Exercise sheet 1

Sequences, comparison of sequences and Taylor polynomials

Exercise 1. Existence and computations of limits
Decide whether the following sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by

1. $u_{n}=1 /(2 n+1)$,
2. $u_{n}=(n+2) /(2 n+3)$,
3. $u_{n}=n^{2} /(n+1)$,
4. $u_{n}=1 /(\sqrt{n+1}-\sqrt{n})$,
5. $u_{n}=(n+1)^{2} /\left((n+1)^{3}-n^{3}\right)$,
6. $u_{n}=n^{10} / 1.01^{n}$,
converge or diverge. In the first case, compute the limit.

Exercise 2. Equivalence, domination and negligibility
For each of the following pair of sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$, verify whether $u_{n} \sim v_{n}, u_{n}=\mathrm{O}\left(v_{n}\right)$, $u_{n}=\mathrm{o}\left(v_{n}\right), v_{n}=\mathrm{O}\left(u_{n}\right)$, and/or $v_{n}=\mathrm{o}\left(u_{n}\right)$ when n tends to $+\infty$ hold $/ \mathrm{s}$:

1. $u_{n}=2^{-n}, v_{n}=3^{-n}$;
2. $u_{n}=1 / n, v_{n}=1 / \sqrt{n}$;
3. $u_{n}=n^{2}, v_{n}=2^{n}$;
4. $u_{n}=\cos (n), v_{n}=1$;
5. $u_{n}=\ln (n), v_{n}=\sqrt{n}$;
6. $u_{n}=\sin (1 / n), v_{n}=1 / n$.

Exercise 3. Asymptotic expansions

Give the asymptotic expansion of $\left(u_{n}\right)$ when n grows to infinity, with a remainder in $o\left(1 / n^{2}\right)$ for each of the following sequences:

1. $u_{n}=\frac{1}{2 n+1}$;
2. $u_{n}=\frac{n+1}{3+2 n}$;
3. $u_{n}=\frac{\ln \left(1-\frac{1}{n}+\frac{1}{n^{2}}\right)}{\sqrt{1-\frac{1}{n}}}$;
4. $u_{n}=\left(1+\frac{1}{n}\right)^{n+2}$.

Exercise 4. A few examples

Give examples of the following situations :

1. an increasing positive sequence not converging to 0 ;
2. a bounded sequence which is not convergent;
3. a positive sequence which is not bounded and not tending to ∞;
4. a non monotone sequence not converging to 0;
5. two divergent sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ such that the product sequence $\left(u_{n} v_{n}\right)_{n \in \mathbb{N}}$ is convergent.

Exercise 5. Limit of a product of sequences

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be complex sequences. Assume that $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are convergent. Prove that the product sequence $\left(u_{n} v_{n}\right)_{n \in \mathbb{N}}$ also converges and moreover

$$
\lim _{n \rightarrow \infty} u_{n} v_{n}=\left(\lim _{n \rightarrow \infty} u_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} v_{n}\right)
$$

Exercise 6. Subsequences

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers.

1. Show that if $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ both converge to the same limit, then $\left(u_{n}\right)_{n \in \mathbb{N}}$ also converges.
2. Show that if the sequences $\left(u_{2 n}\right)_{n \in \mathbb{N}},\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ and $\left(u_{3 n}\right)_{n \in \mathbb{N}}$ are convergent, then $\left(u_{n}\right)_{n \in \mathbb{N}}$ also converges.

Exercise 7. Computation of limits using usual functions
Compute the limit, if it exists, of the following sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by:

1. $u_{n}=n^{4}\left(\ln \left(1-1 / n^{2}\right)+1 / n^{2}\right)$,
2. $u_{n}=n\left(e^{2 / n}-1\right)$,
3. $u_{n}=n!/ n^{n}$,
4. $u_{n}=\tan (1 / n) \cos (2 n+1)$,
5. $u_{n}=(\sqrt{n-3}+i \ln (2 n)) / \ln (n)$,
6. $u_{n}=\ln \left(n^{2}+3 n-2\right) / \ln \left(n^{1 / 3}\right)$.

