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Summary

|7 e The setup: graphs asymptotic to a homogeneous tree T

e The case of a homogeneous tree T,
» the spectral decomposition of the adjacency matrix
» the Fourier-Helgason transform
e A scattering problem for a Schrodinger operator with a compactly
supported non local potential
» Existence and unicity of the generalised eigenfunctions
The deformed Fourier-Helgason transform
Correlation of scattered plane waves
The S-matrix and the asymptotics of the sc. pl. waves

o o o o

Computation of the transmission coefficients

—

he spectral theory for a graph asymptotic to T,

Joint work with Y. Colin de Verdi ere, Grenoble
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The setup

|7 ® ' = (Vp, Er): aconnected graph T

o Vr :the set of vertices, Er : the set of edges
o We write x ~ y for {x,y} € Er.

® ¢ > 2 fixed integer. I' is asymptotic to a hom. tree of degree ¢q + 1
< 4 a finite sub-graph I'g of I s.t.

e I :=T\T)is adisjoint union of a finite number of trees
T;, l=1,---, L, rooted at a vertex x; linked to I'

o all vertices of T; different from z; are of degree ¢ + 1.

o ThetreesT;, | =1,---,L, are called the ends of I.

o |
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The setup

|7 ® ' = (Vp, Er): aconnected graph T

o Vr :the set of vertices, Er : the set of edges
o We write x ~ y for {x,y} € Er.

® ¢ > 2 fixed integer. I' is asymptotic to a hom. tree of degree ¢q + 1
< 4 a finite sub-graph I'g of I s.t.

e I :=T\T)is adisjoint union of a finite number of trees
T;, l=1,---, L, rooted at a vertex x; linked to I'

o all vertices of T; different from z; are of degree ¢ + 1.

o ThetreesT;, | =1,---,L, are called the ends of I.

® 0Oy =the boundary of I'y : the set of edges of I' connecting a vertex
of I'y to a vertex of IV, (one of the x;’s).
|z|p, : the distance of x € Vp/ to Ty.

o |
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The adjacency operator

|7.. cr)y={f:Vpr — C} —‘

® ()(T): the subspace of functions with finite support.

® PI)={feC); X [fF(z) <o} {f.9) = en fx)g(x) .

xeVr

o |
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The adjacency operator

|7.. cr)y={f:Vpr — C} —‘

® ()(T): the subspace of functions with finite support.

® PI)={feC); X [fF(z) <o} {f.9) = en fx)g(x) .

xeVr

® On Cy(I'), we define the adjacency operator Ar by
(Arf) (®) = 2_yu | ()

® Ar is bounded on [?(T") « the degree of the vertices of I is
bounded. ( which is the case here.)

# Inthat case, the operator Ar is self-adjoint.
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The adjacency operator

f.o O ={f:Vr — C} j

® ()(T): the subspace of functions with finite support.

® PI)={feC); X [fF(z) <o} {f.9) = en fx)g(x) .

xeVr

® On Cy(I'), we define the adjacency operator Ar by
(Arf) (x) =20 f (W)
® Ar is bounded on [?(T") « the degree of the vertices of I is
bounded. ( which is the case here.)
# Inthat case, the operator Ar is self-adjoint.

® Our goal : get an explicit spectral decomposition of the adjacency
operator Ar.

# getaS. D. for a Schrodinger operator with a compactly supported
potential on a hom. tree

o getasimilar S. D. for the adjacency operator Ar via a
combinatorial result 5/10/2012 — p. 4



The points at infinity on the tree T

|7 ® T,=(V,, E,) : homogeneous tree of degree q + 1 T
# choose an origin O ( a root)
» |z| : the combinatorial distance of the vertex x to O .
® () : the set of infinite simple paths starting from O.

# asequence y, € V, tends to w € () Iff for n large enough, y,,
belongs to the path w and is going to infinity along that path.

o |
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L

The points at infinity on the tree T

T, = (V,, E,) : homogeneous tree of degree ¢ + 1
# choose an origin O ( a root)
» |z| : the combinatorial distance of the vertex x to O .

Qo : the set of infinite simple paths starting from O.

