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Abstract. — The aim of this paper is to construct unirational function fields
K over an algebraically closed field of characteristic 0 such that the unramified

cohomology group H i
nr(K,µ

⊗i
p ) is not trivial for i = 2, 3 or 4 and p a prime

number. This implies that the field K is not stably rational. For this purpose, we

give a sufficient condition for an element to be unramified in H i (K,µ⊗ip ). This

condition relies on computations in the exterior algebra of a vector space of finite
dimension over the finite field Fp.

Résumé. — L’objectif de ce texte est de construire des corps de fonctions uniratio
nels K sur un corps algébriquement clos de caractéristique 0 dont la cohomologie

non ramifiée H i
nr(K,µ

⊗i
p ) est non nulle pour i = 2, 3 ou 4 et p un nombre pre

mier. Cela implique que le corps K n’est pas stablement rationnel. Dans ce but,

nous donnons une condition suffisante pour qu’un élément de H i (K,µ⊗ip ) ne soit

pas ramifié. Cette condition repose sur un critère utilisant l’algèbre extérieure d’un
espace vectoriel de dimension finie sur Fp

Among the first examples of smooth projective varieties X over C which are
unirational but not rational was the example constructed by Artin and Mumford

using the torsion part of H3(X,Z). When X is unirational, this group may also
be described as the unramified Brauer group of the function field of X . From
this point of view, Saltman [Sa] and Bogomolov [Bo] gave examples related to
Noether’s problem. ColliotThélène and Ojanguren [CTO] were the first to use
the unramified cohomology groups in degree 3 to prove the nonrationality of a
unirational field.
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The plan of this paper is the following: first we recall some basic facts about
unramified cohomology. In the second section, we state the main result, The
orem 2, which enables one to characterize unramified elements by calculations
in the exterior algebra. This generalizes some of the methods used in [Sa] and
[Bo]. In the next section, we prove Theorem 2. In this proof, we show how one

can lift the residue map in the exterior algebra of a subgroup of H1(K,µp) of

finite dimension. The fourth section applies the main result to the construction
of several unirational nonrational fields. In this part, to prove the nontriviality

of elements in H3
nr(K,µ

⊗3
p ), we use a recent result by Suslin [Su] and to have a

similar result for H4
nr(K,µ

⊗4
2 ), we apply a theorem of Jacob and Rost [JR]. For

the examples with nontrivial H3
nr(K,µ

⊗3
p ), we prove also that the unramified

Brauer group is trivial.

1. Unramified cohomology: definition and basic properties

Let us first give a few definitions about fields. These definitions are used
throughout this paper.

Definition . — (i) A field L is a function field over a field K if it is generated
by a finite number of elements as a field over K .

(ii) A function field L over K is rational over K if there exist indeterminates
T1, . . . ,Tm and an isomorphism L →̃ K (T1, . . . ,Tm) over K .

(iii) Two function fields L and M over K are stably isomorphic if there exist in
determinates U1, . . . ,Ul , T1, . . . ,Tm and an isomorphism L(U1, . . . ,Ul) →̃
M(T1, . . . ,Tm) over K . A function field L is stably rational over K if L is
stably isomorphic to K .

(iv) A function field L over K is unirational over K if there exist indetermi
nates T1,. . . ,Tm and an injection L→ K (T1, . . . ,Tn) over K .

We have the following relations between the various kind of rationalities: L
rational over K implies L stably rational over K and L stably rational over K
implies L unirational over K .

From now on we shall omit “over K ” when K is clear from the context.

Notation . — Let k be an algebraically closed field of characteristic 0. If L is a
field, let us denote by Ls a separable closure of L, and for any Gal(Ls/L)module
M , H i (L,M) = H i (Gal(Ls/L),M). In particular, the Brauer group is defined

by Br(L) =H2(L,Ls∗). If L is of characteristic prime to n, we use µn to denote
the group of nth roots of unity in Ls and, when the characteristic of L is 0, µ∞
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to denote the union of the groups µn. In this case Br(L) is a torsion group and

the ntorsion part of the Brauer group is isomorphic to H2(L,µn) Let K be a
function field over k. We denote by P(K ) the set of discrete valuation rings
A of rank one such that k ⊂ A ⊂ K and the fraction field Fr(A) of A is K . If
A ∈P(K ) then κA denotes the residue field. For any i ∈N−{0} and j ∈ Z

∂A :H i (K,µ⊗jn )→H i−1(κA,µ
⊗j−1
n )

denotes the residue map. We also denote by ∂A the residue map

∂A : Br(K )→H1(κA,Q/Z).

We recall that the residue maps may be defined as follows: let K̂ be the comple

tion of K for A, K̂alg an algebraic closure of K̂ and K̂nr the maximal unramified

extension of K̂ in K̂alg . Since there exists an isomorphism K̂ →̃ κA((T)), we

have an isomorphism from K̂nr to the algebraic closure κsA((T))alg of κA((T)) in

κsA((T)) and

K̂alg →̃ lim
→

κsA((T
1/n))alg .

Therefore we get an isomorphism

Gal(K̂alg/K̂nr) →̃ lim
←

µn.

But the cohomological dimension of Ẑ is one (see [Se], example 1 on page I19).

Therefore Hq(K̂nr,µ
⊗j
n ) = 0 if q> 2 and the HochschildSerre spectral sequence

Hp(Gal(K̂nr/K̂ ),Hq(K̂nr,µ
⊗j
n ))⇒Hp+q(K̂ ,µ⊗jn )

gives rise to morphisms

H i (K̂ ,µ⊗jn )→H i−1(Gal(K̂nr/K̂ ),H1(K̂nr,µ
⊗j
n )).

But

H i−1(Gal(K̂nr/K̂ ),H1(K̂nr,µ
⊗j
n )) →̃H i−1(κA,µ

⊗j−1
n )

and ∂A is the composed map

H i (K,µ⊗jn )→H i (K̂ ,µ⊗jn )→H i−1(κA,µ
⊗j−1
n ).

The maps ∂A on H2(K, νn1) induce then the residue map

Br(K )→H1(κA,Q/Z).
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Definition . — The unramified cohomology groups are the groups

H i
nr(K,µ

⊗j
n ) =

⋂

A∈P(K )

Ker(H i (K,µ⊗jn )
∂A→H i−1(κA,µ

⊗j−1
n )).

Similarly the unramified Brauer group is

Brnr(K ) =
⋂

A∈P(K )

Ker(Br(K )
∂A→H1(κA,Q/Z)).

The unramified cohomology groups were denoted by F
i,j
n (K/k) in [CTO], but,

here, the ground field k is fixed. Therefore we do not include it in the notation.

Proposition 1 (ColliotThélène and Ojanguren [CTO])
If the function fields K and L are stably isomorphic over k then

H i
nr(K,µ

⊗j
n ) →̃H i

nr(L,µ
⊗j
n ).

In particular, if K is stably rational then H i
nr(K,µ

⊗j
n ) = {0}.

