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What is this all about?

Connection between transport in non-equilibrium quantum statistical
mechanics and spectral theory (of Jacobi matrices).

↙

Steady state expectation value of the
charge current / conductance
through a sample connected to
electronic reservoirs

L1
µl µr

↘

Dynamical characterization of spectral
types (ac, sc, pp):

1 take h = −∆ + v on Z+,

2 restrict to {1, . . . , L},
3 analyze the associated conductance

as L→∞.

Physics literature: transport theory of 1D systems goes back to 70’s
(Anderson, Thouless, Landauer,...)

Math literature: mostly absent until the last 10 years and the rigorous
derivation of Landauer [AJPP ’07, N ’07] and Thouless [BJLP ’15]
formulas from first principles.

L. Bruneau Conductances and a.c. spectrum



Introduction
Two notions of conductances

Conductances vs Spectrum
Concluding remarks

What is this all about?

Connection between transport in non-equilibrium quantum statistical
mechanics and spectral theory (of Jacobi matrices).

↙

Steady state expectation value of the
charge current / conductance
through a sample connected to
electronic reservoirs

L1
µl µr

↘

Dynamical characterization of spectral
types (ac, sc, pp):

1 take h = −∆ + v on Z+,

2 restrict to {1, . . . , L},
3 analyze the associated conductance

as L→∞.

Physics literature: transport theory of 1D systems goes back to 70’s
(Anderson, Thouless, Landauer,...)

Math literature: mostly absent until the last 10 years and the rigorous
derivation of Landauer [AJPP ’07, N ’07] and Thouless [BJLP ’15]
formulas from first principles.

L. Bruneau Conductances and a.c. spectrum



Introduction
Two notions of conductances

Conductances vs Spectrum
Concluding remarks

What is this all about?

Connection between transport in non-equilibrium quantum statistical
mechanics and spectral theory (of Jacobi matrices).

↙

Steady state expectation value of the
charge current / conductance
through a sample connected to
electronic reservoirs

L1
µl µr

↘

Dynamical characterization of spectral
types (ac, sc, pp):

1 take h = −∆ + v on Z+,

2 restrict to {1, . . . , L},
3 analyze the associated conductance

as L→∞.

Physics literature: transport theory of 1D systems goes back to 70’s
(Anderson, Thouless, Landauer,...)

Math literature: mostly absent until the last 10 years and the rigorous
derivation of Landauer [AJPP ’07, N ’07] and Thouless [BJLP ’15]
formulas from first principles.

L. Bruneau Conductances and a.c. spectrum



Introduction
Two notions of conductances

Conductances vs Spectrum
Concluding remarks

What is this all about?

Connection between transport in non-equilibrium quantum statistical
mechanics and spectral theory (of Jacobi matrices).

↙

Steady state expectation value of the
charge current / conductance
through a sample connected to
electronic reservoirs

L1
µl µr

↘

Dynamical characterization of spectral
types (ac, sc, pp):

1 take h = −∆ + v on Z+,

2 restrict to {1, . . . , L},
3 analyze the associated conductance

as L→∞.

Physics literature: transport theory of 1D systems goes back to 70’s
(Anderson, Thouless, Landauer,...)

Math literature: mostly absent until the last 10 years and the rigorous
derivation of Landauer [AJPP ’07, N ’07] and Thouless [BJLP ’15]
formulas from first principles.

L. Bruneau Conductances and a.c. spectrum



Introduction
Two notions of conductances

Conductances vs Spectrum
Concluding remarks

An analogy

L1
µl µr

L. Bruneau Conductances and a.c. spectrum



Introduction
Two notions of conductances

Conductances vs Spectrum
Concluding remarks

Plan

1 Introduction

2 Two notions of conductances

3 Conductances vs Spectrum

4 Concluding remarks

L. Bruneau Conductances and a.c. spectrum



Introduction
Two notions of conductances

Conductances vs Spectrum
Concluding remarks

Setup: one electron data

A sample S coupled to 2 electronic reservoirs Rl/r described by free
fermi gases at equilibrium (at zero temperature and chemical potential
µl/r ) and in the independent electron approximation.

Sample: hL = `2({1, . . . , L}) and hL = −∆ + v .

Reservoirs: the one electron data are (hl/r , hl/r , ψl/r ) where ψl/r are
cyclic vectors for hl/r . In the spectral representation,

hl/r = L2(R,dνl/r (E )), hl/r = mult by E , ψl/r (E ) ≡ 1,

where νl/r is the spectral measure for hl/r and ψl/r

Coupled one electron system: h = hl ⊕ hL ⊕ hr and hκ,L = h0,L + κhT
where

h0,L = hl ⊕ hL ⊕ hr , hT = |ψl〉〈δ1|+ |δ1〉〈ψl |+ |ψr 〉〈δL|+ |δL〉〈ψr |.