# asequence y, € V, tends to w € () Iff for n large enough, y,,
belongs to the path w and is going to infinity along that path.

doo . canonical probability measure on Q2o

Busemann function z — b, (x) := |z, | — d(z, x,,).
( ., the last point lying on w in the geodesic path joining O to x)

level sets of b, : horocycles associated to w.

|
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The points at infinity on the tree T

® T,=(V,, E,) : homogeneous tree of degree q + 1
# choose an origin O ( a root)
» |z| : the combinatorial distance of the vertex x to O .

® () : the set of infinite simple paths starting from O.

# asequence y, € V, tends to w € () Iff for n large enough, y,,
belongs to the path w and is going to infinity along that path.

°

doo . canonical probability measure on Q2o

°

Busemann function z — b, (x) := |z, | — d(z, x,,).
( ., the last point lying on w in the geodesic path joining O to x)

® |evel sets of b, : horocycles associated to w.
Theorem A : the adjacency operator on T,. The spectrum of A is the

interval I, = |—2,/q, +2,/q|. Seteg(z,w, s) := q(1/2=1s)bu(z)  gnd
\s = q27% + g2  Then Vs € S°, Ageg(w, s) = Asep(w, s).

o |
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The spectral Riemann surface

|7.. S = /17 x iR, 7 =271 /logq —‘
® s — )\, holomorphic function defined on S by A\, = gz +is 4+ g2 %,
e ST:={seS|SJs>0}is mapped bijectively onto C \ I,,.
e SY:=R/7Z: the circle s = 0.

the circle S is a double covering of I,,.

o |
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The spectral Riemann surface

|7-. S = /77 x iR, T = 27w/ log q | —‘

® s — )\, holomorphic function defined on S by A\, = gz +is 4+ g2 %,
e ST:={seS|SJs>0}is mapped bijectively onto C \ I,,.
e SY:=R/7Z: the circle s = 0.

the circle S is a double covering of I,,.

Gy : the Green’s function on T,,.

» Theorem

» The Green’s function of the tree T, is given, for s € S by
(— 5 +is)d(z,y)

GO(A&SE?@/) — ql

qi—is_q—%—l—is :

® (G extends merom. to S with two poles —i/2 and —i/2 + 7/2.

» forany x € V, and any y belonging to the path w,

GO()\S7 €L, y) — C(S)q(_%—i_isﬂy'q(%_i's)bw (37),

o |
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The density of states
® ¢ :R — R given continuous function

|7 ® ¢(Ar): operator on [*(T"), (associated matrix [¢(Ar)](z,z")) T

® Consider for any z € Vr, the linear form on C'(R, R)

Ly (¢) = [¢(Ar))(z, x) .

L, is positive and verifies L, (1) = 1, so we have L,(¢) = [, ¢de,
where de,. is a probability measure on R, supported by the spectrum
of Ar.

o |
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.

The density of states
¢ : R — R given continuous function

¢(Ar): operator on [?(T"), (associated matrix [¢p(Ar)](x, z)) T

Consider for any x € Vr, the linear form on C(R, R)

Ly (¢) = [¢(Ar))(z, x) .

L, is positive and verifies L, (1) = 1, so we have L,(¢) = [, ¢de,
where de,. is a probability measure on R, supported by the spectrum
of Ar.

Theorem The spectral measure de, of T, Is independent of the
vertex x and is given by

dey(\) = de(\) = 2(7‘5 (+(q1)+v1;lzq = :22) A\

|
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The Fourier-Helgason transform

f ® Definition The Fourier-Helgason transform FH : f — f(w, s) of T
f e Co(T,), where w € Qp and s € S, is given by

Flw,s) = Saey, F@)g/2H0u@
® Remark If s € S°, then

f(was) — <60(w78)7f> — er\/p / (CIZ) 60(377("}78) :

Completeness of the set {eg(w, s), s € 5%, w e Q}:

o |
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The Fourier-Helgason transform

Definition The Fourier-Helgason transform FH : f — f(w, s) of T
f e Co(T,), where w € Qp and s € S, is given by

Flw,s) = Saey, F@)g/2H0u@
Remark If s € S9, then

f(was) — <60(w78)7f> — ZxEVp / (.CIZ) 60(377("}78) :

Completeness of the set {eg(w, s), s € 5%, w e Q}:

Theorem (inversion formula)
e Forany f € Cy(T,), we have

A

F(@) = [0 Jy 0,0, 8)f(w, 8)doo(w)du(s)

_ (g+1)logg sin? (s log q)
where du(s) = T T T 2 oos(2s o5 O ds| .

