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Abstract. — A refined version of Manin’s conjecture about the asymptotics of
points of bounded height on Fano varieties has been developped by Batyrev and
the authors. We test numerically this refined conjecture for some diagonal cubic
surfaces.

Résumé. — Une version raffinée d’une conjecture de Manin sur le comportement
asymptotique des points de hauteur bornée sur les variétés de Fano a été proposée
par Batyrev et les auteurs. Nous testons numériquement cette conjecture pour
diverses surfaces cubiques.

1. Introduction

The aim of this paper is to test numerically a refined version of a conjecture of
Manin concerning the asymptotic for the number of rational points of bounded
height on Fano varieties (see [BM] or [FMT] for Manin’s conjecture and [Pe1]
or [BT3] for its refined versions).

Let V be a smooth Fano variety over a number field F and ω−1V its anticanon
ical line bundle. Let Pic(V ) be the Picard group and NS(V ) the NéronSeveri
group of V . We denote by Val(F) the set of all places of F and by Fv the vadic

completion of F . Let (‖ · ‖v)v∈Val(F) be an adelic metric on ω−1V . By definition,

this is a family of vadically continuous metrics on ω−1V ⊗Fv which for almost all
valuations v are given by a smooth model of V (see [Pe2]). These data define a
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height H on the set of rational points V (F) given by

∀x ∈ V (F), ∀y ∈ ω−1V (x), H(x) =
∏

v∈Val(F)
‖y‖−1v .

For every open subset U ⊂ V and every real number H we have

nU,H(H) = #{x ∈U (F) |H(x)6H} <∞.

The problem is to understand the asymptotic behavior of nU,H(H) as H goes to

infinity. It is expected that at least for Del Pezzo surfaces the following asymptotic
formula holds:

nU,H(H) = θH(V )H(logH)t−1(1 + o(1))

as H →∞, over appropriate finite extensions E/F of the groundfield. Here the
open set U is the complement to exceptional curves, θH(V ) > 0 and t is the rank
of the Picard group of V over E. We have counterexamples to this conjecture
in every dimension > 3 [BT2] (see [BT3] for a discussion of higher dimensional
varieties).

In this paper we focus on the constant θH(V ). On the one hand, there is a
theoretical description

(1) θH(V ) = α(V )β(V )τH(V )

where τH(V ) is a Tamagawa number associated to the metrized anticanonical
line bundle [Pe1], α(V ) is a rational number defined in terms of the cone of
effective divisors [Pe1] and the integer β(V ) is a cohomological invariant, which
first appeared in asymptotic formulas in [BT1].

On the other hand, let us consider a diagonal cubic surface V ⊂ P3
Q given by

ax3 + by3 + cz3 + dt3 = 0,

with a, b, c, d ∈ Z and abcd 6= 0. Our counting problem can be formulated as
follows: find all quadruples of integers (x, y, z, t) with

g.c.d.(x, y, z, t) = 1 and max{|x|, |y|, |z|, |t|}6H

which satisfy the equation above. Quadruples differing by a sign are counted
once. A proof of an asymptotic of the type (1) for smooth cubic surfaces seems
to be out of reach of available methods, but one can numerically search for so
lutions of bounded height. The cubics with coefficients (1,1,1,2) and (1,1,1,3)
and height H 6 2000 were treated by HeathBrown in [HB]. In both cases
weak approximation fails. SwinnertonDyer made substantial progress towards
an interpretation of the constant τH(V ) [SD]. In particular, he suggested that
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the adelic integral defining τH(V ) should be taken over the closure of rational

points V (F)⊂ V (AF ), rather than the whole adelic space.
Our goal is to compute the theoretical constant θH(V ) explicitely for certain

diagonal cubic surfaces with and without obstruction to weak approximation
and to compare the result with numerical data (with height H 6 100000). We
observe a very good accordance.

In section 2 we define the Tamagawa number. This definition is slightly dif
ferent from the one in [Pe1], but the numbers coincide conjecturally. In sections
3, 4 and 5 we explain how to compute it. There is a subtlety at the places of
bad reduction, notable at 3, overlooked previously. In section 6 we compute the
BrauerManin obstruction to weak approximation. And in section 7 we present
the numerical results. These computations were made using a program of Bern
stein which is described in [Be].

2. Conjectural constant

Notations 2.1. — If V is a scheme over a ring A and B an Aalgebra, we denote
by VB the product V ×SpecA SpecB and by V (B) the set of Bpoints, that is

HomSpecA(SpecB,V ). For any field E, we denote by E a fixed algebraic closure

and by V the variety VE.
If F is a number field, we identify the set of finite places with the set of prime

ideals in OF . We denote by dF the absolute value of its discriminant. If p is a
finite place of F , then Op is the ring of integers in Fp and Fp its residue field.

In the sequel we will always assume that V is a smooth projective geometrically
integral variety over a number field F satisfying the following conditions:

(i) The group H i (V,OV ) is trivial for i = 1 or 2,
(ii) Pic(V ) has no torsion,
(iii) ω−1V belongs to the interior of the cone of classes of effective divisors

Λeff(V ).
Since V is projective, the adelic space V (AF ) of V coincides with the product

∏

v∈Val(F)
V (Fv).