Remark 1. — One can also show that the unramified Brauer group depends
only on the stable rationality class of the field. This is the invariant which was
used by Artin and Mumford in []. The unramified cohomology groups may be
considered as generalizations of the unramified Brauer group. Indeed, if i = 2,
the unramified cohomology groups are isomorphic to the ntorsion part of the
unramified Brauer group:

Brnr(K )(n) →̃H2
nr(K,µn).

2. Characterization of unramified elements using the exterior algebra

Let p be a prime number and k an algebraically closed field of characteristic 0.
Throughout this paper, we shall start from data of the following type: a function

field K , an Fp vector space U of finite dimension, whose dual is denoted by U∨

and a morphism ϕ1 :U∨→H1(K,µp).

Since µp ⊂ k, we can choose a primitive pth root of unity. Thus, if ϕ1 is

an injection, the group U may also be considered as a quotient of the absolute
Galois group of K . In the examples we have in mind, the field K will be of the

form LU , where L is a rational extension of k endowed with an action of U .
Then we take n to be a strictly positive integer. For an integral ring

B whose characteristic does not divide n, we denote by H i
ét(B,µ

⊗i
n ) the
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group H i
ét(Spec(B),µ⊗in ). Kummer theory then yields a canonical morphism

B∗ → H1
ét(B,µn). The image of x ∈ B∗ under this map will be denoted by

(x). We shall consider the group H(B)n =
∑

i∈N

H i
ét(B,µ

⊗i
n ), (mainly when B is

a field or a local ring). Cupproduct makes H(B)n into a ring. We know that
this ring is anticommutative [Mi, Chapter V, §1] but we shall use the following
wellknown result:

Lemma 1. — Let B be an integral ring such that n is invertible in B. Then, for
any x ∈ B∗, (x)∪ (−x) = 0.

This lemma implies that, if the characteristic of B does not divide 2n and
B contains the 2nth roots of unity, the subalgebra of H(B)n generated by the
symbols (x) for x ∈ B∗ is strictly anticommutative.

Proof. — Let B′ = B[T]/(Tn − x). Since n and x belong to B∗, the map

π : SpecB′ → SpecB is étale. Moreover it is finite and of constant degree n.
Therefore, for any sheaf F of ntorsion on SpecB, one can define the transfer
map tr : π∗π

∗F → F [SGA4, exposé XVIII, théorème 2.9] which yields mor

phisms tr :H i
ét(B
′,µ⊗in )→H i

ét(B,µ
⊗i
n ) and we have

tr
(
(−T)

)
=
(
N
B′/B

(−T)
)
=

(
Det

(
0 −x

−In−1 0

))
= (−x)

and we have the formula [Mi, Chapter V, §1]

(x)∪ (−x) = (x)∪ tr
(
(−T)

)

= tr
(
π∗
(
(x)
)
∪ (−T)

)

= tr
(
(x)∪ (−T)

)

= tr
(
(Tn)∪ (−T)

)

= 0.

Thanks to this lemma, we get a morphism of graded Fpalgebras ϕ : Λ∗U∨→
H(K )p. Thus for a fixed strictly positive integer i, we have a natural morphism

Λi (U∨)→H i (K,µ⊗ip ).
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We may identify Λi (U∨) and (ΛiU )∨ by the map:

Λi (U∨) → (ΛiU )∨

f1 ∧ . . .∧ fi 7→




ΛiU → Fp
v1 ∧ . . .∧ vi 7→

∑

σ∈Si

ε(σ)f1(vσ(1)) . . . fi (vσ(i))




With this identification, for any basis (u1, . . . , un) of U , the dual basis of (uj1 ∧

. . .∧uji )j1<...<ji is the basis (u∨j1
∧ . . .∧ u∨ji )j1<...<ji , where (u∨1 , . . . , u

∨
n ) denotes the

dual basis of (u1, . . . , un).

Notation . — In this way we get a morphism

ϕi : (ΛiU )∨→H i (K,µ⊗ip ).

Let Si = (Kerϕi )⊥ ⊂ΛiU . We obtain an injection

ϕ̂i : Hom(Si ,Fp)→H i (K,µ⊗ip ).

Let Sidec ⊂ Si be the subgroup of Si generated by the elements of the form

u∧ v ∈ Si with u ∈U and v∈ Λi−1U .

I am thankful to Bruno Kahn who pointed out to me that this construction
also applies to the case p = 2.

Theorem 2. — With notation as above, if f is an element of Hom(Si ,Fp) such
that f|Sidec

is zero, then

ϕ̂i (f ) ∈H i
nr(K,µ

⊗i
p ).

Since ϕ̂i is injective, by proposition 1, this theorem implies the following re
sult:

Corollary 3. — If Sidec 6= Si then H i
nr(K,µ

⊗i
p ) 6= {0} and K is not stably rational.

Remark 2. — If the ground field k is not algebraically closed but is of charac
teristic prime to 2n and contains µ2n, it is possible to prove a generalization of

this result. Namely, let Si = (Φi−1(H i (k,µ⊗ip )))⊥ and Sidec be the subgroup of Si

generated by the elements of the form u∧ v with u ∈ U and v ∈ Λi−1U . Then
we get an injection

(Si /Sidec)
∨→ coker(H i (k,µ⊗ip )→H i

nr/k(K,µ
⊗i
p ))
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3. Proof of Theorem 2

Let A be an element of P(K ) and νA be the corresponding valuation. νA
defines an element of (K ∗/K ∗p)∨ →̃ H1(K,µp)

∨ and therefore an element of

U∨∨. But there is a natural isomorphism ρ : U → U∨∨ and we obtain a vector
τA ∈U . In other words, we have a commutative diagram:

H1(K,µp) →̃ K ∗/K ∗p

ϕ1 ↑ νA ↓

U∨
ρ(τA)−→ Z/pZ

Let us denote by τ̃A the transpose of: Λi−1U → ΛiU
u 7→ τA ∧ u

Main lemma 2. — For any λ ∈ (ΛiU )∨, if τ̃A(λ) = 0 then

∂A(ϕ
i (λ)) = 0.

This lemma implies the theorem:

of Theorem 2. — Let f be an element of Hom(Si ,Fp) such that f|Sidec
= 0. As

f|Sidec
= 0, f|(τA∧Λ

i−1U )∩Si = 0. Let T1 ⊂ τA∧Λ
i−1U be such that (τA∧Λ

i−1U∩

Si )⊕T1 = τA ∧Λ
i−1U . Let T2 ⊂ ΛiU be such that (Si + τA ∧Λ

i−1U )⊕T2 =
ΛiU and let T = T1⊕ T2. Then we have Si ⊕ T = ΛiU . Let λ ∈ (ΛiU )∨ be
defined by λ|Si = f and λ|T = 0. Then the following relation holds:

(λ)|τA∧Λ
i−1U

= 0.

So by the lemma ∂A(ϕ
i (λ)) = 0. But, by definition of ϕ̂i , since λ|Si

= f , we have

ϕi (λ) = ϕ̂i (f ). Finally we get ∂A(ϕ̂
i (f )) = 0, as wanted.

