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Introductory Remarks

These notes are based on a series of lectures given at the Tata Institute
of Fundamental Research at Mumbai during the months of november and
december 2007. In fact only Lectures 1–8 have been delivered at that time.
These concern the absolute case. The remaining Lectures deal with Hodge-
theoretic aspects of families of varieties.

The main theme of the notes is the Hodge theoretic motive associated to
various geometric objects. Starting with the topological setting (Lecture 1)
I pass to Hodge theory and mixed Hodge theory on the cohomology of
varieties (Lectures 2–6). Next comes degenerations and the limiting mixed
Hodge structure and the relation to singularities (Lectures 7–9).

Bittner’s theorem plays an important role; the (original) proof is pre-
sented as an appendix to Lecture 2. It also contains some applications of
this theorem, the most important of which is the relation to Chow motives.

The main theme continues by generalizing to the situation of relative
varieties. Here the machinery of mixed Hodge modules come into play. See
Lectures 10–13.

In Lecture 14 I consider an important application to the topology of
singular varieties. To be more specific, the Riemann-Roch formalism inspires
a way to consider Chern classes for singular varieties which can be explained
in the motivic setting using Bittner’s approach. The full functorial meaning
however becomes only apparent using mixed Hodge modules.

As a final remark, I want to point out that the Hodge characteristic
originally appeared in relation with motivic integration and string theory,
a subject that will be explained in Appendix B. The treatment of this Ap-
pendix is much inspired by [Craw] and [Blick].

The lectures were partially meant to popularize certain major parts of
the monograph [P-S]. For this reason, in the lectures I merely explained
and motivated the main results from loc. cit. with only a hint at proofs. To
counterbalance this, all results are amply illustrated by examples, some of
which are useful in themselves. For instance I give a modern treatment of
the Hodge theoretic part of Persson’s thesis [Per] extending his results to
the motivic framework. Also, several new examples are given related to the
motivic nearby and vanishing cycle functors.

I clearly owe a lot to my co-author of [P-S], Joseph Steenbrink. This
is equally true for the motivic interpretation of the nearby cycles; indeed
Lectures 7–9 contain a simplified version of [P-S07]. The short outline
[Sr] containing relevant background for the lectures has also been extremely
useful in preparing the lectures.
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6 INTRODUCTORY REMARKS

Special thanks go to the members and visitors of the Tata Institute who
participated in my lectures. Their pertinent questions and remarks owe a
lot to this presentation.



LECTURE 1

Motives and Topology

1.1. Introduction

Let me first introduce the motivic viewpoint in the topological category.
To make this work, one has to restrict to a certain category of “good”
topological spaces X which include those that are coming from complex
algebraic geometry. More about this a in little while; roughly, one wants
compactly supported cohomology1 to behave nicely. In particular:

i) The Betti numbers bck(X) = dimHk
c (X; Q) are finite;

ii) the Betti numbers are zero for i � 0 so that the topolog-
ical Euler characteristic χctop(X) :=

∑
(−1)kbck(X) is well

defined.
Moreover, there should be a long exact sequence for cohomology with com-
pact cohomology for pairs (X,Y ) of topological spaces where Y ⊂ X is
closed:

· · · → Hk
c (U)→ Hk

c (X)→ Hk
c (Y )→ Hk+1

c (U)→ · · · , U := X−Y . (1)

This last condition is known to be satisfied for locally compact and locally
contractible Hausdorff topological spaces which have a countable basis for
the topology. Call such topological spaces perfect.

So one could take for the category C of topological spaces those that are
perfect and satisfy (i) and (ii) above. Complex algebraic varieties as well as
complex analytic spaces are examples of perfect topological spaces. They
also satisfy (i); the first also satisfies (ii) and for the second one needs the
space to have at most finitely many irreducible components.

The point of (1) is that is implies the scissor relation:

χctop(X) = χctop(U) + χctop(Y ) whenever X,Y ∈ C. (2)

Note that this makes sense: if X is perfect, automatically U is. Hence (1)
can be used. Then condition (i) and (ii) for X and Y are true for U as is
seen by induction using (1).

This can be reformulated as follows. Consider the free group generated
by homeomorphism classes {X} of spaces X ∈ C. Divide out by the equiv-
alence relation generated by the scissor relations: {X} = {U} + {Y }. The
resulting factor group is the group K0(C).

On the target side the character χctop can be refined: take the alternate
sum of the Q-vector spaces Hk

c (X) inside the K-group K0(VectfQ) for the

category VectfQ of finite dimensional Q-vector spaces. By definition this is

1I always take (co)homology with Q-coefficients
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8 1. MOTIVES AND TOPOLOGY

the free group on finite dimensional Q-vector spaces modulo the equivalence
relation generated by

V ∼ U +W ⇐⇒ 0→ U → V →W → 0
is an exact sequence of Q-vector spaces.

The topological Euler characteristic can thus be seen as the composition

χctop : K0(C)→ K0(VectfQ) ∼−→ Z
where the last isomorphism is induced by taking dimQ V .

The word “motivic” relates to everything which respects the scissor re-
lations. Often the motivic point of view allows to make deductions about
Betti numbers.

Examples 1.1.1. (1) Write the complex projective plane P2 as the
disjoint union of the affine plane and the line at infinity which itself
further breaks up into a the affine line and the point at infinity:

P2 = C2 ∪ C ∪ {p} =⇒ χctop(P2) = χctop(C2) + χctop(C) + χctop(p) = 3.

This alone together with the fact that there are no odd Betti-
numbers together with the standard fact that b0 = b4 = 1 implies
that b2 = 1.

(2) Let me consider a smooth degree d curve C in P2. Calculate χctop(C)
by projecting onto P1 from a general point p in the plane. There
are d(d− 1) tangents to C from P each having a simple tangency.
Hence χctop(C)−d(d−1)2 = d(χctop(P1)−d(d−1)) so that χctop(C) =
−d2 + 3d in accord with g(C) = 1

2(d − 1)(d − 2). v Similarly, one
can compute the Betti numbers of a smooth hypersurface S in
Pn of degree d. Let me just explain this for n = 3. Project the
surface onto P2. If the centre is sufficiently general, the tangents
from P form a cone of degree d(d − 1) and again, they will be
simply tangent along a smooth curve C of degree d(d − 1) which
projects isomorphically to a plane curve whose topological Euler
characteristic just has been computed. One then gets χctop(S) =
d(1−4d+6d2) and since S is known to be simply connected b1(S) =
b3(S) = 0 so that b2(S) = d(6− 4d+ d2)− 2.

(3) To see that additivity does not work for the Euler characteristic e,
look at S1 with e(S1) = 0. Remove a point and you get the interval
which is contractible and hence has the same Euler characteristic
as a point. Hence e(S1) 6= e(S1 − p) + e(p).

Suppose now that one restricts to a subcategory D ⊂ C for which the
Hq
c have extra structure, say they all belong to some abelian category A.

Then there is an additive refinement

χctop : K0(D)
χA−−→ K0(A) F−→ K0(VectfQ) ∼−→ Z,

where F is the forgetful map. In good cases this works also multiplicatively.
The idea is to apply this to the category D of complex algebraic varieties
and A the category of Hodge structures. This point of view makes it pos-
sible to extract information about the Hodge theoretic invariants by doing
calculations on simpler locally closed subsets of a given variety, as we shall
see.
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1.2. Pure Hodge Structures

Here are the relevant definitions:

Definition 1.2.1. (1) A pure (rational) Hodge structure of weight k is
a couple (V, {V p,q}p+q=k) where V is a finite dimensional rational
vector space and VC = V⊗QC =

⊕
p+q=k V

p,q with V p,q = V q,p (the
reality constraint). The conjugation is coming from conjugation on
C. The numbers hp,q(V ) := dimV p,q are the Hodge numbers of the
Hodge structure.

(2) A graded pure Hodge structure is a direct sum of Hodge structures,
possibly of different weights.

(3) A morphism of Hodge structures f : V → W is a Q-linear map
which induces fC : VC →WC having the property that it preserves
types, i.e. fC(V p,q) ⊂W p,q for all p and q.

Examples 1.2.2. (1) The standard example of a weight k Hodge struc-
ture is Hk(X) for X a smooth complex projective variety. To
explain this, consider Hk(X)C as the De Rham group of closed
complex valued k-forms modulo exact ones. Each such form has
a decomposition into types: a form of type (p, q) in any coordi-
nate patch with coordinates (z1, . . . , zn) is a linear combination∑
fi1...in · dzi1 ∧ · · · ∧ dzip ∧ dz̄ip+1 ∧ · · · ∧ dz̄in . where fi1...in is a

C∞function. For general complex varieties this type decomposition
does not descend to cohomology, but for Kähler varieties it does.
Since any smooth complex projective variety is a Kähler variety
(use the Fubini-Study metric) this holds for X. The reality con-
straint is obvious. Hence the entire cohomology H(X) =

⊕
Hk(X)

is a graded pure Hodge structure.
(2) If f : X → Y is a morphism between smooth complex projective

varieties the induced map f∗ : Hk(Y ) → Hk(X) is a morphism of
Hodge structures since f induces on forms a map which preserves
the type decomposition because f is holomorphic.

(3) The Hodge structure of Tate type Q(k) is the pair {Q(2πi)k,C =
C−k,−k}. A special case is Q(−1) = H2(P1) = L, the homological
Lefschetz motive.

Various linear algebra constructions can be applied to Hodge structures,
like the direct sum, tensor product and Hom. The first operation is clear.
For the last two assume (V, {V p,q}p+q=k) and (W, {W p,q}p+q=`) then set

[V ⊗W ]p,q =
⊕

a+c=p;b+d=q

V a,b ⊗W c,d

Homp,q(V,W ) = {f : VC →WC | f(V a,b) ⊂W a+p,b+q for all a, b ∈ Z}.

Clearly, V ⊗W has weight k + ` and Hom(V,W ) has weight −k + `. As a
special case the dual V ∗ has weight −k.

Examples 1.2.3. (1) The homology group Hk(X) of a smooth com-
plex projective variety X, as the dual of Hk(X) has a weight (−k)
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Hodge structure and for a morphism of smooth complex varieties
the induced maps in homology are morphisms of Hodge structures.

(2) Q(1) = H2(P2).
(3) The Künneth decomposition Hk(X×Y ) =

⊕
a+b=kH

a(X)⊗Hb(Y )
(remember: we are working with rational coefficients here) for
smooth projective X and Y is an isomorphism of Hodge structures.
This is not entirely trivial and I give a proof in Lecture 4.

It is not hard to show that the above linear algebra constructions imply
that the category of Hodge structures forms an abelian category hs with
tensor-products so that K0(hs) is a ring. One has:

Lemma 1.2.4. The Hodge number polynomial for a graded pure Hodge
structure (V, {V p,q})

P (V ) :=
∑

hp,qupvq ∈ Z[u, v, u−1, v−1]

defines a ring homomorphism from K0(hs)→ Z[u, v, u−1, v−1]

Proof : The map P is easily seen to be well defined and additive. That it
is also multiplicative follows from Example 1.2.3. (3).

�



LECTURE 2

The Hodge Characteristic Makes its Appearance

2.1. The Hodge Characteristic

For a smooth complex projective variety X the Hodge characteristic is
defined by

χHdg(X) :=
∑
k

(−1)k[Hk(X)] ∈ K0(hs). (3)

My aim is to show that this leads to a character from the Grothendieck
group on the category of complex algebraic varieties to K0(hs). But first I
need to study the blow-up diagram

E
j
−→ Z = BlYXyπX0

yπ
Y

i−−→ X,

(4)

where X is smooth projective and Y ⊂ X is a smooth subvariety; the map
i is the inclusion and π : BlYX → X is the blow-up of X along Y ; finally E
is the exceptional divisor included in Z through the inclusion j.

Claim. There is a long exact sequence of Hodge structures, the Mayer-
Vietoris sequence for blow-up diagrams:

0→ Hk(X)
π∗⊕i∗−−−−→ Hk(Z)⊕Hk(Y )

j∗−(π|E)∗)
−−−−−−−→ Hk(E)→ 0. (5)

Figure 1. The mapping cone of f : X → Y

X

Y

Cone(X)

f

f(x)

x
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I shall give a proof of the claim which is adapted to later needs. In this
proof the topological mapping cone plays an important role. It is constructed
as follows. Let f : X → Y be any continuous map. Then Cone(f) is obtained
from the disjoint union X× [0, 1]

∐
Y by collapsing X×{0} to a point (this

gives Cone(X) and identifying a point (x, 1) with f(x) ∈ Y . In other words,
take a Cone(X) and glue any point of the base of onto its image in Y . See
Fig 1.

Example 2.1.1. Note that Cone(X) always contracts to a its vertex, so
if j : Z ↪→ X is an inclusion of a closed set, its cone consists of X with
Z contracted to a point. This topological space is denoted X/Z. One has
Hq(X,Z) = H̃q(X/Z), i.e the reduced cohomology of Y = X/Z defined by
taking the cokernel of a∗Y : Hq(pt) → Hq(Y ). So, and this is important
for what follows, relative cohomology can be viewed as the cohomology of
a topological cone. It will be explained later that this cohomology also
can be realized using a cone construction on the level of complexes. See
Remark 4.2.2. Looking ahead, I want to point out that this will be the
crucial construction making it possible to put mixed Hodge structures on
relative cohomology.

Proof of the Claim. The mapping cone Cone(π) is constructed by gluing the
mapping cone Cone(π|E) to Z along the base E×{1} of Cone(π). Let U the
open set coming from Y × [0, 3

4 [ and V be the set coming from Z tY×]1
4 , 1].

Clearly U retracts to Y , V to Z and U ∩V to E. Moreover U ∪V = Cone(π)
retracts to X. So one can use the usual Mayer-Vietoris sequence.

What remains to be checked “by hand” is that the first map in (5) is
into and the last map is onto. Since both fit into a long exact sequence, it is
sufficient to prove that the first map is into. This in turn is a consequence
of the fact that π∗ : Hk(X) → Hk(Z) is into, or equivalently that π∗ :
Hk(Z)→ Hk(X) is onto which is clear: every k-cycle in X can be moved to
a cycle γ which meets Y transversally and the closure in Z of γ − γ ∩ Y is
cycle whose class maps onto the class of γ. �

Figure 2. Mayer-Vietoris for a blow-up

Z
Y

V

EU∩VU
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Remark 2.1.2. Setting X0 = Y , X01 = E, X1 = Z, X∅ = X and d0,{01} =
πX0 , d1,{0,1} = j, d∅,0 = i, d∅,1 = π one obtains a 2-cubical variety X•. It
gives an augmented 1-simplicial variety whose geometric realization is just
the natural map Cone(π)→ X. This will be explained in Lecture 5.

First I recall the notion K0(C) from Lecture 1, where C was some suitable
category of topological spaces. For C = Var this formally becomes:

Definition 2.1.3. Let Var be the category of complex algebraic varieties.
Define K0(Var) to be the quotient ring Z[Var]/J of finite formal sums∑
nV {V }, nV ∈ Z of isomorphism classes {V } of varieties V modulo the

ideal J generated by{X}−{Y }−{X−Y } for any closed subvariety Y ⊂ X.
This means that in K0(Var) the scissor-relations [X] = [Y ] + [X − Y ] hold.
Here [X] denotes the class of {X} in K0(Var).

Next I shall prove:

Theorem 2.1.4. There is a unique homomorphism of rings

χHdg : K0(Var)→ K0(hs)

such that
(1) F ◦χHdg = χtop, where F : K0(hs) → K0(VectfQ) is the forgetful

morphism,
(2) For a smooth and projective X one has χHdg(X) =

∑
(−1)kHk(X).

Here is an “easy proof” of the theorem: Use the fact that by (5) the
Hodge characteristic (3) is compatible with the blow-up relation and then
apply the following theorem:

Theorem 2.1.5 ([Bitt1]). K0(Var) is generated by classes [X] of smooth
projective varieties subject to the following two relations

(1) [∅] = 0.
(2) the blow-up relation [X] − [Y ] = [Z] − [E] where X,Y, Z,E are as

in the blow-up diagram (4).

The proof of this theorem is not hard provided you admit another deep
theorem, the weak factorization theorem [A-K-M-W] which describes how
birational maps can be composed in blowups along smooth centers and their
inverses. This is carried out in the Appendix to this Lecture.

Remark 2.1.6. Bittner’s theorem has an interesting consequence: on the
category of complex algebraic varieties χctop equals the ordinary topological
Euler characteristic e. This is because on compact projective varieties they
are the same. Note that for a smooth but not complete variety X, Poincaré
duality implies that χctop(X) = e(X), but this uses that dimX is even. This
already hints at the non-triviality of this consequence. Note also that as
a corollary, on the category Var the scissor relations are respected by the
ordinary Euler characteristic.

A more elementary proof of this runs as follows. Recall that complex
algebraic varieties admit stratifications that satisfy the two Whitney condi-
tions (see e.g. [P-S, Appendix C]) so that in particular the local topology
near open strata does not change. This implies that each closed stratum
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is a strong deformation retract of a tubular neighbourhood. In particu-
lar, if Y is a closed stratum, there is a Mayer-Vietoris sequence for the
decomposition X = Y ∪ (X − Y ) so that e(X) = e(Y ) + e(X − Y ). If
X = ∪D∈SD is a Whitney stratification in smooth strata, for each stratum
one has e(D) = χctop(D). Let Y be a stratum of minimal dimension (and
hence closed). By induction on the number of strata, one may assume that
e(X − Y ) = χctop(X − Y ). Hence e(X) = χctop(Y ) + χctop(X − Y ) = χctop(X)
by additivity for χctop.

Another, similar approach uses the stratification of varieties into smooth
and singular loci and resolution of singularities to reduce to smooth varieties.
See the appendix of [K-P] where this is explained in detail.

Examples 2.1.7. (1) Let E → Y be a Pk-bundle over Y , a projective
variety. Since E is locally trivial in the Zariski topology, the scissor relations
imply

[E] = [Y ] · [Pk] = [Y ] · (1 + L + · · ·Lk), L = A1 (6)
where A1 is the affine line, the geometric incarnation of the Lefschetz motive.

(2) Using the preceding, for a blow up BlYX where codimY X = c one gets

[BlYX]− [X] = [Y ] · ([Pc−1]− 1). (7)

In the following lectures a proof of Theorem 2.1.4 is sketched based on
the existence of a functorial mixed Hodge structure on the cohomology of
complex algebraic varieties. For the moment I would like to draw atten-
tion to the following results, which uses that cohomology groups of smooth
projective varieties have weights ≥ 0:

Corollary 2.1.8. The Hodge number polynomial

PHdg := P ◦χHdg : K0(Var)→ Z[u, v] (8)

is a morphism of rings.

The existence of such a polynomial does not say anything about the
actual values of the coefficients in front of upvq. It will be shown that these
can be calculated with the help of mixed Hodge theory.

2.2. Mixed Hodge Theory

Before giving the definition let me rephrase the concept of a Hodge
structure in terms of filtrations rather than decompositions. This goes as
follows. Let (H, {Hp,q}p+q=k) be a Hodge structure of weight k. Put F p =⊕

p′≥pH
p′,q′ . Then one verifies that F p⊕F k−p+1 = HC. Conversely, given a

decreasing filtration with this property one gets a Hodge structure of weight
k by putting Hp,q = F p ∩F q. The filtration F is called the Hodge filtration.

Now the definition of a mixed Hodge structure can be stated:

Definition 2.2.1. (1) A mixed Hodge structure is a triple (H,W,F )
where W is an increasing filtration on H, the weight filtration and
F a decreasing filtration on HC, the Hodge filtration, such that F
induces a pure Hodge structure of weight k on GrWk := Wk/Wk−1.

(2) Morphisms of mixed Hodge structure are Q-linear maps preserving
weight and Hodge filtrations.
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(3) The Hodge numbers are hp,q(H) = dimC GrpF GrW
C

p+qHC whereWC :=
W ⊗Q C.

One word of explanation: if there are two (decreasing) filtrations F,G
on the same vector space V , one of these induces a filtration on the gradeds
of the other as follows. The natural maps Gk ∩ F p/Gk ∩ F p+1 → F p ∩
Gk/F p+1 → GrpF = F p/F p+1 are injective and hence if one puts Gk(GrpF ) =
Gk ∩F p/Gk ∩F p+1 this gives a filtration on GrpF . Similar remarks apply to
the situation where one of the filtration is increasing, which is the situation
of the above definition.

The same linear algebra constructions as for the pure case apply: one has
internal direct sums, tensor products and “Homs”. This makes the category
of mixed Hodge structures abelian. The only non-trivial point here is the fact
that, given a morphism f : H → H ′ of mixed Hodge structures, the natural
morphism H/Ker(f)→ Im(f) is an isomorphism. This fact is equivalent to
strictness which I prove now:

Lemma 2.2.2. A morphism f : H → H ′ of mixed Hodge structures is
strict for both the weight and Hodge filtrations, i.e. f [Wk(H)] = Wk(H ′) ∩
Im(f)and similarly for the F -filtration.

Here I only give a sketch of proof. See also [C-K-S86, Theorem 2.13].
First note that for a pure Hodge structure this poses no problem because

the Hodge decomposition is completely canonically associated to the Hodge
filtration. For the mixed situation there is something similar, the Deligne
decomposition

HC =
⊕
p,q∈Z

Ip,q, Ip,q = F p ∩WC
p+q ∩ (F q ∩WC

p+q +
∑
j≥2

F q−j+1 ∩WC
p+q−j)

with the property that WC
k =

⊕
p+q≤k I

p,q and F p =
⊕

p′≥p I
p′,q′ . Such a

splitting is completely canonical and hence is preserved under morphisms;
as in the pure case this guarantees strictness. �

Remark 2.2.3. Projection gives an isomorphism of complex vector spaces
Ip,q

∼−→ GrpF GrW
C

p+qHC so that dimC I
p,q = hp,q(H).

A first important consequence of strictness is the following test for iso-
morphisms of mixed Hodge structures:

Corollary 2.2.4. A morphism of mixed Hodge structures is an isomorphism
if and only if it is a vector space isomorphism.

