

Exercise sheet 1

Sequences, comparison of sequences and Taylor polynomials

Exercise 1. Existence and computations of limits

Decide whether the following sequences $(u_n)_{n\in\mathbb{N}}$ given by

1.
$$u_n = 1/(2n+1)$$
,

2.
$$u_n = (n+2)/(2n+3)$$
,

3.
$$u_n = n^2/(n+1)$$
,

4.
$$u_n = (10n^2 + 1)/(n^3 - 1)$$
,

5.
$$u_n = 1/(\sqrt{n+1} - \sqrt{n}),$$

6.
$$u_n = (n+1)^2/((n+1)^3 - n^3),$$

7.
$$u_n = n^{10}/1.01^n$$
,

converge or diverge. In the first case, compute the limit.

Exercise 2. Equivalence, domination and negligibility

For each of the following pair of sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$, verify whether $u_n \sim v_n$, $u_n = \mathrm{O}(v_n)$, $u_n = \mathrm{O}(v_n)$, $v_n = \mathrm{O}(u_n)$, and/or $v_n = \mathrm{o}(u_n)$ when n tends to $+\infty$ hold/s:

1.
$$u_n = 2^{-n}, v_n = 3^{-n};$$

5.
$$u_n = \cos(n), v_n = 1;$$

2.
$$u_n = 1/n, v_n = 1/\sqrt{n};$$

6.
$$u_n = \ln(n), v_n = \sqrt{n}$$
;

3.
$$u_n = n^2$$
, $v_n = 2^n$;

7.
$$u_n = \sin(1/n), v_n = 1/n$$
.

4.
$$u_n = \cos(1/n), v_n = e^{1/n};$$

Give the asymptotic expansion of (u_n) when n grows to infinity, with a remainder in $o(1/n^2)$ for each of the following sequences:

1.
$$u_n = \frac{1}{2n+1}$$
;

3.
$$u_n = \frac{\ln\left(1 - \frac{1}{n} + \frac{1}{n^2}\right)}{\sqrt{1 - \frac{1}{n}}};$$

2.
$$u_n = \frac{n+1}{3+2n}$$
;

4.
$$u_n = \left(1 + \frac{1}{n}\right)^{n+2}$$
.

Exercise 4. A few examples

Give examples of the following situations:

- 1. an increasing positive sequence not converging to 0;
- 2. a bounded sequence which is not convergent;

- 3. a positive sequence which is not bounded and not tending to ∞ ;
- 4. a non monotone sequence not converging to 0;
- 5. two divergent sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ such that the product sequence $(u_nv_n)_{n\in\mathbb{N}}$ is convergent.

Exercise 5. Limit of a product of sequences

Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be complex sequences. Assume that $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are convergent. Prove that the product sequence $(u_nv_n)_{n\in\mathbb{N}}$ also converges and moreover

$$\lim_{n\to\infty} u_n v_n = \left(\lim_{n\to\infty} u_n\right) \cdot \left(\lim_{n\to\infty} v_n\right).$$

Exercise 6. Subsequences

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of complex numbers.

- 1. Show that if $(u_{2n})_{n\in\mathbb{N}}$ and $(u_{2n+1})_{n\in\mathbb{N}}$ both converge to the same limit, then $(u_n)_{n\in\mathbb{N}}$ also converges.
- 2. Show that if the sequences $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ and $(u_{3n})_{n\in\mathbb{N}}$ are convergent, then $(u_n)_{n\in\mathbb{N}}$ also converges.

Exercise 7. Computation of limits using usual functions

Compute the limit, if it exists, of the following sequences $(u_n)_{n\in\mathbb{N}}$ given by:

1.
$$u_n = n^4(\ln(1 - 1/n^2) + 1/n^2),$$

4.
$$u_n = \tan(1/n)\cos(2n+1)$$
,

2.
$$u_n = n(e^{2/n} - 1)$$
,

5.
$$u_n = (\sqrt{n-3} + i \ln(2n)) / \ln(n)$$
,

3.
$$u_n = n!/n^n$$
,

6.
$$u_n = \ln(n^2 + 3n - 2) / \ln(n^{1/3})$$
.

