\psi_{|K} = \phi.$

Exercice 12. Soit K un corps et $L = K(\alpha)$ une extension de K de degré fini engendrée par un élément α . Le but de cet exercice est de montrer que L ne contient qu'un nombre fini de sous-corps F tels que $K \subset F$.

- 1. Soit F un sous-corps de L qui contient K et A l'ensemble des coefficients du polynôme minimal $Irr(\alpha, F)$ de α sur F.
 - Montrer que $Irr(\alpha, K(A)) = Irr(\alpha, F)$ et en déduire que K(A) = F.
- 2. Montrer que $Irr(\alpha, F)|Irr(\alpha, K)$ dans F[X].
- 3. En déduire une application injective de l'ensemble des sous-corps de L qui contiennent K dans l'ensemble des polynômes unitaires de L[X] qui divisent $Irr(\alpha, K)$ dans L[X].
- 4. Montrer que $Irr(\alpha, K)$ n'admet qu'un nombre fini de diviseurs unitaires dans L[X]. Conclure.

- 5. Application : on prend $K = \mathbb{Q}$ et $L = \mathbb{Q}(i, \sqrt{2})$.
 - (a) Montrer que $L = \mathbb{Q}(i + \sqrt{2})$. Calculer $[L : \mathbb{Q}]$.
 - (b) Quelles sont les racines de $Irr(i + \sqrt{2}, \mathbb{Q})$ dans L?
 - (c) Établir la liste des sous-corps de L.

Exercice 13. (Dénombrabilité de $\bar{\mathbb{Q}}$)

- 1. On rappelle que $\bar{\mathbb{Q}}$ désigne l'ensemble des nombres complexes algébriques sur \mathbb{Q} . Démontrer que $\bar{\mathbb{Q}}$ est un sous-corps de \mathbb{C} .
- 2. Pour tout $n \in \mathbb{N}$, on note $\mathbb{Q}_n[X]$ l'espace vectoriel des polynômes de $\mathbb{Q}[X]$ de degré inférieur ou égal à n.
 - Montrer que $\mathbb{Q}_n[X]$ est dénombrable.
- 3. Montrer que $\mathbb{Q}[X]$ est dénombrable. En déduire que \mathbb{Q} est dénombrable.
- 4. Montrer que C contient une infinité non dénombrable d'éléments transcendants sur Q.

Exercice 14. (Théorème de l'élément primitif)

Soit K un corps de caractéristique 0 et L une extension finie de K, engendrée par deux élements α et β . On veut prouver qu'il existe un élement $\theta \in L$ tel que $L = K(\theta)$ (on dit que θ est un élément primitif de l'extension).

- 1. Soient $P_{\alpha} = \operatorname{Irr}(\alpha, K)$ et $P_{\beta} = \operatorname{Irr}(\beta, K)$. On considère une extension M de L dans laquelle P_{α} et P_{β} sont scindés, par exemple une clôture algébrique de L. On note $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_m$ les racines de P_{α} dans M, et $\beta_1 = \beta, \beta_2, \ldots, \beta_n$ celles de P_{β} .
 - (a) Justifier que K est de cardinalité infinie. En déduire qu'il existe $\lambda \in K$ tel que $\lambda \neq \frac{\alpha \alpha_i}{\beta \beta_j}$ pour tout (i, j) avec $1 \leq i \leq m$ et $1 < j \leq n$.
 - (b) On pose $\theta = \alpha \lambda \beta \in L$ et $Q = \text{Irr}(\beta, K(\theta))$. Montrer que $P_{\alpha}(\theta + \lambda X)$ est un polynôme non nul de $K(\theta)[X]$ dont β est racine. En déduire que $Q|P_{\alpha}(\theta + \lambda X)$ et $Q|P_{\beta}$ dans $K(\theta)[X]$.
 - (c) Montrer que $P_{\alpha}(\theta + \lambda X)$ et P_{β} sont scindés à racines simples dans M[X], et que β est leur seule racine commune.
 - (d) En déduire que $Q = X \beta$, puis que $L = K(\theta)$.
- 2. Généralisation : soit L une extension finie d'un corps K de caractéristique 0. Montrer qu'il existe $\theta \in L$ tel que $L = K(\theta)$.
- 3. Déterminer un élément primitif des extensions suivantes de $\mathbb Q$:
 - (a) $\mathbb{Q}(j, \sqrt[3]{2})$
 - (b) $\mathbb{Q}(e^{2i\pi/n}, e^{2i\pi/m})$ avec $(m, n) \in (\mathbb{N}^*)^2$
 - (c) $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \sqrt[5]{5})$.

Exercice 15.

- 1. Montrer que l'identité est le seul automorphisme de corps de \mathbb{Q} . Même question avec $\mathbb{F}_p = (\mathbb{Z}/p\mathbb{Z}, +, \times)$ où p est un nombre premier.
- 2. (a) Soit L un corps de caractéristique 0. Montrer que L contient un sous-corps k isomorphe à \mathbb{Q} , et que tout automorphisme de corps de L induit l'identité sur k.

