MAT35B - L3A ALGÈBRE

Premier semestre — 2021-2022

Fiche 3: Groupes symétriques

1. Déterminer la signature et l'ordre des permutations suivantes.

(a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix};$$

(b)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

(a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix};$$

(b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix};$
(c) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 6 & 4 & 5 & 8 & 7 & 9 & 11 & 10 & 1 & 12 & 3 & 2 \end{pmatrix};$

- **2.** Soient $2 \le m \le n$ deux entiers et $\gamma = (a_1 \ a_2 \ \dots a_m) \in \mathbb{S}_n$ un cycle de longueur m. Montrer que pour tout $\sigma \in \mathbb{S}_n$, $\sigma \circ \gamma \circ \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \sigma(a_m))$.
- 3. Soit G un groupe, engendré par un nombre fini d'éléments g_1, \ldots, g_n . Soient h_1,\ldots,h_m des éléments de G et $H=\langle h_1,\ldots,h_m\rangle$ le sous-groupe qu'ils engendrent.
- (a) Montrer que H est distingué si et seulement si $g_i h_i g_i^{-1} \in H$ et $g_i^{-1} h_i g_i \in H$, pour tous $i \in [1, n]$ et $j \in [1, m]$.
- (b) Dans S_4 , on considère les permutations $\gamma = (1 \ 2 \ 3 \ 4), s_1 = (1 \ 2) \circ (3 \ 4),$ $s_2 = (1\ 3) \circ (2\ 4)$ et $s_3 = (1\ 4) \circ (2\ 3)$. Montrer que $\langle \gamma \rangle \leq \langle \gamma, s_1 \rangle$.
- (c) Pour des éléments a, b, c, d de [1, 4], deux-à-deux distincts, décomposer en cycles disjoints la permutation $((a\ b)\circ(c\ d))\circ((a\ c)\circ(b\ d))$.
- (d) Soit $K = \{id, s_1, s_2, s_3\}$. Montrer que $\langle s_1 \rangle \leq K$ et $K \leq S_4$, mais $\langle s_1 \rangle \not \leq S_4$.
- **4.** (*a*) Soient $p \in \mathbb{N}^*$ un nombre premier et $n \ge p$ un entier.
 - (i) Quels sont les éléments d'ordre p dans \mathbb{S}_n ?
 - (ii) Le résultat subsiste-t-il lorsque p n'est pas premier?
- (b) Montrer que dans \mathbb{S}_8 tout élément d'ordre 10 a pour signature -1. Montrer que dans \mathbb{S}_n tout élément d'ordre impair a pour signature 1.
- **5.** Soit $n \ge 2$ un entier. Dans \mathbb{S}_n , on considère le n-cycle $\gamma = (1 \ 2 \ \dots \ n-1 \ n)$ et deux transpositions $\tau_0 = (1\ 2)$ et $\tau = (a_1\ a_2)$.
- (a) Montrer que $\{\gamma, \tau_0\}$ engendre \mathbb{S}_n . **Indication :** on pourra montrer que $\langle \gamma, \tau_0 \rangle$ contient toutes les transpositions de la forme (i i + 1).
- (b) Montrer que si n est premier, alors $\{\gamma, \tau\}$ engendre \mathbb{S}_n . **Indication**: montrer que pour un entier r convenable, on a $\gamma^r(a_1) = a_2$, vérifier que γ^r est encore un *n*-cycle et conjuguer τ par les puissances de γ^r .
- (c) Donner un exemple où $\{\gamma, \tau\}$ n'engendre pas \mathbb{S}_n .
- 6. Un exemple provenant du mélange d'un jeu de cartes. Vérifier que l'on définit bien une permutation $\sigma \in \mathbb{S}_{32}$ en posant $\sigma(k) = 2k$ si $k \le 16$ et $\sigma(k) = 2k - 33$ si $k \geq 17$. Déterminer son ordre et sa signature. Retrouver ce résultat en remarquant que $\sigma(k) \equiv 2k \pmod{33}$ pour tout $k \in [1, 32]$.