The K-group associated to the abelian category of mixed Hodge struc-
tures is just K0(hs) since in K0 there is the relation [H] =

∑
[GrWk H]. This

suggests to define χHdg(X) using a mixed Hodge structure on Hk
c (X). That

this is indeed possible is a consequence of the following central result:

Theorem 2.2.5 ([Del71, Del74]). Let U be a complex algebraic variety and
V ⊂ U a closed subvariety (V may be empty). Then Hk(U, V ) has a mixed
Hodge structure which is functorial in the sense that if f : (U, V )→ (U ′, V ′)
is a morphism of pairs, the induced morphism Hk(V ′, U ′)→ Hk(U, V ) is a
morphism of Hodge structures. Moreover
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(1) For U smooth projective, the mixed Hodge structure on Hk(U) is
the classical one, i.e. the pure weight k Hodge structure coming
from the decomposition of forms into types;

(2) If U is smooth with smooth compactification X, then Hk(U) has
weights ≥ k and Im[Hk(X)→ Hk(U)] = WkH

k(U);
(3) If U is projective Hk(U) has weights ≤ k and in the interval [2k−

2n, k] if k ≥ n;
(4) If U, V are smooth then the weights of Hk(U, V ) are in the range

[k − 1, 2k]; if U, V are complete, then the weights of Hk(U, V ) are
in the range [0, k];

(5) Duality: cap product with the orientation class of U in Borel-Moore
homology induces a morphism of mixed Hodge structures

Hk(U)(n)→ HBM
2n−k(U) = [H2n−k

c (U)]∗ (n = dimU)

which is an isomorphism if U is smooth.

Since compactly supported cohomology on U can be calculated with
the help of a compactification X of U as relative cohomology: Hk

c (U) =
Hk(X,T ) where T = X − U , for the weights one has:

Corollary 2.2.6. Hk
c (U) has weights in the interval [0, k].

The Hodge characteristic can now be defined by setting:

χHdg(U) =
∑
k

[GrWk Hk
c (U)] ∈ K0(hs),

and turns out to respect the scissor relations and to be multiplicative.
The fact that the scissor relations are respected uses the long exact se-

quence for pairs. That this long exact sequence is compatible with the mixed
Hodge structures follows from the functoriality statement in Theorem 2.2.5;
the trick here is to describe the connecting homomorphism as coming from a
morphism of complexes so that functoriality also applies to this morphism.
How this is done will be explained in Lecture 6. In that Lecture also the
multiplicative structure will be treated. This will be preceded by a rough
sketch of the proof of Theorem 2.2.5; first, in Lectures 4-5 this is done for
pairs (U, V ) where V is empty, and then the general case is explained after
having given the cone construction in Lecture 6.



Appendix A: A Proof of Bittner’s Theorem and
Some Applications

A-1. Statement of the Weak Factorization Theorem

This theorem is actually is true over any field k of characteristic zero
(not necessarily algebraically closed).

Theorem (Weak Factorization [A-K-M-W]). Let φ : X1 99K X2 be a
birational map between complete smooth connected varieties over k, let U ⊂
X1 be an open set where φ is an isomorphism. Then φ can be factored into
a sequence of blow-ups and blow-downs with smooth centers disjoint from U ,
i.e. there exists a sequence of birational maps

X1 = V0
φ1
99K V1

φ2
99K · · ·

φi
99K Vi

φi+1
99K Vi+1

φi+2
99K · · ·

φl−1
99K Vl−1

φl
99K Vl = X2

where φ = φl◦φl−1◦ · · ·φ2◦φ1. Moreover, each factor φi is an isomorphism
over U , and φi : Vi → Vi+1 or φ−1

i : Vi+1 → Vi is a morphism obtained by
blowing up a smooth center disjoint from U (here U is identified with an
open subset of Vi).

Moreover, there is an index i0 such that for all i ≤ i0 the map Vi 99K X1

is defined everywhere and projective, and for all i ≥ i0 the map Vi 99K X2 is
defined everywhere and projective.

If X1−U (respectively, X2−U) is a simple normal crossings divisor, then
the factorization can be chosen such that the inverse images of this divisor
under Vi → X1 (respectively, Vi → X2) are also simple normal crossing
divisors, and the centers of blowing up have normal crossings with these
divisors.

A-2. A Proof of Bittner’s Theorem

Step 1: reduction to smooth varieties – modulo the scissor relations.
Introduce the group K0(Var)sm, by definition the free abelian group on

isomorphism classes of smooth varieties modulo the scissor relations with
respect to smooth closed subvarieties Y of smooth varieties X. It is a com-
mutative ring with respect to the product of varieties. The class of X in
K0(Var)sm will be denoted by [X]sm

Claim. The ring homomorphism K0(Var)sm −→ K0(Var), [X]sm 7→ [X] is
an isomorphism.

The group K0(Var) can in fact be generated by classes of smooth quasi-
projective varieties subject to the scissor relations (restricted to smooth
varieties).

17
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Proof : Construct an inverse as follows For any variety X stratify X =⊔
N∈S N in such a way that all N ∈ S are smooth and equidimensional,

and such that the closure of N is a union of strata. Consider the expression∑
N∈S [N ]sm in K0(Var)sm. If X is itself smooth, then

∑
N∈S [N ]sm equals

[X]sm as can be seen by induction on the number of elements of S: let N ∈ S
be an element of minimal dimension, then [X]sm = [X −N ]sm + [N ]sm, and
by the induction hypothesis [X −N ]sm =

∑
N ′∈I−{N}[N

′]sm.
Two stratifications S and S′ of X have a common refinement T . The

above argument shows that [N ]sm =
∑

[L]sm where L runs over the strata
from T which make up N . Hence

∑
L∈T [L]sm is equal to

∑
N∈S [N ]sm and, in

the same way, it equals
∑

N∈S′ [N ]sm, therefore
∑

N∈S [N ]sm is independent
of the choice of the stratification and one can set

e(X) :=
∑
N∈S

[N ]sm.

If Y ⊂ X is a closed subvariety there is a stratification for which Y is a union
of strata. Hence e(X) = e(X−Y )+e(Y ), i.e. e respects the scissor relations
and hence factors through K0(Var) and the induced map on K0(Var) is an
inverse for K0(Var)sm −→ K0(Var).

Decomposing into connected components and noting that instead of cut-
ting a smooth closed subvariety Y out of a smooth connected variety X one
can also take out the connected components of Y one by one, shows that
one can restrict to smooth connected varieties. Stratifying by smooth quasi-
projective varieties shows that one can even restrict to smooth (connected)
quasi-projective varieties. �

Step 2: passing to the blow-up relations.
Introduce the auxiliary group K0(Var)bl, the free abelian group on iso-

morphism classes [X]bl of smooth complete varieties X modulo the blow-up
relations for blow-ups of smooth complete varieties X along smooth closed
subvarieties Y and the relation [∅]bl = 0 (then [X t Y ]bl = [X]bl + [Y ]bl,
which can be seen by blowing up along Y ).

Decomposing into connected components and noting that the blow-up
along a disjoint union is the successive blow-up along the connected com-
ponents one sees that this can also be described as the free abelian group
on isomorphism classes [X]bl of connected smooth complete varieties with
imposed relations [∅]bl = 0 and [BlYX]bl − [E]bl = [X]bl − [Y ]bl, where
Y ⊂ X is a connected closed smooth subvariety.

Also K0(Var)bl carries a commutative ring structure induced by the
product of varieties.

Claim. The ring homomorphism K0(Var)bl −→ K0(Var) which sends [X]bl

to [X] is an isomorphism.

Proof : Again one constructs an inverse. Using the Claim of Step 1, one
may restrict to smooth connected varieties. Let X be a smooth connected
variety, let X ⊂ X be a smooth completion with D = X−X a simple normal
crossing divisor. Let D(l) be the normalization of the l-fold intersections of
D, whereD(0) is understood to beX (soD(l) is the disjoint union of the l-fold
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intersections of the irreducible components of D). Consider the expression∑
(−1)l[D(l)]bl in K0(Var)bl.

This expression is independent of the choice of the completion: Let
X ⊂ X ′ and X ⊂ X be two smooth completions of X with X −X = D and
X
′−X = D′ simple normal crossings divisors. Due to the weak factorization

theorem the birational map X
′
99K X can be factored into a sequence of

blow-ups and blow-downs with smooth centers disjoint from X which have
normal crossings with the complement of X. Hence we may assume that
X
′ = BlZ(X) with Z ⊂ D smooth and connected such that Z has normal

crossings with D.
Let D0 be the irreducible component of D containing Z and let {Di |

i ∈ I} be the remaining irreducible components. Then the irreducible com-
ponents of D′ are D′i = BlZ∩Di(Di) (where i ∈ {0} ∪ I) and the exceptional
divisor E of the blow-up. ForK ⊂ {0}∪I we putDK :=

⋂
j∈K Dj (whereD∅

is understood to be X), D′K :=
⋂
j∈K D

′
j , ZK := Z∩DK and EK := E∩D′K .

As Z has normal crossings with D we get D′K = BlZK (DK) with exceptional
divisor EK , hence

[D′K ]bl − [EK ]bl = [DK ]bl − [ZK ]bl.

Denote by E(l) the preimage of E in D′(l) and by Z(l) the preimage of Z in
D(l). Then for l = 0, . . . , n the preceding identity yields

[D′(l)]bl =
∑
|K|=l

[D′K ]bl +
∑
|K|=l−1

[EK ]bl

=
∑
|K|=l

([DK ]bl + [EK ]bl − [ZK ]bl) +
∑
|K|=l−1

[EK ]bl

= [D(l)]bl + [E(l)]bl − [Z(l)]bl + [E(l−1)]bl,

(for l = 0 the last term is zero). As Z ⊂ D0 we get Z{0}∪K = ZK for K ⊂ I,
thus

∑
(−1)l[Z(l)]bl = 0. Taking the alternating sum hence yields∑

(−1)l[D′(l)]bl =
∑

(−1)l[D(l)]bl.

Therefore one can put

e(X) :=
∑

(−1)l[D(l)]bl.

One has to check that e(X) = e(X − Y ) + e(Y ) for Y ⊂ X a connected
closed smooth subvariety of a connected smooth variety X. Choose X ⊃ X
smooth and complete such that D = X − X is a simple normal crossings
divisor and such that the closure Y of Y in X is also smooth and has
normal crossings with D (one can take first a smooth completion of X with
boundary a simple normal crossing divisor and then an embedded resolution
of the closure of Y compatible with this divisor – compare e.g. [A-K-M-W,
Section 1.2]). In particular D ∩ Y is a simple normal crossings divisor in
Y . Denote the irreducible components of D by {Di}i∈I , for K ⊂ I let
DK be defined as above, let YK := Y ∩ DK and Y (l) =

⊔
|K|=l YK . Then

e(Y ) =
∑

(−1)l[Y (l)]bl.



20 APPENDIX A: A PROOF OF BITTNER’S THEOREM AND SOME APPLICATIONS

Let X̃ := BlY (X) and denote the exceptional divisor by E. Denote the
proper transform of Di by D̃i. The complement D̃ of X − Y in X̃ is the
simple normal crossings divisor

⋃
D̃i ∪ E. If EK := E ∩ D̃K then as above

D̃K is the blow-up of DK along YK with exceptional divisor EK and hence

[D̃K ]bl − [EK ]bl = [DK ]bl − [YK ]bl.

Thus

[D̃(l)]bl =
∑
|K|=l

[D̃K ]bl +
∑
|K|=l−1

[EK ]bl

=
∑
|K|=l

([DK ]bl − [YK ]bl + [EK ]bl) +
∑
|K|=l−1

[EK ]bl

= [D(l)]bl − [Y (l)]bl + [E(l)]bl + [E(l−1)]bl,

where E(l) denotes the preimage of E in D̃(l). Taking the alternating sum
yields e(X − Y ) = e(X) − e(Y ). Hence e induces a morphism K0(Var) →
K0(Var)bl which clearly is an inverse for the mapping K0(Var)bl → K0(Var).
Using the fact that we can restrict to quasi-projective generators in the
smooth presentation given in Step 1, and that a connected smooth quasi-
projective variety has a smooth projective simple normal crossings comple-
tion one sees that one can restrict to projective generators. �

A-3. Applications

Duality. There are various reasons to enlarge the Grothendieck ring
K0(Var) by inverting the Lefschetz motive L. The new ring is called the
naive motivic ring

M := K0(Var)[L−1]. (9)
There is a duality involution D on M characterized by the property

D[X] = L−dX [X], X smooth , dX = dimX.

Indeed, using Bittner’s theorem, one needs to show that this operator re-
spects the blow-up relation. So let Z = BlY (X) be the blow up and E the
exceptional divisor. Since E is a projective bundle over Y it is locally trivial
in the Zariski-topology and hence [E] = [Y ] · [Pc−1] = [Y ] ·(1+L+ · · ·+Lc−1)
with c the codimension of Y in X, the blow-up relation can be rewritten as

[Z]− L · [E] = [X]− Lc · [Y ]. (10)

and hence D[Z]− D[E] = D[X]− D[Y ]. This proves the claim.

Chow Motives. The idea is to enlarge the category of smooth complex
projective varieties to include projectors, i.e. idempotent correspondences.
Recall that a correspondence from X to Y of degree s is an element of

Corrs(X,Y ) := ChowdX+s(X × Y )⊗Q

where dX = dimX and Chowk(X) denotes the Chow group of cycles of codi-
mension k on X. Correspondences can be composed (using the morphisms
induced by the various projections): if f ∈ Corrs(X,Y ), g ∈ Corrt(Y, Z),
then g◦f ∈ Corrs+t(X,Z). More precisely, if one denotes the projection
from X × Y × Z to X × Z by pXZ , then g◦f = prXZ({(f × Z) ∩ (X × g)},
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where ∩ is the intersection product of algebraic cycle classes on X ×Y ×Z.
One speaks of a projector p ∈ Corr0(X,X) if p◦p = p. A pair (X, p) con-
sisting of a smooth variety and a projector is called an effective motive. A
morphism (X, p) → (Y, q) is a correspondence which is of the form q◦f ◦p
where f ∈ Corr0(X,Y ). Pure motives are triples (X, p, n) where (X, p) is
effective and n ∈ Z. A morphism (X, p, n) → (Y, q,m) is a correspondence
of the form q◦f ◦p with f ∈ Corrm−n(X,Y ). The category of pure motives is
denoted Mot.

A correspondence f ∈ Corrr(X,Y ) operates on cohomology:

f∗ : Hq(X)→ Hq+r(Y ), x 7→ f∗(x) := (prY )∗{f∩(prX)∗(x)} , x ∈ Hq(X).

Here pX and pY are the obvious projections from X×Y onto X, respectively
Y .

Any smooth projective variety X defines an effective motive

h(X) := (X, id).

One can extend this functorially by letting a morphisms f : X → Y corre-
spond to the transpose of the graph TΓf ∈ Corr0(Y,X): the functor goes
from the opposite of the category of varieties to Grothendieck motives.

There are other motives that play a crucial role: the Lefschetz motive
L := (point, id,−1) and the Tate motive T = (point, id, 1).

The disjoint sum of varieties induces a direct sum on the level of motives:
set h(X) ⊕ h(Y ) = h(X

∐
Y ). More generally, if M = (X, p,m), N =

(X ′, p′,m′) with m ≤ m′ one first rewrites

M ⊗ Lm
′−m = (X × Pm

′−m, q,m′) = (Y, q,m′)

for a suitable projector q and then

M ⊕N := (Y
∐

X ′, q
∐

p′,m′).

In any case, h(P1) = 1⊕ L as motives. There is also a tensor product:

(X, p,m)⊗ (X ′, p′,m′) := (X ×X ′, p× p′,m+m′).

With this product, L⊗ T = 1, i.e. T = L−1.

Example A-3.1. Manin [Manin] has shown that for a projective bundle
E = P(V ) of a vector bundle over Y of rank k one has:

h(E) =
k−1∑
j=0

h(Y )⊗ Lj (11)

This can be used to calculate the motive of a blow-up Z = BlYX of X in
the codimension c subvariety Y from the split exact sequence (loc. cit.)

0→ h(Y )⊗ Lc → h(X)⊕ (h(E)⊗ L)→ h(Z)→ 0.

Indeed, this sequence implies that in the Grothendieck ring K0(Mot) one
has [h(Y )⊗ Lc] + [h(Z)] = [h(X)] + [h(E)⊗ L] and then (11) shows

[h(Z)]− [h(E)] = [h(X)]− [h(Y )] (12)

in accordance with (10).

One has the following comparison between K0(Var) and K0(Mot):
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Theorem A-3.2. The map X → h(X) induces a ring homomorphism

χcmot :M = K0(Var)[L]−1 → K0(Mot).

It sends the class of the affine line A to the motive L = h(P1)− 1.

Proof : This follows directly from (12). �

The Grothendieck group of pairs. For a good duality theory com-
patible with Grothendieck motives one needs the Grothendieck group K̃0(Var)
for pairs (X,Y ) of varieties where Y ⊂ X is a closed subvariety. It is the free
group on those pairs modulo certain relations generated by excision, Gysin
maps and exactness as explained below. The isomorphism class of (X,Y )
in this ring is denoted {(X,Y )}. The class of (X,∅) is also denoted {X}.

• Excision: If f : X ′ → X is proper and Y ⊂ X is a closed subvariety
such that f induces an isomorphism X ′ − f−1Y ∼= X − Y , then
{(X ′, f−1Y )} = (X,Y ).
• Gysin maps: If X is smooth and connected and D ⊂ X is a smooth

divisor, then {X −D} = {X} − {(P1 ×D, {∞} ×D)}.
• Exactness: If X ⊃ Y ⊃ Z, Y closed in X and Z closed in Y , then
{(X,Z)} = {(X,Y )}+ {(Y,Z)}.

Excision implies that {(X,Y )} only depends on the isomorphism class of the
pair (X,Y ). Using exactness one gets {(X,Y )} = {X}−{Y }. Exactness and
excision yield {(X t Y )} = {X t Y, Y }+ {Y } = {X}+ {Y } and {(∅)} = 0.
Set

χc(X) := {(W,W −X)}, X ⊂W, X open and W complete.

The excision property implies that {(W,W − X)} is independent of the
choice of the open embedding. For Y ⊂ X closed we have

χc(X) = {(W,W −X)} = {(W,Y ∪ (W −X))}+
+ {(Y ∪ (W −X),W −X)} = χc(X − Y ) + χc(Y ),

where Y denotes the closure of Y in W . Hence χc factors through K0(Var),
i.e. there is a group homomorphism

χc : K0(Var)→ K̃0(Var), [X] 7→ {X}.

One can show that this extends to a ring homomorphism where K̃0(Var)
gets a ring structure from

{(X,Y )} · {(X ′, Y ′)} := {(X ×X ′, X × Y ′ ∪ Y ×X ′)}.
One has:

Theorem A-3.3 ([Bitt1, Theorem 4.2]). The ring homomorphism χc is
an isomorphism.

The proof is of the same level of difficulty as Bittner’s main theorem
2.1.5. The main point consists in showing that an inverse of χc can be
explicitly given in terms of a smooth simple normal completion (X,D) of
a given smooth variety X: assign to {X} the element

∑
(−L)l[D(l)] where

D(l) is the disjoint union of l-fold intersections of the irreducible components
of D.
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Note that one can also define

χmot : K̃0(Var)→ K0(Mot), {(X,Y )} 7→ h(X)− h(Y ).

If one sets M̃ := K̃0(Var)[L]−1, then χc extends to an isomorphism

χc :M→ M̃.

The dual motive for h(X) is

[h(X)]∗ := L−dX ⊗ [h(X)], dX = dimX.

Then the duality operator D extends to M̃ and it exchanges the two motivic
characters:

[χmot{X}]∗ = L−dX ⊗ χcmot[X] = χcmotD([X]).

The obvious diagram
M χcmot))TTTTTT

χc

��
K0(Mot)

M̃

χmot 55kkkkkk

is not commutative. This is shown by the following simple example: let Y
be a smooth projective variety and let X be an affine cone on Y . Then,
since X is contractible we have χmot(X) = 1, but since X − {vertex v}=
Y ×(A−v), we have χcmot(X)−χmot◦χ

c(X) = χcmot(X)−1 = χcmot(Y )(L−1).
This proves in fact that the difference of the two motives belongs to the ideal
generated by 1− L ∈ K0Mot(k).

Lifting the Hodge characteristic to Chow motives. For motives
cohomology can be defined as follows:

Hk(M) := Im(p∗ : Hk+2n(X)→ Hk+2n(X)), M = (X, p, n).

Here p∗ denotes the induced action of the correspondence on cohomology.
This action preserves the Hodge structures. Note however that Hk(M) is
pure of weight k + 2n reflecting the weight n of the motive M = (X, p, n).
Nevertheless, one clearly has:

Theorem. The Hodge characteristic “lifts to motives”, i.e. one has a com-
mutative diagram

M

χHdg ##G
GG

GG
GG

GG
χcmot// K0(Mot)

χHdg;motxxppppppppppp

K0(hs)

where for a motive M one sets χHdg;mot(M) =
∑

(−1)kHk(M).

There is strong refinement of this result due to Gillet and Soulé and,
independently, to Guillen and Navarro Aznar. 1 First of all one needs to
replace the category Var by ZVar whose objects are the same but where now

1To explain this result I freely make use of some concepts and results that will be
treated in later chapters.



24 APPENDIX A: A PROOF OF BITTNER’S THEOREM AND SOME APPLICATIONS

a morphism X → Y is a finite formal sum
∑
nff , nf ∈ Z of morphisms

f : X → Y . Chain complexes in this new category exist:

· · ·Cn → Cn−1 → · · · → C0, Cj ∈ Var

and form an abelian category C(ZVar). These arise naturally if you consider
simplicial varieties (see Lecture 5)

X• =
{
X0 X1 X2 X3 · · ·

}
�d0

�
d0

� d1

�
d0

� d1

� d2

Indeed its associated simple complex

sX• :=
{
X0

d0←−− X1
d0−d1←−−−− X2

d0−d1+d2←−−−−−−− X3 · · ·
}

belongs to this category C(ZVar). The functor X 7→ h(X) which maps
X ∈ Var to the motive (X, idX) now extends to a functor

C(h) : C(ZVar)→ HMot,

where for any abelian category A one lets H(A) be the homotopy category
of cochain complexes in A.

In Lecture 5 a mixed Hodge structure will be put on the cohomology
of any variety U . A basic step is Theorem 5.2.6 which asserts that for
any sufficiently nice compactification X of U the pair (X,D := X − U)
admits a so called cubical hyperresolution whose associated augmented semi-
simplicial variety is denoted

ε : (X•, D•)→ (X,D).

Here we don’t need to know the precise definition. It is sufficient to know
that each of the Xi are smooth varieties and the Di ⊂ Xi are normal crossing
divisors and that together they form a simplicial object in the category of
such pairs. One associates to the augmentation ε the inclusion of semi-
simplicial varieties

i• : D• → X•

which induces a map of complexes si• : sD• → sX• and yields the main new
invariant from [G-S], the weight complex

W •(U) :=
[
Cone•−1(C(h)si•)

]
∈ H(Mot).