Exercise 8. Adjacent sequences

1. Prove that each of the following pair of sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are adjacent.
(i) $u_{n}=\sum_{k=1}^{n} 1 / k^{2}$ and $v_{n}=u_{n}+1 / n$.
(ii) $u_{n}=\sum_{k=1}^{n} 1 / k^{3}$ and $v_{n}=u_{n}+1 / n^{2}$.
(iii) $u_{0}=a>0, v_{0}=b>a, v_{n+1}=\left(u_{n}+v_{n}\right) / 2$ and $u_{n+1}=\sqrt{u_{n} v_{n}}$.
2. Define the real sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ by

$$
u_{n}=\sum_{k=0}^{n} \frac{1}{k!} \text { and } v_{n}=u_{n}+\frac{1}{n!n}
$$

(i) Show that these sequences are adjacent, with a common limit e (it's a possible definition of e).
(ii) Show that e is not rational.

Hint : Suppose that $e=p / q$ and note that for $n \in \mathbb{N}$ we have the inequalities $n!u_{n}<$ $n!p / q<n!v_{n}$. Then choose n such that $n!p / q$ is an integer.

Exercise 9. Sequences defined recursively

1. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f(0)=0, f(1)=1$ and $f(x)<x$ for all $x \in] 0,1\left[\right.$. Define recursively a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ by

$$
\left\{\begin{array}{l}
u_{0} \in[0,1], \\
u_{n+1}=f\left(u_{n}\right), \text { for all } n \in \mathbb{N}
\end{array}\right.
$$

Show that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges and compute its limit.
2. Define recursively a sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ by

$$
\left\{\begin{array}{l}
v_{0}=\frac{1}{2} \\
v_{n+1}=\frac{v_{n}}{2-\sqrt{v_{n}}}, \text { for all } n \in \mathbb{N}
\end{array}\right.
$$

Show that the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ converges and compute its limit.

Exercise 10. Cesàro average
Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. Define

$$
S_{n}=\frac{u_{1}+\ldots+u_{n}}{n}
$$

for all $n \in \mathbb{N}$.

1. Show that if $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges in \mathbb{C}, then $\left(S_{n}\right)_{n \in \mathbb{N}}$ converges to the same limit.
2. Give an example of a divergent sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that $\left(S_{n}\right)_{n \in \mathbb{N}}$ converges.
3. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of (strictly) positive real numbers such that u_{n+1} / u_{n} converges to $\ell \in \mathbb{R}^{*}$. Show that $\left(u_{n}^{1 / n}\right)_{n \in \mathbb{N}}$ converges to the same limit.

Exercise 11. Lim sup and lim inf
Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. Define sequences $\left(i_{n}\right)_{n \in \mathbb{N}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}}$ by

$$
i_{n}=\inf \left\{u_{k}: k \geq n\right\} \text { and } s_{n}=\sup \left\{u_{k}: k \geq n\right\}
$$

for all $n \in \mathbb{N}$.

1. Show that both $\left(i_{n}\right)_{n \in \mathbb{N}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}}$ converge. The limit of $\left(i_{n}\right)_{n \in \mathbb{N}}$ is called limit inferior or lower limit of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$, and is denoted by

$$
\liminf _{n \rightarrow \infty} u_{n}
$$

The limit of $\left(s_{n}\right)_{n \in \mathbb{N}}$ is called limit superior or upper limit of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$, and is written

$$
\limsup _{n \rightarrow \infty} u_{n}
$$

2. Let $\left(u_{\varphi(n)}\right)$ be a converging subsequence of $\left(u_{n}\right)$. Show that

$$
\liminf _{n \rightarrow \infty} u_{n} \leq \lim _{n \rightarrow \infty} u_{\varphi(n)} \leq \limsup _{n \rightarrow \infty} u_{n}
$$

3. Show that for any positive integer N and any positive real ϵ, the following set is non empty:

$$
\left\{k>N: u_{k} \leq \liminf _{n \rightarrow \infty} u_{n}+\epsilon\right\}
$$

4. Deduce that there exists a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$ converging to the limit inferior of $\left(u_{n}\right)_{n \in \mathbb{N}}$ and another subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$ converging to the limit superior.
5. Prove that $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges if and only if $\liminf _{n \rightarrow \infty} u_{n}=\limsup _{n \rightarrow \infty} u_{n}$.