The main lemma will be deduced from a series of lemmata. The basic tool
is the following lemma of ColliotThélène and Ojanguren [CTO, proposition
1.3]:

Lemma 3 (ColliotThélène and Ojanguren). — Let L be a field over k, B ∈

P(L) and νB the corresponding valuation. Let a ∈ L∗, b ∈ H i−1
ét (B,µ

⊗j
n ), a′ the

image of a in H1(L,µn), b
′ the image of b in H i−1(L,µ

⊗j
n ) and β the image of b in

H i−1(κB,µ
⊗j
n ). Then the image of a′ ∪ b′ ∈H i (L,µ

⊗j+1
n ) by ∂A verifies:

∂A(a
′ ∪ b′) = νB(a)β.
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Proof. — The proof we give here for selfcompleteness is similar to the one given
by J.P. Serre in his course at the Collège de France in 199192. With a notation
similar to the one used in the definition of ∂A, we consider the spectral sequence
described in [HS]

Hp(Gal(L̂nr/L̂),H
q(L̂nr,µ

⊗j
n ))⇒Hp+q(L̂,µ⊗jn ).

Let G = Gal(L̂alg/L̂), N = Gal(L̂alg/L̂nr). The spectral sequence may be defined

in the following way. Let Am(j), also denoted by Cm(G,µ
⊗j
n ), be the group of

normalized mcochains for G with coefficients in µ
⊗j
n . Let A(j) =

∑

m∈N

Am(j).

We now define the filtration on A(j). Let Amk (j) be the subgroup of Am(j) of the

cochains γ : Gm→ µ
⊗j
n such that γ(g1, . . . , gm) depends only on g1, . . . , gm−k and

gm−k+1N, . . . , gmN if k6m and put Amk (j) = 0 if k > m. We then define Ak(j) as
∑

m∈NAmk (j) if k> 0 and as A(j) otherwise . We denote by E
p,q
r (j) the groups of

the spectral sequence corresponding to A(j) with the graduation Am(j) and the
filtration Ak(j). By theorem 2 of [HS] the natural map

Am+k(j)
⋂

Ak(j)→ Ck(G/N,Cm(N,µ⊗jn ))

induces an isomorphism

E
p,q
2 (j) →̃Hp(Gal(L̂nr/L̂),H

q(L̂nr,µ
⊗j
n )).

Let ᾱ′ ∈ A1(1) be defined by

∀g ∈G, ᾱ′(g) =
g(a1/n)

a1/n
∈ µn

for any nth root a1/n of a. The cocycle ᾱ′ represents the image α′ of a in

H1(G,µn). Let β′ be the image of b in H i−1(G,µ
⊗j
n ). We have a commuta

tive diagram

H i−1
ét (B,µ

⊗j
n ) −→ H i−1(L,µ

⊗j
n )

↓ ↓
H i−1(κB,µ

⊗j
n ) →̃ H i−1(Gal(L̂nr/L̂),µ

⊗j
n ) → H i−1(L̂,µ

⊗j
n )

therefore β′ may be represented by a cocycle

β̄′ ∈ Ai−1(j)
⋂

Ai−1(j).
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By definition of the cupproduct, the cocycle ᾱ′∪ β̄′ represents α′ ∪ β′, the image

of a′ ∪ b′ in H i (G,µ
⊗j+1
n ). However

(ᾱ′ ∪ β̄′)(g1, g2, . . . , gi) = ᾱ′(g1)⊗ β̄′(g2, . . . , gi).

Thus ᾱ′ ∪ β̄′ belongs in fact to the intersection Ai (j+1)
⋂
Ai−1(j+1) and its

image in Ci−1(G/N,C1(N,µ
⊗j+1
n )) is the cocycle

γ̄ : ḡ1, . . . , ḡi−1 7→ (m 7→ ᾱ′(m)⊗ β̄′(g1, . . . , gi−1)).

And, through the maps C1(N,µ
⊗j+1
n ) → H1(N,µ

⊗j+1
n ) → µ

⊗j
n , the image of

m 7→ ᾱ′(m)⊗ β̄′(g1, . . . , gi−1) is νA(a)β̄
′(g1, . . . , gi−1). Therefore the image of

ᾱ′ ∪ β̄′ in H i−1(κB,µ
⊗j
n ) →̃ Ei−1,12 (j+ 1), which is, by definition, ∂A(a

′ ∪ b′), is
the product of νA(a) by β.

Lemma 4. — With notation as above, there exists a morphism ϕ1A which fits into
the commutative diagram:

τ⊥A → U∨
ϕ1

→ H1(K,µp)

ցϕ1A ր
H1

ét(A,µp)

Proof. — Let x ∈ τ⊥A . Then ϕ1(x) ∈H1(K,µp) →̃ K ∗/K ∗p. Let y be an element

of K ∗ which represents ϕ1(x). By the very definition of τA, we have νA(y)≡ 0(p).
Let πA be a uniformizing element of K for νA. We may write y in the form

y = π
kp
A z for a k ∈ Z and a z ∈ A∗.Thus ϕ1(x) is the image of z̄ ∈ A∗/A∗p by

A∗/A∗p→ K ∗/K ∗p

which is an embedding. We define ϕ1A(x) as the image of z̄ in H1
ét(A,µp). Then

the commutativity of the diagram

A∗/A∗p → K ∗/K ∗p

↓ ↓
H1

ét(A,µp) → H1(K,µp)

yields the lemma.

If τA = 0, the main lemma follows from lemma 1 and lemma 4, since ∂A is

zero on the image of H i
ét(A,µ

⊗i
p ). Let us assume that τA 6= 0.
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Lemma 5. — With notation as above, there is a map τ̂A making the following
diagram commutative,

(ΛiU )∨
τ̃A→ (Λi−1U )∨

↓ τ̂A ր
Λi−1(τ⊥A )

Here the map Λi−1(τ⊥A )→ (Λi−1U )∨ is the natural injection.

Proof. — Let us choose a basis v1, . . . , vn of U with v1 = τA. Then τ̃A is given by
the formula: if j1 < . . . < ji then

τ̃A(v
∨
j1
∧ . . .∧ v∨ji ) = 0 if j1 6= 1

τ̃A(v
∨
j1
∧ . . .∧ v∨ji ) = v∨j2

∧ . . .∧ v∨ji if j1 = 1

Thanks to lemma 1 and lemma 4 we get a morphism of graded Fpalgebras

Λ∗(τ⊥A )→H(A)p

and in particular a morphism Λi−1(τ⊥A )
ϕi−1A→ H i−1

ét (A,µ⊗i−1p )

Lemma 6. — With notation as above, the diagram

(ΛiU )∨
τ̂A−→ Λi−1(τ⊥A )

↓ ϕi ↓
H i (K,µ⊗ip ) H i−1

ét (A,µ⊗i−1p )

ց ∂A ւ
H i−1(κA,µ

⊗i−1
p )

is commutative.