There is a spectral sequence converging2 to compactly supported cohomology
for U :

Ej,n2 = Hj (• 7→ Hn(W •(U)) =⇒ Hj+n(X,D) = Hj+n
c (U) (13)

Let me explain the left hand side. The individual varieties Vk := Dk tXk−1

which occur in the cone complex assemble into a chain complex. Cohomology
behaving contravariantly, this then gives the cochain complex

· · · → Hn(Vk)→ Hn(Vk+1)→ · · ·

and Ej,n2 is the j-th cohomology of this cochain complex.
The result alluded to is:

2It degenerates at E2 for Q-coefficients
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Theorem A-3.4 ([G-S, G-N]). The weight complex W (U) up to canonical
isomorphism depends only on the original variety U . The construction is
categorical in the sense that

• a proper map f : X → Y induces f∗ : W (Y ) → W (X) and com-
posable proper maps f, g satisfy (g◦f)∗ = f∗◦g∗;
• open immersions i : U ↪→ X induce i∗ : W (U) → W (X); compos-

able open immersion behave likewise functorial;
It obeys the product rule W (X × Y ) = W (X)⊗W (Y ) and it has a motivic
property: If i : Y ↪→ X is a closed immersion with complement j : U =
X − Y ↪→ X one has a distinguished triangle (see § 4.1)

W (U)
i∗−→ W (X)

j∗

−−→ W (U)→ [1].

As an application, if Γ : Mot→ A is any covariant functor to an abelian
category A, for any variety X one gets a complex Γ(W (X)) in A for which
one calculates the cohomology H iΓ(W (X)). The theorem implies for in-
stance that this assigment is contravariantly functorial in X and one has
long exact sequences associated to pairs (X,Y ) where Y ⊂ X is a closed
subvariety. This can first of all be used to put a weight filtration on inte-
gral cohomology with compact support which induces the one on rational
cohomology: just take Γ = Hn and apply (13). In [G-S] it is shown, using
the product rule, that the torsion group H3(S × S′) where S is a (singular)
Kummer surface (i.e. the quotient of an abelian surface by the standard
involution) and S′ an Enriques surface admits a weight filtration with at
least 2 non-trivial steps so that this gives new motivic invariants which do
not follow from the mixed Hodge structure!

Furthermore, the motivic property can be used to prove directly without
any Hodge theory that there exists a Hodge characteristic which lifts to
motives. I refer to [G-S, G-N] for details.





LECTURE 3

The Hodge Characteristic, Examples

Assuming that the Hodge characteristic is additive and multiplicative I
shall now illustrate how in some cases the Hodge structures on the graded
parts of the weight filtration can be found.

Example 1: A punctured curve C = C̄ − Σ where C̄ is a smooth projec-
tive curve and Σ is a set of M points. Additivity implies that χHdg(C) =
χHdg(C̄)−N · 1. Let Vg = H1(C̄) be the usual weight one Hodge structure.
it follows that χHodge(C) = (1 − M) · 1 − Vg + L. Topological consider-
ations give that b0(C) = bc2(C) = 1. Also H2(C) = 0 since C is affine.
Then Theorem 2.2.5 gives that H1(C)(1) = [H1

c (C)]∗ and W1H
1(C) =

H1(C̄) = Vg. Again using restriction on the weights given by Theorem 2.2.5
and Corr. 2.2.6 one calculates the graded Hodge structure GrW H∗(C) and
GrW H∗c (C): From the table one finds χHdg(C) = (1−M) · 1−V ∗g (−1) + L.

Table 3.1. Cohomology of the punctured curve C

H0 H1 H2 H2
c H1

c H0
c

weight 0 1 0 0 0 M − 1 0
weight 1 0 Vg 0 0 V ∗g (−1) 0
weight 2 0 (M − 1)L 0 L 0 0

That V ∗g (−1) = Vg follows from the existence of a non-degenerate skew pair-
ing on Vg, the cup-product pairing. It gives a polarization for the Hodge
structure. See Remark 12.1.2. Note also that the analogous character for
ordinary cohomology reads 1− Vg + (M − 1) · L which is different from the
Hodge characteristic!

Example 2: U is the complement inside P2 of d lines in general position,
meaning that at most two lines pass through a point. The scissor relations
give

χHdg(U) = g − (d− 1)L + L2,

where g = 1 + d(d−3)
2 , the genus of a smoothing of the d lines.

To find the actual Hodge structures, one needs some topological results:
since U is affine of dimension 2, there is no cohomology beyond degree 2.
Moreover, the fundamental group of U is known to be the free abelian group
on (d − 1) generators and so b1(U) = b3c(U) = (d − 1). Then one finds for
GrW H(U):
Example 3: D a singular curve with N double points forming Σ ⊂ D. Con-
sider the normalization n : D̃ → D, a curve of genus g with H1(D̃) = Vg, a
Hodge structure of weight one. Since n−1Σ consists of 2N points, one has
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Table 3.2. Cohomology of the complement of d lines

H0 H1 H2 H2
c H3

c H4
c

0 1 0 0 g 0
2 0 (d− 1)L 0 0 (d− 1)L 0
4 0 0 gL2 0 0 L2

χHdg(C)−N · 1 = χHdg(D̃)− 2N · 1 and hence χHdg(D) = (1−N)−Vg + L.

Table 3.3. Cohomology of the singular curve D

H0 H1 H2

weight 0 1 N 0
weight 1 0 Vg 0
weight 2 0 0 L

Example 4: Consider a singular connected surfaceX consisting of k smooth
surfaces X1, . . . , Xk meeting transversally in ` smooth curves C1, . . . , C`. Fi-
nally suppose that X has m ordinary triple points. The intersection config-
uration is described by a dual graph Γ, a triangulated real surface. For any
smooth projective variety Y write

VgY = H1(Y ), gY = h1,0(Y ),

a Hodge structure of weight 1 with Hodge numbers h0,1 = h0,1 = gY , and

WpY ,qY (Y ) = H2(Y ), pY = h2,0(Y ), q = h1,1(Y ),

a Hodge structure of weight 2 with Hodge numbers h2,0 = h0,2 = pY , h1,1 =
qY . By the Lefschetz decomposition, which is recalled in a later Lecture (see
(43)), one has H3 = LVgY and hence

χHdg(X) =
∑
i

χHdg(Xi)−
∑
j

χHdg(Cj) +m · 1

= χtop(Γ)−
(∑

i

VgXi (Xi)(1 + L) +
∑
j

VgCj (Cj)
)

+
∑
i

WpXi ,qXi
(Xi) + kL2

Example 5: Let Sd ⊂ P3 be a smooth surface of degree d. The Betti-
numbers have been calculated earlier (Example 1.1.1 (3)): b1 = b3 = 0 and
b2 = d(6−4d+d2)−2. The Hodge structure H2(Sd) splits into L⊕H2

prim(Sd)
and

h2,0(Sd) = pd :=
(
d− 1

3

)
(14)

h1,1(Sd) = qd :=
1
3
d(2d3 − 6d+ 7). (15)
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Then one has χHdg(Sd) = (1 + L + L2) +Wpd,qd−1(Sd).

Example 6: The singular fibre X̄0 of the family tF + F1F2 = 0 inside
P3 × C where degF = d,degF1 = d1,degF2 = d2. The surfaces F = 0,
D̄1 = {F1 = 0} and D̄2 = {F2 = 0} are supposed to be smooth and the
total space X̄ of the family is supposed to have only ordinary double point
singularities at the M = d1d2d points T̄j of intersection of F = 0 with
D̄1 and D̄2. Blow up P3 × ∆ at these points. The proper transform X
of X̄ is smooth and the new fibre at 0 consists of two components, the
proper transforms D1 of D̄1 and D2, the proper transform of D̄2. These
are isomorphic to hypersurfaces of P3 of degrees d1, d2 respectively blown
up in the Tj . The exceptional P3 meets X in M quadrics Ej . The original
double curve C̄ = {F1 = F2 = 0} stays isomorphic to its proper transform
C, but the point T̄j , originally on the curve C gets replaced by the quadric
Ej which meets the C in a new point Tj , a triple point on the new fibre
X0 = D1 ∪D2 ∪

⋃
j Ej . The new double locus consists of C ∪

⋃
j L

(1)
j ∪L

(2)
j

where L(1)
j and L

(2)
j are two rulings of Ej in which this quadric meets D1

and D2.
Note that there is another possible degeneration obtained by blowing

up the indeterminacy locus F = 0 = F1F2 of the meromorphic function
P3 → ∆ given by F1F2/F which consists of two curves C1 = {F = F1 =
0} and C2 = {F = F2 = 0}. One either first blows up P3 in C1 and
then in the proper transform of C2 or the other way around. This gives a
morphism Bl(P3) → ∆. The resulting degeneration is different: one gets a
two-component degeneration. Depending on the order of blowing up, the
first component is isomorphic to the hypersurface F1 = 0 and the second
component isomorphic to F2 = 0 blown up in d1d2d points, or the other
way around. These meet transversally in a curve isomorphic to C. See
[Per, p. 125] for details. This degeneration is obtained if one blows down
the exceptional quadrics of the first degeneration along either one of the
rulings. This makes the quadrics disappear and only one of the remaining
components is a blown up hypersurface.

Let me calculate the Hodge characteristic in the two cases using the
calculations of Example 5. In the first case one gets

χHdg = 1 + (2M + 1)) · L +M · L2 + V 1
2

(d1d2(d1+d2−4)+1

+Wpd1 ,qd1−1 +Wpd2 ,qd2−1, M = d1d2(d1 + d2).

while for the second case one has
χHdg = 1 + (M + 1) · L + 2L2 + V 1

2
(d1d2(d1+d2−4)+1

+Wpd1 ,qd1−1 +Wpd2 ,qd2−1.

These two characters are completely different!
To find the actual Hodge structures more information is needed which will
be explained later. See § 6.3 and more specifically f Table 6.1.

Example 7: The singular fibre X0 of the family {Q1Q2 + tF4 = 0} ⊂
P3×C, where Q1, Q2 are homogeneous quadric forms with zero locus smooth
quadrics and F4 a quartic form whose zero locus is a smooth surface. The
total space of this family has 16 isolated singularities at {t = Q1 = Q2 =
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F4 = 0} ⊂ P3 and hence one blows up once at each of these points to get
a family p : X → C. The original double curve C = {t = Q1 = Q2 = 0},
a smooth elliptic curve passes through these points pj and after blowing up
the exceptional surface Ej meets the proper transform of C at a new point
qj which becomes a triple point for the fibre S = p−1(0) over the origin.
The surface Ej is a quadric and the two rulings through qj are the two
curves along which the proper transforms of the two quadrics {Q1 = 0} and
{Q2 = 0} meet. So the double locus of S consists of C and 32 exceptional
curves isomorphic to P1 and there are 16 triple points qj . It follows that

χHdg(X0) = 1 + (V1 + 35L) + 18L2.

For topological reasons (or using a Mayer-Vietoris argument) one hasH1(S) =
H3(S) = 0. With H1(C) = V1, a weight one Hodge structure, one thus finds
for the even cohomology:

Table 3.4. Cohomology of the singular surface X0

H0 H2 H4

weight 0 1 0 0
weight 1 0 V1 0
weight 2 0 35L 0
weight 3 0 0 0
weight 4 0 0 18L2

The entry 18L2 reflects the fact that S has 18 components.



LECTURE 4

Hodge Theory Revisited

4.1. A Digression: Cones in the Derived Category

I shall give a brief summary of what is needed from the theory cones in
the derived categories. See for instance [P-S, Appendix A].

Start from any abelian category A. In the homotopy category H(A) of
complexes in A the objects are the complexes of objects in A while the mor-
phisms are the equivalence classes [f ] of morphisms between complexes up
to homotopy. In the derived category D(A) more flexibility is allowed in that
the quasi-isomorphism become invertible. Recall that a quasi-isomorphism,
denoted

s : K
qis∼−→L

is a morphism between complexes such that the induced morphisms Hq(s) :
Hq(K)→ Hq(L) are all isomorphisms. Hence, if f : K →M is a morphism

of complexes K
f
−→ L

s←− K defines a morphism the derived category, usu-
ally denoted [f ]/[s] because it resembles fractions of homotopy classes of
maps. One of the problems with derived categories is that exact sequences
don’t make sense. These should be replaced by distinguished triangles. By
definition these come from the exact sequence of the cone as I now explain.

Definition 4.1.1. Let K,L be two complexes in an additive category and
let f : K → L be a morphism of complexes. The cone Cone(f) over f is the
complex

Conek(f) = Kk+1 ⊕ Lk

differential =
(
−d 0
f d

)
.

Suppose now that there is a short exact sequence of complexes

0→ K
f
−→ L

g
−→ M → 0. (16)

Then the map Cone(f)→M given by
(
x
z

)
7→ g(z) is a quasi-isomorphism

and so in D(A) one may replace M by Cone(f). Note that there also is a
projection morphism

p1 : Cone(f)→ K[1],
(
x
z

)
7→ −x (17)

where the (−)-sign is needed since one wants a morphism of complexes.
The important point here is that this morphism gives the coboundary for
the long exact sequence in cohomology associated to (16). Indeed, this map
fits into another short exact sequence. the sequence of the cone:

0→ L→ Cone(f)→ K[1]→ 0. (18)

31
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If you consider(16) in D(A) you get the standard example of a distinguished
triangle which is usually written as

K
f

−−−−−→ L

Cone(f).
S
SSo �

��/

[1]
p1

(19)

or, equivalently, as

K
f
−→ L→ Cone(f)→ [1].

The meaning of this is as follows. The arrows are morphisms in the de-
rived category which are represented by the morphism f , the injection
L → Cone(f) and the projection p1 : Cone(f) → K[1] from (17). In the
derived category the first two maps can also be represented by the two maps
in the short exact sequence (16). Its associated long exact sequence involves
induced morphisms and hence do not depend on choices within D(A). So
already two of the maps in the above triangle induce the same maps as those
from (16). As for the connecting morphism, one can easily prove that it is
induced by the map p1 from (17). Hence, and this is the crucial advantage
of working with cones in the derived category, all morphisms in the long
exact sequence

· · ·Hq(K)→ Hq(L)→ Hq(M) = Hq(Cone(f))→ Hq+1(K) = Hq(K[1]) · · ·

are induced by morphisms of complexes.

4.2. Classical Hodge Theory via Hodge Complexes

The flexibility of the derived category is needed to change between dif-
ferent complexes computing cohomology in order to construct compatible
weight and Hodge filtrations: in one incarnation the weight filtration is
more natural, in another the Hodge filtration is easier to define.

At the base of this lies a functorial construction at the level of sheaves
and which is due to Godement. For any sheaf of abelian groups F on a
topological space X, the Godement resolution C(F) is inductively defined
as follows. Put C0(F)(U) =

∐
x∈U Fx which generates a presheaf with

associated sheaf C0(F); next put Z0(F) = F , Ck(F) = C0(Zk−1) and
Zk(F) = Ck(F)/Zk−1(F). There are natural morphisms d : Ck(F) →
Ck+1(F) obtained as follows. By definition Zk+1(F) is a quotient sheaf of
Ck(F) while it is a subsheaf of Ck+1(F) and d is the composition Ck(F)�
Zk+1(F) ↪→ Ck+1(F) of the obvious two natural morphisms. One has d◦d =
0 since Zk+1(F) gets killed in forming Zk+2(F) = Ck+1(F)/Zk(F) and
hence {C(F), d} is a complex.

Clearly this construction is functorial and can be extended also to com-
plexes of sheaves F : the Cp(Fq) form a double complex and one takes
sC(F), the associated single complex. One way of defining the sheaf coho-
mology is to take the cohomology of the complex of global sections for the
Godement resolution:

Hk(X,F) := Hk(Γ(X,C(F)).
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For a complex F it is convenient to use the language of the derived section
functor RΓ which from a complex of sheaves of abelian groups produces a
complex of abelian groups :

RΓ(F) = Γ(X, sCF).

Its cohomology gives hypercohomology :

Hk(X,F) = RΓk(F) := Hk [Γ(sC(F))] .

If f : F → G is a quasi-isomorphism (of complexes of sheaves) the induced
morphisms Hk(X,F)→ Hk(X,G) turn out to be isomorphisms.

Remark 4.2.1. The following constructions employing the Godement res-
olution are constantly used:

(1) If a complex F comes with a filtration F , then it induces one on
sC(F) and one writes RΓ(F , F ) for the derived section complex
equipped with this filtration.

(2) If f : X → Y is a continuous map, F a complex of sheaves on X,
the derived direct image Rf∗F is a complex of sheaves on Y given
by sf∗(C(F)). Almost by definition one then has

Hk(Y,Rf∗F) ' Hk(X,F).

(3) If G is a complex of sheaves on Y there is a natural adjunction
morphism

f# : G → Rf∗(f−1G).
Combing this with the previous remark one thus has induced maps

Hk(f#) : Hk(Y,G)→ Hk(X, f∗G).

Remark 4.2.2. Let f : X → Y be any continuous map. The relation of
the cone-complex with the topological cone Cone(f) can now be explained.
The adjunction map for Q

Y
reads

f# : Q
Y
→ Rf∗(QX

)

and I claim that

Hq(Y,Cone(f#)) = H̃q+1(Cone(f)).

The proof goes as follows. The exact sequence of the cone (18) yields

· · · → Hq(Y,Q
Y

)→ Hq(Y,Rf∗QX)→ Hq(Cone(f#))→ Hq+1(Y,Q
Y

)→ . . .

and hence

· · · → Hq(Y )
f∗

−−→ Hq(X)→ Hq(Cone(f#))→ Hq+1(Y )→ . . . .

On the topological side there is the exact sequence

· · · H̃q(Y )
f∗

−−→ H̃q(X)→ H̃q+1(Cone(f))
j∗

−−→ H̃q(X) · · · (20)

as will be explained shortly. From this it follows that indeed

Hq(Y,Cone(f#)) ' H̃q+1(Cone(f)).

To explain (20), one argues as follows. If f : X → Y is a continuous map,
the cylinder Cyl(f) over f is obtained by gluing the usual cylinder X × I
to Y upon identifying a bottom point (x, 1) ∈ X × I with f(x) ∈ Y . The
map i : x 7→ (x, 0) identifies X as a subspace of Cyl(f). The inclusion



34 4. HODGE THEORY REVISITED

Y → Cyl(f) of Y as the bottom of this cylinder is a homotopy equivalence
since the cylinder retracts onto Y . Under this retraction the inclusion X →
Cyl(f) (as the top) deforms into the map f : X → Y . The (topological)
mapping cone Cone(f) is obtained by collapsing the top of the mapping
cylinder to a single point v. The quotient space Cyl(f)/X is canonically
homeomorphic to Cone(f). Since for any pair (X,A) with A closed, we
have H∗(X,A) = H̃∗(X/A) the long exact sequence associated to the pair
(Cyl(f), X) therefore can be identified with (20), whereby completing the
proof of the claim.

A particular case of the above is relative cohomology which comes from
the cone on the inclusion map as explained before (Example 2.1.1).

If X is a perfect topological space (see the first lecture), the (singular)
cohomology group Hk(X) coincides with Hk(X,Q

X
), the cohomology for

the constant sheaf Q
X

and so it is possible to calculate Hk(X) using any
complex quasi-isomorphic to the constant sheaf. For example, if X is a
complex manifold, complex cohomology Hk(X; C) = Hk(X) ⊗ C can be
calculated as the hypercohomology of the holomorphic De Rham complex
Ω•X since the inclusion CX → Ω•X is a quasi-isomorphism (the holomorpic
Poincaré lemma). The trivial filtration

F p(Ω•X) = [0→ · · · → 0→ Ωp
X → · · ·Ω

n
X → 0], n = dimX

passes to hypercohomology and it follows from classical Hodge theory that
for smooth projective manifolds this F -filtration on complex cohomology
coincides with the Hodge filtration. The morphism of complexes α : Q

X
→

CX → Ω•X where the first morphism is inclusion, is called the comparison
morphism. The triple

QHdg
X = (Q

X
, (Ω•X , F ), α) (the Hodge-De Rham complex of sheaves on X)

is the basic example of a so-called Hodge complex of sheaves of weight 0.
In order to define this concept one needs to enlarge the collection of

allowed “maps”.

Definition 4.2.3. Let K, L two bounded below complexes in an abelian
category. A pseudo-morphism between K and L is a chain of morphisms of
complexes

K
f
−→ K1

qis∼←−K2

qis∼−→ · · ·
qis∼−→Kn+1 = L.

It induces a morphism in the derived category. I shall denote such a pseudo-
morphism by

K9999KL.

If also f is a quasi-isomorphism I shall call it a pseudo-isomorphism. It
becomes invertible in the derived category. These will be denoted by

K
qis∼
9999K L.

A morphism between two pseudo-morphisms K
f
−→ K1

qis∼←− · · ·
qis∼−→Km and

L
g
−→ L1

qis∼←− · · ·
qis∼−→Lm consists of a sequence of morphism Kj → Lj , j =

1, . . . ,m such that the obvious diagrams commute. Note that such mor-
phisms are only possible between chains of equal length.
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Definition 4.2.4. Let X be a topological space. A Hodge complex of
sheaves of weight m on X consists of the following data

− A bounded below complex of sheaves of Q-vector spaces K such
that dim Hk(X,K) <∞,

− A filtered complex of sheaves of complex vector spaces (KC, F ) and
a comparison morphism: a pseudo-morphism α : K9999KKC in the
category of sheaves of Q-vector spaces on X inducing a pseudo-
isomorphism (of sheaves of C-vector spaces)

α⊗ id : K ⊗ C
qis∼
9999K KC,

and such that the Q-structure on Hk(KC) induced by α and the
filtration induced by F determine a Hodge structure of weight k+m
for all k. Moreover, there is a technical condition: one requires that
the differentials of the derived complex RΓ(X,KC) strictly preserve
the F -filtration.

The notion of a morphism (f, fC, κ) : (K, (KC,W ), αK) → (L, (LC,W ), αL)
between sheaves of Hodge complexes of weight m is what you think it is; for
instance κ : αK → αL is a morphism of pseudo-morphisms.

If one passes to the derived section functor, morphisms of Hodge com-
plexes of sheaves clearly give morphisms between the associated Hodge com-
plexes and hence, on the level of hypercohomology there are induced mor-
phisms of Hodge structures. Note also that for the relevant Hodge structures
morphisms of Hodge complexes of sheaves that are quasi-isomorphisms give
isomorphisms so that one can employ the derived category

D+FCX : bounded below filtered complexes
of sheaves of C-vector spaces on X.

Note that the category of filtered complexes of sheaves of C-vector spaces is
not abelian. Indeed this would mean that the derivatives are strict, which
is not automatic. However, there still is a canonical way to form the derived
category. In this category filtered quasi-isomorphisms f : (K,F )→ (K ′, F ′)
are inverted. By definition these are morphism of filtered complexes which
on the graded parts induces quasi-isomorphisms. Note that using this no-
tion one can also speak of pseudo-(iso)morphisms in the category of filtered
complexes.