One says that weak approximation holds for V if the diagonal map from V (F) to
V (AF ) has a dense image. Our definition of the conjectural asymptotic constant
θH(V ) uses the notion of the BrauerManin obstruction to weak approximation,
which we now recall.
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Notations 2.2. — Let Br(V ) be the étale cohomology group H2
ét(V,Gm). If A

belongs to Br(V ) and E is a field over F then, for any P in V (E), we denote by
A(P) the evaluation of A at P. For any class A, there exists a finite set of places S
of F such that

∀v 6∈ S, ∀Pv ∈ V (Fv), A(Pv) = 0,

(see, for example, [CT2, lemma 1]). For any v in Val(F), let invv : Br(Fv)→Q/Z
be the invariant given by local class field theory normalized so that the sequence

0→ Br(F)→
⊕

v∈Val(F)
Br(Fv)

Σinvv−−−→Q/Z→ 0

is exact. Let ρA be the composite map

V (AF )→
⊕

v∈Val(F)
Br(Fv)

Σinvv−−−→Q/Z.

Then one defines

V (AF )
Br =

⋂

A∈BrV
ker(ρA)⊂ V (AF ).

The above exact sequence gives an inclusion V (F) ⊂ V (AF )
Br. The Brauer

Manin obstruction to weak approximation, introduced by Manin in [Ma1] and by
ColliotThélène and Sansuc in [CTS] is defined as the condition

V (AF )
Br  V (AF ).

Remark 2.1. — It is conjectured that the closure of the set of rational points

V (F)⊂ V (AF ) in fact coincides with V (AF )
Br, at least for Del Pezzo surfaces.

This has been proved, for example, by Salberger and Skorobogatov for a smooth

complete intersection of two quadrics in P4 if V (F) is not empty (see [SaSk]).
It would be very interesting to see an example of a cubic surface V with t =
rkPic(V ) = 1 where weak approximation holds, or where one could actually

prove that V (F) = V (AF )
Br, assuming that V (F) is Zariski dense, which by a

result of B. Segre (see [Ma2, §29, §30]) is equivalent to V (F) 6=∅.

Notations 2.3. — Let (‖ · ‖v)v∈Val(F) be an adelic metric on ω−1V and H the

associated height function on V (F). The adelic metrization of the anticanonical
line bundle yields for any place v of F a measure ωH,v on the locally compact
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space V (Fv), given by the local formula

ωH,v =

∥∥∥∥∥
∂

∂x1,v
∧ · · · ∧ ∂

∂xn,v

∥∥∥∥∥
v

dx1,v . . .dxn,v .

where x1,v, . . . , xn,v are local vadic analytic coordinates,
∂

∂x1,v
∧ · · · ∧ ∂

∂xn,v
is seen

as a section of ω−1V and the Haar measures dxj,v (for j = 1, ..., n) are normalized

by
 if v is a finite place then

∫
Ov

dxj,v = 1,

 if v is real then dxj,v is the standard Lebesgue measure,

 if v is complex then dxj,v = dzdz̄ .

We choose a finite set S of bad places containing the archimedean ones and a
smooth projective model V of V over the ring of Sintegers OS. For any p in
Val(F)− S, the local term of the Lfunction corresponding to the Picard group
is defined by

Lp(s,Pic(V )) =
1

Det(1− (#Fp)
−s Fr | Pic(VFp

)⊗Q)
,

where Fr is the Frobenius map. The corresponding global Lfunction is given by

LS(s,Pic(V )) =
∏

p∈Val(F)−S
Lp(s,Pic(V )),

it converges for Re(s) > 1 and has a meromorphic continuation to C with a pole
of order t = rkPic(V ) at 1. The local convergence factors are defined by

λv =





Lv(1,Pic(V )) if v∈ Val(F)− S,
1 otherwise.

The Weil conjectures, proved by Deligne, imply that the adelic measure
∏

v∈Val(F)
λ−1v ωH,v

converges on V (AF ) (see [Pe1, proposition 2.2.2]).

Definition 2.4. — The Tamagawa measure corresponding to H is defined by

ωH =
1

p
d
dimV
F

lim
s→1

(s− 1)tLS(s,Pic(V ))
∏

v∈Val(F)
λ−1v ωH,v.
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The Tamagawa number is defined by

τH(V ) = ωH(V (AF )
Br).

The cohomological constant is given by

β(V ) = #H1(F,Pic(V )).

Let NS(V )∨ be the lattice dual to NS(V ). It defines a natural Lebesgue mea

sure dy on NS(V )∨⊗R. Denote by Λeff(V )⊂NS(V )⊗R the cone of effective

divisors and by Λeff(V )∨ ⊂NS(V )∨⊗R the dual cone.

Definition 2.5. — We define

α(V ) =
1

(t− 1)!
∫

Λeff(V )∨
e−〈ω
−1
V ,y〉dy.

Remarks 2.2. — (i) Of course, for nonsplit cubic surfaces with rkPic(V ) = 1
the constant α(V ) = 1. However, it is a challenge to compute this constant for a
split cubic surface with rkPic(V ) = 7.

(ii) As Salberger, we use ωH(V (AF )
Br) instead of ωH(V (k)) in the definition

of τH(V ). By remark 2.1 these numbers are conjecturally the same, but only the
first one is computable for a general cubic. Also we use the convention of [Pe1,
§2.2.5] for the definition of α(V ).

Definition 2.6. — We define the constant corresponding to V and H as

θH(V ) = α(V )β(V )τH(V ).