L1
µl µr
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Setup: many electrons

The full system is the corresponding Free Fermi gas with reservoirs
initially at equilibrium:

Hilbert space: the fermionic Fock space Γ−(h) = ⊕∞n=0 ∧n h.

Hamiltonian: the second quantized operator H = dΓ(hκ,L), i.e.

H f1 ∧ · · · ∧ fn =
n∑

j=1

f1 ∧ · · · ∧ hκ,Lfj ∧ · · · ∧ fn.

Initial state: quasi-free state ω0 generated by the density operator
T = Tl ⊕ TL ⊕ Tr where Tl/r = 1l(−∞,µl/r ](hl/r ).

Charge current observable:

J := −i [H,Nr ] = κ(a∗(iψr )a(δL) + a∗(δL)a(iψr ))

where Nr = dΓ(1lr ) is the number of fermions in reservoir Rr (1lr is
the projection onto hr ' 0⊕ 0⊕ hr ).
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Landauer-Büttiker formula

The steady state expectation value of the charge current observable is
given by the Landauer-Büttiker formula [L ’70], proven by [AJPP ’07,
N’07] provided spsc(hκ,L) = ∅.

ω+(J ) := lim
T→+∞

1

T

∫ T

0

ω0

(
eitHJ e−itH

)
dt =

1

2π

∫ µr

µl

TL(E )dE ,

where TL(E ) is the transmission probability at energy E .

Stationary scattering theory gives

TL(E ) = 4π2κ4|〈δ1, (hκ,L−E−i0)−1δL〉|2
dνl,ac
dE

(E )
dνr ,ac
dE

(E ).

Remark 1: Only energies in ac spectra of reservoirs contribute.
Remark 2: µl/r have a “double role”: induce the current and fix the

energy window.
The Landauer conductance associated to the energy window I = (µl , µr )

is GLB(L, I ) = ω+(J )
µr−µl

.
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Thouless formula

A particular choice of reservoirs: so that hκ,L = hper,L is the periodic
extension of the sample, i.e. the L-periodic Schrödinger on `2(Z) whose
restriction to {1, . . . , L} is hL.

It amounts to take for the left, resp. right, reservoir the restriction of
hper,L to `2((−∞, 0]), resp. `2([L + 1,∞)), with Dirichlet B.C. and
ψl/r = δ0/L+1. The corresponding conductance GTh(L, I ) is called
Thouless conductance.

Transport is then reflectionless: TL(E ) = 1 if E ∈ sp(hper,L) and 0
otherwise. The Landauer-Büttiker formula thus gives

GTh(L, I ) =
1

2π

|sp(hper,L) ∩ I |
|I | .
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The origin of Thouless conductance

Thouless conductance is originally “defined” (ET ’72) as GTh := δE
∆E

where δE is a measure of sensitivity to B.C. and ∆E the level spacing of
the system (at the Fermi energy where conduction takes place).

Idea: if a state is localized (not too close to the boundary) it should be
insensitive to boundary conditions (B.C.).

Various definitions have been proposed for δE , related to the variation of
the energy levels ε(k) of hL with Bloch type B.C.

u(L + 1) = eikLu(1), u(0) = e−ikLu(L).

One is the total variation of ε(k) from periodic, k = 0, to antiperiodic,
k = π

L , B.C.
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The origin of Thouless conductance

The spectrum of hper,L consists in L bands, each corresponding to an
eigenvalue ε(k) of h(k) as k varies from 0 to π/L.

k

E

π
L

−π
L

εj(0) εj(
π
L
)

Given an energy window I , algebraic averages within I

∆E = 〈∆Ej〉 =
|I |

#{j | Bj ⊂ I} , δE = 〈δEj〉 =
|sp(hper,L) ∩ I |
#{j | Bj ⊂ I} ,

lead to GTh(L, I ) ∝ |sp(hper,L) ∩ I |
|I | . (First proposed by Last, PhD ’94)
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Formulation of the problem

Object of interest: h = −∆ + v on `2(Z+).

Goal: dynamical characterization of spectral types of h. Focus on ac
spectrum: should be the set of energies at which the system exhibits
transport, i.e.

Mathematical characterization of conducting regime
m?

Physical characterization of conducting regime

Definition of transport:

1 Restrict h to {1, . . . , L}
2 Large L behavior of G#(L, I ), # = LB or Th. Does it vanish or not?
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Main result

Theorem (B.-Jakšić-Last-Pillet ’15)

For any potential v and any open interval I , # = LB or Th,

spac(−∆+v)∩I = ∅ ⇐⇒ lim sup
L→∞

G#(L, I ) = 0 ⇐⇒ lim inf
L→∞

G#(L, I ) = 0

This gives a sharp characterization of ac spectrum:

no ac spectrum in I ⇒ corresponding conductances vansih.

ac spectrum in I ⇒ conductances bounded away from zero.