As explained in [P-S, Chap 2.3], using this language, classical Hodge
theory can be summarized as follows:

Theorem 4.2.5. Let X be a smooth projective variety. The Hodge-De Rham
complex QHdg

X which was introduced just above Defiition 4.2.3 induces the
classical Hodge structure on Hk(X); this structure only depends on the class
of QHdg

X in (DbQ
X
, D+FCX). Indeed, one has (Hk(X), F, α)) = RΓ(QHdg

X ),
where α : Hk(X) ↪→ Hk(X; C) is the coefficient homomorphism.

Remark 4.2.6. Given a Hodge complex of sheaves (of weight m) L, the
triple RΓL is called a Hodge complex of weight m. Its cohomology groups
Hk(RΓL) are weight k +m Hodge structures.
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For what follows it should be remarked that several algebraic construc-
tions can now be done: direct sums, tensor products, Tate twists and shifts.
The direct sum construction is obvious, the other ones require an explana-
tion:
1) Tensor products. This uses a universal construction for filtered complex
(K,F ), (L,G):

(K ⊗ L)n =
⊕
i+j=n

Ki ⊗ Lj , d(x⊗ y) = dx+ (−1)deg xx⊗ dy

(F ⊗G)m =
∑

i+j=m

F iK ⊗GjL.

For Hodge complexes of sheaves of weight m and m′ put

(K, (KC, F ), α)⊗ (L, (LC, G), β) = (K ⊗ L, (KC, F )⊗ (LC, G), α⊗ β).

It gives a Hodge complexes of sheaves of weight m+m′.
2) Tate twists

(K, (KC, F ), α)(k) = (K ⊗ (2πi)k, (KC, F [k]), α(k)).

where α(k) is induced by α followed by multiplication by (2πi)k. This is a
Hodge complex of sheaves of weight m− 2k.
3) Shifts

(K, (KC, F ), α)[k] = (K[k], (KC[k], F [k]), α[k]),
a Hodge complex of sheaves of weight m+ k.

Let me illustrate these constructions by giving a proof of the fact that the
Künneth decomposition for a product X × Y of smooth projective varieties
X and Y is an isomorphism of Hodge structures. Consider the natural map

QHdg
X
�QHdg

Y
→ QHdg

X×Y

Both complexes are Hodge complexes of sheaves on X × Y and on the level
of hypercohomology they thus give a morphism of Hodge structures⊕

i+j=k

H i(X)�Hj(X)→ Hk(X × Y ).

This is exactly the map which gives the Künneth isomorphism. Now apply
Cor. 2.2.4 which implies that the above morphism is indeed an isomorphism
of mixed Hodge structures.

One important construction, that of the cone cannot be done in this
framework because by its very nature it will mix up the weights and so can
only be performed if one enlarges the scope so as to include mixed complexes.
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Mixed Hodge Theory

5.1. Mixed Hodge Complexes

Definition 5.1.1. A mixed Hodge complex of sheaves on X

K = ((K,W ), (KC,W, F ), α)

consists of the following data
− A bounded complex of sheaves of Q-vector spaces K equipped with

an increasing filtration W ;
− a complex of sheaves of complex vector spaces KC equipped with an

increasing filtration W and a decreasing filtration F , together with
a pseudo-morphism in the category of sheaves of filtered Q-vector
spaces on X, the comparison pseudo-morphism

α : (K,W )9999K(KC,W ).

The latter is required to induce a pseudo-isomorphism

α⊗ id : (K ⊗ C,W )
qis∼
9999K (KC,W )

such that the following axiom is satisfied:

for all m ∈ Z the triple GrWm K =
(
GrWm K, (GrWm KC, F ),GrWm (α)

)
is a Hodge complex of sheaves of weight m.

The following theorem is a basic observation due to Deligne (see e.g. [P-S,
Theorem 3.18] for a proof).

Proposition 5.1.2. Let (K, (KC,W ), α) be a mixed Hodge complex of sheaves
on X. Let W and F stand for the filtrations they induce on the hyperco-
homology groups Hk(X,F). Then (Hk(X,K),W [k], F ) is a mixed Hodge
structure.

Remark 5.1.3. Given a mixed Hodge complex of sheaves L, the triple RΓL
is called a mixed Hodge complex . So its cohomology groups Hk(RΓL) have
natural mixed Hodge structures.

One can form direct sums, tensor products, Tate twists and shifts as
in the pure case. Likewise, the definition of a morphism of mixed Hodge
complexes of sheaves resembles the one in the pure case and should be
obvious. Since after tensoring with C the pseudo-morphisms become pseudo-
isomorphisms it is natural to work in the derived category

D+FWCX : bounded below bi-filtered complexes
of sheaves of C-vector spaces on X.

Again the category of bi-filtered complexes in an abelian category in general
is not abelian, but one can still form the derived category.

37
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5.2. Cohomology of Varieties Have a Mixed Hodge Structure

Let me first say a few words about the cohomology of a smooth complex
variety U . Details are to be found in [P-S, Ch 4]. One chooses a compact-
ification X such that D = X − U is a simple normal crossing divisor. The
log-complex Ω•X(logD) of rational forms on X, regular on U and with at
most logarithmic poles along D can be defined as follows.

Consider a local chart with coordinates (z1, . . . , zn) in which D has the
equation z1 · · · zk = 0. Then Ω1(logD) by definition is freely generated over
OX by {dz1/z1, . . . , dzk/zk, dzk+1, . . . , dzn} and Ωk

X(logD) =
∧k Ω1

X(logD).
The usual derivative on forms makes this into a complex. It comes with a
weight filtration which counts the number of dzj/zj in local coordinates
(z1, . . . , zn) adapted to the normal crossing divisor. In other words

Wm(Ω•X(logD) =
[

0→ OX · · · → Ωm−1
X (logD)→

→ Ωm
X(logD) ∧ [OX → Ω1

X → · · · → Ωn−m
X ]

]
.

Let me explain why this can be defined over the rationals. First note
that the logarithmic complex computes complex cohomology on U . For
rational cohomology one uses the complex Rj∗QU

, a complex on X which
by definition consists of the direct image of the Godement resolution, i.e.
Rj∗QU

= j∗(CQ
U

). There is a filtration which can be put on any complex
K, the so called canonical filtration:

[τ(K)]p =
[
· · · → Kp−1 → Ker(d)→ 0 · · · 0

]
.

One then proves that the inclusion (Ω•X(logD),W ) → (Ω•X(logD), τ) is a
filtered quasi-isomorphism. So one can put the canonical filtration on Rj∗QU
which provides the rational component of a Hodge complex of sheaves and
a comparison pseudo-morphism

α : (Rj∗QU
, τ))→ (Ω•X(logD), τ)

qis∼←− (Ω•X(logD),W ).

The Hodge filtration is the same as in the smooth projective case: you take
the trivial filtration F on the log-complex. This then gives a canonical way
to associate to the pair (X,D) the mixed Hodge complex denoted

QHdg
(X,D) := ((Rj∗QU

, τ), (Ω•X(logD),W, F ), α).

One can show that moreover, the resulting mixed Hodge structure on Hk(U)
does not depend on choices.

To handle singular varieties one uses the concepts of simplicial and cu-
bical varieties. For details see [P-S, Ch. 5].

Definition 5.2.1. (1) The simplicial category ∆ is the category with
objects the ordered sets [n] := {0, . . . , n}, n ∈ Z≥0, and with mor-
phisms non-decreasing maps. If one only considers the strictly in-
creasing maps one speaks of the semi-simplicial category 4. The
cubical category is the category � whose objects are the finite
subsets of N and for which Hom(I, J) consists of a single ele-
ment if I ⊂ J and else is empty. In this category the face maps
δj : [n − 1] → [n] are non-decreasing maps defined by δj(k) = k
if k < j and = (k + 1) if k ≥ j. The n-truncated simplicial,
semi-simplicial category, respectively cubical category is the full
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sub-category of the category ∆n, 4n, respectively � whose objects
are the [k] with k ∈ [n− 1].

(2) A simplicial object in a category C is a contravariant functor K• :
∆ → C. A morphism between such objects is to be understood
as a morphism of corresponding functors. Similarly one speaks
of a semi-simplicial objects and cubical objects. One obtains an
n-simplicial object by replacing ∆ by ∆n and similarly for n-semi-
simplicial objects. Set

Kn := K•[n] (the set of n-simplices), dj = K(δj).

Moreover, for a cubical object X and I ⊂ N finite write

XI := X(I)
dIJ := X(I ↪→ J) : XJ → XI , I ⊂ J.

So, a simplicial object K• in C consists of objects Kn ∈ C, n =
0, . . . , and for each non-decreasing map α : [n] → [m], there are
morphisms dα : Km → Kn.

Every (n + 1)-cubical variety (XI) gives rise to an augmented n-semi-
simplicial variety X• → Y in the following way. Put

Xk =
∐

|I|=k+1

XI , k = 0, . . . , n

and for each inclusion β : [s] → [r] and I ⊂ [n] with |I| = r + 1 writing
I = {i0, . . . , ir}, i0 < . . . < ir, one lets

X(β)|XI = dIJ , J = β(I) = {iβ(0), . . . , iβ(s)}.
For all I ⊂ [n] there is a well-defined map d∅I : XI → X∅ = Y . This is the
desired augmentation. Note that this correspondence is functorial.

Examples 5.2.2. (1) The blow-up diagram in § 2.1 is an example of a 2-
cubical variety. See Remark 2.1.2.
(2) The normalization n : C̃ → C of a singular curve C can be viewed as
a 2-cubical variety: let X∅ = C, X0 = C̃, X1 = singular points Σ ⊂ C,
X01 = n−1Σ with the obvious maps:

X01 → X1y y
X0 → X∅.

(3) Let X be a normal crossing variety, i.e. X =
⋃k
i=1Xk where Xk

are smooth projective varieties of the same dimension d meeting like the
coordinate hyperplanes in Cd+1. Set

XI = Xi1 ∩ · · · ∩Xim , I = {i1, . . . , im}
aI : XI ↪→ X

X(m) =
∐
|I|=m

XI

am =
∐
|I|=m

aI : X(m) ↪→ X.
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The X(m) are smooth projective. For I = (i1, . . . , im) put

Ij = (i1, . . . , îj , . . . , im).

There are m natural inclusions ajI : XI ↪→ XIj ⊂ X(m+ 1) which assemble
to give a an augmented semi-simplicial space

X X(1) X(2) X(3) · · ·� ε
�
�

�
�
�

Suppose that ε : X• → Y is an augmentation. A sheaf F on X• is a
collection of sheaves F (k) on the Xk compatible with the maps induced by
the face maps. More precisely, a sheaf on a simplicial space is a simplicial
object in the category of pairs (X,F) of topological spaces and sheaves on

them whose morphisms are pairs (X
f
−→ Y, f# : G → f∗F).

The vector spaces Γ(Xq, C
p(F (q))) form a double complex ΓC(F). Now

define
Hk(X•,F) := Hk(sΓC(F)).

The sheaves ε∗Cp(F (q)) form a double complex ε∗C(F) on Y and one then
sets

Rε∗F := s[ε∗C(F)], (21)
a complex of sheaves on Y whose k-th hypercohomology equals Hk(X•,F):

Hk(X•,F) = Hk(Y,Rε∗F).

Examples are the sheaves Ωk
X•

and the constant sheaf Q
X•

.
The natural map

ε# : Q
Y
→ RεQ

X•

plays an important role for calculating the cohomology of Y : the kind
of cubical varieties one needs are such that this map induces an isomor-
phism Hk(X•,QX•

) ' Hk(Y ). This is guaranteed provided ε# is a quasi-
isomorphism. Such augmentations are called of cohomological descent .

There is a simple test for cohomological descent which uses the construc-
tion of the geometric realization |X•| which is defined as follows. Let K• be
a simplicial space. Every non-decreasing map f : [q] → [p] has a geometric
realization |f | : ∆q → ∆p where ∆k is the standard affine k-simplex. Set

|K•| =
∞∐
p=0

∆p ×Kp/R,

where the equivalence relation R is generated by identifying (s, x) ∈ ∆q×Kq

and (|f |(s), y) ∈ ∆p × Kp if x = K(f)y for all non-decreasing maps f :
[q] → [p]. The topology on |K| is the quotient topology under R obtained
from the direct product topology (note that the Kp are topological spaces
by assumption). If ε : X• → Y is an augmented semi-simplicial complex
variety, there is an induced continuous map |ε| : |X•| → Y . I quote without
proof:

Proposition 5.2.3. Let ε : X• → Y be an augmented semi-simplicial com-
plex variety. If |ε| : |X•| → Y is proper and has contractible fibres, the
augmented semi-simplicial complex variety is of cohomological descent.
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Examples 5.2.4. (1) The geometric realization of the blow-up diagram has
been described in Lecture 2. From it one sees that the fibre of |ε| over x ∈ X
is a point if x 6∈ Y and the cone over π−1x if x ∈ Y . It follows that the
blow-up diagram is of cohomological descent.
(2) Consider example 5.2.2. 2), the normalization of the curve C. The
geometric realization of the 2-cubical variety of the example consists of the
normalization C̃ to which for each singular point p of C with counter-images
p1, . . . , pr ∈ C̃ you glue a graph which is a “star” with vertex p and edges
from p to the points pi. The map |ε| contracts these stars to the point p ∈ C
and it is the identity on C − Σ. Hence the fibre of |ε| over x ∈ C is either
a point or a contractible star. It follows that the augmented semi-simplicial
variety is of cohomological descent.
(3 Continue with Example 5.2.2.3). Each variety XI with |I| = m + 1
meets exactly m of the XJ for which |J | = m. So the associated geometric
realisation |ε| has as fibres exactly one m-simplex over each point lying on
XI . It follows that ε is of cohomological descent.

Note that being of cohomological descent is a purely local property and
so if for some locally closed subvariety U ⊂ Y with ε−1U = U•, one also has
Hk(U•,QU•

) = Hk(U), a remark to be used for open varieties.
But let me first suppose that X is proper. One wants of course all the

XI be smooth and proper so that the Hodge complexes Q
XHdg
I

can be used
which push down to X. Indeed, by (21) all of its constituents push down
to X giving Rε∗QXHdg

•
which is a mixed Hodge complex of sheaves on X.

Since the dimensions of the XI in general vary, this complex is usually not
pure. To calculate cohomology of X one uses a cubical hyperresolution, i.e.
a cubical variety such that the XI , I 6= ∅ are smooth and proper and the
associated augmented simplicial variety is of cohomological descent. It can
be shown that these exist (see Theorem 5.2.6 for the full statement) and
that the resulting mixed Hodge structure on the Hk(X) no longer depends
on choices.

The case of an open variety is slightly more complicated, but the idea
is the same. One needs the concept of a log-pair (X,D). To say what this
is, first suppose that X is irreducible. Then by definition U = X − D is
smooth and D is a simple normal crossing divisor. If X is reducible, possibly
with components of different dimensions, this definition should be modified:
(X,D) is a log-pair if a given component of X either
— does not meet D,
— or is entirely contained in D,
— or is cut by D in a normal crossing divisor.

Definition 5.2.5. Let X be a compactification U . Put T = X − U . A
cubical hyperresolution of (X,T ) is a cubical variety {XI} whose associated
augmented variety ε : X• → X has the following properties:

(1) the augmentation maps are proper;
(2) the Xk are smooth and the inverse images ε−1T on each component

C of the Xk are either empty, or C in its entirety, or a normal
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crossing divisor on C. Set

D• = ε−1T.

It follows that X•, D•) → (X,T ) is an augmental simplicial log-
pair.

(3) the augmentation X• → X is of cohomological descent.

The full result reads as follows:

Theorem 5.2.6. Let U be a complex algebraic variety. There exists a cu-
bical hyperresolution of (X,T ), where X is a compactification of U and
T = X − U . Then Rε∗QHdg

(X•,D•)
is a mixed Hodge complex of sheaves on U .

The resulting mixed Hodge structure on Hk(U) does not depend on choices.



LECTURE 6

Motivic Hodge Theory

6.1. The Hodge Characteristic Revisited

A first goal is to show that given a pair of complex algebraic varieties
(U, V ) the resulting exact sequence in cohomology is a sequence of mixed
Hodge structures. But first one has to reinterpret the relative cohomology
group Hk(U, V ).

Lemma 6.1.1. Let j : V ↪→ U be the inclusion of a closed set. and let
j# : C(Q

U
)→ C(j∗QV

be the induced map. Then

Hk(U, V ) = Hk−1(Cone(j#)).

Proof : This is the conjunction of two facts proven earlier. See Exam-
ple 2.1.1 and Remark 4.2.2: Hk(U, V ) = H̃k(Cone(j)) = Hk−1(Cone(j#)).

�
Next, replace Q by the mixed Hodge complex of sheaves QHdg con-

structed from suitable compactifications Ū , V̄ of U and V respectively.
The third step uses a construction which provides a mixed Hodge com-

plex of sheaves on the cone of a morphism f : K = (K, (KC, F ), α) → L =
(L, (LC, F ), β) between such complexes. This construction, the mixed cone
(Cone(f),W ), (α, β)) goes as follows:
Put

WmCone(f)p = Wm−1Kp+1 ⊕WmLp, F rCone(f)pC = F rKp+1
C ⊕ F rLpC,

together with the comparison morphism given by

(α, β) : Cone(W)9999KCone(W, F )C.

Lemma 6.1.2. The mixed cone is a mixed Hodge complex of sheaves.

Proof : A morphism of pseudo-morphisms consists of morphisms between
the constituents of the chains which make up a pseudo-morphisms, and such
that the obvious diagrams commute. This implies that each such diagram
defines a morphism of cones or a quasi-isomorphism of cones or an inverse
of such. In this way one gets the pseudo-morphism defining the comparison
morphism for a cone.

The map f maps Wm(K) to Wm(L) and so on the graded mixed cone

GrWm (Cone(f) = GrWm−1K[1]⊕GrWm (L)

the contribution of f to the differential
(
−d 0
f d

)
vanishes. Since both

GrWm−1K[1] and GrWm (L) are pure Hodge complexes of sheaves of weight
m the results follows. �

43
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Remark 6.1.3. If one would work with comparison morphisms in the de-
rived category, as Deligne does, one cannot define such cones since a mor-
phism in this set-up involves diagrams which commute only up to homotopy.
Indeed, there is no guarantee that the comparison maps for the cone as de-
fined above commute with the derivative (remember that the derivative of
the cone of a map involves the map itself). They might for one choice, but
they might not commute for another choice.

For this reason Deligne’s set-up has to be modified. In the geomet-
ric setting one has explicit representatives, as I have explained in previous
Lectures. It follows that one then automatically gets morphisms of mixed
complexes (of sheaves) and hence the above cone construction can be ap-
plied.

To achieve the goal formulated at the start of this section, the crucial
point now is to apply the cone construction to a suitable derived category
associated to mixed Hodge complexes of sheaves on Ū where. Indeed, one
can consider the “fibre product” of D+WQ

Ū
and D+FWCŪ in the sense

that one only considers pairs ([L], [LC]) ∈ D+WQ
Ū
×D+FWCŪ related by

some morphism L → LC in the derived category which becomes an isomor-
phism after tensoring with C. In this category there is the triangle of the
cone and its associated long exact sequence automatically gives a long exact
sequence of mixed Hodge structures for the pair (U, V ):

· · ·Hk(U, V )→ Hk(U)→ Hk(V )→ Hk+1(U, V ) · · · .
Looking at triples (U, V,W ) of algebraic varieties one gets an exact se-

quence of mixed Hodge structures

· · ·Hk(U, V )→ Hk(U,W )→ Hk(V,W )→ Hk+1(U, V ) · · · .

To see this, look at the coboundary map Hk(V,W ) → Hk+1(U, V ). This
is the composition Hk(V,W ) → Hk(V ) → Hk+1(U, V ) where the first is
restriction and the second is the coboundary for the pair (U, V ).

After all this preparation, the promised proof for the scissor relations
can be given:

Proposition 6.1.4. Let X be an algebraic variety and Y ⊂ X a closed
subvariety. Then χHdg(X) = χHdg(Y ) + χhdg(X − Y ).

Proof : Let X̄ be a compactification of X, T = X̄ − X, and Ȳ ⊂ X̄ the
closure of Y in X̄. Consider the triple (X̄, Ȳ ∪ T, T ). Since Hk

c (X − Y ) =
Hk(X̄, Ȳ ∪ T ) and since Ȳ ∪ T is also a compactification of Y , the resulting
exact sequence becomes

· · ·Hk
c (X − Y )→ Hk

c (X)→ Hk
c (Y )→ Hk+1

c (X − Y ) · · · �

6.2. Products

The fact that the Hodge characteristic preserves products can be shown
in two steps as follows.
Step 1: external products. Let (X,Y ) and X ′, Y ′) be two pairs of
complex algebraic varieties. The external product

H i(X,Y )⊗Hj(X ′, Y ′)→ H i+j(X ×X ′, (Y ×X ′ ∪X × Y ′))
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is a morphism of Hodge structures. Roughly this goes as follows: start
from cubical hyperresolutions for (X,Y ) and (X ′, Y ′). Then, using the
first barycenter-construction one obtains a cubical hyperresolution ((X ×
Y )•, (X × D′ ∪ D × Y ′)•)) of the pair (X × X ′, (Y × X ′ ∪ X × Y ′)). Let
ε : (X•, D•)→ (X,Y ), ε′ : (X ′•, D

′
•)→ (X ′, Y ′) and ε′′ : ((X×Y )•, (X×D′∪

D × Y ′)•)) be the associated augmented simplicial varieties. The natural
morphism of mixed Hodge complexes of sheaves

Rε∗QHdg
(X•,D•)

�Rε′∗Q
Hdg
(X′•,D

′
•)
→ Rε′′∗Q

Hdg
((X×Y )•,(X×D′∪D×Y ′)•)

does the job. See [P-S, pp 134–135] for the details of the proof in a similar
case.
Step 2: completion of the proof. Apply the previous step to a compacti-
fication (X̄,X) ofX and a compactification (Ȳ , Y ) of Y . For better visibility,
write ∂X = X̄−X and similarly for ∂Y . Then ∂(X×Y ) = X×∂Y ∪∂X×Y .
Since H i

c(X) = H i(X̄, ∂X) and likewise for Y the previous step gives a mor-
phism ⊕

i+j=k

H i
c(X)⊗Hj

c (X)→ Hk
c (X × Y )

of mixed Hodge structures which at the same time is a Q-vector space
isomorphism. Now apply Corr. 2.2.4. It follows that χHdg(X × Y ) =
χHdg(X)χHd(Y ).