3. Measures and density

In this section we relate the local volumes of the variety with the density of
solutions modulo pn. Lemma 5.4.6 in [Pe1] relates the local volume for ωH,p
to the volume for Leray’s measure. We now compare the latter to the density
modulo pn.

Notations 3.1. — Let F be a number field and V a smooth complete in

tersection in PN
F defined by m homogeneous polynomials fi in the algebra

OF [X0, . . . ,XN ]. Let δ =N +1−∑m
i=1 deg fi . We assume that δ> 1. We denote
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by W ⊂ AN+1
F − {0} the cone above V and by f : AN+1

OF
→ Am

OF
the map

induced by the fi . Then the Leray form on W is defined locally by

(2) ωL = (−1)Nm−
∑m

j=1 kj


Det


 ∂fi
∂Xkj




16i,j6m




−1

× dX0 ∧ · · · ∧ d̂Xk1
∧ · · · ∧ d̂Xkm

∧ · · · ∧ dXN

where 0 6 k1 < · · · < km 6 N . For any v in Val(F), this form yields a measure
ωL,v on W (Fv).

The following result is well known in the setting of the circle method (see
for example [Lac, proposition 1.14]) where it is generally proved using a Fourier
inversion formula. It may also be deduced from a more general result of Salberger
[Sal, theorem 2.13]. We prove it here in a direct and elementary way.

Proposition 3.1. — We fix a finite place v = vp of F . If all fi have the same degree,
then

∫

{x∈ON+1
p |f (x)=0}

ωL,p = lim
r→+∞

#{x ∈ (Op/p
r)N+1 | f (x) = 0 in (Op/p

r)m}
(#Fp)

rdimW
.

This proposition follows from the next two lemmata. In fact, in the explicit
computations, we shall only use lemma 3.2 and the first assertion of lemma 3.4.

Lemma 3.2. — For any r > 0 we consider the set

W ∗(Op/p
r) = {x ∈ (Op/p

r)N+1− (p/pr)N+1 | f (x) = 0 in (Op/p
r)m}

and put N∗(pr) = #W ∗(O/pr). Then there is an integer r0 > 0 such that

∫

{x∈ON+1
p −pN+1|f (x)=0}

ωL,p =
N∗(pr)

(#Fp)
rdimW

if r> r0.

Remark 3.3. — It will follow from the proof that it is in fact sufficient to take
r0 to be

2 inf {r∈Z>0 | ∀x ∈O
N+1
p −pN+1, f (x)≡0modpr⇒(pr)m⊂ Im(dfx )}+1.
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Proof. — For any r > 0,
∫

{x∈ON+1
p −pN+1|f (x)=0}

ωL,p =
∑

x∈(Op/p
r)N+1−(p/pr)N+1

∫

{y∈ON+1
p |f (y)=0 and [y]r=x}

ωL,p(y)

=
∑

x∈W ∗(Op/p
r)

∫

{y∈ON+1
p |f (y)=0 and [y]r=x}

ωL,p(y)

where for any y in O
N+1
p we denote by [y]r its class modulo pr. Since V is

smooth, the cone W does not intersect the cone defined by the equations

det


 ∂fi
∂Xkj




16i,j6m

= 0 for 06 k1 < · · · < km 6N.

Therefore, for r big enough and for any x in (Op/p
r)N+1− (p/pr)N+1 such that

f (x) = 0 in (Op/p
r)m one has that

inf
(kj)j

vp


det



 ∂fi
∂Xkj





16i,j6m




is finite and constant on the class defined by x. Let c be its value. We may
assume that r > c and choose a family 06 k1 < · · · < km 6N which realizes this

minimum. We may assume that kj =N −m+ j. Then if y ∈O
N+1
p represents x

and if z belongs to O
N+1
p , one has

(3) fi (y+ z) = fi (y) +
N∑

j=0

∂fi
∂Xj

(y)zj +
N∑

j,k=0

Pi,j,k(y, z)zjzk.

where the Pi,j,k are polynomials in 2N + 2 variables with coefficients in Op. Let

Ly be the image of the linear map defined by
(
∂fi
∂Xj

(y)
)

on (Op)
N+1, then one

has the inclusions

(pr)m ⊂ (pc)m ⊂ Ly ⊂ (Op)
m

and #((Op)
m/Ly) = (#Fp)

c. In particular, for any z in (pr)N+1 one has Ly+z = Ly.

We put L = Ly. By (3) we have that for any z in (pr)N+1,

f (y+ z)− f (y) ∈ prL.
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Therefore, the image of f (y) in O
m
p /prL depends only on x and we denote it by

f ∗(x). If f ∗(x) 6= 0 then the set

{u ∈O
N+1
p | f (u) = 0 and [u]r = x}

is empty and the integral is trivial. On the other hand, the set

{u ∈ (Op/p
r+c)N+1 | f (u) = 0 in (Op/p

r+c)m and [u]r = x}
is also empty. If f ∗(x) = 0 then it follows from Hensel’s lemma that the coordi
nates X0, . . . ,XN−m define an isomorphism from

{u ∈O
N+1
p | f (u) = 0 and [u]r = x}

to (y0, . . . , yN−m) + (pr)N−m+1. Therefore, using (2) and the definition of c, we
get that
∫

{y∈ON+1
p |f (y)=0 and [y]r=x}

ωL,p(y) =
∫

(y0,...,yN−m)+(pr)N−m+1
(#Fp)

cdu0,p . . .duN−m,p

= #Fc−rdimW
p .