Mathematical characterization of conducting regime
m

Physical characterization of conducting regime

Remark: For the Landauer conductance one needs to assume that the
reservoirs are s.t. spac(−∆ + v) ⊂ spac(hl/r ), transparency condition.
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Main tool: transfer matrices

T (L,E ) =

[
v(L)− E −1

1 0

]
× · · · ×

[
v(1)− E −1

1 0

]
.

u satisfies (−∆ + v)u = Eu iff

[
u(L + 1)
u(L)

]
= T (L,E )

[
u(1)
u(0)

]
.

Theorem (B.-Jakšić-Last-Pillet ’15)

For any sequence Lk →∞, t.f.a.e.
1. spac(−∆ + v) ∩ I = ∅.
2. limGLB(Lk , I ) = 0.
3. limGTh(Lk , I ) = 0.

4. lim

∫
I

‖T (Lk ,E )‖−2dE = 0.

We prove separately the equivalence between each of 1., 2., 3. and 4.
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Transfer matrices: a natural tool

1. A.c. spectrum versus transfer matrices.

Spectral properties are related to the behavior of generalized
eigenfunctions [C’83, GP ’87, LS ’99] and hence to transfer matrices.

2. GLB(L, I ) versus transfer matrices.

Recall: GLB(L, I ) = 1
2π|I |

∫
I
TL(E )dE where TL(E ) is the transmission

probability and can be expressed in terms of (hκ,L−E−i0)−1 via
stationary scattering theory. We relate it to (hL−E−i0)−1 (and hence
T (L,E )) via the resolvent formula [BJP ’13]. One can actually show that

TL(E ) ∝ ‖T (L,E )‖−2.

3. GTh(L, I ) ' |sp(hper,L) ∩ I | versus transfer matrices.

T (L,E ) ∈ SL2(R) and E ∈ sp(hper,L) iff |TrT (L,E )| ≤ 2 (Floquet
theory). We use it to get various estimates on ‖T (L,E )‖, upper or lower
bound, depending on wether E is in or out sp(hper,L).
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The linear response regime

If µl = E , µr = E + ε, then Glin(L,E ) := lim
ε→0

GLB(L, I ) =
1

2π
TL(E ), i.e.

ω+(J ) ' ε× Glin(L,E ) + o(1).

Let I = {E | lim inf Glin(L,E ) > 0}, Ī = {E | lim supGlin(L,E ) > 0}.
Conjecture: I = spac,ess(−∆ + v) = Ī.

The results of [BJP ’13] combined with [GP ’87, LS ’99] show that

I ⊂ spac,ess(−∆ + v) ⊂ Ī.

The equality I = spac,ess(−∆ + v) is equivalent to the Schrödinger
conjecture, disproven in [Av ’15] in the framework of ergodic potentials.

The equality spac,ess(−∆ + v) = Ī holds for ergodic potentials (follows
from Kotani theory) and is open in general.
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The linear response regime

If µl = E , µr = E + ε, then Glin(L,E ) := lim
ε→0

GLB(L, I ) =
1

2π
TL(E ), i.e.

ω+(J ) ' ε× Glin(L,E ) + o(1).

Let I = {E | lim inf Glin(L,E ) > 0}, Ī = {E | lim supGlin(L,E ) > 0}.
Conjecture: I = spac,ess(−∆ + v) = Ī.

The results of [BJP ’13] combined with [GP ’87, LS ’99] show that

I ⊂ spac,ess(−∆ + v) ⊂ Ī.

The equality I = spac,ess(−∆ + v) is equivalent to the Schrödinger
conjecture, disproven in [Av ’15] in the framework of ergodic potentials.

The equality spac,ess(−∆ + v) = Ī holds for ergodic potentials (follows
from Kotani theory) and is open in general.
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Can be extended to Jacobi matrices

(hu)(n) = an+1u(n + 1) + bnu(n) + anu(n − 1).

More precise relation between the size of spac(−∆ + v) and that of
the periodic approximants: our proof shows

lim sup
L→∞

|sp(hper,L) ∩ I | ≤ C |spac(−∆ + v) ∩ I |α

where C ' 16, 5 and α = 1/5. On the full line [GS ’96] or if v is
ergodic [Last ’94] one has C = α = 1. Prove it on `2(Z+) for
arbitrary v?

Localized regime. Behavior of the conductances as L→∞. Relative
scaling. Case of ergodic potentials and link with the Lyapunov
exponents.

Beyond the independent electron approximation: add local
interactions inside the sample

dΓ(hκ,L) dΓ(hκ,L)+
λ

2

∑
1≤m,n≤L

w(|m−n|)a∗(δm)a∗(δn)a(δn)a(δm).
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