- (b) Soit L un corps de caractéristique p où p est un nombre premier. Montrer que L contient un sous-corps k isomorphe à \mathbb{F}_p , et que tout automorphisme de corps de L induit l'identité sur k.
- 3. Automorphismes de \mathbb{R} .
 - (a) Soit ϕ un automorphisme de corps de \mathbb{R} . Montrer que $\phi(\mathbb{R}^+) \subset \mathbb{R}^+$.
 - (b) En déduire que ϕ est croissant (en tant qu'application $\mathbb{R} \to \mathbb{R}$), puis que ϕ est l'identité.
- 4. Automorphismes continus de \mathbb{C} .
 - (a) Soit ϕ un automorphisme de corps **continu** de \mathbb{C} . Montrer que $\phi(x) = x$ pour tout $x \in \mathbb{R}$.
 - (b) En déduire que ϕ est soit l'identité, soit la conjugaison complexe.
- 5. K-automorphismes de K(X).
 - (a) Montrer que tout K-automorphisme de K(X) est de la forme $f \mapsto f(\frac{aX+b}{cX+d})$. Indication: utiliser l'exercice 10.
 - (b) En déduire que le groupe des K-automorphismes de K(X) est isomorphe à PGL(2,K).

Exercice 16.

- 1. Montrer que le polynôme $P = X^3 2$ est irréductible dans $\mathbb{Q}[X]$. Justifier que $\mathbb{Q}(\sqrt[3]{2})$ est un corps de rupture de P, mais pas un corps de décomposition.
- 2. Soit $L = \mathbb{Q}(\sqrt[3]{2}, j)$. Montrer que L est le corps des racines de P.
- 3. Déterminer $[L:\mathbb{Q}]$.
- 4. (a) Quels sont les automorphismes du corps $\mathbb{Q}(j)$?
 - (b) Quels sont les automorphismes du corps $\mathbb{Q}(\sqrt[3]{2})$?
- 5. (a) Montrer que pour tout $(k,l) \in \{1,2\} \times \{0,1,2\}$, il existe un automorphisme $\phi_{k,l}$ de L tel que $\phi_{k,l}(\sqrt[3]{2}) = j^l \sqrt[3]{2}$ et $\phi_{k,l}(j) = j^k$.
 - (b) Les automorphismes $\phi_{k,l}$ sont-ils les seuls automorphismes de corps de L?
- 6. (a) Pour $(k,l) \in \{1,2\} \times \{0,1,2\}$, montrer que $\phi_{k,l}(\sqrt[3]{2}+j)$ est une racine de $\operatorname{Irr}(\sqrt[3]{2}+j,\mathbb{Q})$.
 - (b) Déterminer le degré de $Irr(\sqrt[3]{2} + j, \mathbb{Q})$.

Exercice 17. (Suite de l'exercice 5.)

- 1. (a) Montrer qu'il existe un automorphisme du corps $\mathbb{Q}(\sqrt{3})$ qui envoie $\sqrt{3}$ sur $-\sqrt{3}$.
 - (b) Existe-t-il d'autres automorphismes du corps $\mathbb{Q}(\sqrt{3})$ distincts de l'identité?
- 2. On note $L = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.
 - (a) Montrer qu'il existe des automorphismes Φ_3 et Φ_7 du corps L qui vérifient $\Phi_3(\sqrt{3}) = -\sqrt{3}$ et $\Phi_3(\sqrt{7}) = \sqrt{7}$ d'autre part et $\Phi_7(\sqrt{3}) = \sqrt{3}$ et $\Phi_7(\sqrt{7}) = -\sqrt{7}$ d'autre part.
 - (b) Montrer qu'il existe un automorphisme $\Phi_{3,7}$ du corps L qui vérifie $\Phi_{3,7}(\sqrt{3}) = -\sqrt{3}$ et $\Phi_{3,7}(\sqrt{7}) = -\sqrt{7}$.
 - (c) Les automorphismes Φ_3 , Φ_7 et $\Phi_{3,7}$ sont-ils les seuls automorphismes du corps L distincts de l'identité?

Exercice 18. Soient p un entier premier et $P = X^p - X - 1$ un polynôme de $\mathbb{Z}[X]$.

- 1. Soient \bar{P} la classe d'équivalence de P dans $\mathbb{F}_p[X]$ et L un corps de rupture de \bar{P} avec a une racine de \bar{P} dans L.
 - Montrer que l'ensemble des racines de \bar{P} dans L est $\{a+i \bmod p : 0 \le i \le p-1\}$.
- 2. En déduire que \bar{P} est irréductible sur $\mathbb{F}_p[X]$ et donc sur $\mathbb{Z}[X]$ et sur $\mathbb{Q}[X]$.