Let x/pr+c be the set

{u ∈ (Op/p
r+c)N+1 | [u]r = x}.

Then f induces a map from x/pr+c to (Op/p
r+c)m given by

f ([y+ z]r+c) = [f (y)]r+c +
N∑

j=0

∂f

∂Xj
(y)zj,

the image of which is prL/(pr+c)m. Therefore, we obtain

#{u ∈ x/pr+c | f (u) = 0 in (Op/p
r+c)m}

= #(prL/(pr+c)m)−1× #(pr/pr+c)N+1

= #Fc+cdimW
p

and
#{u ∈ x/pr+c | f (u) = 0 in (Op/p

r+c)m}
#F

(r+c)dimW
p

= #Fc−rdimW
p .

Finally, we get the result.
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Lemma 3.4. — With notation as in proposition 3.1, one has

∫

{x∈ON+1
p −pN+1|f (x)=0}

ωL,p =



1− 1

#Fδp




∫

{x∈ON+1
p |f (x)=0}

ωL,p

and

lim
r→+∞

N∗(pr)
(#Fp)

rdimW

=


1− 1

#Fδp


 lim

r→+∞
#{x ∈ (Op/p

r)N+1 | f (x) = 0 in (Op/p
r)m}

(#Fp)
rdimW

.

Proof. — By definition, one has for any λ in F∗p the relation

ωL,p(λU ) = |λ|δpωL,p(U )

which implies the first assertion.
For the second one, let d be the common degree of the fi . If r > id + 1, one

has the relations

#{x ∈ (pi/pr)N+1− (pi+1/pr)N+1 | f (x)≡0 mod pr}
= #{x ∈ (Op/p

r−i)N+1− (p/pr−i)N+1 | f (x)≡0 mod pr−id}
= #F

(N+1)(d−1)i
p #{x∈(Op/p

r−id)N+1−(p/pr−id)N+1 | f (x)≡0 mod pr−id}.

Thus we get

#{x ∈ (Op/p
r)N+1 | f (x) = 0 in (Op/p

r)m}
=

∑

06i6a

#F
(N+1)(d−1)i
p N∗(pr−id)

+ #{x ∈ (pa+1/pr)N+1 | f (x)≡ 0 mod pr}

where r−r0 = ad+b with b < d. We have a > (r−r0−d)/d and N+1−md > 1.
Thus

#(pa+1/pr)N+1
6 #F

(N+1)(r−(r−r0)/d)
p 6 #F

r(N+1−m−1/d)+(N+1)r0/d
p
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Dividing by #FrdimW
p and using the previous lemma, we get that

#{x ∈ (Op/p
r)N+1 | f (x) = 0 in (Op/p

r)m}
(#Fp)

rdimW

=



1− 1

#Fδp




−1

N∗(pr)
#FrdimW

p

+O(#F−r/dp ).

The equations (fi )16i6m define an isomorphism

ω−1V −̃→OV (δ).

Therefore, for any place v of F the metric on OV (δ) induced by the monomi

als of degree δ defines a metric ‖ · ‖v on ω−1V . The height H defined by the

corresponding metrized line bundle (ω−1V , (‖ · ‖v)v∈Val(F)) verifies

∀x ∈ V (F), H(x) =
∏

v∈Val(F)
sup

06i6N
(|xi |v)δ.

Corollary 3.5. — With notations as in proposition 3.1 one has for any finite place
p of F

ωH,p(V (Fp)) =
1−#F−δp

1−#F−1p

lim
r→+∞

#{x∈(Op/p
r)N+1 | f (x)=0 in (Op/p

r)m}
#FrdimW

p

.

Proof. — This follows from proposition 3.1 and [Pe1, lemme 5.4.6].

Remark 3.6. — In particular, a factor 1/3 is erroneously introduced in the first
formula giving the constant CHB(V ) on page 148 in [Pe1] (see also [SD, p.
374]) and therefore a factor 3 is missing in proposition 5.6.1 of [Pe1]. In fact, if
V is the cubic surface defined by the equation

X3
0 +X3

1 +X3
2 = kX3

3

with k = 2 or 3, one gets the equality

Sk = α(V )β(V )τH(V ),

where Sk is the constant defined by HeathBrown in [HB]. Therefore, the
numerical experiments made by HeathBrown are compatible with the constant
θH(V ) as in definition 2.6 and the remark 2.3.2 in [Pe1] has to be corrected
accordingly.
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4. Points on cubics over Fp

We now describe explicitely the cardinal of V (Fp) when V is the diagonal

cubic surface given by the equation

(4) X3
0 + q2X3

1 + qrX3
2 + r2X3

3 = 0

where q, r ∈ Z>1 are squarefree and coprime. We put K1 = Q(q1/3), K2 =

Q(r1/3) and K3 = Q((qr)1/3) and consider

νq,r(p) = #{i | p is totally split in Ki}.

Proposition 4.1. — if p /| 3qr, then

#V (Fp)

p2
=






1+
1
p +

1

p2
if p≡ 2 mod 3,

1+
3νq,r(p)−2

p +
1

p2
otherwise.