Proof. — The computation of the preceding proof implies that for any λ ∈
(ΛiU )∨ →̃Λi (U∨)

λ− v∨1 ∧ τ̃A(λ) ∈Λ
i (τ⊥A ).
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Thus ϕi (λ−v∨1 ∧ τ̃A(λ)) comes from H i
ét(A,µ

⊗i
p ) and its image by ∂A is 0. There

fore, using lemma 3 with a′ = ϕ1(v∨1 ) and b = ϕi−1A (τ̂A(λ)),

∂Aϕ
i (λ) = ∂A(ϕ

1(v∨1 )∪ ϕ
i−1(τ̃A(λ)))

= νA(ϕ
1(v∨1 ))ϕ

i−1
κA

(τ̂A(λ))

= ϕi−1κA
τ̂A(λ)

where ϕi−1κA
is the composite map

Λi−1τ⊥A
ϕi−1A−→H i−1

ét (A,µ⊗i−1p )→H i−1(κA,µ
⊗i−1
p ).

of the main lemma. — The case τA = 0 has already been settled. If τA 6= 0 and

λ ∈ (ΛiU )∨ verifies τ̃A(λ) = 0 then by lemma 5 τ̂A(λ) = 0. Lemma 6 then implies

that ∂A(ϕ
i (λ)) = 0.

Remark 3. — In fact, the lemmata of this section also apply to any field over k
and any discrete valuation ring A⊂ K such that Fr(A) =K .

4. Construction of nonrational fields

Notation . — Let k be an algebraically closed field of characteristic 0, p a prime
number, i a strictly positive integer, n an integer. Let us fix a primitive pth

root of unity ξ, and let F ′ = k(T1, . . . ,Tn), Xj = T
p
j for j = 1, . . . , n and F =

k(X1, . . . ,Xn) ⊂ F ′. Let U denote an Fpvector space of dimension n with a

chosen basis (u1, . . . , un). This yields an isomorphism U →̃ Gal(F ′/F) and an

injection U∨
ϕ1F→ H1(F,µp) (which sends u∨j to the class of Xj).

This notation will be used throughout section 4.

Lemma 7. — The morphism Λi (U∨)→H i (F,µ⊗ip ) is an injection.

Proof. — Let F̂m be the field k((X1)) . . . ((Xm)) for m 6 n. Let us prove by
induction on m that

Λj(U∨m) →̃H j(F̂m,µ
⊗j
p )

where Um is the subgroup of U generated by u1 . . .um. The result is true for m =
0. We assume that this is true for m−1. Let us consider the valuation associated
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to (Xm). The residue field is isomorphic to F̂m−1. Since F̂m is complete, the
inertia group is isomorphic to lim

←
µn. We get an exact sequence

0→ lim
←

µn→Gal(F̂m)→Gal(F̂m−1)→ 0

which is split. The HochschildSerre spectral sequence yields short exact se
quences

0→H j(F̂m−1,µ
⊗j
p )→H j(F̂m,µ

⊗j
p )→H j−1(F̂m−1,µ

⊗j−1
p )→ 0.

Let A = F̂m−1[[Xm]] be the valuation ring corresponding to (Xm). Using the
notation of section 3, we have that τA = um. Therefore lemma 6 implies the
commutativity of the following diagram:

0 → H j(F̂m−1,µ
⊗j
p ) → H j(F̂m,µ

⊗j
p ) → H j−1(F̂m−1,µ

⊗j−1
p ) → 0

↑ ↑ ↑

0 → Λj(U∨m−1) → Λj(U∨m)
ûm→ Λj−1(U∨m−1) → 0

where the lines are exact and, by induction hypothesis, the left and right vertical
maps are isomorphisms, the morphism ûm being defined in the same way as
τ̂A. The exactness of the bottom line comes from the decomposition Um =
Um−1 ⊕ Fpum. Thus the central vertical map is also an isomorphism and the

result for m is proved.

If K is a function field over k which contains F , we define ϕ1K as the composed
map

U∨→H1(F,µp)→H1(K,µp)

and by lemma 1 we get a morphism ϕiK : (ΛiU )∨→H i (K,µ⊗ip )

Now the problem of finding a unirational field which is not rational reduces to

producing a subspace S ⊂ΛiU and an extension K/F of function fields satisfying
the following three conditions:

(i) K is unirational over k

(ii) the kernel of the map ϕiK : (ΛiU )∨→H i (K,µ⊗ip ) is S⊥.

(iii) S 6= Sdec
We can then apply Corollary 3 to the map

ϕ1K :U∨→H1(K,µp)
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Indeed the orthogonal in ΛiU of the kernel of the induced map (ΛiU )∨ →
H i (K,µ⊗ip ) is S by (ii). Therefore using corollary 3, we see that assumption (iii)

implies that K is not stably rational.
For each of the following examples, the road map is as follows. First we give

conditions on a subspace V of (ΛiU )∨ which imply the following two properties:
there exists an extension K/F such that K is unirational and Ker(H i (F,µ⊗ip )→

H i (K,µ⊗ip )) is exactly the image of V by the injection ϕiF . Then we produce

S ⊂ ΛiU such that S⊥ ⊂ ΛiU∨ verifies these conditions and such that S 6= Sdec.

4.1. Examples with nontrivial H2
nr(K,µ

⊗2
p ). —

Notation . — If A is a central simple algebra over an arbitrary field L, we shall
denote by [A] its class in the Brauer group Br(L) and YA the corresponding
SeveriBrauer variety.

Theorem 4 (Amitsur [Am]). — The kernel of the morphism

Br(L)→ Br(L(YA))

is the finite subgroup of Br(L) generated by [A].

Let us now consider a field L of characteristic prime to p and [A1],. . . ,[Am] in

(BrL)(p) →̃H2(L,µp), then we deduce from the theorem the following lemma:

Lemma 8. —

Ker(H2(L,µp)→H2(L(YA1
× · · · ×YAm

),µp)) =< [A1], . . . , [Am] > .

Proof. — We shall prove the lemma by induction on m. When m = 0 the
lemma is trivial. Assume that the result is true for m− 1. Let us denote by Lm
the field L(YA1

× · · · × YAm
) and by Lm−1 the field L(YA1

× · · · ×YAm−1
).

Let ρj :H
2(L,µp)→H2(Lj,µp) for j =m,m− 1 and ρ : H2(Lm−1,µp) →

H2(Lm,µp) be the canonical maps. Let λ be an element of H2(L,µp) such that

ρm(λ) = 0. Then ρ(ρm−1(λ)) = 0 and by theorem 4, ρm−1(λ) = k[Am] for some
k ∈ Z/pZ. therefore ρm−1(λ− k[Am]) = 0 and by the induction hypothesis

λ− k[Am] ∈< [A1], . . . , [Am−1] > .

Thus λ ∈< [A1], . . . , [Am] >.
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We shall now apply this lemma to the construction described at the beginning
of section 4.

Let S be a subspace of Λ2U . Let s1, . . . , sm be a family generating S⊥ ⊂ Λ2U∨,
and S1, . . . , Sm be central simple algebras representing the images of s1, . . . , sm in

H2(F,µp) which our choice of ξ ∈ µp enables us to identify with H2(F,µ⊗2p ). Let

K be the function field F(YS1
× · · · ×YSm

).

