
The Computational Problem

in

Algebraic Topology

Ana Romero, Universidad de La Rioja
Julio Rubio, Universidad de La Rioja

Francis Sergeraert, LMBA, Lorient
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Plan.

� 1. Typical example of Applied Algebraic Topology.

� 2. The main groups of Algebraic Topology

� 3. The computability problem.

� 4. Constructive Algebraic Topology.

� 5. Typical examples of Kenzo computation.
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1. Simple example of Applied Algebraic Topology.

D2 = {x2 + y2 ≤ 1} ⊂ R2.

S1 = ∂D2 = {x2 + y2 = 1} ⊂ D2 ⊂ R2.

Problem: ∃?f : D2 → S1 continuous such that f |S1 = idS1 ?

⇐⇒
S1 S1

D2
i ?

id

H1-functor

Z Z

0
i ??!!

id

=⇒ Impossible !!!

D2 S1



3/28

2. Main groups of Algebraic Topology.

General notion of homotopy.

Given: f0, f1 : X → Y .

Definition: f0 homotope to f1 ⇔ ∃H : X×I → Y satisfying:

f0(x) = H(x, 0)

f1(x) = H(x, 1)

X
H

i1

i0

f0 = h0i0

f1 = h1i1

h0

X × I Y

h1
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Notion of Homotopy Type.

Definition: Two spaces X and Y are homotopy equivalent if

∃ X Y
f

g
with gf ∼ idX and fg ∼ idY .

{Homotopy types} :=
{Topological Spaces}

Homotopy equivalence

Examples: ∗ ∼ Dn ∼ Rn

Sn−1 Rn − {0}
f

g

with f = canonical inclusion

and g = radial projection.
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(X,x0) = topological space with base point x0 ∈ X.

Loop of X based at x0 =

map γ : [0, 1]→ X with γ(0) = γ(1) = x0.

Ω(X,x0) := {loops of X based at x0}

π1(X,x0) := Ω(X,x0)/homotopy of based loops

π1(X,x0) carries a natural group structure.

π1(X,x0) is a homotopy invariant.

Obvious generalization to πn(X,x0).

Computations of πn(X,x0) ?

X

•
x0
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Simple examples:

π1(Rn) = 0

X contractible ⇔ X has the homotopy type of ∗.

X contractible
∼⇔ πn(X) = 0 ∀n.

π∗(S
n) =?

Easy:

πk(S
n) = 0 for k < n.

πn(Sn) = Z

What about πk(S
n) for k > n?
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Table of πk(S
n) for k ≤ 16 and n ≤ 9 :
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Other groups of Algebraic Topology:

Homology groups Cohomology groups

Cohomotopy groups K-theory groups

+ Rich extra algebra structures on these groups, examples :

{πn(X)} = Quasi-Lie algebra

{Hn(X)} = Commutative algebra =

Module wrt the Steenrod Algebra

{Hn(X)} = Module wrt the E∞-operad.
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3. The computability problem.

Computing a group = ???

Most groups G of algebraic topology

are Z-modules of finite type.

⇒ G = Z/d1 + · · ·+ Z/dn with di divides di+1.

π7(S
4) = Z/12 + Z ⇐⇒ π7(S

4) “=” (12, 0)
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Computability of πn(X) ??

Meaningful only if X is a “machine object”,

must be “combinatorial”.

⇒ X simplicial complex, or much better X simplicial set.

π1(X) in general non abelian + πn(X) abelian for n ≥ 2

⇒ contexts totally different for n = 1 and n ≥ 2.
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Definition: X simply connected ⇔
X connected + π1(X) = 0.

Rabin’s theorem: X finite simplicial set.

Then the decision problem

“X simply connected ?” is undecidable.

More precisely the set of simply connected finite simplicial

sets is enumerable but non-recursive.

∃ program n 7→ Xn such that {Xn}n∈N is the set

of all the finite simplicial sets that are simply connected.
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⇒ First case = X where X simply connected is known.
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⇒ What about practical computability ?

practical computations ?

1. Rolf Schoen =

Effective Algebraic Topology (Memoirs AMS 1990)

= Elegant systematic organization of E. Brown’s paper.

2. Justin Smith =

Iterating the Cobar construction (Memoirs AMS 1994)

= Use of operadic structures.

3. Julio Rubio + FS = Constructive Algebraic Topology.
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4. HoTT = Homotopy Type Theory (Voevodsky).

HoTT = Organization of Constructive Mathematics

/ Martin-Löf type theory.

Ordinary Mathematics / ZF theory of sets

/ Various formalizations.

Constructive mathematics / Theory of groupoids

/ Various formalizations.
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Theorem (?): HoTT 3 Constructive versions of

Serre and Eilenberg-Moore spectral sequences.

⇒ The classical Theory of Classes due to Serre can be made constructive.

⇒

Every simply connected space with homology groups of finite type

have homotopy groups of finite type (Serre).

becomes:

X = finite simply connected simplicial complex

⇒ Every πn(X) is computable.
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4. Constructive Algebraic Topology.

X = simplicial complex.

∃ ?? “Algebraic” model of X
???⇐⇒ Homotopy type of X ?

Homology groups.

(C∗(X), ∂) = chain complex canonically associated to X.

Cn(X) = free Z-module generated by the n-simplices of X.

Boundary operator ∂ : Cn(X)→ Cn−1(X).
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Zn(X) = {n-cycles} = ker ∂ : Cn(X)→ Cn−1(X).