Remark 4.2. — By a result of Weil (see [Ma2, theorem 23.1]),

#V (Fp)

p2
= 1+Tr(Frp |PicV )p+ p2

and the only difficulty is to determine Tr(Frp |PicV ). We have chosen to avoid

this computation by using a general formula valid for diagonal hypersurfaces.

Remark 4.3. — If p≡ 1 mod 3 then Fp contains the cubic roots of 1. Therefore

νq,r(p) is either 3, 1 or 0. In other words, the possible values in this case are

1+
7

p
+

1

p2
, 1+

1

p
+

1

p2
, 1− 2

p
+

1

p2
.

Proof. — Let N(p) be the number of solutions of (4) in (Fp)
4. By [IR, §8.7,

theorem 5], we have the formula

N(p) = p3 +
∑

χ1(1)χ2(q
2)χ3(r

2)χ4(qr)J0(χ1, . . . ,χ4)

where the sum is taken over the quadruples of nontrivial cubic characters χ1, χ2,
χ3, χ4 from F∗p to C∗ such that χ1χ2χ3χ4 is the trivial character and where

J0(χ1, . . . ,χ4) =
∑

t1+···+t4=0

4∏

i=1
χi (ti),
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with the convention χi(0) = 0. If p ≡ 2 mod 3, then there are no nontrivial
characters and we get that

#V (Fp) =
N(p)− 1
p− 1 = 1+ p+ p2.

Otherwise, there are exactly two nontrivial characters which are conjugate and
will be denoted by χ and χ. By [IR, §8.5, theorem 4], we have

|J0(χ,χ,χ,χ)| = p(p− 1).
But, by definition, this complex number may be written as

J0(χ,χ,χ,χ) =
∑

t1+···+t4=0
χ(t1t2)χ(t3t4)

=
∑

a∈Fp

∣∣∣∣∣∣

∑

t1+t2=a
χ(t1t2)

∣∣∣∣∣∣

2

and is a positive real number. Finally we get

N(p) = p3 + p(p− 1)
∑

χ1(q
2)χ2(r

2)χ3(qr),

where the sum is taken over all nontrivial cubic characters such that χ1χ2χ3 is
nontrivial. This sum may be written as

∑
χ1(q

2)χ2(r
2)χ3(qr) = χ(q2)χ(r2)χ(qr) + χ(q2)χ(r2)χ(qr)

+ χ(q2)χ(r2)χ(rq) + χ(q2)χ(r2)χ(qr)

+ χ(q2)χ(r2)χ(qr) + χ(q2)χ(r2)χ(qr)

= χ(q) + χ(q) + χ(r) + χ(r) + χ(qr) + χ(qr).

Observe that for any integer n prime to p, one has

χ(n) + χ(n) =




−1 if p is not split in Q(n1/3),

2 otherwise.

Lemma 4.4. — With notation as above, if p≡ 2 mod 3, p 6= 2, and p|qr then

N∗(pt)
p3t

= 1− 1

p
if t > 0.

Proof. — We may assume that p|r. Let x = (x0, x1, x2, x3) be a solution of the

equation (4) in the set (Z/ptZ)4− (pZ/ptZ)4. If p|x1 then by the equation p|x0
and then x ∈ (p)4 which gives a contradiction. Since the group of invertible
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elements in Z/ptZ is isomorphic to Z/pt−1(p− 1)Z, any element in this group
has a unique cubic root. Therefore, the set of solutions is parametrized by the
(x1, x2, x3) ∈ Z/ptZ such that p /| x1.

Lemma 4.5. — With notations as above, if q ≡ ±r mod 9 and 3 /| qr, then the

possible values for N∗(32)/36 are given by the following table:

q, r mod 9 ±1 ±2 ±4
N∗(32)/36 2 22/3 2/3

Proof. — Up to multiplication by units, the equation in this case may be written
over Q3 as

X3 + q2Y 3 + q2Z3 + q2T3 = 0

which is equivalent to

X3 +Y 3 +Z3 + qT3 = 0

and the result follows from [HB] or a direct computation.

5. Convergence factors and residues

As in HeathBrown [HB], for the explicit computation of the constant we
need a family of convergence factors related to zeta functions of cubic extensions
of Q. If V is defined by (4), it follows from [CTKS, p. 12] that t = rkPicV = 1.

Proposition 5.1. — If V is the diagonal cubic given by the equation (4) and Ki
are the fields defined in the previous paragraph, then the measure ωH coincides with
the measure

lim
s→1

(s− 1)
∏3
i=1 ζKi (s)

ζQ(s)2
∏

v∈Val(Q)

λ′vωH,v.

where

λ′p =

3∏
i=1

∏

{P∈Val(Ki )|P|p}
(1− #F−1P )

(1− p−1)2 if p is a prime number and λ′R = 1.

