

Exercise sheet 2

Series with positive terms

Exercise 1.

1. Find real numbers a, b, c such that for all $x \in \mathbb{R}$ with $x \neq 0, 1, -1$ we have

$$\frac{1}{x(x^2-1)} = \frac{a}{x-1} + \frac{b}{x} + \frac{c}{x+1}.$$

2. Using the previous relation for $x \in [2, n]$, find for all integers $n \geq 2$ a simple expression for

$$S_n = \sum_{j=2}^n \frac{1}{j(j^2 - 1)} = \frac{1}{2(2^2 - 1)} + \frac{1}{3(3^2 - 1)} + \dots + \frac{1}{n(n^2 - 1)}.$$

- 3. Deduce from above that $(S_n)_{n\in\mathbb{N}}$ converges and find its limit.
- 4. Prove that $\sum_{k\geq 2} 1/(k(k^2-1))$ converges and find its sum.

Exercise 2. Convergence of a series

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of nonnegative terms. Prove the series $\sum_{n\geq 1} u_n$ converges if and only if the sequence $(\sum_{k=1}^{n^2} u_k)_{n\in\mathbb{N}}$ converges.

Exercise 3. Convergent or divergent series

Indicate whether the series associated to following sequences diverge or converge.

1.
$$u_n = e^n/(n^5 + 1)$$

6.
$$u_n = n \ln(1 + 1/n^2)$$

2.
$$u_n = 2^n/(3^n n^2)$$

7.
$$u_n = n!/n^n$$

3.
$$u_n = e^{-n}/(4 + \sin(n))$$

8.
$$u_n = ne^{-n}$$

4.
$$u_n = n/2^n$$

$$9. \ u_n = \left(1 - \frac{1}{n}\right)^{n^2}$$

5.
$$u_n = e^{1/n}/(n+1)$$

Consider the series of the sequences $(u_n)_{n\in\mathbb{N}}$ whose general term is given by:

1.
$$u_n = \frac{1 - n \ln(1 + 1/n)}{\sqrt{n+1}}$$
,

6.
$$u_n = \tan(1/n) - 1/n$$
,

$$2. u_n = \ln(n)/n,$$

5. $u_n = ne^{-\sqrt{n}}$,

7.
$$u_n = (1 - 1/\sqrt{n})^n$$
,

3.
$$u_n = (1 + 1/\sqrt{n})^n$$
,

8.
$$u_n = \ln(n)/n^{\alpha}$$
 (discuss the problem in terms of α),

4.
$$u_n = (e^{1/n} - 1)/n$$
,

9.
$$u_n = n^2 \left(\sin(1/n) + \cos(1/n) + \ln^2(1 - 1/n) - e^{1/n} \right), n \ge 2.$$

Decide if they converge or diverge.

Exercise 5. Computation of sums of series

Consider the following series:

1.
$$\sum_{n \in \mathbb{N}} 3^{-n}$$

3.
$$\sum_{n\in\mathbb{N}} 1/n!$$
,

1.
$$\sum_{n \in \mathbb{N}} 3^{-n}$$
, 3. $\sum_{n \in \mathbb{N}} 1/n!$, 5. $\sum_{n \in \mathbb{N}} (n+2)/n!$,

2.
$$\sum_{n>3} 2/5^n$$

4.
$$\sum_{n \geq 2} 3/(n-1)!$$
,

2.
$$\sum_{n>3} 2/5^n$$
, 4. $\sum_{n>2} 3/(n-1)!$, 6. $\sum_{n\in\mathbb{N}} (n^2+n+1)/n!$.

Prove that they converge and compute their sums.

Exercise 6.

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence with positive terms such that $\sum_{n\in\mathbb{N}} u_n$ converges. Prove that the series

$$\sum_{n\in\mathbb{N}}\frac{u_n}{u_n+1}$$

converges.

Exercise 7. Comparison between series and integrals

- 1. Give an equivalent to $\sum_{k=1}^{n} 1/k^{\alpha}$ when $0 \le \alpha < 1$.
- 2. Give an equivalent to $\sum_{k=n}^{+\infty} 1/k^{\alpha}$ when $\alpha > 1$.
- 3. Prove that $\ln(n!) \sim n \ln(n)$ when n tends to $+\infty$.

Exercise 8. Equivalence of partial sums

Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two positive sequences such that $u_n \sim v_n$ when n tends to $+\infty$.

- 1. Suppose that the series $\sum_{n\in\mathbb{N}}u_n$ converges. Show that $\sum_{k>n}u_k\sim\sum_{k>n}v_k$ when n tends to
- 2. Suppose that the series $\sum_{n\in\mathbb{N}} u_n$ diverges. Show that $\sum_{k=0}^n u_k \sim \sum_{k=0}^n v_k$ when n tends to $+\infty$.
- 3. Prove that there exists a constant C such that

$$\sum_{k=1}^{n} \frac{1}{k^2 + \sqrt{k}} \underset{n \to +\infty}{=} C - \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Exercise 9. Series and decimal expressions

1. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence taking value in [0,9]. Show that the series

$$\sum_{n \in \mathbb{N}^*} \frac{a_n}{10^n}$$

converges.

2. Prove that if the sequence $(a_n)_{n\in\mathbb{N}^*}$ is periodic (from some point on), then the sum $\sum_{n\in\mathbb{N}^*} a_n/10^n$ is a rational number.

3. For $x \in [0, 1[$, let x_1 be the integral part of 10.x, and define by induction x_{n+1} to be the integral part of

$$10^{n+1} \left(x - \sum_{k=1}^{n} \frac{x_k}{10^k} \right).$$

Prove by induction that $x_n \in [0, 9]$ and

$$10^n \left(x - \sum_{k=1}^n \frac{x_k}{10^k} \right) \in [0, 1],$$

for all $n \in \mathbb{N}$.

- 4. Deduce from the above that $\sum_{n\in\mathbb{N}^*} x_n/10^n$ converges to x. We say that $(x_n)_{n\in\mathbb{N}^*}$ is the **associated sequence of the decimals** of x.
- 5. Prove that if x is rational, then the associated sequence $(x_n)_{n\in\mathbb{N}^*}$ is periodic from some point on.

Exercise 10. Another proof of the convergence of Riemann series using block summation

Let $(u_n)_{\mathbb{N}}$ be a decreasing sequence of real numbers. Set $v_n = 2^n u_{2^n}$.

- 1. Prove that the series $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} v_n$ converge or diverge simultaneously.
- 2. Deduce from the previous point that the Riemann series converge.
- 3. Study the convergence of the series

$$\sum_{n\geq 2} \frac{1}{n\ln(n)} \text{ and } \sum_{n\geq 3} \frac{1}{n\ln(n)\ln(\ln(n))}.$$

Exercise 11. Series with positive and decreasing general term

Let $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}_{>0}$ be a positive and decreasing sequence such that $\sum_{n\in\mathbb{N}}u_n$ converges.

- 1. Show that for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for any n > N we have $(n N)u_n \leq \varepsilon$.
- 2. Prove that nu_n converges to 0 when n tends to $+\infty$.
- 3. Give an example of a positive sequence $(v_n)_{n\in\mathbb{N}}$ such that $\sum_{n\in\mathbb{N}} v_n$ converges and nv_n doesn't tend to 0 as n goes to $+\infty$.