® FH extends to a u. map from [*(T,) into L*(Q x S°,doo @ du).

» its range is the subsp. of the f. F' of L?(Q x SY, dop ® du) s.t.
Joeo(z,w,s)F(w,s)doo(w) = |, eo(x,w, —s)F(w, —s)doo(w) .

o Spectral resolution of Ay: if ¢ : R — R Is continuous, J
B(Ao) = (FH) " ¢(A) FH .

5/10/2012 — p. 8



Scattering on T, between A, and the Schrodinger operator A = Ay + W

® the Hermitian matrix (also denoted W) assoc. to this potential is T
supported by K x K ( K : afinite part of V)

® K is chosen minimal, sothat: K = {z €V, | Jy € V, with W , # 0} .

® Ais afinite rank perturbation of A .

|
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Scattering on T, between A, and the Schrodinger operator A = Ay + W

® the Hermitian matrix (also denoted W) assoc. to this potential is T
supported by K x K ( K : afinite part of V)

°

K is chosen minimal, so that: K = {x € V| Jy € V, with W, , # 0} .

°

A Is a finite rank perturbation of Ay .

® Proposition 2(Ty) = Hac ® Hpp
® H,.is the isometric image of [*(T,) by the wave operator
OF =5 —lim,, . et4e 40 We have
A, = QT Ap(QT)* = the corresponding part of the S.D. is
iIsomorphic to that of Ay which is an a. c. spectrum on I,.
® The space H,,, is finite dimensional, admits an o.b. of /* eigenf.
associated to a finite set of eigenv. ( Some of them can be embedded in

the continuous spectrum I,,.)

o |
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Formal derivation of the Lippmann-Schwinger equation
® We look for generalised eigenfunctions of A.

® they are particular solutions of
(As — A)e(.,w,s) =0,
(meaning not {2 solutions, but only point-wise solutions.)

o |
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Formal derivation of the Lippmann-Schwinger equation
® We look for generalised eigenfunctions of A.
|7 ® they are particular solutions of T
(As — A)e(.,w,s) =0,
(meaning not {2 solutions, but only point-wise solutions.)

If e(w, s) is the image of e¢y(w, s) by QT in some sense (they are not in [?!),
then we should have formally  eg(w,s) = limt_>_ooeit‘40e_it‘qe(w7 s)

t
= lim;, _ole(w,s) — z/ e AT e A (W, 5)dul
0

—00
e(w,s) — ilims_m/ e AT e T A oo (1 ) du
0

e(w, s) + lim._,o[(Ag — (As + i) ' Wel(w, s) .

So e(w, s) should obey the following "Lippmann-Schwinger-type" equation

e(w,s) = eg(w, s) + Go(As)We(w,s) .

o |
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® y € (Cy(T,) be a compactly supported real-valued function s. t.

Wyx =xW=W —‘
® |[fe(w,s) obeys (LSE) and a(w, s) = xe(w, s), then a obeys (MLSE):

a(wa S) — XGO(wa S) + XGO()\S)WO/(W7 S) :

® K : the finite rank op. on [*(T,) defined by K; = xGo(\s)W. The
map s — K, extends holom. to s > —2

s analytic Fredholm theorem — 3 a finite subset £ of S°, defined
by £ =: {s € 5% ker(Id — K,) # 0}, so that (MLSE) has a unique
solution a(w, s) € Co(T,) whenever s ¢ £ .

|
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® y € (Cy(T,) be a compactly supported real-valued function s. t.

Wyx =xW=W —‘
® |[fe(w,s) obeys (LSE) and a(w, s) = xe(w, s), then a obeys (MLSE):

a(wa S) — XGO(wa S) + XGO()\S)WG(LU7 S) :

® K : the finite rank op. on [*(T,) defined by K; = xGo(\s)W. The
map s — K, extends holom. to s > —2

s analytic Fredholm theorem — 3 a finite subset £ of S°, defined
by £ =: {s € 5% ker(Id — K,) # 0}, so that (MLSE) has a unique
solution a(w, s) € Co(T,) whenever s ¢ £ .

For s ¢ £, the function e(w, s) = ep(w, $) + Go(As)Wa(w, s)
IS the unique solution of (LSE).

|
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The set€ and the pure point spectrum

fProposmons T

The set £ is independent of the choice of y with Wy = YW = W.