Remark 5.2. — If p does not divide 3qr, we can use the term λ′pωH,p(V (Qp))

which by lemma 3.2, lemma 3.4, and lemma 5.4.6 in [Pe1] coincides with
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λ′p#V (Fp)/p
2 (see also [Pe1, lemme 2.2.1]) and by proposition 4.1 is equal to

(
1− 1

p

)7(
1+

7
p +

1

p2

)
if p≡ 1 mod 3 and νq,r(p) = 3

(
1− 1

p

)(
1− 1

p3

)2(
1+

1
p +

1

p2

)
if p≡ 1 mod 3 and νq,r(p) = 1

(
1− 1

p

)(
1+

1
p +

1

p2

)3(
1− 2

p +
1

p2

)
if p≡ 1 mod 3 and νq,r(p) = 0

(
1− 1

p

)(
1− 1

p2

)3(
1+

1
p +

1

p2

)
if p≡ 2 mod 3

and the good places yield a product C1C2C3 where

C1 =
∏

p/|3qr
p≡1mod3
νq,r(p)=3

(
1− 1

p

)7(
1+

7

p
+

1

p2

)

C2 =
∏

p/|3qr
p≡1mod3
νq,r(p)6=3

(
1− 1

p3

)3

C3 =
∏

p/|3qr
p≡2mod3

(
1− 1

p3

)(
1− 1

p2

)3

Proof. — It follows from the proof of proposition 4.1 that, if p /| 3qr,

(5)
#V (Fp)

p2
= 1+

a(p)

p
+

1

p2

where

(6) a(p) =





1 if p≡ 2 mod (3),

1+ χ(q) + χ(q) + χ(r) + χ(r) + χ(qr) + χ(qr) otherwise,

where χ is a nontrivial cubic character of Fp, if p ≡ 1 mod 3. It follows from a

theorem of Weil (see [Ma2, theorem 23.1]) that, outside a finite set of places,

#V (Fp) = 1+Tr(Frp |PicV )p+ p2.
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Since the action of the Galois group on the Picard group splits over a finite
extension of k, the eigenvalues of the Frobenius map for this action are roots of
unity. Therefore we get that

(7) Lp(s,Pic(V ))−1 = 1− a(p)

ps
+Rp

(
1

ps

)

where the Rp are polynomials of order at least 2 with uniformly bounded coeffi

cients with respect to p.

But for any cubefree integer n, the zeta function of Q(n1/3) may be written as
an Euler product with local terms ζ

Q(n1/3),p
(s) which for p /| 3n are given by

ζ
Q(n1/3),p

(s)−1 =





(
1− 1

ps

)(
1− 1

p2s

)
if p≡ 2 mod 3

(
1− 1

ps

)(
1− χ(n)

ps

)(
1− χ(n)

ps

)
if p≡ 1 mod 3

Thus, by (6), for almost all places, the local terms of the zeta functions verify


ζQ,p(s)

3∏

i=1

ζKi ,p(s)

ζQ,p(s)



−1

= 1− a(p)

ps
+Qp

(
1

ps

)

where the Qp are polynomials of order at least 2 with bounded coefficients. Using

(5) we get that the product of measures given in the proposition defines a Borel
measure on the adelic points of V and by (7) that the Euler product defining the
quotient

LS(s,Pic(V ))

/∏3
i=1 ζKi (s)

ζQ(s)2
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converges absolutely in s = 1. Since dQ = 1, we get that

ωH = lim
s→1

(
(s− 1)LS(s,PicV )

) ∏

v∈Val(Q)

λ−1v ωH,v

= lim
s→1

(
(s− 1)LS(s,PicV )

) ∏

v∈Val(Q)

λ−1v

λ′v

∏

v∈Val(Q)

λ′vωH,v

= lim
s→1

(
(s− 1)LS(s,PicV )

)
lim
s→1

(
3∏
i=1

ζKi (s)

)
/ζQ(s)2

LS(s,PicV )

∏

v∈Val(Q)

λ′vωH,v

= lim
s→1

(s− 1)
∏3
i=1 ζKi (s)

ζQ(s)2
∏

v∈Val(Q)

λ′vωH,v.

6. BrauerManin obstruction to weak approximation

In this paragraph, using the work of ColliotThélène, Kanevsky and Sansuc
[CTKS], we shall compute the quotient

(8) ωH(V (AQ)Br)/ωH(V (AQ))

when V is the diagonal cubic defined by the equation (4) and V (AQ) 6=∅.

In the following, we assume that q and r are distinct prime numbers such
that 3 /| qr. It follows from [CTKS, p. 28] that V (AQ) 6= ∅ if and only if the

following condition is satisfied

(9) (q≡ 2 mod 3 or r ∈ F∗q
3) and (r≡ 2 mod 3 or q ∈ F∗r

3)

Proposition 6.1. — Under these assumptions, the value for the quotient (8) de
pends only on the classes of p and q modulo 9. These values are given in the following
table:

r�q 1 2 4 5 7 8

1 1 1 1 1 1 1
2 1 1�3 0 0 1�3 1
4 1 0 1�3 1�3 0 1
5 1 0 1�3 1�3 0 1
7 1 1�3 0 0 1�3 1
8 1 1 1 1 1 1
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Proof. — Let j be a primitive third root of unity, k = Q(j) and K = k(q1/3, r1/3).
We have the following diagram of fields

K

�
∣∣∣∣�

k(q1/3) k((qr)1/3) k(r1/3)

�
∣∣∣∣�
k∣∣∣∣Z/2Z

Q

and the group G = Gal(K/Q) may be described as the semidirect product

(Z/3Z)2 ⋊ Z/2Z where Z/2Z acts by − Id on (Z/3Z)2. By [CTKS, proposi
tion 1, p. 7], we have that

Br(V ×Q k)/ Br(k) −̃→H1(k,Pic(V )) −̃→ Z/3Z.