Exercise 8. Adjacent sequences

- 1. Prove that each of the following pair of sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are adjacent.
 - (i) $u_n = \sum_{k=1}^n 1/k^2$ and $v_n = u_n + 1/n$.
 - (ii) $u_n = \sum_{k=1}^n 1/k^3$ and $v_n = u_n + 1/n^2$.
 - (iii) $u_0 = a > 0$, $v_0 = b > a$, $v_{n+1} = (u_n + v_n)/2$ and $u_{n+1} = \sqrt{u_n v_n}$.
- 2. Define the real sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ by

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 and $v_n = u_n + \frac{1}{n!n}$.

(i) Show that these sequences are adjacent, with a common limit e (it's a possible definition of e).

(ii) Show that e is not rational.

Hint: Suppose that e = p/q and note that for $n \in \mathbb{N}$ we have the inequalities $n!u_n < n!p/q < n!v_n$. Then choose n such that n!p/q is an integer.

Exercise 9. Sequences defined recursively

1. Let $f:[0,1] \to [0,1]$ be a continuous function such that f(0) = 0, f(1) = 1 and f(x) < x for all $x \in]0,1[$. Define recursively a sequence $(u_n)_{n \in \mathbb{N}}$ by

$$\begin{cases} u_0 \in [0,1], \\ u_{n+1} = f(u_n), \text{ for all } n \in \mathbb{N}. \end{cases}$$

Show that the sequence $(u_n)_{n\in\mathbb{N}}$ converges and compute its limit.

2. Define recursively a sequence $(v_n)_{n\in\mathbb{N}}$ by

$$\begin{cases} v_0 = \frac{1}{2}, \\ v_{n+1} = \frac{v_n}{2 - \sqrt{v_n}}, \text{ for all } n \in \mathbb{N}. \end{cases}$$

Show that the sequence $(v_n)_{n\in\mathbb{N}}$ converges and compute its limit.

Exercise 10. Cesàro average

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of complex numbers. Define

$$S_n = \frac{u_1 + \ldots + u_n}{n}$$

for all $n \in \mathbb{N}$.

- 1. Show that if $(u_n)_{n\in\mathbb{N}}$ converges in \mathbb{C} , then $(S_n)_{n\in\mathbb{N}}$ converges to the same limit.
- 2. Give an example of a divergent sequence $(u_n)_{n\in\mathbb{N}}$ such that $(S_n)_{n\in\mathbb{N}}$ converges.
- 3. Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of (strictly) positive real numbers such that u_{n+1}/u_n converges to $\ell\in\mathbb{R}^*$. Show that $(u_n^{1/n})_{n\in\mathbb{N}}$ converges to the same limit.

Exercise 11. Lim sup and lim inf

Let $(u_n)_{n\in\mathbb{N}}$ be a bounded sequence of real numbers. Define sequences $(i_n)_{n\in\mathbb{N}}$ and $(s_n)_{n\in\mathbb{N}}$ by

$$i_n = \inf\{u_k : k \ge n\}$$
 and $s_n = \sup\{u_k : k \ge n\}$

for all $n \in \mathbb{N}$.

1. Show that both $(i_n)_{n\in\mathbb{N}}$ and $(s_n)_{n\in\mathbb{N}}$ converge. The limit of $(i_n)_{n\in\mathbb{N}}$ is called **limit inferior** or **lower limit** of the sequence $(u_n)_{n\in\mathbb{N}}$, and is denoted by

$$\liminf_{n\to\infty} u_n.$$

The limit of $(s_n)_{n\in\mathbb{N}}$ is called **limit superior** or **upper limit** of the sequence $(u_n)_{n\in\mathbb{N}}$, and is written

$$\limsup_{n\to\infty} u_n.$$

2. Let $(u_{\varphi(n)})$ be a converging subsequence of (u_n) . Show that

$$\liminf_{n \to \infty} u_n \le \lim_{n \to \infty} u_{\varphi(n)} \le \limsup_{n \to \infty} u_n.$$

3. Show that for any positive integer N and any positive real ϵ , the following set is non empty:

$$\{k > N : u_k \le \liminf_{n \to \infty} u_n + \epsilon\}.$$

- 4. Deduce that there exists a subsequence of $(u_n)_{n\in\mathbb{N}}$ converging to the limit inferior of $(u_n)_{n\in\mathbb{N}}$ and another subsequence of $(u_n)_{n\in\mathbb{N}}$ converging to the limit superior.
- 5. Prove that $(u_n)_{n\in\mathbb{N}}$ converges if and only if $\liminf_{n\to\infty} u_n = \limsup_{n\to\infty} u_n$.