- 7. Soient p un nombre premier impair et $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$. Pour tout a dans G, on note σ_a et ρ_a les permutations de G dans G définies par $\sigma_a(x) = ax^{-1}$ et $\rho_a(x) = ax$. Déterminer le type, l'ordre et la signature des permutations σ_a et ρ_a . On sera amené à distinguer deux cas, suivant que a possède ou non une racine carrée dans G.
- **8.** Nombre d'orbites et signature d'une permutation. Soit E un ensemble fini de cardinal $n \ge 2$. Pour tout $\sigma \in \operatorname{Aut}_{Ens}(E)$ et $x \in E$, on note $O_{\sigma}(x)$ l'orbite de x sous l'action de σ , $N(\sigma)$ le nombre d'orbites de σ et $e(\sigma) = (-1)^{n-N(\sigma)}$. On cherche à retrouver les principales propriétés de la signature à partir de cette définition.
- (a) Soient $\sigma \in \operatorname{Aut}_{\mathsf{Ens}}(E)$ et la transposition $\tau = (a\ b) \in \operatorname{Aut}_{\mathsf{Ens}}(E)$ pour $a,b \in E$ distincts. L'objet des questions suivantes est de comparer les orbites sous l'action de σ avec les orbites sous l'action de $\tau \circ \sigma$. On note O_1 et O_2 les orbites de a et de b sous l'action de σ .
 - (i) Montrer que $O_{\tau \circ \sigma}(x) = O_{\sigma}(x)$, pour tout $x \in E \setminus (O_1 \cup O_2)$.
 - (ii) Dans cette question, on suppose que $O_1 = O_2$. Montrer alors que les orbites de a et b sous l'action de $\tau \circ \sigma$ sont différentes et que leur réunion est O_1 .
 - (iii) Dans cette question, on suppose que $O_1 \neq O_2$. Montrer alors que l'orbite de a sous l'action de $\tau \circ \sigma$ est $O_1 \cup O_2$.
 - (iv) Quelle relation y a-t-il entre $N(\tau \circ \sigma)$ et $N(\sigma)$? Entre $e(\tau \circ \sigma)$ et $e(\sigma)$?
- (b) En déduire les conséquences suivantes :
 - (i) le nombre minimum de transpositions nécessaires pour écrire σ comme composée de transpositions est $n-N(\sigma)$;
 - (ii) la signature d'une composée de k transpositions est $(-1)^k$;
 - (iii) la signature est un morphisme de groupes de $Aut_{Ens}(E)$ dans le groupe $\{-1,1\} = \mathbb{Z}^{\times}$.
- **9.** Décomposition en orbites et carré d'une permutation.
- (a) Décomposer en cycles le carré d'un cycle de longueur ℓ .
- (b) Montrer que le produit de deux cycles de longueur ℓ de supports disjoints est le carré d'une permutation.
- (c) À quelle condition, un cycle de longueur ℓ est-il le carré d'une permutation?
- (d) Soit $\sigma \in \mathbb{S}_n$. Décrire la décomposition en cycles de σ^2 en fonction de celle de σ .
- (e) À quelle condition une permutation $\sigma \in \mathbb{S}_n$ est-elle un carré?
- **10.** Classes de conjugaison de \mathbb{S}_n .
- (a) Faire la liste des classes de conjugaison de S_3 , S_4 , S_5 en indiquant leur cardinal ainsi que la signature et l'ordre des éléments appartenant à cette classe.
- (b) En déduire les sous-groupes distingués de \mathbb{S}_5 .
- (c) Montrer que dans A₅, les 3-cycles, les produits de deux transpositions de supports disjoints et les 5-cycles forment respectivement une, une et deux classes de conjugaison. En déduire les sous-groupes distingués de A₅.
- 11. Sous-groupes distingués de \mathbb{S}_4 . Dans \mathbb{S}_4 , on note $s_1 = (1\ 2)(3\ 4)$, $s_2 = (1\ 3)(2\ 4)$ et $s_3 = (1\ 4)(2\ 3)$. Soient $E = \{s_1, s_2, s_3\}$ et $K = E \cup \{id\}$. On rappelle que K est un sous-groupe distingué dans \mathbb{S}_4 .
- (a) En utilisant l'action par conjugaison de \mathbb{S}_4 sur E, construire un isomorphisme entre \mathbb{S}_4/K et \mathbb{S}_3 .