But the HochschildSerre spectral sequence gives an exact sequence

0→H1(Z/2Z, (Pic(V ))(Z/3Z)2)→H1(Q,Pic(V ))

→ (H1(k,Pic(V )))Z/2Z→H2(Z/2Z, (Pic(V ))(Z/3Z)2).

By [CTKS, p. 12], Pic(V )Gal(k/k) = Z and, since a map from a group killed by 3
to one killed by 2 is trivial, we obtain an isomorphism

H1(Q,Pic(V )) −̃→H1(k,Pic(V ))Z/2Z.

By the proof of [CTKS, lemme 3, p. 13], we have isomorphisms

H1(k,PicV ) −̃→H1(Z/3Z,Z⊕Q) −̃→H1(Z/3Z,Q)

where Q is the Z/3Zmodule defined by the exact sequence

0→ Z
N→ Z[Z/3Z]→Q → 0.

But for any cyclic group C and any Cmodule M there is canonical injection

H1(C,M)→Hom(C,MC)
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where MC denotes the group of coinvariants and which sends the class of a
cocycle γ onto the induced morphism γ from C to MC , so that the diagram

C
γ−−−→ M

∥∥∥∥

y
y

C
γ−−−→ MC

commutes. If C is a normal subgroup of a group H then the above morphism

is compatible with the natural actions of H/C on H1(C,M) and Hom(C,MC).
It follows from [CTKS, lemme 3] that Z/2Z acts by − Id on the torsion part of
QZ/3Z and by the above description of G as a semidirect product, Z/2Z acts by

−1 on Z/3Z. Therefore the action of Z/2Z on H1(Z/3Z,Q) is trivial and

H1(Q,Pic(V )) = Z/3Z.

For any prime p, the canonical pairing

Br(V )×V (Qp) → Q/Z

([A], P) 7→ invp(A(P))

defines an equivalence relation on V (Qp) which is also denoted by Br. If V has

good reduction in p, then by [CT1, theorem A (iii)] the rational equivalence on
V (Qp) is trivial and therefore the same is true of the Brauer equivalence. The

condition (9) implies that if p|qr then V is rational over Qp (see [CTKS, lemme

8, p. 41]) and #V (Qp)/ Br = 1. Using the same type of argument we get that

#V (Q3)/ Br = 1 if q, r or qr is a cube modulo 9, that is one of them is 1 or
−1 modulo 9. On the other hand, it follows from [CTKS, §5, p. 41] that this
cardinal is 3 at 3 otherwise. This explains the dichotomy between integral and
nonintegral values in the table.

We have to find an element A ∈ Br(V ) whose class spans Br(V )/ Br(Q). Then
the Brauer equivalence and the Brauer obstruction may be computed in terms of
the functions

ip : V (Qp) → Z/3Z

P 7→ invp(A(P)).

This is an intricate procedure. It is described in detail on pages 1972 and sum
marized in an algorithm on pages 7379 in [CTKS], which we are going to
follow.

Let us first assume that q, r or qr is a cube modulo 9. Then all functions ip
are constant and A may be chosen so that the value ip of the function ip is trivial



20 EMMANUEL PEYRE & YURI TSCHINKEL

except when p equals 3, q, or r. It remains to compute the constant values i3,
iq, and ir for such an A. To this end, we use the additive norm rest symbols

[., .]p from k∗v to Z/3Z, for v in Val(k), dividing p (see [CTKS, p. 77]). They are

biadditive, anticommutative and verify the relations

[j, p]p =
p− 1
3

if p≡ 1 mod 3

[j, p]p =−
p2− 1
3

if p≡ 2 mod 3.

If r is a cube in Q3, we get that A may be chosen so that

i3 = 0, iq = 0, ir = [j, r]r.

Since r ≡ ±1 mod 9, we have that ir = 0 and the BrauerManin obstruction is
trivial. If q is a cube modulo 9 the result is similar and the quotient (8) equals 1.

If qr is a cube modulo 9 but q and r are not, then the situation is similar to the
one considered in [CTKS, proposition 5, p. 67–69], and one writes the equation
as

X3 + qY 3 + q2rZ3 + q4r2T3 = 0

and, by [CTKS, §8], A may be chosen so that

i3 = 0, iq = 0 and ir = [j, r]r.

The values of ir are given by the following table (see [CTKS, p. 78])

r mod 9 2 4 5 7
[j, r]r 2 1 1 2

and in this case there is a BrauerManin obstruction to the Hasse principle and
the quotient (8) is zero.

If none of the q, r and qr is a cube in Q3, then to complete the proof of
proposition 6.1 we have only to prove that each class in V (Q3) for the Brauer
equivalence has the same volume for ωH,3.

Up to permutation and change of sign, we may assume that q≡ r ≡ 2 modulo
9 or q≡ r≡ 4 modulo 9. Therefore the equation modulo 9 may be written as

X3 +4Y 3 +4Z3 +4T3 = 0

or
X3 +16Y 3 +16Z3 +16T3 = 0.

Therefore on Q3 the equation is equivalent to

X3 +Y 3 +Z3 +2T3 = 0
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or

X3 +Y 3 +Z3 +4T3 = 0

A direct computation modulo 9 shows that exactly one of the three first coordi
nates has to be divisible by 3. But in the first case, it follows from [HB, proof
of theorem 1] that the classes for the Brauer equivalence are determined by the
coordinate which vanishes modulo 3. By a symmetry argument the volumes of
the equivalence classes are the same.