Proposition 5. — With notation as above, the function field K is unirational.
However if S 6= Sdec then

H2
nr(K,µ

⊗2
p ) 6= {0}

and K is not stably rational.

Proof. — By their very definition, the images of s1, . . . , sm in the group

H2(F,µ⊗2p ) come from H2(Gal(F ′/F),µ⊗2p ). Therefore they become zero

when lifted to F ′. So the SeveriBrauer varieties corresponding to the Sj are

split by F ′ and the composite F ′K is rational over F ′ and thus over k. So K is
unirational. We deduce from lemma 8 that the extension K/F satisfies condition
(ii) above and by the principle above, S 6= Sdec implies H2

nr(K,µ
⊗2
p ) 6= {0}.

Example 1. — For n 6 3 any element of Λ2U may be written as u ∧ v with
u and v in U . We shall therefore consider the case n = 4. The subspaces S of

Λ2U such that Sdec 6= S are described by Bogomolov in [Bo] when p 6= 2. This
description is the following: the elements of the form u∧ v with u, v ∈U are, in
this case, the isotropic vectors for the quadratic form

q : Λ2U → Λ4U
u 7→ u∧ u

and S 6= Sdec if and only if S = Ker(q|S)⊕T where T 6= {0} and q|T is anisotropic.

The following cases are possible:

case dimS dimSdec
(a) 1 0
(b) 2 0
(c) 2 1
(d) 3 1
(e) 3 2

Case (a) was studied by Saltman in [Sa]. For an example of (e) we may choose

S =< u1 ∧ u2, u1 ∧ u4, u1 ∧ u3 + u2 ∧ u4 > .
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Indeed q|S is represented by the matrix:




0 0 0
0 0 0
0 0 −2


. Then

S⊥ =< u∨3 ∧ u
∨
4 , u
∨
2 ∧ u

∨
3 , u
∨
1 ∧ u

∨
3 − u∨2 ∧ u

∨
4 >,

and

K = F(YAξ(X3,X4)
×YAξ(X2,X3)

×YAξ(X1,X3)⊗Aξ(X4,X2)
),

where Aξ(a, b) is the algebra over F generated by two elements I and J with the

relations

Ip = a, Jp = b, IJ = ξJI.

4.2. Examples with nontrivial H3
nr(K,µ

⊗3
p ). —

Notation . — If L is a field of characteristic prime to p which contains the p
th roots of unity, ξ a primitive pth root of unity and A a cyclic central simple
algebra of the form Aξ(a, b) for a, b ∈ L∗ then, for any c ∈ L∗, We denote by ZA,c
the norm variety defined by Nrd(x) = c.

For such a variety Suslin has proved the following result (See [Su] theorem
7.7):

Theorem 6 (Suslin). — With this notation, the kernel of the map

H3(L,µ⊗2p )→H3(L(ZA,c),µ
⊗2
p )

is the subgroup generated by [A]∪ c.

The case p = 2 is due to Arason [Ar].
Let us apply this theorem to our problem.

Let S be a subspace of Λ3U . We make the following hypotheses:

(H1) we can choose a basis (s1, . . . , sm) of S⊥ such that each sj is of the form

vj ∧wj ∧ yj for vj,wj, yj ∈U
∨.

(H2) For each k ∈ {1, . . . ,m} and each j ∈ {1, . . . , n}, at most one of the
elements vk,wk, yk has a non zero value on uj.

Notation . — Let Zj = ZAξ(Vj ,Wj),Yj
where Vj,Wj, Yj are the images of vj,wj, yj

in H1(F,µp). Let K = F(Z1× · · · ×Zm).

(H1) enables us to apply theorem 6 whereas (H2) is used to prove that
Brnr(K ) is trivial.
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Proposition 7. — With notation as above, the function field K is unirational and
the group Brnr(K ) is trivial. However, if S 6= Sdec, then

H3
nr(K,µ

⊗3
p ) 6= {0}

and K is not stably rational.

Proof. — • Let us first prove the last claim: Using theorem 6, since K is the
function field F(Z1) . . . (Zm), we may prove as in section 4.1, Lemma 8 that

Ker(H3(F,µ⊗3p )→H3(K,µ⊗3p )) =< (Vj,Wj, Yj),16 j6m >

and therefore

Ker((Λ3U )∨→H3(K,µ⊗3p )) = S⊥.

As above, if S 6= Sdec then K is not stably rational.

• The images of vj,wj, yj in H1(F,µp) come from the group H1(Gal(F ′/F),µp)

and have therefore trivial images in H1(F ′,µp). Thus

Aξ(Vj,Wj)⊗ F ′ →̃Mp(F
′)

and ZAξ(Vj,Wj),Yj
→̃ SL

p,F′
. This shows that the composite field KF ′ is rational

over F ′ hence also over k. So K is unirational over k.

• We shall now prove that Brnr(K ) = {0}. For this purpose, we shall use
the following lemmata:

Lemma 9. — Let X be a nonsingular geometrically integral variety over a field M
of characteristic 0. Let M be an algebraic closure of M . Let G = Gal(M/M) and
X = X×MM . Let M[X] be the ring Γ(X,OX ) and M(X) the function field of X .

If M[X]∗ =M
∗, then there is an exact sequence

0→ Pic(X)→ Pic(X)G → Br(M)→
→Ker

(
H2(G ,M(X)∗)→H2(G ,Div(X))

)
→H1(G ,Pic(X)).

Proof. — We have the following exact sequence:

0→H1(G ,M[X]∗)→ Pic(X)→ (PicX)G →H2(G ,M[X]∗)→
→Ker

(
H2(G ,M(X)∗)→H2(G ,Div(X))

)
→H1(G ,PicX).

This is the exact sequence (1.5.0) in [CTS]. We then use the fact that M[X]∗ =
M
∗

and Hilbert’s theorem 90 to get the lemma.
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The exact sequence of the lemma can also be obtained using the following
exact sequence of G modules

1→M
∗→M(X)∗→Div(X)→ Pic(X)→ 0

and the similar one for X .

Lemma 10. — Let L be as in theorem 6, let Aj for j = 1, . . . ,m be central simple
algebras over L and let cj belong to L∗ for j = 1, . . . ,m, we denote by ZAj,cj the norm

variety for Aj and cj and Z =
∏

16j6m

ZAj,cj
. If λ ∈ Brnr(L(Z)) then

λ ∈ Im
(

Br(L)→ Br(L(Z))
)
.

Proof. — We denote by L the algebraic closure of L, Z = Z×
L
L and G =

Gal(L/L). Let λ ∈ Brnr(L(Z)). By Hilbert’s theorem 90 we have an exact se
quence:

0→H2(G ,L(Z)∗)→ Br(L(Z))
ρ
→ Br(L(Z)).

But Z →̃
m∏

j=1

SLp,L is Lrational and therefore Brnr(L(Z)) = {0}. As

ρ
(

Brnr(L(Z))
)
⊂ Brnr(L(Z))

ρ(λ) = 0 and λ comes from λ′ ∈H2(G ,L(Z)∗).