® If (A—)\)f=0with\el,and f e I>(T,), then Supp(f) C K
K : the smallest subset of V, s. t. Supp(W) ¢ K x K and all
connected components of T, \ K are infinite.

® Consequence #{opp(A) NI} < #K.
® IfsecS (A—),)f=0and fel*T,)\0, thenseé.
® Conversely,ifse £ c S 3f£0s.t. (A—\,)f=0and

f(z) =0 (¢~1*V?).

o |
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The set€ and the pure point spectrum

fProposmons T

The set £ is independent of the choice of y with Wy = YW = W.

® If (A—)\)f=0with\el,and f e I>(T,), then Supp(f) C K
K : the smallest subset of V, s. t. Supp(W) ¢ K x K and all
connected components of T, \ K are infinite.

°

Consequence #{o,,(A) N1} < #K.
® IfsecS (A—),)f=0and fel*T,)\0, thenseé.

® Conversely,ifse £ c S 3f£0s.t. (A—\,)f=0and
f(z) =0 (q71"12).
Theorem The pure point spectrum o,,,(A) of A splits into 3 parts
opp(A) =0 (A)Uat (A)Uay, (A)
where o (A) = opp(A)N] — 00, =2,/q[, 0, (A) = 0pp(A)N]2,/q, 400, and
opp(A) = opp(A) N1,

LWe have #o2 (A) < #Supp(W) and #0Y (A) < #K. J
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The deformed Fourier-Helgason transform

® Definition The deformed Fourier-Helgason transform FH,. of T
f € Co(T,) is the function f,. on Q x (S°\ ) defined by
foo(w, s) = Z f(x)e(x,w,s).
reVr

® Remark Since K, = K_,, the subset £ is invariant by s - —s and
consequently is the inverse image by s — \s of a subset of I, which
we denote by £.

|
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The deformed Fourier-Helgason transform

Definition The deformed Fourier-Helgason transform FHg. of T
f € Co(T,) is the function f,. on Q x (S°\ ) defined by
fsc(was) Z f ZC W, S .
reVr

Remark Since K, = K_g, the subset £ is invariant by s — —s and
consequently is the inverse image by s — \s of a subset of I, which
we denote by £.

Theorem (inversion formula)

K

K

K

feCy(T,) ,J ClI,\E& anyclosed interval

denote by .J the inverse image of J by s — s,

then the following inverse transform holds

Prf(x) = [; Jge(x, w, $) fse(w, 8)doo (w)du(s) .
Moreover f — f.. extends to an isometry from #,. onto
L2 (22 x 8% doo @ dp).

even

|

5/10/2012 — p. 13



Correlation of scattered plane waves

f ® Motivation: passive imaging in seismology (M. Campillo’s seismologyj
group in Grenoble).
For a scattering problem in R? the point-to-point correlations of the plane waves can
be computed in terms of the Green’s function (Y. C.d.V, '09). for a fixed spectral
parameter, plane waves are viewed as random waves parametrised
by the direction of their incoming part.

o |
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Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo’s seismologyj
group in Grenoble).

For a scattering problem in R? the point-to-point correlations of the plane waves can

be computed in terms of the Green’s function (Y. C.d.V, '09). for a fixed spectral
parameter, plane waves are viewed as random waves parametrised

by the direction of their incoming part.

Consider the plane wave e(x,w, s(\)) as a random wave

Define the point-to-point correlation C{¢(x, y) of such a random wave
In the usual way:

O35 (a,y) = / (@, 500y, w, s(N)) do(w) |

Theorem For any A € I, and any vertices z, y

20a% +2g+1 — \?
CY(z,y) = — Ciha )%G(AHO,%y)- J

(g +1)\/4q — \? 5/10/2012 — p. 14



The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions e(z, w, s) are especially useful toT
describe the so-called S—matrix (S = (27)* Q™).

® Forany fandg e Cy(T,)
(f, (S —1)g) = =27 [0, g0 fopug T(w, 50", 8") f(w,8)5(As — As)G(w', s")d>
® d¥ =doo(w)du(s)doo(w)du(s")
® T(w,s;w',8") = (e(w,s"), Weg(w,s)) =
D (zy) €@ W, YW (2, y)eo(y,w, s) .

o |

5/10/2012 — p. 15



The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions e(z, w, s) are especially useful toT
describe the so-called S—matrix (S = (27)* Q™).