By [CTKS, p. 49], there is a choice of A so that the induced map i3 over
V (Q3(j)) is given as

(10) i3(x, y, z, t) =−[x+ jy, ν]3,

where ν is the coefficient of T3. Using the commutative diagram

V (Q3)
i3−−−→ Z/3Z

y

y×2

V (Q3(j))
i3−−−→ Z/3Z

we get that the invariants for the second equation may be described, after re
duction modulo 9, as the double of the ones for the first and we get a similar
description of V (Q3)/ Br. This implies the result in this case.

7. Numerical tests

The numerical tests for the number of points with bounded heights have been
conducted using an efficient program of Dan Bernstein [Be]. We considered the
following cubic surfaces

X3
0 +172X3

1 +17× 53X3
2 +532X3

3 = 0(S1)

X3
0 +712X3

1 +71× 53X3
2 +532X3

3 = 0(S2)

X3
0 +52X3

1 +23× 5X3
2 +232X3

3 = 0(S3)

X3
0 +112X3

1 +29× 11X3
2 +292X3

3 = 0(S4)

One can take for the open set U the whole surface V , as there are no rational
points on the exceptional curves. The graphs of nU,H are presented below.
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Let us sum up the description of the theoretical constant. Let V be a diagonal
cubic over Q defined by the equation (4) with q and r distinct prime numbers
such that 3 /| qr and such that the condition (9) is satisfied.
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By proposition 5.1, the constant θH(V ) may be written as the product

ωH(V (AQ)Br)

ωH(V (AQ))
#H1(Q,Pic(V ))

×
3∏

i=1
ζ∗Ki (1)

∏

p|3qr
λ′pωH,p(V (Qp))C1C2C3ωH,R(V (R))

where the first term which will be denoted by CBr may be found in proposition

6.1, the cardinal of H1(Q,Pic(V )) equals 3, the residues of the zeta functions
ζ∗Ki (1) have been computed using Dirichlet’s class number formula and the sys

tem PARI (see also [Co, chapter 4]), λ′p is defined in proposition 5.1, the volumes

at the bad places are given in lemmata 4.4 and 4.5 and C1, C2, C3 have been
described as absolutely convergent Euler products (see remark 5.2). The volume
at the real place may be computed directly using the definition of the Leray form.
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The computations are summarized in the following table:

Surface S1 S2 S3 S4

H 99999 99999 99999 99999

nU,H(H) 3773 1696 2353 2904

CBr 1 1 1/3 1/3

H1(Q,Pic(V )) 3 3 3 3

ζ∗
Q(q1/3)

(1) 1.4680 1.8172 1.1637 1.2284

ζ∗
Q(r1/3)

(1) 1.8172 2.2035 1.1879 1.6792

ζ∗
Q((qr)1/3)

(1) 1.9342 1.9925 1.0865 1.0543

λ′3ωH(V (Q3)) 0.5926 0.5926 0.6667 1.3333

λ′qωH(V (Qq)) 0.9379 0.9808 0.7680 0.9016

λ′rωH(V (Qr)) 0.9808 0.9857 0.9547 0.9644

C1 0.9978 0.9989 0.9973 0.9812

C2 0.9892 0.9892 0.9892 0.9893

C3 0.3103 0.3072 0.3514 0.3158

ωH(V (R)) 0.0148 0.0042 0.0917 0.0389

θH(V ) 0.0382 0.0175 0.0234 0.0300

nU,H(H)/θH(V )H 0.9882 0.9669 1.0077 0.9665

The new program of Bernstein allows to increase the upper bound for the
height of rational points on the cubic surfaces studied by HeathBrown in [HB].
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These cubics are defined by the equations

X3
0 +X3

1 +X3
2 +2X3

3 = 0(S5)

X3
0 +X3

1 +X3
2 +3X3

3 = 0.(S6)

The graphs of nU,H are drawn below.
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In this case, by remark 3.6 and [HB], the constant θH(V ) may be written as the
product

ωH(V (AQ)Br)

ωH(V (AQ))
#H1(Q,Pic(V ))

× ζ∗
Q(q1/3)

(1)3
∏

p|3q
λ′pωH,p(V (Qp))C1C2C3ωH,R(V (R))

where the first factor is 1/3 for these cubics, the second 3, q is the last coefficient
in the equation, the local factors at the bad places are given by

N∗(32) =




2235 if q = 2

2334 if q = 3
N∗(4) = 26− 24 if q = 2

and C1, C2 and C3 are defined exactly as in remark 5.2.
The results are given in the following table:
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Surface S5 S6

H 99999 99999

nU,H(H) 205431 115582

CBr 1/3 1/3

H1(Q,Pic(V )) 3 3

ζ∗
Q(q1/3)

(1) 0.814624 1.017615

λ′3ωH(V (Q3)) 1.333333 0.888889

λ′qωH(V (Qq)) 0.750000 1.000000

C1 0.954038 0.976203

C2 0.989387 0.989279

C3 0.830682 0.306638

ωH(V (R)) 4.921515 4.295619

θH(V ) 2.086108 1.191539

nU,H(H)/θH(V )H 0.984767 0.970032

Therefore, the numerical tests for these cubic surfaces are compatible with an
asymptotic behavior of the form

nU,H(H)∼ θH(V )H when H→ +∞.
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