- (b) Soit H un sous-groupe distingué de \mathbb{S}_4 . Montrer que H est égal à {id}, K, \mathbb{A}_4 ou \mathbb{S}_4 .
 - **Indication**: discuter suivant que *H* contient ou non un 3-cycle.
- (c) On note $D(\mathbb{A}_4)$ le sous-groupe de \mathbb{A}_4 engendré par $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$, avec $\alpha, \beta \in \mathbb{A}_4$. Montrer que $D(\mathbb{A}_4) = K$. Indication: pour l'inclusion $D(\mathbb{A}_4) \subseteq K$, montrer que le groupe quotient \mathbb{A}_4/K est abélien. Qu'en déduit-on sur $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$ lorsque $\alpha, \beta \in \mathbb{A}_4$? Pour une autre méthode, si ρ et σ sont des éléments dans \mathbb{A}_4 , il y a deux possibilités : soit ρ et σ sont des 3-cycles, soit ρ ou σ est dans K.
- **12.** Soient $n \ge 2$, G un groupe et $f: \mathbb{S}_n \to G$ un morphisme de groupes.
- (a) Si $G = \mathbb{C}$, montrer que f est soit le morphisme trivial, soit la signature.
- (b) Si G est abélien, montrer que Img(f) est d'ordre 1 ou 2. En déduire que \mathbb{A}_n est le seul sous-groupe d'indice 2 dans \mathbb{S}_n .
- (c) On suppose ici que $n \neq 4$. Montrer que $\operatorname{Img}(f)$ est d'ordre 1, 2 ou n!. En déduire que si H est un sous-groupe de \mathbb{S}_n tel que $[\mathbb{S}_n:H] > 2$, alors $[\mathbb{S}_n:H] \geq n$. **Indication**: utiliser l'action par translation à gauche de \mathbb{S}_n sur \mathbb{S}_n/H .
- (d) Exhiber un sous-groupe d'indice n dans \mathbb{S}_n .
- **13.** Soient $n \ge \ell \ge 2$ des entiers.
- (a) Quel est le sous-groupe de \mathbb{S}_n engendré par les ℓ -cycles?
- (b) Combien y a-t-il de ℓ-cycles différents?
- (c) On se donne un ℓ -cycle $\gamma = (a_1 \dots a_\ell)$ dans \mathbb{S}_n . Quelles sont les permutations de \mathbb{S}_n qui commutent avec γ ? Combien y en a-t-il? **Indication**: pour tout $\sigma \in \mathbb{S}_n$, $\sigma \circ \gamma = \gamma \circ \sigma$ si et seulement si $\sigma \circ \gamma \circ \sigma^{-1} = \gamma$.
- **14.** Automorphismes de \mathbb{S}_n . Soit $n \geq 3$ un entier autre que 6. Soit $\phi \in \operatorname{Aut}_{Gr}(\mathbb{S}_n)$.
- (a) Montrer que $\phi(1\ 2)$ est un produit de transpositions à supports disjoints. On notera r leur nombre.
- (b) En déduire que ϕ transforme toute transposition en un produit de r transpositions à supports disjoints et que r est impair.
- (c) En déduire que ϕ^{-1} transforme tout produit de r transpositions à supports disjoints en une transposition.
- (d) En déduire que

$$r = {n-2 \choose 2r-2} (2r-3) \dots 3.1,$$

puis que r = 1.

- (e) Soit $k \in [3, n]$. Quel est l'ordre de la permutation $\phi((1 k) \circ (1 2))$? En déduire que les supports des permutations $\phi(1 2)$ et $\phi(1 k)$ ont exactement un point en commun. Montrer que ce point ne dépend pas de k.
- (f) Montrer qu'il existe $f \in \mathbb{S}_n$ tel que $\phi(i \ j) = (f(i) \ f(j))$, pour tous les points $i \neq j$ de [1, n]. En déduire que l'automorphisme ϕ est intérieur.