® Forany fandg e Cy(T,)
(f, (S —1)g) = =27 [0, g0 fopug T(w, 50", 8") f(w,8)5(As — As)G(w', s")d>
® d¥ =doo(w)du(s)doo(w)du(s")
® T(w,s;w',8") = (e(w,s"), Weg(w,s)) =
D (zy) €@ W, YW (2, y)eo(y,w, s) .

® This can be written symbolically as

S(w,s;w',s") =06(s —§") — 2miT (w, s;w", 8" )0(As — Agr) .

o |
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The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions e(z, w, s) are especially useful toT
describe the so-called S—matrix (S = (27)* Q™).
® Forany fandg e Cy(T,)
(f, (S —1)g) = =27 [0, g0 fopug T(w, 50", 8") f(w,8)5(As — As)G(w', s")d>
® d¥ =doo(w)du(s)doo(w)du(s")
® T(w,s;w',8") = (e(w,s"), Weg(w,s)) =
Z(x,y) G(CIZ, (.U/, Sl)W(xa y)e()(ya W, 8) .

® This can be written symbolically as
S(w,s;w',s") =06(s —§") — 2miT (w, s;w", 8" )0(As — Agr) .
® There exist “transmission coefficients” 7(s,w,w’) so that

e(r;w,s) = ep(x;w,s) + T(S,w,w’)q(—%+i3)\$|

for any = close enoughto w’ | 7(s,w,w’) = —%S(w@ —S;W, S)
. . 1 .
with C(s)™ = gz — g3t 5/10/2012 — p. 15



Computation of the transmission coefficients in terms of the Dirichlet-to
Neumann operator

® The functions b, (y) and b, (y) are equal if w and w’ belong to the
same end of T, \ K.

® — the function v’ — 7(s,w,w’) is constant in each end of T, \ K

® — thetr. coeff. 7(s,w,w’) can be written as a function 7(s, w, ).

|
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Computation of the transmission coefficients in terms of the Dirichlet-to
Neumann operator

® The functions b, (y) and b, (y) are equal if w and w’ belong to the
same end of T, \ K.

°

—> the function w’ — 7(s,w,w’) is constant in each end of T, \ K

°

— the tr. coeff. 7(s,w,w’) can be written as a function 7(s,w, ().

® Moreover the reduced Lippmann-Schwinger equation depends only
on the restriction of eg to K

°

—> the function w — 7(s,w, ) is also constant in each end of T, \ K.

°

Finally, we get an L x L matrix depending on s, denoted by

20T

S(s) = (S =s,1.8))yy = =5 o L)

B |
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heorem T
Consider n : the integer so that B,,_> Is the smallest ball containing the
finite graph K.
SetlI'=58,,,0l ={z;,1 <’ <L}.
Set A,, : the restriction of Ato B, (A, = (Az.y)(@,v)eB,)
define I,, in the same way,
set B=A, — \I,
Consider DN ,: the corresponding Dirichlet-to Neumann operator .
Then DN, and the transmission vector

7(s,1) = (7(s,0,1), -+ ,7(s,1,1"),--- ,7(s,l, L)) exist for any
s¢ & ={seS A\ eco(A,_1)}

and
1

C(s)
A — (Al,l’) — (&d(:cl,:cl/)), o = q—1/2—|—z’s . J

5/10/2012 — p. 17

(7(s,1,I")) = —a™ 2" [

LWIth AA\n_1 = (Aa:,y)(a:,y)EBn

(DN +q/201) +A] ,
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The Dirichlet-to Neumann operator DN on a finite graph
= (V, F) : a connected finite graph
OI' : a subset of V' called the "boundary of I"".
B = (b;j): RV = RY : asym. matrix assoc. to I', namely
bi’jZO if’i#j and {Z,]}QE

Set Vp = V' \ dT', define By : RY0 — R0 as the restriction of B to the functions which
vanish on oI .

o |
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The Dirichlet-to Neumann operator DN on a finite graph

= (V, F) : a connected finite graph
OI' : a subset of V' called the "boundary of I"".
B = (b; ;) : RY — RY : a'sym. matrix assoc. to I", namely
bi’jZO if’i#j and {Z,]}QE
Set Vp = V' \ dT', define By : RY0 — R0 as the restriction of B to the functions which

vanish on oI .