6.3. Further Examples

Since this is the first time spectral sequences come up in these Lectures
I digress a bit to recall the salient facts needed about these. A spectral
sequence in an abelian category A consists of terms (Er, dr) r = 0, 1 . . . ,
each of which is a complex in A and whose cohomology gives the next term
Er+1. The terms Er are bigraded, say Er =

⊕
p,q∈ZE

p,q
r and dr has bidegree

(r,−r + 1).
A filtered complex (K,F ) in an abelian category gives the standard

example of such a spectral sequence. Let me assume that the filtration is
decreasing and, in addition, obeys a certain finiteness condition: on each Km

it has finite length. The spectral sequence associated to such a filtration is
defined by

Zp,qr = Ker
(
d : F pKp+q → Kp+q+1/(F p+rKp+q+1)

)
Bp,q
r = F p+1Kp+q + d(F p−r+1Kp+q−1)

Ep,qr = Zp,qr /(Bp,q
r ∩ Zp,qr ).

This makes also sense for r =∞. The finiteness condition implies for p and
q fixed, from a certain index r on one has

Zp,qr = Zp,qr+1 = · · · = Zp,q∞ := Ker(d : F pKp+q → Kp+q+1)
Bp,q
r = Bp,q

r+1 = · · · = Bp,q
∞ := F p+1Kp+q + dKp+q−1

and so the Ep,qr = Ep,q∞ from a certain index r on. For the first terms of the
spectral sequence one has

Ep,q0 = GrpF (Kp+q)
Ep,q1 = Hp+q(GrpF (K))

}
(22)
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An easy calculation shows that the differential of the complex K induces the
differentials dr : Ep,qr → Ep+r,q−r+1

r of a spectral sequence; indeed dr◦dr = 0
and Er+1 is the cohomology of the resulting complex. Next, a computation
shows that

Ep,q∞ = GrpF H
p+q(K),

where F is the filtration induced on cohomology:

F p(Hn(K)) = Im(Hn(F p(K))
Hn(i)
−−−−→ Hn(K)),

with i : F p(K) ↪→ K the inclusion.

One summarises this by saying that the spectral sequence converges to the
filtered cohomology of the complex or that the spectral sequence abuts to
Hp+q(K) or that Hp+q(K) is the abutment of the spectral sequence, and
one writes

Hp+q(GrpF (K)) =⇒ Hp+q(K).

Let me now come back to the example of a normal crossing variety (Exam-
ple 5.2.2 (3)). Recall that X =

⋃
Xi where the Xi are smooth projective

and meet as the coordinate hyperplanes in Cd+1, d = dimX. The disjoint
union of the m-fold intersections was denoted X(m). The cohomology of
the X(m) carry Hodge structures and

χHdg(X) =
∑

(−1)mχHdg(X(m)).

To calculate the actual graded parts of the weight filtration one proceeds
as follows. For I = (i1, . . . , im) and Ij = (i1, . . . , îj , . . . , im) the natural
inclusions ajI : XI ↪→ XIj combine into ajm = ⊕|I|=ma

j
I : X(m) ↪→ X(m− 1)

which induce the Mayer-Vietoris maps

α(k)
m = ⊕j(−1)j(ajm)∗ : Em−1,k

1 = Hk(X(m− 1))→ Hk(X(m)) = Em,k1 .

which are the differentials of the Mayer-Vietoris spectral sequence. This
spectral sequence abuts to the cohomology of X (since the associated aug-
mented semi-simplicial variety is of cohomological descent). The associated
filtration is known to coincide with the weight filtration of the the mixed
Hodge structure. Moreover, from the general theory of mixed Hodge struc-
tures it is known that the Mayer-Vietoris spectral sequence, which coincides
with the weight spectral sequence, degenerates at the E2-term. Each of the
terms in this spectral sequence has a Hodge structure and this makes it
possible to give explicit expressions for the Hodge structure on the graded
parts of the weight filtration. Indeed, Em,k2 is a subquotient of Hk(X(m))
and is isomorphic as a Hodge structure to GrWk H

k+m−1(X). I explain how
this works in the following example.

Example 6.3.1. Normal surface degenerations. In this case the Mayer-
Vietoris spectral sequence is rather simple. There are two maps which are
relevant: ⊕

i

Hk(Xi)
αk−−→

⊕
j

Hk(Cj), αk = a
(k)
2 , k = 1, 2.



6.3. FURTHER EXAMPLES 47

Recall that Γ is the dual graph for the configuration of the intersecting
surfaces. One finds:
H4(X) = W4H

4(X) =
⊕

iH
4(Xi)

GrW3 H3(X) =
⊕

j H
3(Xi) GrW2 H3(X) = Coker(α2)

GrW2 H2(X) = Ker(α2) GrW1 H2(X) = Coker(α1) W0H
2(X) = H2(Γ)

GrW1 H1(X) = Ker(α1) W0H
1(X) = H1(Γ).

From this the following table can be constructed.

Table 6.1. Cohomology of the singular surface X

H0 H1 H2 H3 H4

weight 0 1 b1(Γ) b2(Γ) 0 0
weight 1 0 Ker(α1) Coker(α1) 0 0
weight 2 0 0 Ker(α2) Coker(α2) 0
weight 3 0 0 0

⊕
i L⊗ VgXi (Xi) 0

weight 4 0 0 0 0 kL2

The reader can verify that this agrees with the value for the Hodge charac-
teristic as given in Example 2 of Lecture 3.





LECTURE 7

Motivic Aspects of Degenerations

7.1. The Nearby Cycle Complex

Let me summarise some results from [P-S, Ch. 11]. Consider a relative
situation; X is a complex manifold, ∆ ⊂ C the unit disk and f : X → ∆ a
holomorphic map which is smooth over the punctured disk ∆∗. Let me say
that f is a one-parameter degeneration. Let Xt = f−1t be the fibre over t
and x ∈ X0 a point on the singular fibre.

In this setting one has the notion of the Milnor fibre of f at x, Milf,x:
take t very close to 0, say at a distance η > 0, and form Xt ∩ B(x, r)
where 0 < η � r � 1. For small enough η � r the diffeomorphism
type of this manifold does not depend on η and r and any representative
is called the Milnor fibre. It is well known that there is a fibre preserving
retraction r : X → X0 so that there are induced maps rt : Xt → X0. The
complex of sheaves (Rrt)∗QQt

lives on the singular fibre X0 and is called
the (topological) complex of sheaves of nearby cycles. The stalk at x of its
cohomology sheaves give the cohomology of the Milnor fibre. Observe at
this point that

Hk(X0, (Rrt)∗QQt
) = Hk(Xt,QXt

) = Hk(Xt). (23)

This description is however not complex-analytic and one has to replace it
with one which is. Consider the specialisation diagram

X∞
k−→ X

i←− X0y ef yf y
h

e−→ ∆ ←− {0}

where h is the complex upper half plane, e(z) := exp(2πiz) and where

X∞ := X ×∆∗ h.

Note that this manifold retracts onto any of the smooth fibres Xz and can be
seen as an object in the homotopy category which is canonically associated
to the smooth part of the family. It can be used to define the monodromy
action: the translation z 7→ z + 1 in the upper half-plane can be lifted
(non-canonically) to a diffeomorphism Xz → Xz+1, whence an action on
Xt, t = e(z), the so-called geometric monodromy. Geometric monodromy is
well-defined up to homotopy and hence there is a well-defined map

T : H∗(Xt)→ H∗(Xt), t ∈ ∆∗,

the monodromy operator. This gives an action of the fundamental group
π1(∆∗).
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For t real and positive the map z 7→ (z, log t
2πi ) embeds Xt in X∞ and

setting Vr,η = B(x, r) ∩ f−1B(0, η) the Milnor fibre embeds in k−1V and
this embedding can be proven to be a homotopy equivalence. Shrinking r
one can see that

Hk(Milf,x) ' lim
r→0

Hk(k−1Vr,η) =
(

(Rkk)∗QX∞
)
)
x

(24)

So the previous construction can be replaced by a canonical object, the
(analytic) nearby cycle complex on X0:

ψfQX0
= i∗Rk∗(k∗QX

).

From (23) one concludes that its hypercohomology computes the cohomol-
ogy of Xt:

Hk(X0, ψfQX0
) = Hk(Xt).

Now apply this to the algebraic situation. Assume from now on that one
has a one-parameter projective degeneration, i.e. all fibres of f are pro-
jective. Let me also make a simplifying assumption which will be justified
later on (see § 9.1):

X0 =
⋃
i∈I Ei is a divisor with strict normal crossings on X.

An involved construction shows that one can enlarge the nearby cycle
complex to give it the structure of a mixed Hodge complex of sheaves

ψHdg
f = ((ψfQX0

,W ), (ψfCX0 ,W, F ), α),

the Hodge-theoretic nearby cycle complex . To define the Hodge filtration is
relatively easy by finding a different representative of ψfCX0

in D+(CX0
).

Indeed, the relative log-complex Ω•X/∆(logE) when restricted to E gives
such a representative and for the Hodge filtration F just take the trivial
filtration on this complex. It is called the limit Hodge filtration on ψfCX .
The weight filtration is more complicated to define. I won’t describe it on
the level of sheaves, but only on the level of cohomology groups. It uses the
action of the monodromy T on ψfQX0

. The point here is that a nilpotent
endomorphism comes with a natural filtration. So one has to construct such
a morphism out of T . This is possible thanks to the following result.

Lemma 7.1.1. Suppose that the multiplicities of f along Ei are all 1. Then
the eigenvalues of the monodromy operator T are all 1, i.e. T is unipotent.
In the general case a power of T is unipotent; one says that T is quasi-
unipotent.

Remark . This result is a weak form of the so-called monodromy theorem
which, in addition, gives more information on the size of the Jordan blocks:
it states that the size is at most equal to the level of the Hodge structure,
i.e. the largest difference |p− q| for which there is a non-zero Hodge number
hp,q. See [P-S, Corr.11.42].

Let me for simplicity assume that the multiplicities of f along Ei are all
1 so that the monodromy action is unipotent. One then puts

N = log T.

It is a nilpotent and, as promised, comes with an intrinsic filtration:
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Lemma 7.1.2. Let N be a nilpotent endomorphism of a finite dimensional
rational vector space H. There is a unique increasing filtration W = W (N)
on H, the such that N(Wj) ⊂ Wj−2 and N j : GrWj → GrW−j is an isomor-
phism for all j ≥ 0. This filtration is called the weight filtration of N .

If N = log T the shifted filtration W [k] on Hk(X∞) is called the mon-
odromy weight filtration.

This can also be used to give a more geometric interpretation of the limit
mixed Hodge structure. For t = e(z) fix a choice of logarithm z = 2πi log(t)
and let F p(z) = F pHk(Xz) ⊂ Hk(X∞)⊗ C. Now consider exp(−zN)F (z).
Since exp(−(z + 1)N) = exp(−zN)T−1 one has exp(−(z + 1)N)F (z + 1) =
exp(−z)F (z) as a subset of Hk(X∞). So exp(−zN)F p(z) defines a subspace
of Hk(X∞)⊗C which simply can be written F p(t). One of Schmid’s results
[Schm] is that this subspace converges (in the sense of points in a Grass-
mannian) to a limit F p∞ when t approaches 0 along radii. This limit, for
different p indeed gives the limit mixed Hodge structure.

The basic result is:

Theorem 7.1.3 (Steenbrink, Schmid). Assume that f is a projective one-
parameter degeneration. The Hodge-theoretic nearby cycle complex puts a
mixed Hodge structure on the cohomology groups Hk(X∞), the limit mixed
Hodge structure. One has:

(1) The weight filtration is the monodromy weight filtration;
(2) the limit Hodge filtration on Hk(X∞), coincides with the above de-

fined limit F∞ of the classical Hodge filtration FHk(Xt). In par-
ticular for all p, k one has dimF pHk(X∞) = dimF pHk(Xt).

Corollary 7.1.4. One has hp,q(Xs) =
∑

s≥0 h
p,s(Hp+q(X∞)).

A strengthening of Lemma 7.1.2 is needed which holds in the above
setting and which describes which types of Jordan blocs occur in terms of a
canonical decomposition:

Lemma 7.1.5 ([Schm, Lemma 6.4]). There is a Lefschetz-type decomposi-
tion

GrW Hk(X∞) =
k⊕
`=0

⊕̀
r=0

N rPk+`,

where Pk+` is pure of weight k + `. The endomorphism N has dimPk+m−1

Jordan blocs of size m.

Example 7.1.6.

For H1 one has:

1
•
P1

0
•

NP2

∼←−−−−
N

2
•
P2

and for H2:

2
•
P2

1
•

NP3

∼←−−−−
N

3
•
P3

0
•

N2P4

∼←−−−−
N

2
•

NP4

∼←−−−−
N

4
•
P4
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You see that in the first case there are dim GrW2 Jordan blocs of size 2 and
dim GrW1 ones of size 1. In the second case the primitive part in weight 2
is needed which gives the Jordan blocs of size 1. Then there are dim GrW3
blocs of size 2 and GrW4 blocs of size 3.

There is an important result, which will be used later on in the examples:

Theorem 7.1.7 (Local Invariant Cycle Theorem). The invariants in Hk(X∞)
under local monodromy form a subspace whose mixed Hodge structure is nat-
urally isomorphic to the mixed Hodge structure of Hk(X0).

Example 7.1.8. For k = 1 the above diagram shows that GrW KerN =
NP2 ⊕ P1 and hence W0 ∩KerN = NP2 = W0H

1(X∞) 'W0H
1(X0). The

last result stays true for all k, as one easily sees.
For k = 2 one has GrW1 H2(X∞) = NP3 ⊕ NP4 so that GrW1 KerN =

NP3 = GrW1 H2(X0).

7.2. The Motivic Nearby Cycle: Unipotent Monodromy

The goal of this section is to calculate χHdg(X∞). It uses the weight
filtration and the spectral sequence related to it. I have treated this in
Lecture 6.3. But in the situation at hand the weight filtrationW is increasing
and one needs to reindex the terms the spectral sequence so as to obtain

E−s,q+s1 = H−s,q+s(GrWs (ψHdg
f )) =⇒ Hq(XHdg

f )

This a spectral sequence of mixed Hodge structures; it can be shown that
GrWp (ψHdg

f ) is a complex of Hodge structures on the smooth components of
the normalizations of partial intersection of the components of X0 = f−1(0).
Indeed, put

EJ =
⋂
i∈J

Ej , E(m) =
∐
|J |=m

EJ

so that the E(m) are all smooth projective. One shows that up to quasi-
isomorphisms

GrWs (ψHdg
f ) =

⊕
k

Q
E(2k+s+1)

[s+ 2k](−s− k).

so that the E1-term is the graded Hodge structure⊕
k≥0,s

Hq−s−2k(E(2k + r + 1))(−s− k) =⇒ Hq(X∞).

Let me now step back to the definition of the Hodge characteristic for
a variety. It is defined in two steps: first one associates to a variety a
certain mixed Hodge structure and secondly one takes the associated class
in K0(hs). This last step can be performed abstractly: to any mixed Hodge
structure H one associates its class [H] ∈ K0(hs), its Hodge characteristic.
It behaves well with respect to spectral sequences. To see this, let (Er, dr) be
the r-th term of a spectral sequence of mixed Hodge structures converging
to E∞. By definition Er is a complex with cohomology Er+1. Hence [Ek] =
[Ek+1] = · · · = [E∞].

In our case this implies that it suffices to calculate the Hodge charac-
teristic [E2]. Let me simplify this calculation as follows. Set s + k = a,
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2k + s + 1 = b, q − s − 2k = c. If one goes back to the construction of the
mixed Hodge complex of sheaves XHdg

f one can show that a, c ≥ 0, b ≥ 1.
Since k = b− a− 1, one has the restriction 0 ≤ a ≤ b− 1. One finds:

χHdg(X∞) =
∑

b≥1,c≥0

b−1∑
a=0

(−1)c+b+1[Hc(E(b))(−a)]

=
∑
b≥1

(−1)b+1χHdg(E(b)) ·

[
b−1∑
a=0

La
]
.

One obtains:

χHdg(X∞) =
∑

b≥1(−1)b−1χHdg(E(b)) ·
[∑b−1

a=0 La
]

=
∑

b≥1(−1)b−1χHdg(E(b)× Pb−1).

}
(25)

It suggest the following definition:

Definition 7.2.1. Suppose that the fibres of f are projective varieties. Fol-
lowing [Bitt2, Ch. 2] let me define the motivic nearby fibre of f by

ψmot
f :=

∑
m≥1

(−1)m−1[E(m)× Pm−1] ∈ K0(Var).

The motivic fibre is indeed an invariant of the nearby smooth fibre:

Lemma 7.2.2. Suppose that σ : Y → X is a bimeromorphic proper map
which is an isomorphism over X − E. Put g = f ◦σ Assume that g−1(0) is
a divisor with strict normal crossings. Then

ψf = ψg.

Proof : In [Bitt2], the proof relies on the theory of motivic integration
[D-L99b]. I sketch a simplified version of the proof from [P-S07] which is
based on the weak factorization theorem [A-K-M-W]. See Appendix 1 to
Lecture 2. This theorem reduces the problem to the following situation: σ is
the blowing-up of X in a connected submanifold Z ⊂ E with the following
property: with A ⊂ I the set of indices i for which Z ⊂ Ei the manifold Z
intersects the divisor

⋃
i 6∈AEi transversely so that in particular Z ∩

⋃
i 6∈AEi

is a divisor with normal crossings in Z.
Suppose for simplicity that |A| = 1 so that Z is contained in just one

divisor, say Z ⊂ E1 and that E2 is the only component of E meeting Z.
This guarantees that the components of g−1(0) all have multiplicity one. Let
c = codimZ X so that codimZ E1 = codimZ2 E12 = c−1 and codimZ2 E2 = c.
The special fibre g−1(0) has one extra component, namely the exceptional
divisor which is denoted E′0. The proper transforms of the Ej are called
E′j . There are two new 2-fold intersections E′01 and E′02 and one new triple
intersection E′012. It follows that

ψg − ψf = ([E′1]− [E1]) + ([E′2]− [E2]) + [E′0] +

−([E′12]− [E12]) + [E′01] + [E′02])× [P1] +
+[E′012]× [P2].

Now use that E′1 is the blow-up of E1 along Z, and that E′2 is the blow-up
of E2 along Z2 := Z ∩ E2. For these use the formula (6). Now the full
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exceptional divisor E′0 is a Pc−1-bundle over Z, E′01 is a Pc−2-bundle over
Z, E′02 is a Pc−1-bundle over Z2 while E′012 is a Pc−2-bundle over Z2. For
these apply (7).

The coefficient of [Z] is found to be equal to

[Pc−1] + ([Pc−2]− 1)− [Pc−2] · [P1] = 0

and the coefficient of [Z2] equals

([Pc−1]− 1)− ([Pc−2]− 1 + Pc−1) · [P1] + [Pc−2] · [P2] = 0.

�
As a consequence:

Corollary 7.2.3.
χHdg(ψmot

f ) = χHdg(X∞).



LECTURE 8

Motivic Nearby Fibre, Examples

Example 1: Let F,L1, . . . , Ld ∈ C[X0, X1, X2] be homogeneous forms with
degF = d and degLi = 1 for i = 1, . . . , d, such that F ·L1 · · ·Ld = 0 defines
a reduced divisor with normal crossings on P2(C). Consider the space

X = {([x0, x1, x2], t) ∈ P2 ×∆ |
d∏
i=1

Li(x0, x1, x2) + tF (x0, x1, x2) = 0}

where ∆ is a small disk around 0 ∈ C. Then X is smooth and the map
f : X → ∆ given by the projection to the second factor has as its zero fibre
the union E1 ∪ · · · ∪ Ed of the lines Ei : Li = 0. These lines are in general
position. The formula (25) gives

χHdg(ψmot
f ) = (1− g)(1 + L)

where g =
(
d−1

2

)
is the genus of the general fibre Xt, a smooth projective

curve of degree d. The table is
H0 H1 H2

weight 0 1 g 0
weight 2 0 g(L) L

One sees that there are only even weight terms for H1(X∞) and its only
primitive subspace has weight 2 and dimension g (since dimH1(X∞) = 2g)
and in particular, by Lemma 7.1.5 N has g Jordan blocs of size 2, i.e. is
“maximally unipotent”. Indeed the monodromy diagram is

0
•

g · 1
∼←−−−−
N

2
•
gL

Example 2: In the same example, replace P2 by P3 and curves by surfaces,
lines by planes. Then the space X will not be smooth but has ordinary
double points at the points of the zero fibre where two of the planes meet the
surface F = 0. There are d

(
d
2

)
of such points, d on each line of intersection.

Blow these up to obtain a family f : X∞ → ∆ whose zero fibre D = E ∪ F
is the union of components Ei, i = 1, . . . , d which are copies of P2 blown up
in d(d − 1) points, and components Fj , j = 1, . . . , d

(
d
2

)
which are copies of

P1 × P1. Thus

χHdg(D(1)) = d(1 + (d2 − d+ 1)L + L2) + d

(
d

2

)
(1 + L)2.

The double point locus D(2) consists of the
(
d
2

)
lines of intersections of the

Ei together with the d2(d− 1) exceptional lines in the Ei. So

χHdg(D(2)) = d(d− 1)(d+
1
2

)(1 + L).

55
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Finally D(3) consists of the
(
d
3

)
intersection points of the Ei together with

one point on each component Fj , so

χHdg(D(3)) =
(
d

3

)
+ d

(
d

2

)
=

1
3
d(d− 1)(2d− 1).

Using the Hodge numbers for a smooth degree d surface are

h2,0 = h0,2 =
(
d− 1

3

)
, h1,1 =

1
3
d(2d2 − 6d+ 7)

one finds
χHdg(ψmot

f ) =
(
h2,0 + 1

)
(1 + L2) + h1,1L.

The table is

H0 H2 H4

weight 0 1 h2,0 0
weight 2 0 h1,1(L) 0
weight 4 0 h2,0(L2) L2

There are only weight 4 and 2 primitive spaces, that dim GrW2 = h1,1 and
one has dimW4 = h2,0. The monodromy diagram simplifies to

2
•

[h1,1−h2,0]L

0
•

h2,0·1
∼←−−−−
N

2
•

h2,0L
∼←−−−−
N

4
•

h2,0L2

and hence there are h2,0 Jordan blocs of size 3 and h1,1 − h2,0 blocks of size
1.

Interlude: An arbitrary degeneration into a normal crossing sur-
face. I use the same notation as in Example 6.3.1 from Lecture 6. The
Hodge characteristic for ψmot is immediately found from the degeneration:

χHdg(ψmot
f ) = χ(Γ)(1 + L2) + (m− 2`)L

+(
∑

j VgCj −
∑

i VgXi )(1 + L)
+
∑

iWpXi ,qXi
.

 (26)

Let me now calculate the limit mixed Hodge structures using the Hodge
numbers g = h1,0(Xt) = h0,1(Xt), p = h2,0(Xt) and q = h1,1(Xt) on the
nearby smooth surface Xt.