Bn(X) = {n-boundaries} = im ∂ : Cn+1(X)→ Cn(X).

Bn(X) ⊂ Zn(X)⇒
Hn(X) = ZnX/Bn(X) = n-th Homology group.

Problem: X often not of finite type

⇒ (C∗(X), ∂) cannot be a machine object.

Serre’s theorem: X “reasonable” ⇒ Hn(X) of finite type.

But {Hn(X)} does not determine the homotopy type.
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Notion of Strong Homology Equivalence

between chain complexes:

C∗ C′∗
h

with h a (rich) collection of objects describing why and how

the homological natures of C∗ and C′∗ are isomorphic.
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Notion of locally effective object.

An object not of finite type is locally effective

when one or several algorithms

describe the nature of every component.

Typical example: the chain complex:

C∗ := C∗(K(Z, 1)) of K(Z, 1).

Cn = the free Z-module

generated by the sequences (a1, . . . , an) ∈ Zn.

Cn not of finite type
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Face operator ∂k : K(Z, 1)n → K(Z, 1)n−1 for 0 ≤ k ≤ n:

∂0(5, 7,−8, 21) = (7,−8, 21)

∂1(5, 7,−8, 21) = (12,−8, 21)

∂2(5, 7,−8, 21) = (5,−1, 21)

∂3(5, 7,−8, 21) = (5, 7, 13)

∂4(5, 7,−8, 21) = (5, 7,−8)

d : Cn(K(Z, 1))→ Cn−1(K(Z, 1)) :

d(5, 7,−8, 21) = (7,−8, 21)− (12,−8, 21) + (5,−1, 21)

− (5, 7, 13) + (5, 7,−8)
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Simplicial set X with effective homology:

(X, C∗(X) ECX
∗

h )

with:

X = Locally effective simplicial set

C∗(X) = Locally effective chain complex

ECX
∗ = Effective chain complex

h = Strong homology equivalence

ECX
∗ = Chain complex of finite type

⇒ Computable homology.
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Fundamental Theorem of Effective Homology.

Let φ : X 7→ Y and ψ : (X1, X2) 7→ Y be

“classical” constructors of Algebraic Topology.

Then there exist versions with effective homology of these

constructors:

φ̃ : (X, C∗(X) EC∗
h ) 7→ (Y , C∗(Y ) ECY

∗
h )

ψ̃ : ((X1, C∗(X1) ECX1
∗

h ), (X2, C∗(X2) ECX2
∗

h ))

7−→ (X, C∗(X) EC∗
h )
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Typical computability problem

pending in “classical” Algebraic Topology:

Definition : Ωn(X,x0) := Ω(Ωn−1(X,x0), ∗)
' C((Sn, ∗), (X,x0))

Given X, compute H∗(Ω
n(X,x0)) = ? (Adam’s problem).

n = 1 solved by Adams (1956, Cobar construction).

n = 2 solved by Baues (1980, Double Cobar construction).

∀n solved by Julio Rubio

(1990, Constructive Algebraic Topology).
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Proof:

X,C∗(X) C∗(X)

(ΩX,C∗(ΩX) ECΩX
∗ )

(Ω2X,C∗(Ω
2X) ECΩ2X

∗ )

(Ω3X,C∗(Ω
3X) ECΩ3X

∗ )

(Ω4X,C∗(Ω
4X) ECΩ4X

∗ )

(· · ·, · · · · · · · · · · · ·)

QED
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Example: Let P4 = P∞R/P 3R.

P4 is a simplicial set of finite type

⇒ Trivially with effective homology:

(P4, C∗(P4)
= C∗(P4))

6=
(ΩP4, C∗(ΩP4) ECΩP4

∗ )

6=
(Ω2P4, C∗(Ω

2P4) ECΩ2P4
∗ )

6=
(Ω3P4, C∗(Ω

3P4) ECΩ3P4
∗ )

Adams

Baues

Rubio
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Example: Let P4 = P∞R/P 3R.

P4 is a simplicial set of finite type

⇒ Trivially with effective homology:

(P4, C∗(P4)
= C∗(P4))

6=
(ΩP4, C∗(ΩP4) ECΩP4

∗ )

6=
(Ω2P4, C∗(Ω

2P4) ECΩ2P4
∗ )

6=
(Ω3P4, C∗(Ω

3P4) ECΩ3P4
∗ )

Adams

Baues

Rubio

H5(Ω3P 4) = (Z/2)5 + Z/3 + Z = (Z/2)4 + Z/6 + Z
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The most difficult Kenzo computation:

H7(Ω(Ω(Ω(P∞(R)/P 3(R)) ∪4 D
4) ∪2 D

3)) = ???

Machine Puccini (2001) : 2 Months.

Machine IFNode2 (2018) : 1 Month.

Machine IFNode2 (2021) : 40 minutes

H7 = (Z/2)113 + Z/4 + (Z/8)3 + Z/16 + Z/32 + Z

H8 = (Z/2)253 + (Z/4)9 + Z/8 + Z5
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Based on many other subjects:

� Combinatorial topology:

Loop spaces, Classifying spaces. . .

� Homological algebra,

Exact sequences, Spectral sequences.

� Homological perturbation theory.

� Whitehead and Postnikov towers.

� Discrete vector fields.

� High level functional programming:

computer closures, garbage collector design.

� Meta-object protocol.
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Séminaire Quimpériodique

Quimper, October 2022