Let us prove that λ′ ∈ Ker
(
H2(G ,L(Z)∗)→H2(G ,Div(Z))

)
For any x ∈

Z(1), the set of points of codimension 1 in Z, let us choose x′ ∈ Z
(1)

above x.

Then x′ defines B ∈P(L(Z)) whereas x corresponds to A = L(Z)
⋂
B. Let Hx

be the stabilizer of B. Let L̂(Z) (respectively L̂(Z)) be the completion of L(Z)

(respectively L(Z)) for A (respectively B), L̂(Z)nr (respectively L̂(Z)nr) the corre

sponding maximal unramified extensions. Let L̃(Z) (respectively L̃(Z)nr) be the

algebraic closure of L̂(Z) (respectively L̂(Z)nr) in L̂(Z) (respectively L̂(Z)nr).

Since the ramification index is one, the fields L̃(Z)nr and L̂(Z)nr are actually
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equal. Therefore we have the following diagram of fields:

L(Z)

❅
G

�

L(Z) L̂(Z)

� ❅ �
Hx

L̃(Z) L̂(Z)nr

� ❅❅

L̃(Z)nr

Let us define νx as the valuation associated to B and ix as the injection Hx→ G .
The definition of ∂A for the Brauer group and the diagram of fields yields the
following commutative diagram

H2(G ,L(Z)∗) → Br(L(Z))
↓ (ix, νx)

∗ ↓ ∂A
H2(Hx,Z) H1(Gal(κA/κA),Q/Z))
↓ ↓

H1(Hx,Q/Z) H1(Gal(L̂(Z)nr/L̂(Z)),Q/Z)
ց ւ

H1(Gal(L̃(Z)nr/L̂(Z),Q/Z).

Here the isomorphisms

H2(Hx,Z) →̃H1(Hx,Q/Z)

and

H1(Gal(κA/κA),Q/Z)) →̃H1(Gal(L̂(Z)nr/L̂(Z)),Q/Z)

are the inverses of the natural maps. Besides the map

H2(Hx,Z)→H1(Gal(L̃(Z)nr/L̂(Z),Q/Z)

is injective. But Div(Z) →̃ ⊕
x∈Z(1)

Z[G /Hx] as a G module and by Shapiro’s

lemma

H2(G ,Div(Z)) →̃ ⊕
x∈Z(1)

H2(Hx,Z).

By the diagram, for any x ∈ Z(1) we have (ix, νx)
∗(λ′) = 0 and

λ′ ∈ Ker
(
H2(G ,L(Z)∗)→H2(G ,Div(Z))

)
.
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Let us show that L[Z]∗ = L
∗

and that Pic(Z) = 0. These facts may be proved

in the following elementary way: let U = A1
L
−{0} and P = Z×Um Then P →̃

(GLp,L)
m Let π : P→ Z be the natural projection and j : Z→ P the immersion

corresponding to (1, . . . ,1). If f ∈ L[Z]∗ then π∗(f ) is an inversible element in
the ring of function of (GLp,L̄)

m which has the following form:

L[Xi,j,k,16 k6m,16 i, j6 p]


 1

Det
(
Xi,j,k

)
16i,j6p

,16 k6m


.

Therefore π∗(f ) can be written in the form c
∏m
k=1(Detk)

nk where c ∈ L∗, nk ∈ Z

and Detk = Det
(
Xi,j,k

)
16i,j6p

for 1 6 k 6 m. But, by definition of j, we have

the relation j∗(Detq) = 1. Therefore

f = j∗(π∗(f )) ∈ L∗.

Moreover we have an injection Pic(Z) → Pic(P). And P is an open set in
(Mn,L)

m. We hence have a surjection Pic((Mn,L)
m) →→ Pic(P). But the Pi

card group of (Mn,L)
m is trivial. Therefore Pic(Z) = {0}. Since L[X]∗ = L

∗
, by

lemma 9, we have an exact sequence

0→ Pic(Z)→ Pic(Z)G → Br(L)→
→Ker

(
H2(G ,L(Z)∗)→H2(G ,Div(Z))

)
→H1(G ,Pic(Z)).

We get an isomorphism

Br(L) →̃Ker
(
H2(G ,L(Z)∗)→H2(G ,Div(Z))

)
.

Therefore λ comes from Br(L).

Lemma 11. — With notation as in proposition 7, if A is an element of P(F)
corresponding to a point of codimension one of An

k then there exists B ∈P(K ) such
that we have B

⋂
F = A, the map

H1(κA,Q/Z)→H1(κB,Q/Z)

is injective and the ramification index eB/A = νB(πA) = 1 (for νB the valuation
corresponding to B, and πA an uniformizing element of A).

The proof of lemma 11, which uses (H2) is based on the following lemma
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Lemma 12. — Let L be a field over k, we denote by ξ a primitive pth root of unity.
Let V,W,X ∈ L∗, A = Aξ(V,W ) and Z = ZA,X . Let B ∈P(L) such that V,W,X
belong to B and at most one of the V,W,X belongs to MB, the maximal ideal of B.
Then there exists B′ ∈P(L(Z)) above B such that the morphism H1(κB,Q/Z)→
H1(κ

B′
,Q/Z) is injective and such that the ramification index of B′ over B is 1.

Proof. — The algebra A is generated by two generators I and J with the relations

Ip = V ,Jp = W and IJ = ξJI and has therefore the basis (IkJk) 06j6p−1
06k6p−1

. If

V 6∈ (L∗)p, let L′ = L[T]/(Tp − V ), otherwise let L′ = L and T be a pth

root of V . The field L′ is a splitting field for A. We define an isomorphism

A⊗L′ →̃Mp(L
′) by sending I to the diagonal matrix D(T, ξT, . . . , ξp−1T) and J

to



0 . . . . . . . . 0 W
1 0 . . . . . . . . 0
0 1 0 . . 0
...

. . .
. . .

. . .
...

0 . . 0 1 0




Therefore, if y ∈ A⊗L(yj,k) 06j6p−1
06k6p−1

is given by y =
∑

06j6p−1
06k6p−1

yj,kI
jJk, the image

of y in the ring Mp(L
′(yj,k) 06j6p−1

06k6p−1
) is My = (mj,k) 06j6p−1

06k6p−1
where

mj,k = y0,j−k + y1,j−kξ
jT + · · ·+ yp−1,j−kξ

j(p−1)Tp−1 if j> k

mj,k = W (y0,p+j−k + · · ·+ yp−1,p+j−kξ
j(p−1)Tp−1) otherwise

Det(My) is then a polynomial defined over L, which, by definition, gives the

reduced norm on A. Therefore the equation of Z is given by Det(My)−X = 0

and

L(Y ) = Fr


L[yj,k] 06j6p−1

06k6p−1
/(Det(My)−X)


 .

Let

B′0 = B[yj,k] 06j6p−1
06k6p−1

/(Det(My)−X).
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This is well defined: the coefficients of the polynomial Det(My)− X are in B,

since V,W,X ∈ B. Let πB be a uniformizing element for B. We have

B′0/(πB) = κB[yj,k] 06j6p−1
06k6p−1

/(Det(My)−X).