First look at the mixed Hodge structure H1(X∞). Example 7.1.6 ex-
hibits the gradeds of the weight filtration. Let

Vg−c = GrW1 H1(X∞), g − c := h1,0(GrW1 H1(X∞)).

Then the diagram reads:
1
•

Vg−c

0
•
c

∼←−−−−
N

2
•
c·L

By Example 7.1.8 one has c = h1(Γ) = dimW0H
1(X0).
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Next, consider H2(X∞). Let Va = GrW1 H2(X∞) and let Wh,k be the
primitive of part of GrW2 H2(X∞). The relevant numbers are

a = h1,0(H2), h = h2,0(H2), k = h1,1(H2), b = h0,0(H2).

The diagram becomes
2
•

Wh,k

1
•
Va

∼←−−−−
N

3
•

Va·L

0
•
b

∼←−−−−
N

2
•
bL

∼←−−−−
N

4
•
bL2

It follows that b is the number of Jordan blocks of size 3, a the number of
Jordan blocks of size 2.

By Example 7.1.8 and by inspecting Table 6.1 one finds

b = W0H
2(X0) = h2(Γ), Va = GrW1 H2(X0) = Coker(α2).

Note also that

p = h2,0(Xt) = h+ a+ b, q = h1,1(Xt) = k + 2a+ b.

This follows from Cor. 7.1.4. So, finally, the relevant information can be
summarized as follows.
g = h1,0(Xt) p = h2,0(Xt) q = h1,1(Xt) (Hodge numbers

of nearby fibre)
h1(Γ) = c h2(Γ) = b (invariants of local monodromy T )
a = dim Coker(α2) b (number of Jordan blocks

of T |H2(Xt) of size 2, 3).

The table for the graded parts of the limit mixed Hodge structure is:

H0 H1 H2 H3 H4

weight 0 1 h1(Γ) h2(Γ) 0 0
weight 1 0 Vg−c Va 0 0
weight 2 0 h1(Γ) · L bL +Wh,k h1(Γ) · L 0
weight 3 0 0 Va · L Vg−c · L 0
weight 4 0 0 h1(Γ) · L2 h1(Γ) · L2 L2

Compare these results with (26):

Proposition 8.1.4. One has the following equalities in K0(hs):

Va − Vg−c =
∑
VgCj −

∑
i VgXi

(m− 2`) · L +
∑

iWpXi ,qXi
= (−2c+ b) · L +Wh,k.

In particular

g =
∑
i

gXi −
∑
j

gCj + a+ c

p =
∑
i

pXi + a+ b

q =
∑
i

qXi +m+ 2a+ 2c− 2`.



58 8. MOTIVIC NEARBY FIBRE, EXAMPLES

Remark . These results make the results from [Per, Ch. II] more explicit.

Let me illustrate the above with some concrete examples.

Example 3: I come back to Example 6 from Lecture 3, the degeneration
tF + F1F2 = 0 inside P3 × C where degF = d,degF1 = d1, degF2 = d2. I
explained in Lecture 3 that there are two possible degenerations. It is a nice
exercise to calculate that in both cases

χHdg(ψmot
f ) = 1 + d1d2d · L + L2 +Wpd1 ,qd1−1 +Wpd2 ,qd2−1

+V 1
2
d1d2(d1+d2−4)+1(1 + L).

The table thus becomes

H0 H2 H4

weight 0 1 0 0
weight 1 0 V 1

2
d1d2(d1+d2−4)+1 0

weight 2 0 d1d2d · L +Wpd1 ,qd1−1 +Wpd2 ,qd2−1 0
weight 3 0 V 1

2
d1d2(d1+d2−4)+1 · L 0

weight 4 0 0 L2

Hence the weight filtration is W4 = W3 ⊃W2 ⊃W1 ⊃W0 = 0 which implies
that N2 = 0, and the monodromy diagram simplifies to

2
•

d1d2dL+Wpd1
,qd1
−1+Wpd2

,qd2
−1

0
•

V 1
2 (d1d2(d1+d2−4)+1

∼←−−−−−−−
N

4
•

V 1
2 (d1d2(d1+d2−4)+1

·L

Hence the monodromy has d1d2(d1 + d2 − 4) + 2 Jordan blocs of size 2 and
2N + 2 + 2pd1 + 2pd2 + qd1 + qd2 blocs of size 1.

Example 4: Now I go back to Example 4 from Lecture 3, the degeneration
given by {Q1Q2+tF4 = 0} ⊂ P3×C, where Q1, Q2 are homogeneous quadric
forms with zero locus smooth quadrics and F4 a quartic form whose zero
locus is a smooth surface. After blowing up the 16 double points {t =
Q1 = Q2 = F4 = 0} of the total space of the family (a hypersurface inside
∆ × P3); the special fibre consists of eighteen smooth components which
intersect transversally according to the pattern described in loc. cit. One
gets

χHdg(ψmot
f ) = 1 + (18L + V1) + (L2 + V1 · L).

where V1 := H1(C); note that C = {t = Q1 = Q2 = 0} is an elliptic curve.
The table becomes

H0 H2 H4

weight 0 1 0 0
weight 1 0 V1 0
weight 2 0 18L 0
weight 3 0 V1 · L 0
weight 4 0 0 L2

Hence the monodromy has two Jordan blocs of size 2 and 18 blocs of size 1.



LECTURE 9

Motivic Aspects of Degenerations, Applications

9.1. The Motivic Nearby Cycle: the General Case

Now I no longer assume that ordEif = ei, the multiplicity of f along
Ei is one. Let f̃ : X̃ → ∆ denote the normalization of the pull-back of X
under the map µe : ∆→ ∆ given by τ 7→ τ e = t. It fits into a commutative
diagram describing the e-th root of f :

X̃
ρ
−→ X

ef
y f

y
∆

µe−−→ ∆.

Note that X̃ is in general not a smooth variety so that one has to perform
blowings up introducing possibly new components of higher multiplicity. So
one should continue extracting roots. One can show [P-S, Theorem 11.11]
that the process terminates, say at

f ′ : X ′ → ∆, (f ′)−1(0) = D = D1 ∪ · · · ∪DN ′

where the base change ∆→ ∆ has order a multiple of e which is still called
e.

Example 9.1.1. The simplest case is an ordinary multiple point, say of
order e. Extracting the e-th root produces a total space X̃ which has a
unique singularity which is an ordinary multiple point, and blowing it up
gives a smooth variety X with new fibre D1∪D2, a union of the exceptional
component D1 which is a hypersurface of degree e in Pn+1 and D2 the
strict transform of the original singular fibre. The intersection D1 ∩ D2 is
a hyperplane section of D1. Indeed, locally inside (t, x1, . . . , xn+1)-space
one has an equation f = t + g(x1, . . . , xn+1) = 0 where g starts off with
a homogeneous polynomial ge of degree e. Extracting the e-th root means
replacing t by te. Blowing up in the origin can be done by setting xk = tyk,
k = 1, . . . , n+ 1 and then f pulls back to

f̃ = te(1 + ge(y1, . . . , yn+1) + th(y1, . . . , yn+1)) = te · fnew.

The proper transform of the total space becomes fnew = 0 with exceptional
divisor t = 0. The exceptional component of the zero fibre is the homoge-
neous hypersurface inside Pn+1 given by ye0 + ge(y1, . . . , yn+1) = 0. In the
given (t, y1, . . . , yn+1)-chart the equation is t = 0 = 1+ge(y1, . . . , yn+1) which
in this chart does not meets the proper transform of the old fibre. In the
(u, u1, . . . , un+1)-chart given by x1 = u, t = uu1, xk = uuk, k = 2, . . . , n+ 1
one finds the equation

fnew = ue1 + ge(1, u2, . . . , un+1) + uh(u2, . . . , un+1) = 0

59
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with exceptional locus given by u = 0 = {ue1 + ge(1, u2, . . . , un+1) = 0} and
the proper transform of the old fibre by u1 = 0 = {ge(1, u2, . . . , un+1) +
uh(u2, . . . , un+1) = 0} so that the intersection of D1 and D2 in this chart is
the smooth hypersurface in (u2, . . . , un+1)-space with equation

ge(1, u2, . . . , un+1) = 0.

The cyclic group µe acts on the component

D1 = Ve,n+1 := {(y0, y1, . . . , yn+1) ∈ Pn+1 | ye0 + ge(y1, . . . , yn+1) = 0}.
as follows

(y0, y1, y2, . . . , yn+1) 7→ (εy0, ε
−1y1, y2, . . . , yn+1), ε = e

2πi
e .

So on the intersection D1 ∩ D2 it also acts non-trivially. In fact the same
action is reproduced on a hypersurface of the same degree but one dimension
less.

So I have reduced the general situation to the case treated in the previous
Lecture. Here the first N components correspond to the ‘old’ components Di

while the others come from possible blow-ups. The special fibre E′ = f ′−1(0)
is now a complex variety equipped with the action of the cyclic group of order
a multiple of e. Let me introduce the associated Grothendieck-group:

Definition 9.1.2. Let Kµ̂
0 (Var) denote the Grothendieck group K0(Varµ̂)

of complex algebraic varieties with an action of a finite cyclic order auto-
morphism modulo the subgroup generated by expressions [P(V )]− [Pn×X]
where V is a vector bundle of rank n+ 1 over X with action which is linear
over the action on X. See [Bitt2, Sect. 2.2] for details.

To explain why one should divide out by the relations [P(V )] − [Pn ×
X], recall (Example. 2.1.7 1) that in the ordinary Grothendieck group the
relation [P(V )] = [Pn ×X] holds. These relations extend to the case where
one has a group action.

Still assume that the fibres of f are projective varieties. Following
[Bitt2, Ch. 2] define the motivic nearby fibre of f in this setting by

ψmot
f :=

∑
m≥1

(−1)m−1[D(m)× Pm−1] ∈ Kµ̂
0 (Var)

Actually, all constructions give varieties with natural morphisms to the orig-
inal fibre X0 = f−1(0). So it is natural to use a relative version of the
Grothendieck group K0(Var) which came up in § 2.1:

Definition 9.1.3. Let S be a complex algebraic variety. Then VarS denotes
the category of varieties over S to be thought of as morphisms X → S.
Let K0(Var/S) be the free abelian group on isomorphism classes of complex
algebraic varieties over S modulo the scissor relations where the class [X] of
X gets identified with [X −Y ] + [Y ] whenever Y ⊂ X is a closed subvariety
over S. Identify K0(Var/pt) with K0(Var).

The direct product between a variety over S and a variety over T gives a
variety over S×T . This is compatible with the scissor relations and defines
an “exterior” product K0(Var/S)×K0(Var/T ) → K0(Var/S×T ). When S =
T , taking instead the fibred product, defines a ring structure on K0(VarS)
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with unit the class [S] of the identity morphism S
id−→ S. Taking T = pt,

the exterior product makes K0(Var/S) into a K0(Var)-module.
For a morphism ϕ : S → T , composition defines a push forward mor-

phism ϕ! : K0(Var/S)→ K0(Var/T ) and the fibre product construction gives
a pull back ϕ−1 : K0(Var/T )→ K0(Var/S) which are K0(Var)-linear.

Remark 9.1.4. One has indeed that ψmot
f ∈ Kµ̂

0 (VarX0
).

Example 9.1.5 (Continuation of Example 9.1.1). The cyclic group G = µe
acts. The component D1 = Xe,n+1 is a smooth hypersurface in Pn+1 of
degree e, and D1 ∩ D2 can be identified with a smooth hypersurface Xe,n

inside Pn. The Hodge characteristic becomes

χHdg(D2) + (−1)n[Hn
prim(Xe,n+1)−Hn−1

prim(Xe,n)(1 + L)]− (L + · · ·+ Ln−1)

The G-invariant part can be found by noting that G acts on Xe,n+1 with
Pn as quotient; indeed the projection along the y0-axis exhibits Xe,n+1 as a
cyclic quotient of Pn ramified along Xe,n and this implies that the splitting
χHdg(Xe,n+1) = χHdg(Pn) + (−1)nHn

prim(Xe,n+1) reflects the splitting into
the G-invariant part and the part on which G acts non-trivially. The same
holds for χHdg(Xe,n).

Let me continue with the general theory. As in the case where all the ei
are one, one can show that

(1) ψmot
f only depends on the nearby fibre;

(2) χHdg(ψmot
f ) = χHdg(X∞)

Note however that the individual hypercohomology groups Hk(ψmot
f ) still

have an action of a finite group and so there is finer information floating
around of which I want to take advantage. Let me do this by introducing
the category of graded real Hodge structures with finite automorphisms hsµ̂.
Its objects are pairs (H, γ) consisting of a graded Hodge structure (i.e. di-
rect sum of pure Hodge structures of possibly different weights) H and an
automorphism γ of finite order of this Hodge structure.

I am going to consider a kind of tensor product of two such objects,
which is called convolution (see [SchS], where this operation was defined
for mixed Hodge structures and called join). I shall explain this by settling
an equivalence of categories between hsµ̂ and a category fhs of so-called
fractional Hodge structures. Note that the weights are not fractional, but
the indices of the Hodge filtration!

Definition 9.1.6 (see [L]). A fractional Hodge structure of weight k is a
rational vector space H of finite dimension, equipped with a decomposition

HC =
⊕
a+b=k

Ha,b

where a, b ∈ Q, such that Hb,a = Ha,b. A fractional Hodge structure is de-
fined as a direct sum of pure fractional Hodge structures of possibly different
weights.

Lemma 9.1.7. There is an equivalence of categories G : hsµ̂ → fhs.
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Proof : Let (H, γ) be an object of hsµ̂ pure of weight k. Define Ha =
Ker(γ − exp(2πia);HC) for 0 ≤ a < 1 and for 0 < a < 1 put

H̃p+a,k−p+[1−a] = Hp,k−p
a , H̃p,k−p = Hp,k−p

0

This transforms (H, γ) into a direct sum H̃ =: G(H, γ) of fractional Hodge
structures of weights k + 1 and k respectively. Conversely, for a fractional
Hodge structure H̃ of weight k one has a unique automorphism γ of finite
order which is multiplication by exp(2πib) on H̃b,k−b.
Note that this equivalence of categories does not preserve tensor products!
Hence it makes sense to make the following definition:

Definition 9.1.8. The convolution (H ′, γ′) ∗ (H ′′, γ′′) of two objects in hsµ̂

is the object corresponding to the tensor product of their images in fhs:

G
(
(H ′, γ′) ∗ (H ′′, γ′′)

)
= G(H ′, γ′)⊗G(H ′′, γ′′).

Note that the Hodge character refines to

χµ̂Hdg : Kµ̂
0 (Var)→ K0(hsµ̂) = K0(fhs).

Now the Hodge number polynomial P introduced in Lemma 1.2.4 must be
redefined slightly as to accommodate rational exponents:

P µ̂ : K0(fhs)→ lim
←

Z[u
1
n , v

1
n , u−1, v−1].

Example 9.1.9. Let µn be the cyclic group of order n. For each divisor m of
n there is a unique irreducible rational representation Wm := Q[t]/(Φm(t))
where Φm is the m-th cyclotomic polynomial. It is of degree ϕ(m). The sum
of these Wm over all divisors m of n is precisely the regular representation.

Over the complex numbers one has the one-dimensional representations
U k
n

= C[t]/(t− e
2kπ
n ) and

Wm ⊗ C =
⊕

(k,m)=1

U k
m
.

Suppose now that Wm carries a Hodge structure of weight w. Then the Hp,q

split into such irreducible modules. Since Hp,q is the complex conjugate of
Hq,p , if Hp,q contains U k

m
, Hq,p has to contain Um−k

m
. The sum U k

n
⊕Un−k

n

can then be considered as a fractional real Hodge structure with Hodge num-
bers hp+

k
m
,q+m−k

m = hq+
m−k
n

,p+ k
m = 1. One can consider the corresponding

fractional (rational) Hodge structure on Wm

Wm ⊗ C = Ṽ p‖w
m

:=
⊕

(k,m)=1

W
p+ k

m
,q+m−k

m
m

with all non-zero fractional Hodge numbers equal to 1 andWm then underlies
a weight w + 1 fractional Hodge structure.

− For w = 0 this fractional Hodge structure will be denoted Ṽ 0
m

:=

Ṽ 0‖0
m

.

− If w = 1, there is no choice: one must have that Wm ⊗ C = Ṽ 0‖1
m

.
− If w = 2 one has more possibilities:

(1) Wm is pure of type (1, 1) and Wm = Ṽ 1‖2
m

.
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(2) W 1,1
m = 0 and Wn = Ṽ 0‖2

m

.

(3) A mixed situation. Let Im = {i1, . . . , iϕ(m)} the increasing set
of integers between 1 and m coprime with m and let σ be a
permutation of Im.

W̃ k‖σ
m

:=


W 2,0
m = Uσ(i1)

m

⊕ · · · ⊕ Uσ(ik)

n

, k < 1
2ϕ(m)

W 1,1
m = Uσ(ik+1)

m

⊕ · · ·Uσ(iϕ(m)−k−1)

m

W 0,2
m = Uσ(iϕ(m)

m

⊕ · · · ⊕ Uσ(iϕ(m)−k)

m

.

Suppose that σ = id and m an odd prime; then the corre-
sponding nonzero fractional Hodge numbers are

h1− k
m
,2+ k

m . . . h1− 1
m
,2+ 1

m ,

h1+ k+1
m

,2− k+1
m . . . h2− k+1

m
,1+ k+1

m

h2+ 1
m
,1− 1

m . . . h2+ k
m
,1− k

m

Intermezzo: cohomology of smooth hypersurfaces. See for instance
[Grif69] or [C-M-P, Ch. 3.2] for what follows. Let XF ⊂ Pn+1 be a smooth
hypersurface given by a homogeneous equation F = 0 of degree d. Let
{ξ0, . . . , ξn+1} be homogeneous coordinates and set

Ω :=
∑
j

(−1)jξjdξ0 ∧ · · · d̂ξj ∧ · · · ∧ dξn+1.

Then the primitive cohomology group Hn
prim(XF ) can be represented by

certain closed rational forms on Pn+1 having poles along XF of order at
most n+ 1:

A

Fn+1−`Ω, degA = t(`) = d(n− `+ 1)− n− 2, ` = 0, . . . , n

For fixed ` one gets F ` where A represents an element in F `+1 if and only if
A belongs to the Jacobian ideal of F . In particular, for ` = n a basis for the
homogeneous polynomials of degree d− n− 2 gives a basis for Hn,0(XF ).

Example 9.1.10 (Continuation of Example 9.1.1). Apply the above con-
siderations to the hypersurface Xe,n+1 which has an action of G. The de-
scription for Hn,0 as given in the intermezzo shows that Hn,0(Xe,n+1) splits
into the following eigenspaces:

Hn,0(Xe,n+1) = U1,e ⊗ V [e−n−2] ⊕ U2,e ⊗ V [e−n−3] ⊕ · · · ⊕ Ue−n−3,e

V = C[y1, . . . , yn+1], V [d] = degree d-part of V .

This should help to determine the splitting of Hn
prim(Xe,n+1) into rational

G-modules carrying a Hodge structure. I shall treat two special cases
(1) An ordinary curve singularity of order e. One must have

H1(Xe,2) =
⊕

d|e, d 6=1,e

Ṽ 0‖1
d

.

The intersection Xe,1 consists of e points which G permutes cycli-
cally. So this gives the direct sum as representation space the reg-
ular representation

⊕
d|eWd, or as a Hodge structure,

⊕
d|eW 0

d
.
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This implies that the Hodge theoretic nearby fibre is

(1−
∑

d|e, d 6=1

W 0
d
) · (1 + L)−H1(D2)−

∑
d|e, d 6=1

Ṽ 0‖1
d

.

(2) An ordinary surface singularity of multiplicity 5. The exceptional
component is a smooth surface of degree 5 in P3 meeting the proper
transform of the original fibre in a smooth plane curve of degree 5,
hence of genus 6.

One has h2,0 = 4, h1,1
prim = 4 ·13. Here H2,0(X5,3) = U1,5 +3U2,5

so that H2
prim(X5,3) = Ṽ 0‖5

5

⊕ 2W̃ 1‖(2,1,4,3)
5

⊕ 10Ṽ 1‖2
5

. The Hodge
theoretic nearby fibre is

χHdg(D2)− Ṽ 0‖1
5

· (1 + L)− L + Ṽ 0‖5
5

+ 2W̃ 1‖(2,1,4,3)
5

+ 10Ṽ 1‖2
5

.

9.2. Vanishing Cycle Sheaf and Applications to Singularities

I shall first explain the construction of the vanishing cycle sheaf φf (K)
for a complex K on the total space. It is based on the cone construction on
the adjunction morphism k# : K → (Rk)∗k−1K:

φf (K) := Cone(i∗k# : i∗K → i∗(Rk)∗k−1K = ψf (K)).

The Hodge theoretic vanishing cycle complex

φHdg
f := Cone(QHdg

X0
→ ψHdg

f ))

as a cone over a morphism of Hodge complexes of sheaves on D has a canon-
ical structure of a Hodge complexes of sheaves on D. Its stalk at x ∈ D
computes the reduced cohomology of the Milnor fibre F = Milf,x. This is a
direct consequence of the comparison result explained in Remark 4.2.2.

The long exact sequence of the cone shows that∑
(−1)kHk(D,φHdg

f ) =
(∑

(−1)kHk(D,ψHdg
f ))

)
− χHdg(E)

= χHdg(ψmot
f − [D]),

so that it makes sense to define

φmot
f :=

∑
(−1)j+1[D(j)× Pj−2 × A1] = ψmot

f − [D] ∈ Kµ̂
0 (Var).

Examples 9.2.1 (Continuation of Example 9.1.1). (1) Note that in the
curve case the above expression simplifies to φmot

f = −D(2) × A1

and that D(1) consists of points permuted by the action of µe. It
follows that the Hodge theoretic vanishing cycle is just

−
∑

d|e, d 6=1

W 0
d
· L

(2) In the surface case the expression for the motivic vanishing cycle
simplifies to −D(2)×A1 +D(3)×A1×P1. For an isolated ordinary
surface singularity of prime multiplicity e one then gets

−(1− Ṽ 0‖1
e

+ L) · L = −(L + 1) · L + Ṽ 0‖1
e

· L.
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Suppose that now u : W → C is a projective morphism where W is
smooth, of relative dimension n and that there is a single isolated critical
point x such that u(x) = 0. Construct f : X → ∆ by replacing the zero
fibre u−1(0) by a divisor with normal crossings E as above. In particular,
there is a complex analytic map ι : X → W . The Milnor fibre of F of u at
x corresponds to the Milnor fibre of f at any of the points y ∈ ι−1x. Since

H̃k(F ) = Hk(φHdg
f,y )

a spectral sequence argument which will be omitted shows that H̃k(F ) =
Hk(E, φHdg

f ), the reduced cohomology of F has a mixed Hodge structure. It
is known that F has the homotopy type of a wedge of spheres of dimension
n = dimF so that only H̃n(F ) is possibly non-zero. Hence

χµ̂Hdg(F ) = χµ̂Hdg(φf ) = (−1)n[H̃n(F )].

