Exercise sheet 2

Series with positive terms

Exercise 1.

1. Find real numbers a, b, c such that for all $x \in \mathbb{R}$ with $x \neq 0,1,-1$ we have

$$
\frac{1}{x\left(x^{2}-1\right)}=\frac{a}{x-1}+\frac{b}{x}+\frac{c}{x+1}
$$

2. Using the previous relation for $x \in \llbracket 2, n \rrbracket$, find for all integers $n \geq 2$ a simple expression for

$$
S_{n}=\sum_{j=2}^{n} \frac{1}{j\left(j^{2}-1\right)}=\frac{1}{2\left(2^{2}-1\right)}+\frac{1}{3\left(3^{2}-1\right)}+\cdots+\frac{1}{n\left(n^{2}-1\right)}
$$

3. Deduce from above that $\left(S_{n}\right)_{n \in \mathbb{N}}$ converges and find its limit.
4. Prove that $\sum_{k \geq 2} 1 /\left(k\left(k^{2}-1\right)\right)$ converges and find its sum.

Exercise 2. Convergence of a series
Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of nonnegative terms. Prove the series $\sum_{n \geq 1} u_{n}$ converges if and only if the sequence $\left(\sum_{k=1}^{n^{2}} u_{k}\right)_{n \in \mathbb{N}}$ converges.

Exercise 3. Convergent or divergent series
Indicate whether the series associated to following sequences diverge or converge.

1. $u_{n}=e^{n} /\left(n^{5}+1\right)$
2. $u_{n}=2^{n} /\left(3^{n} n^{2}\right)$
3. $u_{n}=e^{-n} /(4+\sin (n))$
4. $u_{n}=n / 2^{n}$
5. $u_{n}=n \ln \left(1+1 / n^{2}\right)$
6. $u_{n}=n!/ n^{n}$
7. $u_{n}=n e^{-n}$
8. $u_{n}=\left(1-\frac{1}{n}\right)^{n^{2}}$

Exercise 4. Convergent or divergent series

Consider the series of the sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ whose general term is given by:

1. $u_{n}=\frac{1-n \ln (1+1 / n)}{\sqrt{n+1}}$,
2. $u_{n}=\tan (1 / n)-1 / n$,
3. $u_{n}=\ln (n) / n$,
4. $u_{n}=(1-1 / \sqrt{n})^{n}$,
5. $u_{n}=(1+1 / \sqrt{n})^{n}$,
6. $u_{n}=\left(e^{1 / n}-1\right) / n$,
7. $u_{n}=n e^{-\sqrt{n}}$,
8. $u_{n}=\ln (n) / n^{\alpha}$ (discuss the problem in terms of α),
9. $u_{n}=n^{2}\left(\sin (1 / n)+\cos (1 / n)+\ln ^{2}(1-1 / n)-e^{1 / n}\right), n \geq 2$.

Decide if they converge or diverge.
Exercise 5. Computation of sums of series
Consider the following series:

1. $\sum_{n \in \mathbb{N}} 3^{-n}$,
2. $\sum_{n \geq 3} 2 / 5^{n}$,
3. $\sum_{n \in \mathbb{N}} 1 / n!$,
4. $\sum_{n \geq 2} 3 /(n-1)!$,
5. $\sum_{n \in \mathbb{N}}(n+2) / n!$,
6. $\sum_{n \in \mathbb{N}}\left(n^{2}+n+1\right) / n!$.

Prove that they converge and compute their sums.

Exercise 6.

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence with positive terms such that $\sum_{n \in \mathbb{N}} u_{n}$ converges. Prove that the series

$$
\sum_{n \in \mathbb{N}} \frac{u_{n}}{u_{n}+1}
$$

converges.
Exercise 7. Comparison between series and integrals

1. Give an equivalent to $\sum_{k=1}^{n} 1 / k^{\alpha}$ when $0 \leq \alpha<1$.
2. Give an equivalent to $\sum_{k=n}^{+\infty} 1 / k^{\alpha}$ when $\alpha>1$.
3. Prove that $\ln (n!) \sim n \ln (n)$ when n tends to $+\infty$.

Exercise 8. Equivalence of partial sums
Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be two positive sequences such that $u_{n} \sim v_{n}$ when n tends to $+\infty$.

1. Suppose that the series $\sum_{n \in \mathbb{N}} u_{n}$ converges. Show that $\sum_{k>n} u_{k} \sim \sum_{k>n} v_{k}$ when n tends to $+\infty$.
2. Suppose that the series $\sum_{n \in \mathbb{N}} u_{n}$ diverges. Show that $\sum_{k=0}^{n} u_{k} \sim \sum_{k=0}^{n} v_{k}$ when n tends to $+\infty$.
3. Prove that there exists a constant C such that

$$
\sum_{k=1}^{n} \frac{1}{k^{2}+\sqrt{k}} \underset{n \rightarrow+\infty}{=} C-\frac{1}{n}+o\left(\frac{1}{n}\right)
$$

Exercise 9. Series and decimal expressions

1. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence taking value in $\llbracket 0,9 \rrbracket$. Show that the series

$$
\sum_{n \in \mathbb{N}^{*}} \frac{a_{n}}{10^{n}}
$$

converges.
2. Prove that if the sequence $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ is periodic (from some point on), then the sum $\sum_{n \in \mathbb{N}^{*}} a_{n} / 10^{n}$ is a rational number.
3. For $x \in\left[0,1\left[\right.\right.$, let x_{1} be the integral part of $10 . x$, and define by induction x_{n+1} to be the integral part of

$$
10^{n+1}\left(x-\sum_{k=1}^{n} \frac{x_{k}}{10^{k}}\right)
$$

Prove by induction that $x_{n} \in \llbracket 0,9 \rrbracket$ and

$$
10^{n}\left(x-\sum_{k=1}^{n} \frac{x_{k}}{10^{k}}\right) \in[0,1[
$$

for all $n \in \mathbb{N}$.
4. Deduce from the above that $\sum_{n \in \mathbb{N}^{*}} x_{n} / 10^{n}$ converges to x. We say that $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is the associated sequence of the decimals of x.
5. Prove that if x is rational, then the associated sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is periodic from some point on.

Exercise 10. Another proof of the convergence of Riemann series using block summation
Let $\left(u_{n}\right)_{\mathbb{N}}$ be a decreasing sequence of real numbers. Set $v_{n}=2^{n} u_{2^{n}}$.

1. Prove that the series $\sum_{n \in \mathbb{N}} u_{n}$ et $\sum_{n \in \mathbb{N}} v_{n}$ converge or diverge simultaneously.
2. Deduce from the previous point that the Riemann series converge.
3. Study the convergence of the series

$$
\sum_{n \geq 2} \frac{1}{n \ln (n)} \text { and } \sum_{n \geq 3} \frac{1}{n \ln (n) \ln (\ln (n))}
$$

Exercise 11. Series with positive and decreasing general term
Let $\left(u_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}_{>0}^{\mathbb{N}}$ be a positive and decreasing sequence such that $\sum_{n \in \mathbb{N}} u_{n}$ converges.

1. Show that for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for any $n>N$ we have $(n-N) u_{n} \leq \varepsilon$.
2. Prove that $n u_{n}$ converges to 0 when n tends to $+\infty$.
3. Give an example of a positive sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ such that $\sum_{n \in \mathbb{N}} v_{n}$ converges and $n v_{n}$ doesn't tend to 0 as n goes to $+\infty$.
