Persistent Currents for Interacting Bosons on a Ring with a Gauge Field

Frank Hekking Université Grenoble-Alpes & CNRS

Laboratoire de Physique et Modélisation des Milieux Condensés Maison des Magistères Jean Perrin CNRS-Grenoble, France

Work done together with Anna Minguzzi

PhD-students: <u>Marco Cominotti</u>, Guillaume Lang, Christoph Schenke

International collaboration: <u>Davit Aghamalyan</u>, Veronica Ahufinger, Luigi Amico, Leon Kwek, <u>Juan Polo</u>, Matteo Rizzi, Davide Rossini

Bose-Einstein condensates with cold atoms

Anderson et al., Science 95 Davis et al. PRL 95

Persistent flow of BEC in torroidal trap with a weak link

Ryu et al. PRL 07 Ramanathan et al. PRL 11 Murray et al., PRA 13

non-rotating state after expansion

1. Single particle on a rotating ring *Defining concepts*

2. Interacting bosons on a rotating ring Discovering the interplay between backscattering and interactions

3. Atomic SQUID (AQUID) Optimizing performance while playing with interaction and barrier strengths

4. Dynamics of AQUID Interacting bosons + barrier yields an open quantum system

Conclusions

I. Single particle on a rotating ring

Defining concepts

Particle on a uniform ring: angular momentum states

Hamiltonian and Schrödinger equation

$$H = -\frac{\hbar^2}{2mR^2} \frac{\partial^2}{\partial \phi^2}$$

$$H\psi(\phi) = E\psi(\phi)$$

$$-\frac{\hbar^2}{2mR^2}\frac{\partial^2}{\partial\phi^2}\psi = E\psi$$

Eigenfunctions and eigenvalues

$$\psi(\phi) = \psi_n(\phi) = \frac{1}{\sqrt{2\pi}} e^{in\phi} = \psi(\phi + 2\pi)$$
 $E = E_n = \frac{\hbar^2 n^2}{2mR^2}$

Wave function is strictly 2π *periodic*

Spectrum is discrete

Particle on a uniform rotating ring

Hamiltonian in rotating frame

$$H = -\frac{\hbar^2}{2mR^2} \left(\frac{\partial}{\partial\phi} - i\frac{m\omega R^2}{\hbar}\right)^2$$

$$= -\frac{\hbar^2}{2mR^2} \left(\frac{\partial}{\partial\phi} - i\frac{\Phi}{\Phi_0}\right)^2$$

Coriolis flux and flux quantum

$$\Phi = \omega R^2 \qquad \Phi_0 = \hbar/m$$

Eigenfunctions and eigenvalues

$$\psi(\phi) = \psi_n(\phi) = \frac{1}{\sqrt{2\pi}} e^{in\phi} = \psi(\phi + 2\pi) \qquad E = E_n = \frac{\hbar^2}{2mR^2} (n - \Phi/\Phi_0)^2$$

Wave function is strictly 2π *periodic*

Energy depends on Φ : ring sustains persistent current $I \sim \partial E / \partial \Phi$ Spectrum for a particle on a uniform rotating ring: periodicity with Coriolis flux

Periodicity is Coriolis flux quantum Φ_0

Spectrum and persistent currents (rotating frame)

Spectrum and persistent currents (laboratory frame)

Effect of an impurity

Impurity induces mixing of angular momentum eigenstates

Effective Hamiltonian near degeneracy point

$$H_{\rm eff} = \left(\begin{array}{cc} E_{n-1} & U_{\rm eff} \\ U_{\rm eff} & E_n \end{array}\right)$$

cf. band structure in solids

Mixing angular momentum states: superpositions

Coherent impurity scattering: formation of superpositions of angular momentum states.