The polynomial Det(My) is given by the same computation over the residue field

κB. And by hypothesis the only possible cases are the following ones:

(a) None of V,W,X is in MB, then (Det(My)−X) is the equation of the

norm variety corresponding to the central simple algebra Aξ(V̄ , W̄ ) and to

X̄ where V̄ , W̄ , X̄ are the images of V,W,X in κB
(b) If W ∈MB but neither of V,X is in MB then Det(My) becomes equal to

the determinant of a lower triangular matrix over an extension of κB which
splits the polynomial Tp−V and we get the following equality in κB[yj,k]

Det(My)−X =

p−1∏

j=0

(y0,0 + y1,0ξ
jT + · · ·+ yp−1,0ξ

j(p−1)Tp−1)− X̄ .

We obtain the equation of Y ×A
p(p−1)
κB where Y is geometrically integral.

Y is, in fact, birationally isomorphic to the SeveriBrauer variety corre
sponding to Aξ(V ,X)

(c) We assume that V ∈MB but neither of W,X is in MB. We may exchange
V and W in the definition of Z and this case reduces to the preceding one.

(d) If X ∈MB but neither of V,W is in MB, we have

Det(My)−X = Det(My).

We get a variety which becomes isomorphic over κB, an algebraic closure
of κB, to the subvariety of Mp(κB) defined by Det(M) = 0. This subvariety

is integral.

Therefore in each case B′0/(πB) is the ring of functions of a geometrically integral

variety over κB. Thus B′0/(πB) is integral and (πB) is a prime ideal of B′0. Let

B′ = B′0(πB)
. B′ is a local ring and, since M

B′
= (πB), B

′ is a discrete valuation

ring of rank one. Moreover B′
⋂
L = B, Fr(B′) = L(Z), e

B′/B
= 1 and κB is

algebraically closed in κ
B′

, the residue field of B′ therefore

H1(κB,Q/Z)→H1(κ
B′
,Q/Z).
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of lemma 11. — Since A corresponds to a point of codimension 1 of An
k , at most

one of X1, . . . ,Xn is in MA. Since (H2) is satisfied, we see that, by removing if

necessary terms of the form πkp, we can reduce to the case where, for each j, at
most one of the Vj,Wj, Yj is in MA. We shall prove by induction on k6m that

there exists Bk ∈P(F(Z1) . . . (Zk)) such that Bk
⋂
F = A, eBk/A

= 1 and the map

H1(κA,Q/Z)→H1(κBk
,Q/Z)

is an injection. For k = 0, A verifies the conditions. If it is true for k < m,
we may use the construction of the preceding lemma to obtain Bk+1, because
Vk+1,Wk+1, Yk+1 ∈ A = Bk

⋂
F and at most one of them belong to MBk

.

The ring B = Bm satisfies the conditions we wanted.

Completion of the proof of proposition 7. — Let λ ∈ Brnr(K ). By lemma 10, we

know that λ ∈ Im(Br(F)→ Br(K )). Let λ′ be an element of Br(F) whose image
is λ. Let A ∈P(F) corresponding to an irreducible divisor of An

k . By lemma 11,
there exists B ∈PK above A such that eB/A = 1 and

H1(κA,Q/Z)→H1(κB,Q/Z)

is injective. Therefore we have a commutative diagram:

Br(F) → Br(K )
↓ ∂A ↓ ∂B

H1(κA,Q/Z) → H1(κB,Q/Z)

where the bottom line is injective. Since ∂B(λ) = 0, we get that ∂A(λ
′) = 0. Thus

λ′ ∈
⋂

A∈(Ank )
(1)

Ker∂A.

But, as in [CT], using an induction on n one can check that, since k is alge
braically closed of characteristic 0,

⋂

A∈(Ank )
(1)

Ker∂A = {0}.

Therefore Brnr(K ) = {0}.
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Example 2. — To get an example with S 6= Sdec, we need to take n> 6. If n = 6,
S =< u1 ∧ u2 ∧ u3 + u4 ∧ u5 ∧ u6 > verifies S 6= Sdec and we have

S⊥ = < u∨j ∧ u
∨
l ∧ u

∨
m for

{
16 j < l < m6 6
(j, l,m) 6∈ {(1,2,3), (4,5,6)},

u∨1 ∧ u
∨
2 ∧ u

∨
3 − u∨4 ∧ u

∨
5 ∧ u

∨
6 >

= < u∨j ∧ u
∨
l ∧ u

∨
m for

{
16 j < l < m6 6
(j, l,m) 6∈ {(1,2,3), (4,5,6)},

(u∨1 − u∨4 )∧ (u
∨
2 + u∨5 )∧ (u

∨
3 + u∨6 ) > .

Therefore (H1) and (H2) are satisfied.

Example 3. — We shall now give other examples with n = 6.

Let g1 = u1 ∧ u2 ∧ u3 + u3 ∧ u4 ∧ u5 + u5 ∧ u6 ∧ u1
g2 = u2 ∧ u3 ∧ u4 + u4 ∧ u5 ∧ u6 + u6 ∧ u1 ∧ u2
h1 = u1 ∧ u3 ∧ u5
h2 = u2 ∧ u4 ∧ u6.

Let us prove that, if s = {g1}, {g1, g2}, {g1, h1} or {g1, h1, h2}, the subspace S
generated by s verifies (H1), (H2) and S 6= Sdec

• We first prove that S verifies (H1) and (H2). If s0 = {g1, h1, h2} and S0
is the subspace generated by s0 then

S⊥0 = < u∨j ∧ u
∨
l ∧ u

∨
m for





16 j < l < m6 6
(j, l,m) 6∈ { (1,2,3), (3,4,5), (1,5,6),

(1,3,5), (2,4,6)},
u∨1 ∧ u

∨
2 ∧ u

∨
3 − u∨3 ∧ u

∨
4 ∧ u

∨
5 ,

u∨3 ∧ u
∨
4 ∧ u

∨
5 − u∨5 ∧ u

∨
6 ∧ u

∨
1 >

= < u∨j ∧ u
∨
l ∧ u

∨
m for





16 j < l < m6 6
(j, l,m) 6∈ { (1,2,3), (3,4,5), (1,5,6),

(1,3,5), (2,4,6)},
u∨3 ∧ (u

∨
1 + u∨5 )∧ (u

∨
2 + u∨4 ),

u∨5 ∧ (u
∨
1 + u∨3 )∧ (u

∨
4 + u∨6 ) > .

Therefore S0 verifies (H1) and (H2). This implies (H1) and (H2) in the cases
s = {g1} and s = {g1, h1}. Indeed, for s = {g1}, we have

S⊥ =< S⊥0 , u
∨
1 ∧ u

∨
3 ∧ u

∨
5 , u
∨
2 ∧ u

∨
4 ∧ u

∨
6 >

and for s = {g1, h1}, we get

S⊥ =< S⊥0 , u
∨
2 ∧ u

∨
4 ∧ u

∨
6 > .