Write
eµ̂(F ) := P µ̂◦χµ̂Hdg(F ) =

∑
α∈Q, w∈Z

m(α,w)uαvw−α.

In the literature several numerical invariants have been attached to the sin-
gularity f : (X,x) → (C, 0). These are all related to the numbers m(α,w)
as follows:

(1) The characteristic pairs [Ste77, Sect. 5].

Chp(f, x) =
∑
α,w

m(α,w) · (n− α,w).

(2) The spectral pairs [N-S]:

Spp(f, x) =
∑
α 6∈Z,w

m(α,w) · (α,w) +
∑
α∈Z,w

m(α,w) · (α,w + 1).

(3) The singularity spectrum in Saito’s sense [Sa]:

SpSa(f, x) = eµ̂(F )(t, 1).

(4) The singularity spectrum in Varchenko’s sense [Var]:

SpV(f, x) = t−1eµ̂(F ))(t, 1).

As a consequence, calculation of the motivic vanishing cycle gives a way to
find all of these invariants.

Examples 9.2.2 (Continuation of Example 9.1.1). (1) For an ordinary
curve singularity of prime order e one finds

eµ̂(F ) = −
e−1∑
k=1

u
k
e v

e−k
e

and hence, for example, Chp(f, x) = −
∑e−1

k=1(1− k
e , 1).

(2) For an ordinary surface singularity of prime order e one finds

eµ̂(F ) = −uv − u2v2 + uv

(
e−1∑
k=1

u
k
e v2− k

e

)
which gives for instance Spp(f, x) =

∑e−1
k=1(ke , 2)− (1, 3)− (2, 4).
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As a last illustration of a motivic link I shall rephrase the original Thom-
Sebastiani theorem (i.e. for the case of isolated singularities):

Theorem. Consider holomorphic germs f : (Cn+1, 0) → (C, 0) and g :
(Cm+1, 0)→ (C, 0) with isolated singularity. Then the germ

f ⊕ g : (Cn+1 × Cm+1, (0, 0))→ C, (f ⊕ g)(x, y) := f(x) + g(y), (27)

the join of f and g, has also an isolated singularity, and

χµ̂Hdg(φf⊕g) = −χµ̂Hdg(φf ) ∗ χµ̂Hdg(φg)

so
eµ̂(φf⊕g) = eµ̂(φf ) · eµ̂(φg) ∈ lim

←
Z[u

1
n , v

1
n , u−1, v−1]..

This theorem states that the Hodge theoretic vanishing cycle of the join
of f and g is up to a sign equal to the convolution-product of the Hodge
theoretic vanishing cycles of f and g. It makes you wonder whether there
is a general construction on the level of Kµ̂

0 (Var). Looijenga [L] gave such a
construction, but only after making the Lefschetz motive invertible, e.g. in

Mµ̂ := Kµ̂
0 (Var)[L−1].

He shows that the Thom-Sebastiani property holds already in this ring.
In fact, in view of Remark 9.1.4, it is more natural to work with the

relative versions (see Definition 9.1.3)

Mµ̂
S := Kµ̂

0 (VarS)[L−1].

Indeed, starting from a function f : X → C constructions leading up to the
motive associated to the join (27) take place in the relative motives over the
fibre over 0. This explained in the next section.

9.3. Motivic Convolution

Here is an excerpt from [L] explaining the crucial construction of joins
and convolutions in the motivic context.

Instead of considering varieties admitting an action of some finite cyclic
group µn it is more efficient to consider them all at once by assembling
these in the pro-cyclic group µ, thereby explaining the notation Varµ̂. An
element of µ can be thought of an infinite sequence (a1, a2, · · · ) where only
those aj ∈ µj are different from 1 for which j = kn, a multiple of some
integer n and such that for those the compatibility restrictions akn = akn
hold. Clearly, if a variety admits a µ-action it admits a µn-action for some n
and conversely. If X and Y admit a µ-action, also X×Y admit a (diagonal)
µ-action, but X might have a µn-action, Y a µm-action with n 6= m and
then X×Y admits a µr-action with r = lcm(m,n). The convolution product
is defined with the aid of the Fermat curve

Jn := {(u, v) ∈ (C∗)2 | un + vn = 1}.
It is invariant under the subgroup µ2

n ⊂ (C∗)2. Define

Jn(X,Y ) := Jn ×(µn×µn) (X × Y ).

(If a group G acts on varieties A and B, then A×GB stands for the quotient
of A × B by the equivalence relation (ga, b) ∼ (a, gb) with G acting on it
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by g[a, b] := [ga, b] = [a, gb]). The group µn acts diagonally on Jn(X,Y ),
i.e. ζ[(u, v), (x, y)] := [(ζu, ζv), (x, y)]. Summarizing: from a couple (X,Y )
of varieties with µn-action I have produced a new variety Jn(X,Y ) with
µn-action. Clearly, Jn(X,Y ) ∼= Jn(Y,X) and if m is a divisor of n and the
action of µn on X and Y is through µm, then Jm(X,Y ) = Jn(X,Y ). So this
induces a binary operation, the join

J : Varµ̂ ×Varµ̂ → Varµ̂

and likewise on the level of K-theory:

J :Mµ̂ ×Mµ̂ →Mµ̂.

To define the convolution, one needs the augmentation by passing to the
quotient

ε :Mµ̂ →M→Mµ̂, ε[X] = [X/µ].
The last map comes from considering X/µ as a variety with trivial µ-action.

The convolution can now be defined as follows:

a ∗ b = −J(a, b) + (L− 1) · ε(ab), a, b ∈Mµ̂.

This definition is set up just so that 1 is a unit for ∗ and ε transfers ∗ into
the usual product. In the relative situation, say X → S and Y → T , one
has X × Y → S × T and if X and Y have a µ-action, there is an exterior
convolution product [X] ∗ [Y ] ∈Mµ̂

S×T .
Consider now the Thom-Sebastiani property. So let X and Y be smooth

connected varieties and f : X → C, g : Y → C non-constant morphisms. Set
X0 = f−1(0) and Y0 = g−1(0). Note that in general (f ⊕ g)−1(0) ⊃ X0× Y0

but equality does not necessarily hold. This explains that some care has to
be taken:

Theorem. In the preceding situation one has

[φf⊕g|X0×Y0
] = [φf ] ∗ [φg] ∈Mµ̂

X0×Y0
.





LECTURE 10

Motives in the Relative Setting, Topological
Aspects

10.1. The Relative Approach

I started the lectures with the motivic topological point of view in the
topological category. I can do this in a relative way, i.e. one can consider
topological spaces equipped with a continuous map to some fixed base space
S. For such a relative topological space f : X → S one should consider a
relative Euler characteristic built from the sheaves Rkf∗QX

. These belong
to the category of sheaves of Q-vector spaces on S.

To get a well-defined Euler characteristic, one needs some finite dimen-
sionality condition as in the absolute case. In the algebraic setting this is
automatic and I shall not make this condition explicit but loosely refer to
it as f has finite dimensional fibres. As to functoriality, given a continuous
map f : X → Y , to sheaves F,G of Q-vector spaces on X, respectively G,
one can associate f−1G, the topological pull back, f∗F , the push forward,
and, if f has finite dimensional fibres, there is also f!F , the push forward
with proper support.

To an abelian category A one has associated its derived category Db(A)
consisting of bounded complexes K in A. Recall (§ 4.1) that the morphisms
between two complexes K → L are the fractions [f ]/[s] where f : K → M
and s : M s←− K are morphisms of complexes, s a quasi-isomorphism. The
brackets denote homotopy classes. Here I shall consider

Db(S) = Db(sheaves of Q-spaces on S).

The topological pull back f−1 is exact, while the push forward f∗ is only left
exact. They induce the functors f−1 : Db(Y )→ Db(X) and Rf∗ : Db(X)→
Db(Y ) respectively. The push forward with proper support induces Rf! :
Db(X) → Db(Y ). Although there is no functor f ! on the level of sheaves,
there is a pull back functor with proper support f ! : Db(Y )→ Db(X). This
is somewhat subtle. See [P-S, Chap. 13.1.4].

These four functors are related by adjoint relations

Hom(f−1L,K) = Hom(L,Rf∗K)
Hom(Rf!K,L) = Hom(K, f !L)

}
K ∈ Db(S), L ∈ Db(T ).

If you apply the first to K = f−1L and the second one to K = f !L, and
with the identity morphism, one gets the adjunction morphisms

f# : L→ Rf∗f
−1L, f# : Rf!f

!L→ L. (28)

The preceding constructions should be considered in relation with the
Verdier duality operator

69
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DX : Db(X)→ Db(X)

which is an involution. It intertwines f∗ and f! and also f−1 and f !:

Rf∗◦DX = DY ◦(Rf)!, f−1◦DY = DX◦f
!.

The definition of the Verdier duality operator is a bit involved. See [P-S,
Chap. 13.1.3]. The following example explains how it relates to the usual
Poincaré duality operator.

Example 10.1.1. The Verdier dual of the constant sheaf, DXQ
X

by defi-
nition computes Borel-Moore homology and ordinary homology:

H−p(X,DXQ
X

) = HBM
p (X), H−pc (X,DXQ

X
) = Hp(X). (29)

If X is a smooth complex algebraic variety, DXQ
X

is the sheaf Q
X

placed
in degree −2d, d = dimX so that HBM

p (X) = H−p(X,Q
X

[2d]) = H2d−p(X)
and Hp(X) = H−pc (X,Q

X
[2d]) = H2d−p

c (X). This shows that Verdier dual-
ity generalises Poincaré duality in a natural way.

The four functors just introduced have the following important proper-
ties. Details can be gleaned from [P-S, Chap. 13.1.4 and Appendix B.2.5–6].

Properties 10.1.2. (1) Hypercohomology comes from the constant map
aX : X → pt. Indeed for K ∈ Db one has

Hk(X,K) = Hk((RaX)∗K), Hk
c (X,K) = Hk((RaX)!K)). (30)

It follows that for a morphism f : X → Y , the induced map Hk(Y,K) →
Hk(X, f−1K) comes from the adjunction morphism

Hk(Y,L)
f#

−−→ Hk(Y,Rf∗f−1L) = Hk(X, f−1L).

Since for a proper morphism f one has Hk
c (Y,Rf∗f

−1L) = Hk
c (X, f

−1L),
this gives in this case an induced map

Hk
c (Y, L)

f#

−−→ Hk
c (X, f

−1L).

The other adjunction relation gives an induced map

Hk
c (X, f

!L) = Hk(Y, (Rf)!f
!L)

f#−−→ Hk
c (Y, L).

(2) Let i : Z ↪→ X be a closed embedding and U = X − Z the complement
with embedding j : U ↪→ X. Then there is an adjunction triangle in Db(X)
which is a distinguished triangle:

Ri∗i
!K → K → Rj∗j

−1K → [1]. (31)

The left exact functor (RaX)∗ preserves distinguished triangles and so

(RaZ)∗i!K → K → (RaU )∗j−1K → [1].

The cohomology of the first term, Hk(Z, i!K) by definition gives Hk
Z(X,K),

the cohomology with support in Z. This yields the long exact sequence

· · · → Hk
Z(X,K)→ Hk(X,K)

j∗

−−→ Hk(U,K)→ · · · .
For K = Q

X
this is the usual long exact sequence for cohomology with

supports.
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(3) There is a different adjunction triangle which you get applying Verdier
duality to (31):

(Rj)!j
−1K → K → Ri∗i

−1K → [1]. (32)

For K = Q
X

, but now with compactly supported cohomology (i.e. applying
the functor (aX)!) this gives

· · · → Hk
c (U)

j∗

−−→ Hk
c (X) i∗−→ Hk

c (Z)→ · · · .

This is clearly related to the motivic approach and can be generalised
to the relative situation as will be seen in § 10.2.

As a first step, let me introduce constructible sheaves: by definition these
are sheaves of Q-vector spaces restricting to a local constant system on the
open strata with respect to some stratification of S.

Example 10.1.3. In the algebraic category the sheaves Rkf∗QX
clearly

have this property: they are locally constant over the Zariski open subset
S0 over which f is smooth, then restrict f to the inverse image X1 of the
complement Sd−1 = S − S0. It is of locally differentiable trivial over some
Zariski-open subset S1 ⊂ Sd−1 and hence the sheaf Rkf∗QX(1) will be locally
constant over S1. Continuing in this way one gets the desired stratification
S ⊃ S0 ⊃ S1 ⊃ · · · .

It is then crucial that local systems as in the preceding system have finite
dimensional stalks. However, from the point of view of derived categories it is
better to have complexes whose stalks are not necessarily finite dimensional,
but whose cohomology is finite dimensional. For instance, in the above
example, one considers the entire derived complex Rf∗QX

. In this way one
arrives at the following definition

Definition 10.1.4. A complex of sheavesK of Q-vector spaces on S is called
a constructible complex if each cohomology sheaf Hk(K) is a constructible
sheaf of finite dimensional Q-vector spaces and if moreover Hk(K) = 0
for |k| � 0, i.e. K has bounded cohomology. The corresponding derived
category is denoted

Db
cs(S) = Db(constructible complexes of sheaves of Q-spaces on S).

If K ∈ Db
cs(S), one may put

[K] =
∑

(−1)k[Hk(K)] ∈ K0(Db
cs(S)).

Example 10.1.5 (Continuation of Example 10.1.3). The alternating sum
χtop(X/S) =

∑
(−1)k[Rkf∗QX

] = [Rf∗QX
] is a well-defined object in

K0(X,Db
cs(S)) and it generalises the topological Euler characteristic. How-

ever, only the Euler characteristic with compact support behaves motivi-
cally, as we have seen, and so I need to refine the preceding theory to
incorporate compact supports; one has to replace the functor Rf by the
compactly supported derived image functor Rf! and then

χctop(X/S) = [(Rf!QX
]. (33)

I shall next explain that this has a motivic interpretation.
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10.2. Perverse Sheaves

If X is a smooth variety there is a good topological duality theory. For
singular varieties one has to replace the constant sheaf Q

X
by a complex

which takes into account the singularities of X and which behaves well with
respect to Verdier duality. So, even if X is smooth, it is better to work
with Q

X
[d], i.e. one should place the complex in degree −d. Indeed, since

DX(K[n]) = (DXK)[−n] the complex Q
X

[d] is thus self-dual; it is the first
basic example of a perverse sheaf.

To explain what these are in general, recall the constructible complexes
introduced in § 10.1. Let X be a possibly singular variety and let U ⊂ X
be a Zariski open subset consisting entirely of smooth points of X. Given
any local system V of finite dimensional Q-vector spaces on U such as Q

U

there is a canonical way of extending it to a constructible complex Ṽ on X
which turns out to be self-dual under Verdier duality provided one places V
in degree −d, d = dimX. The resulting complex

ICX(V ) := Ṽ [d] ∈ Db
cs(X) (34)

is called the intersection complex and one has DX(IC(V )) = IC(V ). Such
a complex is called a perverse sheaf . See [P-S, Chap. 13.2] for details
on this and on what follows. More generally, if V is a local system of
finite dimensional Q-vector spaces on a Zariski dense open smooth subset
j : Z0 ↪→ Z of a closed subvariety i : Z ↪→ X, its perverse extension

πV = i∗[Ṽ [dZ ]] = i∗[ICZ(V )], dZ = dimZ

is a perverse sheaf on X. Note that this complex is zero outside of Z: it is
entirely supported on Z.

Examples 10.2.1. (1) Let V be a local system on ∆∗. Its perverse
extension to ∆ is j∗V [1] where j : ∆∗ ↪→ ∆ is the inclusion. Its
stalk over 0 is the subspace of invariants under the monodromy
acting on the general stalk of V .

(2) This becomes more involved if V is a local system over (∆∗)d with
local monodromy operators T1, . . . , Td acting on the generic stalk
W . The perverse extension over the coordinate hyperplanes is the
sheaf j∗V [d] but already the extension to the codimension-2 bound-
ary gives a 2-step complex and so on. For instance, (cf. [C-K-S87,
§ 1]) the fibre at the origin is a certain subcomplex of the full
Koszul complex on Nk = Tk − id, k = 1, . . . , d. The full complex is
as follows:

0→W
d0−−→ U ⊗W d1−−→ Λ2U ⊗W → · · · → ΛdU ⊗W → 0,

where U = Qe1 ⊕ · · · ⊕Qed and

dj(ui1 ∧ · · ·uij ⊗ w) =
∑
k

ek ∧ ui1 ∧ · · ·uij ⊗Nkw.

This complex calculates the stalk at the origin of Rj∗V . For in-
stance, if d = 1 its H0 gives the invariants and its H1 gives the
co-invariants.
The stalk at 0 of the perverse extension of V is obtained first by
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shifting the above complex so that it starts in degree −d and next,
one replaces ΛkU ⊗W by⊕

I QeI ⊗NIW, I = (i0, . . . , ik) (strictly increasing),
eI := ei0 ∧ · · · ∧ eik NI = Ni0◦ · · · ◦Nik .

For instance, if d = 1 this has the effect of naming the previous H0

now H−1 and replacing the old H1 by 0.

The perverse sheaves form an abelian subcategory Perv(X) of Db
cs(X)

and Db(Perv(X)) = Db
cs(X). This is not obvious at all and is explained in

[B-B-D]. One can also show that in a certain sense the category Perv(X)
is generated by intersection complexes of local systems on the smooth locus
of lower dimensional subvarieties:

Proposition 10.2.2. K0(PervX) is generated by the classes of the perverse
extensions of local systems defined on the smooth locus of closed subvarieties
of X.

The direct image functors do not preserve perversity: one has to consider
the derived functors Rf∗, Rf! : Db

cs(X) → Db
cs(Y ), and so even if K ∈

Perv(X), Rf∗K in general belongs to the larger category Db
cs(Y ).

Example 10.2.3. Regardless whether K is perverse or not, in Db
cs(X) one

has [K] = [i∗i!K] + [Rj∗j−1K].
With triangle (32) one finds [K] = [i∗i−1K] + [Rj!j−1K]. In the spe-

cial case K = Q
X

this reads [Q
X

] = [i!QZ
] + [Rj!QU

] (note that i∗ =
i!). Since (RaX)! preserves triangles, this gives the relation [(RaX)!QX

] =
[(RaZ)!QZ

] + [(RaU )!QU
] which is compatible with the scissor relation.

I shall explain that these considerations can be made relative and thus
will lead to a motivic interpretation of the relative Euler characteristic. I
can now state and prove the promised motivic interpretation of (33):

Lemma 10.2.4. The relative Euler class defines a ring homomorphism

χctop : K0(VarS)→ K0(Perv(S)).

Proof : Let K be a constructible complex on X. Apply Rf! to the distin-
guished triangle (32). This yields a new distinguished triangle in Db

cs(S).
take now K = Q

X
. Hence, as in Example 10.2.3 one gets the relation

[Rf!QX
] = [(R(f ◦i))!QZ

] + [(R(f ◦j))!QU
] in K0(Perv(S)), i.e. χctop(X/S) =

χctop(Z/S) + χctop(U/S). �
One of the difficulties of working with the categories Perv(X) and Db

cs(X)
is that the cohomology sheaves of an object in any of these categories rarely
are perverse. However, there is a modified cohomology theory which behaves
better: for a complex K ∈ Db

cs(X) the perverse cohomology πHk(K) is a
perverse sheaf. This is in general not a single sheaf, but a whole complex
of sheaves. I shall not give details on how to compute perverse cohomology
which is explained for instance in [deC-M], but rather give some relevant
examples which can be worked out given the explanation in loc. cit.

Examples 10.2.5. (1) If K ∈ Perv(X), πH0(K) = K and πHk(K) =
0 for k 6= 0.
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(2) If K is locally constant on a smooth variety X, one has πHj(K) = 0
unless j = d = dimX and then πHd(K) = K[d]. More generally
take for K any complex whose cohomology sheaves are locally con-
stant on X. Then πHj(K) =

(
Hj−d(K)

)
[d].

(3) This is a relative version of the previous example. Let f : X → Y
be a smooth morphism between complex manifolds and K a local
system on X. Then the direct images Rkf∗K are local systems on
Y . The perverse cohomology of such a local system is

πRkf∗K := πHkRf∗K = (Rk−ef∗K)[e], e = dimY.

(4) Let f : X → Y be a surjective morphism between smooth vari-
eties. Let Y 0 be the subset of the regular values of f and put
f0 : X0 = (f0)−1Y 0 → Y 0. Fix some k and let V k = Rkf0

∗QX0 .
This is a local system. Its perverse extension is Ṽ k[e] (see (34)
for the notation). The perverse direct image πRk+ef∗QX

always
contains the perverse complex Ṽ k[e] as a summand but it may
contain further summands entirely supported on the discriminant
locus Y − Y 0. For instance, if dimX = 2, dimY = 1 and k = 1
one has to add the summand Ker(R2f∗QX

→ j∗V
2) coming from

the Leray spectral sequence. This is somewhat involved and I refer
to [deC-M, Remark 3.4.12] for the calculation.

Recall that Deligne has shown [Del68] that the Leray spectral sequence
for a projective smooth morphism f : X → Y degenerates at E2. In fact
something stronger holds: one has a non-canonical decomposition

Rf∗QX
'
⊕

Rkf∗QX
[−k] (35)

which generalizes for perverse sheaves such as K = Q
X

[d] to the existence
of a non-canonical isomorphism

Rf∗K '
⊕

πRkf∗K[−k] (36)

If f is no longer smooth (35) in general is false, but I shall explain (Theo-
rem 12.3.2) that (36) remains true provided f is still projective. This is a
deep theorem, originally proved in [B-B-D] using characteristic p-methods
and later in [Sa88] by analytic means.

To hint at why such a theorem could be true, go back to the last ex-
ample. The k-th perverse image in general splits into objects constructed
from cohomology sheaves in different degrees and can become rather compli-
cated. The idea is that these extra pieces need to be present to compensate
for the fact that the ordinary Leray spectral sequence in general does not
degenerate at E2.