Weight factors in superpositions are tunable with Coriolis flux

System is a tunable two-level system (qubit)

Persistent current as a function of Coriolis flux: rotating frame

Persistent current as a function of Coriolis flux: laboratory frame

II. Interacting bosons on a rotating ring

Discovering the interplay between backscattering and interactions

Rotating interacting 1D bosons on a ring with a barrier Cominotti et al. PRL 14

Various techniques:

- non-interacting bosons & Tonks-Girardeau bosons
- Gross-Pitaevskii equation (weak interactions)
- Luttinger liquid (strong interactions)
- DMRG (intermediate interactions)

Noninteracting bosons

 $\Psi_{\text{NI}}(x_1, \dots, x_N) = \prod_{i=1}^{N} \psi_0(x_i)$ Single-particle wave function on a ring with a barrier $\Psi_{\text{TG}}(x_1, \dots, x_N) = \prod_{1 \le j < \ell \le N} \text{sgn}(x_j - x_\ell) \times \det[\psi_k(x_i)]$

Persistent current amplitude *larger* for interacting bosons

Macroscopic persistent current as a function of Coriolis flux:

Mean-field theory of condensate on a rotating ring

Cominotti et al. PRL 14

 $\lambda = 1.9$

 $\lambda = 19.1$

 π

0

Persistent current amplitude *increases* with interaction strength

Luttinger liquid approach

Cominotti et al. PRL 14

Mode expansion for fluctuating fields

Commutation relations

 $\begin{bmatrix} b_q, b_{q'}^{\dagger} \end{bmatrix} = \delta_{q,q'} \quad bosonic \ low-energy \ excitations \ (phonons)$ $\begin{bmatrix} J, e^{-2i\theta_0} \end{bmatrix} = e^{-2i\theta_0} \longrightarrow e^{-2i\theta_0} |J\rangle = |J+1\rangle$

raising angular momentum (phase-slip)

Changing angular momentum: phase-slips

Luttinger liquid approach

Cominotti et al. PRL 14

Barrier induces transitions between angular momentum states (phase-slips)

Role of interactions: barrier renormalization

$$\langle e^{\pm 2i\delta\theta(0)} \rangle = e^{-2\langle \delta\theta^2(0) \rangle} = \left(\frac{\alpha}{L}\right)^K \qquad U_0 \longrightarrow U_{e\!f\!f} = U_0(\alpha/L)^K$$

Persistent current amplitude *decreases* with interaction strength

Optimal persistent current

Current amplitude as a function of interaction strength for various barrier strengths TG: Bosons occupy Fermi sphere NI TG NI: all bosons in the 1.0lowest band 0.8 **MPS** GP 0.6 *GP: interactions induce healing* в 0.4 =19 0.2 38.2 0.010 0.001 0.010.1100 1000 γ LL: interactions *MPS: competiton between* induce quantum phase healing and quantum fluctuations fluctuations

III. Atomic SQUID (AQUID)

Optimizing performance while playing with interaction and barrier strengths

Macroscopic persistent-current qubit

$$= E_0 (J - \Omega)^2 + n_0 U_{\text{eff}} \sum_J |J + 1\rangle \langle J| + \text{H.c.}$$

Weight factors in macroscopic superpositions are tunable with Coriolis flux

System is a tunable two-level system (qubit)

Qubit energy states: role of interaction and barrier strengths Aghamalyan, Cominotti et al. NJP 15

Qubit energy states: mesoscopic finite-size scaling

Aghamalyan, Cominotti et al. NJP 15

Level splitting and anharmonicity as a function of system size

Interactions « protect » qubit splitting & anharmonicity against scaling

Ground-state momentum distribution

Aghamalyan, Cominotti et al. NJP 15

IV. Dynamics of AQUID

Interacting bosons + barrier yields an open quantum system

Phonon modes on a uniform ring

Polo et al. in progress

Harmonic fluid equivalent to harmonic oscillator bath

$$\mathcal{H}_{0} = E_{0}(J - \Omega)^{2} + \sum_{q \neq 0} \hbar \omega_{q} b_{q}^{\dagger} b_{q} = E_{0}(J - \Omega)^{2} + \frac{1}{2} \sum_{q \neq 0} \left(P_{q}^{2} + \omega_{q}^{2} Q_{q}^{2}\right)$$

linear spectrum $\omega_{q} \sim v_{s} |q|$

Effect of the barrier

Tunable nonlinear oscillator: quantum Langevin problem

Polo et al. in progress

running state (dual to self-trapping)

Tunable nonlinear oscillator: quantum Langevin problem

Polo et al. in progress

Conclusions

Spectrum of condensate on rotating loop periodic with ECoriolis flux Ring sustains persistent currents

Response depends on barrier and interaction strengths From sawtooth to sinusoidal behaviour

Coherent phase-slips induce superposition of angular monentum states *Ring can be used as a qubit*

Dynamics governed by Caldeira-Legget model From spin-boson physics to Langevin equation