24 EMMANUEL PEYRE

For s = {g1, g2}, we have:

S⊥ = < u∨j ∧ u
∨
l ∧ u

∨
m for





16 j < l < m6 6
(j, l,m) 6∈ { (1,2,3), (3,4,5), (1,5,6),

(2,3,4), (4,5,6), (1,2,6)},
u∨1 ∧ u

∨
2 ∧ u

∨
3 − u∨3 ∧ u

∨
4 ∧ u

∨
5 ,

u∨3 ∧ u
∨
4 ∧ u

∨
5 − u∨5 ∧ u

∨
6 ∧ u

∨
1 ,

u∨2 ∧ u
∨
3 ∧ u

∨
4 − u∨4 ∧ u

∨
5 ∧ u

∨
6 ,

u∨4 ∧ u
∨
5 ∧ u

∨
6 − u∨6 ∧ u

∨
1 ∧ u

∨
2 >

= < u∨j ∧ u
∨
l ∧ u

∨
m for





16 j < l < m6 6
(j, l,m) 6∈ { (1,2,3), (3,4,5), (1,5,6),

(2,3,4), (4,5,6), (1,2,6)},
u∨3 ∧ (u

∨
1 + u∨5 )∧ (u

∨
2 + u∨4 ),

u∨5 ∧ (u
∨
1 + u∨3 )∧ (u

∨
4 + u∨6 ),

u∨4 ∧ (u
∨
2 + u∨6 )∧ (u

∨
3 + u∨5 ),

u∨6 ∧ (u
∨
2 + u∨4 )∧ (u

∨
1 + u∨5 ) > .

• We shall now prove that S 6= Sdec. First we remark that an element g ∈
ΛkU may be written in the form g = u ∧ v with u ∈ U and v ∈ Λk−1U if
and only if there exists u ∈ U − {0} such that g ∧ u = 0. Let α,β,γ, δ ∈ Fp,

g = αg1 + βg2 + γh1 + δh2, a1, a2, a3, a4, a5, a6 ∈ Fp and u =
∑

16k66

aiui We are

interested in the equation:

() u∧ g = 0.

Let us compute uk ∧ g for 16 k6 6

u1 ∧ g = αu1 ∧ u3 ∧ u4 ∧ u5 + βu1 ∧ u2 ∧ u3 ∧ u4
+βu1 ∧ u4 ∧ u5 ∧ u6 + δu1 ∧ u2 ∧ u4 ∧ u6

u2 ∧ g = αu2 ∧ u3 ∧ u4 ∧ u5− αu1 ∧ u2 ∧ u5 ∧ u6
+βu2 ∧ u4 ∧ u5 ∧ u6− γu1 ∧ u2 ∧ u3 ∧ u5

u3 ∧ g = −αu1 ∧ u3 ∧ u5 ∧ u6 + βu3 ∧ u4 ∧ u5 ∧ u6
+βu1 ∧ u2 ∧ u3 ∧ u6− δu2 ∧ u3 ∧ u4 ∧ u6

u4 ∧ g = −αu1 ∧ u2 ∧ u3 ∧ u4− αu1 ∧ u4 ∧ u5 ∧ u6
+βu1 ∧ u2 ∧ u4 ∧ u6 + γu1 ∧ u3 ∧ u4 ∧ u5

u5 ∧ g = −αu1 ∧ u2 ∧ u3 ∧ u5− βu2 ∧ u3 ∧ u4 ∧ u5
+βu1 ∧ u2 ∧ u5 ∧ u6 + δu2 ∧ u4 ∧ u5 ∧ u6

u6 ∧ g = −αu1 ∧ u2 ∧ u3 ∧ u6− αu3 ∧ u4 ∧ u5 ∧ u6
−βu2 ∧ u3 ∧ u4 ∧ u6− γu1 ∧ u3 ∧ u5 ∧ u6.
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Therefore () is equivalent to the following system of equations:

a1β− a4α = 0 a1α+ a4γ = 0
−a2γ− a5α = 0 −a3α− a6γ = 0
a3β− a6α = 0 −a3δ− a6β = 0
a1δ+ a4β = 0 a2β+ a5δ = 0
−a2α+ a5β = 0.

Let us first consider the case s = {g1, h1, h2} and S =< s >. If S = Sdec then there
exist α,γ, δ ∈ Fp with α 6= 0 and u ∈U −{0} such that

(αg1 + γh1 + δh2)∧ u = 0

We may assume α = 1. Then, solving the system of equations with β = 0 and
α = 1, we find u = 0 and get a contradiction. Thus S 6= Sdec. From this we also
deduce that dim(S/Sdec) = 1 if s = {g1, h1} or s = {g1}. For the case s = {g1, g2},
we resolve the system with γ = δ = 0 and find that (αg1 + βg2)∧ u = 0 implies
αg1 + βg2 = 0 or u = 0. Therefore Sdec = {0}. To sum up, we have found the
following examples:

s dim S dim Sdec
g1 1 0
g1, h1 2 1
g1, h1, h2 3 2
g1, g2 2 0

Moreover one can show that

S =< u1 ∧ u2 ∧ u3 + u3 ∧ u4 ∧ u5 + u5 ∧ u6 ∧ u1 >

is not in the same orbit under the action of GL6(Fp) as the subgroup used in

example 1. See [Re] for details.

4.3. Examples with nontrivial H4
nr(K,µ

⊗4
2 ). — In this case we assume p = 2

and use the following result of Jacob and Rost on the quadratic forms [JR, page
555]. We recall that the nfold Pfister form << a1, . . . , an >> is the quadratic
form

< 1,−a1 >⊗· · ·⊗ < 1,−an > .

Theorem 8 (Jacob and Rost). — Let L be a field of characteristic prime to 2, let
Φ be a 4fold Pfister form << a1, a2, a3, a4 >> and let L(Φ) be the function field of
the quadric associated to Φ. Then we have

Ker(H4(L,Z/2Z)→H4(L(Φ),Z/2Z)) = {0, (a1)∪ (a2)∪ (a3)∪ (a4)}.
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As in section 4.2 we assume the following:

(H1) We may choose a basis s1, . . . , sm of S⊥ such that each sj may be written

as u1,j ∧ u2,j ∧ u3,j ∧ u4,j with uk,j ∈U
∨ for 16 k6 4 and 16 j6m.

We then let Uk,j represent the image of uk,j in F∗/F∗2. Set

Φj =<< U1,j,U2,j,U3,j,U4,j >>

and let K = F(Φ1)(Φ2) . . . (Φm), the function field of a product of quadrics.

Proposition 9. — K is unirational over k, but if S 6= Sdec then H4
nr(K,µ

⊗4
2 ) 6= {0}

and K is not stably rational.

The proof is similar to those of the other cases. Under an hypothesis similar
to (H2), it is possible to prove that in this case Brnr(K ) = {0}. However we have

not been able to prove that the field K verifies H3
nr(K,µ

⊗3
n ) = {0}.

Example 4. — We may take n = 8 and

S =< u1 ∧ u2 ∧ u3 ∧ u4 + u5 ∧ u6 ∧ u7 ∧ u8 > .

I would like to thank ColliotThélène who supervised this work. I seize also the
opportunity to thank the Ecole Normale Supérieure and Harvard University for their
support during the elaboration of this paper.
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