Lemma

Assume By invertible. Then, Vf € C'(9I'), 3 a unique solution F' € C(T") of the Dirichlet
problem

(Dy) + Flar = fand BF(l) =0if l € Vp .

o |
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The Dirichlet-to Neumann operator DN on a finite graph

= (V, F) : a connected finite graph
OI' : a subset of V' called the "boundary of I"".

B = (b;j): RV = RY : asym. matrix assoc. to I', namely
bi’jZO if’i#j and {’L,]}QE

Set Vp = V' \ dT', define By : RY0 — R0 as the restriction of B to the functions which
vanish on oI .

Lemma
Assume By invertible. Then, Vf € C'(9I'), 3 a unique solution F' € C(T") of the Dirichlet
problem

(Dy) : Flor = fand BF(l) =0ifl € Vo .

The Dirichlet-to Neumann operator DN associated to B is the linear operator from C'(9I') to
C'(9T") defined as follows:
if l € or’,

DN(f)(1) = > _ biiF(i)(= BF(1)) .

o |
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The spectral theory for a graph asymptotic to an homogeneousee

Some combinatorics
Theorem 1
If I" is asymptotic to a homogeneous tree of degree g + 1, then I is isomorphic to a

connected component of a graph I" which can be obtained from T, by adding and removing
a finite number of edges.

o |
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The spectral theory for a graph asymptotic to an homogeneousee

Some combinatorics

Theorem 1

If I" is asymptotic to a homogeneous tree of degree g + 1, then I is isomorphic to a
connected component of a graph I" which can be obtained from T, by adding and removing
a finite number of edges.

Tools

® a2 combinatorial analogue of the reg. total curvature of a Riem. surface S

v(l) = Z (g+1—d(x)) + 2by ,
zeVr

d(x) : the degree of x, b; : the first Betti number of "
® Lemmallf forr > 2, B, ={x € Vr | |z|r, <7}, then

v(I)=(@—-1)m—-M+2,
( m : number of inner vertices of B,., M :number of boundary vertices)

o |
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®» Lemma?
f F' . afinite tree whose all vertices are of degree g + 1 except the ends which are of —‘
degree 1.
M number of ends, m the number of inner vertices.
We have

M=2+((@q@—1)m. (1)

Conversely, for each choice of (m, M) satisfying Equation (1), there exists such a tree
F.

o |
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® [emma?

F' . afinite tree whose all vertices are of degree g + 1 except the ends which are of —‘
degree 1.

M number of ends, m the number of inner vertices.

We have

M=2+((@q@—1)m. (1)

Conversely, for each choice of (m, M) satisfying Equation (1), there exists such a tree
F.

Some modifications of T in order to get a new graph I" with »(I") = 0.

Lemma 3

If I/ = M;(T") is defined by adding to I" a vertex and an edge connecting that vertex to
a vertex of I'g, then

vy =v([)+q—1.

If IV = M () is defined by adding to I" a tree whose root x is of degree ¢ and all other
vertices of degree g + 1 and connecting x by an edge to a vertex of I'g, I'V is
asymptotic to an homogeneous tree of degree ¢ + 1 and

v(I'")y=v() —1. J

5/10/2012 — p. 20



The spectral theory ofI’

® Theorem (1)— existence of a Hilbert space # so that
® 2 =P2M)aH
$ this decomposition is invariant by Az..

» Moreover Ay is afinite rank perturbation of Ag = Ar, . = this gives the spectral
theory of Ar by using the results of the preceding section .

o |
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The spectral theory ofI’

Theorem (1)— existence of a Hilbert space H so that
® 2 =P2M)aH
$ this decomposition is invariant by Az..

Moreover Ay, is a finite rank perturbation of Ag = At . = this gives the spectral
theory of Ar by using the results of the preceding section .

Lemma 4 Let A = At + W with Support(W) C K x K and K finite. Let I" be an
unbounded connected component of I" and w a point at infinity of I". Then, for any
s ¢ £, we have

support(e(.;s,w)) C Vp .

Conversely, if ’ is a point at infinity of I" which is not a point at infinity of I then
support(e(.;s,w ) NVE =0.

Theorem 2 The Hilbert space 12(T") splits into a finite dimensional part H,, and an
absolutely continuous part Ha.. This decomposition is preserved by Ar. If f € Co(I")

and, forw € Q, foo(s,w) = (fle(.; s,w)), then the map f — fsc extends to an

isometry from H,c onto L2, (So x 2, dog ® du) which intertwines the action of Ar J

with the multiplication by As.
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