LECTURE 11

Variations of Hodge Structure

11.1. Basic Definitions

Up to now only one mixed Hodge structure at a time has been considered.
Instead, one can also consider mixed Hodge structures on a fixed vector space
that depend on parameters. The proper concept is that of a local system, i.e.
a locally constant sheaf of finite dimensional Q-vector spaces. Such a system
can be trivialized over a simply connected base and hence it pulls back to a
trivial system over the universal cover. This implies that such a system can
be seen as defined by a finite dimensional representation of the fundamental
group of the base. The image of the latter in the automorphisms of the
vector space is called the monodromy group of the local system. Suppose
that the local system is such that each stalk carries a Hodge structure. If
these fit nicely together, one speaks of a variation of Hodge structure:

Definition 11.1.1. Let S be a complex manifold. A variation of Hodge
structure of weight k on S is a pair (V, F ) consisting of a local system V
of finite dimensional Q-vector spaces groups on S and a finite decreasing
filtration F on the holomorphic vector bundle V = V ⊗QOS by holomorphic
subbundles (the Hodge filtration). These data should satisfy the following
conditions:

i) for each s ∈ S the filtration F induces a Hodge structure
of weight k on the stalk of V ;

ii) the connection∇ : V → V⊗OSΩ1
S whose sheaf of horizontal

sections is VC satisfies the Griffiths’ transversality condition

∇(Fp) ⊂ Fp−1 ⊗ Ω1
S . (37)

The notion of a morphism of variations of Hodge structure is defined in the
obvious way. Moreover, given two variations V, V ′ of Hodge structure over
S of weights k and k′, there is an obvious structure of variation of Hodge
structure on the underlying local systems of V ⊗ V ′ and Hom(V, V ′) of
weights k + k′ and k − k′ respectively.

Example 11.1.2. The standard example comes from geometry as follows.
Let f : X → S be a proper and smooth morphism between complex al-
gebraic manifolds. Such a morphism is locally differentiable trivial by the
Ehresmann theorem [Ehr]. Therefore the cohomology groups Hk(Xs) of
the fibres Xs fit together into a local system. By the fundamental results of
Griffiths [Grif68] this local system underlies a variation of Hodge structure
on S such that the Hodge structure at s is just the Hodge structure one has
on Hk(Xs).

75
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This leads immediately to the abelian category hs/S of variations of
Hodge structures over S. If f : X → S is smooth and projective the relative
Euler-class morphism can be refined since by Example 11.1.2 the Rkf∗QX
carry variations of Hodge structures. Indeed, then the class [f!QX

] =
[f∗QX

] =
∑

(−1)k[Rkf∗QX
] identified as the relative Euler characteristic

(see (33)), lives naturally in the K-group of the category of variations of
Hodge structures over S.
To go further one has to extend the category to variations of Hodge struc-
tures which are supported over a Zariski-open subset consisting of smooth
points of a Zariski-closed subvariety Z ⊂ S. This leads to the following
category:

Definition 11.1.3. The category hs/S of Hodge structures over S consists
of variations of Hodge structures supported over the smooth points of closed
subvarieties of S.

Theorem 11.1.4 (Existence of the relative motivic Hodge characteristic).
There is a morphism of rings

χc/S : K0(VarS)→ K0(hs/S),

which, when composed with the morphism

ratS : K0(hs/S)→ K0(Perv(S))

induced by the forgetful map, yields χctop.

Examples 11.1.5. (1) If f : X → S is a smooth map between projec-
tive manifolds, one has χc/S(X) =

∑
(−1)k[Rkf∗QX

] ∈ K0(hs/S) if
one equips the direct image sheaves with their natural structure of
variation of Hodge structure.

(2) Let f : X → S be a smooth projective surface fibered over a smooth
projective curve. Let S0 be the set of regular values of f and let
∆ = S − S0. Suppose that Xp, p ∈ ∆ is irreducible and has only
ordinary double points, say Np of them and that the genus of the
normalization of Xp equals gp. The variation of weight one Hodge
structure R1f∗Q|S0 is complete determined by the period map ϕ :
S0 → hg/Γ where g = genus of a smooth fibre, Γ = the monodromy
group of the family. Let me denote this variation by V 1

S0
. The

underlying local system extends to a constructible sheaf whose stalk
over any point p ∈ ∆ is the subspace inside H1(Xt), t close to p
of invariants under the local monodromy-action. This subspace is
isomorphic to H1(Xp). Hodge-theoretically, one has to consider
the limit mixed Hodge structure on H1(Xt) and then H1(Xp) is a
mixed Hodge substructure. So, mixed Hodge structures come up
inevitably. By Example 3 in Lecture 3 one has that χHdg(Xp) =
1−Np − [Vgp ]p + [L]p. Then one finds

χc/S(X) = Q
S
− V 1

S0
+ LS −

∑
p∈∆

(
(Np)[Q]p + [Vgp ]p

)
. (38)

Here [M ]p denotes the class of the Hodge structure M supported
on p and LS is the constant variation on S with stalk L at every
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point p ∈ S. Note that this is indeed an expression involving only
variations of pure Hodge structures.

One way to prove the preceding theorem is to note that Theorem 2.1.5
remains true in the relative setting [Bitt1, Theorem 5.1]. As a consequence,
one only needs to define the relative Hodge characteristic for X,S smooth
and f projective. If f is smooth, variations of Hodge structure suffice to de-
fine it. To define χc/S one has to deal with the problem posed by the singular
fibres and one has to prove that the definition is stable under the blow-up
relation. Instead, I shall follow a different route which makes use of mixed
Hodge modules. These are the natural objects extending the variations of
Hodge structure coming from geometry.

Since it takes several Lectures to complete this route, let me give first
an outline of the proof of Theorem 11.1.4:
− A variation of Hodge structures contains a rational part, the underlying
local system, and a part governed by the flat connection operating on the
vector bundle associated to the local system and which shifts the Hodge
filtration by one. The action of the flat connection can be seen as providing
the bundle with the structure of a so-called D-module. This is explained in
§ 11.2.
− The D-module structure is linked to the rational structure through the
Riemann-Hilbert correspondence. One needs to generalise this to include
the so-called perverse sheaves. This is to take care of possibly singular vari-
eties and to describe suitable extensions of variations initially only defined
over certain subsets which are locally closed in the Zariski topology. The
remainder of Lecture 11 is devoted to this.
− One thus is naturally led to the so-called Hodge modules. These are
introduced in Lecture 12. In it a reformulation of Theorem 11.1.4 will be
given in terms of these: Theorem 12.2.10.
− But this does not yet suffice. As amply shown in the examples that will
be treated below, mixed Hodge structures come up inevitably and one needs
to enlarge the setting to mixed Hodge modules. In Lecture 13 these will be
explained and the proof of the theorem can be completed.

11.2. D-modules

Let me recall the definition of a D-module on a smooth complex vari-
ety S. The formal definition is maybe best preceded by an informal local
discussion. Let U ⊂ Cd be an open set (in the classical topology) and let
(z1, . . . , zn) be the standard coordinates on U . Then taking a partial differ-
ential with respect to zk of a holomorphic function on U is an example of
a differential operator of order 1, written ∂k. Using multi-index notation,
m-th order operators are of the form∑

|I|≤m

PI∂
I , ∂I = ∂i11 · · · ∂

in
n .

Now ∂k is associated to the constant holomorphic vector field
∂

∂xk
and

composing m vector fields in general gives an operator of order ≤ m.
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To arrive at a coordinate free definition, observe first that the Leibniz
rule can be reinterpreted by saying that for any two holomorphic functions
f and g on U , and any vector field X, the map f 7→ X(gf) − gX(f) is
multiplication by X(g). This is a differential operator of order 0. Simi-
larly, starting with two holomorphic vector fields X1, X2 the composition
of the two X = X1X2 by the Leibniz rule yields a differential operator
f 7→ X(gf) − gX(f) of order ≤ 1 consisting of the sum of the first order
operator X1(f)X2 + X2(f)X1 and multiplication by X1X2(f). Continu-
ing in this manner, one finds the following coordinate free definition which
proceeds by induction:

− An operator of order 0 is multiplication by a function;
− an operator P is of order ≤ m if for all holomorphic functions f, g

on U the operator f 7→ P (gf)− gP (f) is of order ≤ (m− 1);
The differential operators (of any order) are gotten by taking the union over
all orders m. They give a ring DU and hence a sheaf DU . This also makes
sense for any smooth complex variety S and can be done with the Zariski-
topology or with the classical topology. A sheaf of left DS-modules is simply
called a DS-module, or, if no confusion arises, a D-module.

The definition of coherence for D-modules mimics the definition for or-
dinary OS-modules and I will not dwell on this. See for instance [P-S,
Chap 13.4].

Example 11.2.1. Let VC be a local system of complex vector spaces on a
complex manifold S. Then the corresponding vector bundle V = VC⊗CS OS
carries the flat connection ∇ = 1 ⊗ d, i.e. ∇◦∇ = 0. The pair (V,∇) is
a (left) DS-module, i.e. differential operators act on V. Indeed, any local
holomorphic vector field ξ acts on germs of sections v of V as v 7→ ∇ξv and
the Leibniz rule guarantees that this action can be extended as an action of
differential operators of any order, just as composition of vector fields acting
on holomorphic functions give differential operators of any order. This D-
module turns out to be coherent.

The preceding example can be used to rephrase the concept of a variation
of Hodge structure with base S in terms of D-modules on S. Suppose that
V underlies a variation of Hodge structure. Then the Griffiths transver-
sality condition (37) states that the first order differential operators shift
the Hodge filtration by −1. Hence the corresponding increasing filtration
F• = F−• is shifted by 1 and such a pair ((V,∇),F•)) is a filtered D-module:

Definition 11.2.2. A filtered D-module (M,F ), consists of a D-module M
equipped with an exhaustive increasing filtration F by coherent OS-modules
such that the operators of order 1 increase the filter degree of F by 1.

Remark 11.2.3. The D-module (V,∇) is quite special since it comes from
a local system VC. Let me summarise this as follows: a variation of Hodge
structure (V, F •) on a complex manifold S yields the filtered DS-module

Dmod(V, F •) := ((V,∇), F•). (39)

VC is a resolution of the corresponding De Rham complex

V ∇−→ V ⊗ Ω1
S → · · · → V ⊗ Ωd

S , d = dim(S). (40)
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This leads to the Riemann-Hilbert correspondence, the subject of the
next section.

11.3. The Riemann-Hilbert Correspondence

The exposition which follows summarizes [P-S, Chap. 13.5–13.6] where
further references can be found.

Let me come back to the vector bundle (V,∇) coming from a local
system VC of C-vector spaces on a complex manifold S. Let d = dimS. The
complex VC[d] is a perverse sheaf, hence so is the De Rham complex (40)
provided one shifts it as follows:

DrS(V,∇) := [V ∇−→ V ⊗ Ω1
S
∇−→ . . .

∇−→ V ⊗ Ωd
S ][d] .

Put

Db
coh(S) : the derived category of bounded complexes

of DS-modules with coherent cohomology.

So the assignment (V,∇) 7→ DrS(V,∇) associates to a class of D-modules
a class of perverse sheaves in a canonical way. Which class of D-modules is
needed to make this a full one to one correspondence? Clearly, in order to
make this work, one has to have an analogue of the Verdier duality operator
on the level of D-modules. Indeed, there exists such an operator DS which
can be defined on the entire derived category Db

coh(S). This operator has
the desired property that the De Rham complex of DSM is the (derived)
dual M∗ = RHomDS (M,OS):

DrS◦DSM = M∗. (41)

To see what sort of special D-modules one then needs, consider the basic
example of the vector bundle V associated to a local system V . In this case
RHomDS (V,OS) = V ∗C , the dual of the local system VC so that DSV = V∨,
the dual vector bundle of V. It is a complex concentrated in degree 0 and
hence this also holds for its cohomology. Such a DS-module M = (V,∇) is
called a holonomic DS-module M :

Definition 11.3.1. A DS-module M is holonomic if the complex DSM only
has cohomology in degree 0.

One now has a crude version of the desired correspondence:

Theorem (Riemann-Hilbert correspondence–I). Let S be a smooth com-
pact complex algebraic variety. The assignment M 7→ DrSM establishes a
one-to-one correspondence between holonomic DS-modules and the category
PervC(S) of perverse sheaves of C-vector spaces on S.

If S is a no longer compact one has to modify this construction. First
note that S always admits a good compactification S̄; i.e. S̄ is smooth and
S̄−S = D is a normal crossing divisor D. Suppose that VC is a local system
of C-vector spaces on S.

Definition 11.3.2. One says that the DS-module (V,∇) admits a regular
meromorphic extension to S̄ if V extends to a vector bundle Ṽ on S̄ and ∇
extends with logarithmic poles along D. This means that ∇ extends to an
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operator Ṽ → Ω1
S̄

(logD)⊗ Ṽ which satisfies Leibniz’ rule. This property is
independent of the chosen compactification. Indeed, one can show that this
is the case if for instance all the local monodromy operators for the local
system VC around infinity are quasi-unipotent. This is known to be the case
in the geometric situation. Moreover, such a regular extension is holonomic.

This then leads to the following full fledged version of the correspon-
dence:

Theorem (Riemann-Hilbert correspondence–II). The De Rham-functor gives
a one-to-one correspondence

{Regular holonomic DS-modules} DrS−−−→ PervC(S).

The full category Db
cs(S)⊂ PervC(S) on the right corresponds to the subcat-

egory Drh(S) of Db
coh(S) on the left consisting of complexes of DS-modules

whose cohomology groups are regular holonomic:

Drh(S)
DrS−−−→ Db

cs(S).

This should be complemented by the following assertions which describe
the functorial behaviour. If ϕ : S → T is a morphism of complex alge-
braic manifolds there are (derived) functors ϕ∗, ϕ! : Db

coh(S)→ Db
coh(T ) and

ϕ∗, ϕ! : Db
coh(T )→ Db

coh(S) which intertwine the duality operator in that

ϕ∗◦DT = DS◦ϕ!, ϕ∗◦DT = ϕ!◦DS

just as for constructible complexes. Indeed, they are fully compatible with
the De Rham functor:

ϕ!◦DrS = DrT ◦ϕ
!, ϕ∗◦DrT = DrS◦ϕ∗

and by (41) the duality-operator on the level of regular holonomic complexes
corresponds to the Verdier duality operator.

Remark . Usually one employs the notation ϕ+ and ϕ+ instead of ϕ∗ and
ϕ∗ since the latter two have a different meaning for D-modules. However in
these Lectures this does not play a role.

Let me summarise what has been done so far. I have introduced the
category of varieties over S (Def. 9.1.3) and the relative Euler characteristic
(Lemma 10.2.4) which factors over the Hodge theoretic Euler characteristic.
This makes use of variations of Hodge structures. Any variation of Hodge
structure gives rise to a perverse sheaf and a D-module on the base. These
constructions fit into a big commutative diagram

Q
Q
Q
Qs ?

�
�

�
�+

χctop⊗1C rat/S DrS

K0(VarS)
χc
/S

−−−→ K0(hs/S)
Dmod/S
−−−−−−→ K0(Drh(S))

K0(Perv(S)C).

(42)

Example 11.3.3. Let f : X → S be a smooth projective family. Then
Rkf∗QX

underlies a variation of Hodge structure V (k) of weight k so that
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(Example 11.1.5.1)

χc/S(X) =
∑

(−1)k[V (k)] ∈ K0(hs/S).

The vector bundle Dmod/S(V (k)) underlying V (k) is a regular holonomic
DS-module.

To extend example 11.3.3 to a general proper morphism between smooth
varieties I need a new concept, that of the canonical extension πV of a
regular holonomic DU -module V defined on any Zariski-open dense subset
j : U ↪→ Z of a subvariety i : Z ⊂ S consisting of smooth points. This
is done in two steps. First, the DZ-submodule Ṽ of j∗V generated by V is
regular holonomic. Then set

πV := i∗Ṽ ∈ Drh(S).

Example 11.3.4. Let f : X → S be a projective morphism between smooth
projective manifolds. Fix k and let V be the D-module underlying the
restriction V of Rkf∗QX

over the open subset consisting of the regular values
of f . The De Rham complex of its canonical extension Ṽ is exactly the
perverse extension πV of V . The pair (Ṽ, πV ) is an example of a Hodge
module of weight k, a concept that will be treated more fully in Section 12.2.





LECTURE 12

Hodge Modules

12.1. Digression: Polarizations

The category of Hodge structures is not semi-simple, but it becomes
so if one restricts to those Hodge structures that admit a polarization. To
give the definition, suppose V is a Hodge structure of weight k with Hodge
decomposition VC =

⊕
Hp,q and Hodge filtration F •. The Weil-operator

C : VC → VC is defined to be multiplication by ip−q on V p,q.

Definition 12.1.1. A polarization of Hodge structure V of weight k is a
Q-valued bilinear form

Q : V ⊗ V −→ Q
which is (−1)k-symmetric and such that the two Riemann bilinear relations
hold:

(1) The orthogonal complement of Fm is F k−m+1;
(2) The hermitian form on V ⊗C given by (u, v) 7→ Q(Cu, v̄) is positive-

definite.
A Hodge structure that admits a polarization is said to be polarizable.

Clearly, the category of polarizable Hodge structures is semi-simple: if
(V,Q) is a polarized Hodge structure and W ⊂ V a sub Hodge structure, the
polarization restricts to a polarization on W and the orthogonal complement
W⊥ of W with respect to Q is also a Hodge structure.

The classical example of a polarized Hodge structure is given by the
primitive cohomology groups on a complex projective manifold X of dimen-
sion d. Recall that primitive cohomology is defined using the L-operator

L : H∗(X)→ H∗(X)[2](−2),

which comes from cup-product with the hyperplane class.
For details, see [P-S, Chap. 1.2 and 2.1]. It is however helpful to give one

word of explanation. The hyperplane class should be viewed as an element
not of H2(X) but of H2(X; Q(−1)), i.e. with coefficients 1

2πiQ. This is
because the Chern form for the Fubini-Study metric has periods in 1

2πiZ
and the class of this form defines the hyperplane class. It has pure type
(1, 1) and so defines a generator for L.

Hm
prim(X) = Ker

(
Ld−m+1 : Hm(X)→ H2d−m+2(X)

)
, if m ≤ d.

If m > d there is no primitive cohomology and one has the Lefschetz decom-
position

Hm(X) =
⊕

r≥(p+q−d)+

LrHm−r
prim (X) =

⊕
r≥(p+q−d)+

Hm−r
prim (X)(r). (43)

83
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The orientation coming from the complex structure defines a preferred gen-
erator for the top-cohomology which will be written as

TrX : H2d(X) ∼−→ Q(−d).

The polarizing form Q on Hk(X) can then be given by

Q(α, β) = (−1)
1
2
k(k−1) TrX

(
α ∪ β ∪ hn−k

)
α, β ∈ Hk(X).

The Riemann bilinear relations state exactly that this form restricts to a
polarization on Hk

prim(X). To get a polarization on all of Hk(X) one has to
change signs on the constituents of the primitive decomposition as follows.
Write a =

∑
Lrar, b =

∑
Lrbr, ar, br ∈ Hk−2r

prim (X) and then

Q(a, b) = (−1)
1
2
k(k−1)

∑
r

(−1)r TrX
(
Ld−k+2r(ar ∪ br)

)
. (44)

Remark 12.1.2. Observe that there is a concise alternative definition of a
polarization as a (−1)k symmetric morphism of Hodge structures Q : V ⊗
V → Q(−k) which satisfies the positivity condition expressed by the second
Riemann bilinear relation. The validity of the first relation is equivalent to
Q being a morphism of Hodge structures. Note that the polarization induces
an identification V ∗ = V (−k).

This last version of the definition generalises immediately to a polarized
variation:

Definition 12.1.3. A polarization of a variation of Hodge structure V of
weight k on S is a morphism of variations Q : V ⊗ V → Q(−k)

S
which

induces on each fibre a polarization of the corresponding Hodge structure

The cohomology groups of the fibres of a proper smooth morphism
f : X → Y of complex algebraic manifolds give the standard example, i.e.
the local system V = Rkf∗QX

carries a natural polarized variation of Hodge
structure which comes from the polarization (44) on the fibres Hk(f−1(s))
in which L comes from a relative hyperplane section for f .

12.2. Hodge Modules

Polarizable variations of Hodge structure over a smooth compact alge-
braic variety S form the basic examples of Hodge modules which is the topic
of this section.

Here is a summary of what will be done.

− Polarizable variations over smooth algebraic varieties are inter-
preted as rational D-modules;

− extensions of polarizable variations are rational D-modules; this
is done in two steps: first one goes from a Zariski-open subset of
smooth points to a compactification and then one considers exten-
sions from locally closed subvarieties;

− Hodge modules correspond precisely to extensions.

So let me start by defining the notion of a rational D-module:
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Definition 12.2.1. Let S be a complex manifold A rational DS-module
is a triple (M,α,MQ) where M is a regular holonomic DS-module, MQ a
perverse sheaf on S and α : MC = MQ ⊗C→ DrS(M) a quasi-isomorphism
in Perv(S). Such a rational D-module is said to be filtered if M admits a
filtration in the sense of Def. 11.2.2. The complex MQ is called the rational
component of the rational DS-module.

By Remark 11.2.3 a variation of Hodge structure (V, F •) on a smooth
compact algebraic variety S gives a filtered rational D-module: just take
((V,∇), F• = F−•) as the filtered DS-module and take V [d] as the rational
component. Then (40) shows that the inclusion ι = (id⊗1) : VC ↪→ V =
VC ⊗OS gives the desired quasi-isomorphism.

If the base S is no longer complete, one restricts to D-modules (V,∇)
on S admitting a regular extension to a good compactification S̄, i.e. the
D-module should be regular holonomic.

Example 12.2.2. Suppose that the D-module (V,∇) comes from a varia-
tion of Hodge structure on S, say (V, F ). By Lemma 7.1.1 the local mon-
odromy operators around infinity of VC are all quasi-unipotent and hence
the module (V,∇) is indeed regular holonomic so that (V, F ) gives a filtered
rational D-module on S.

The preceding example turns out to give a so-called Hodge module pro-
vided (V, F ) is polarizable. I am not going to give the definition, since it is
rather complicated and the only thing which is used in these lectures is the
final result Corollary 12.2.9. The full theory can be found in [Sa88]; for a
first light introduction, see [P-S, Chap. 14.2–14.3].

The concept of weight transfers to Hodge modules, provided one adds
the dimension of its base. Let me summarise this as follows:

Theorem. Let S be a smooth complex algebraic variety of dimension d and
let V = (V, F ) a polarizable variation of Hodge structure of weight m. Let
ι = (id⊗1) : VC ↪→ V = VC ⊗OS be the inclusion. Then

VHdg
S = ((V,∇), F•, ι, V [d])

is a Hodge module of weight m+ d.

Example 12.2.3. As before, let S be a smooth algebraic variety. The con-
stant sheaf Q

S
underlies a weight 0 variation of Hodge structure on S. The

corresponding Hodge module will be denoted QHdg
S , d = dimS. This is con-

sistent with the previous notation for variations of Hodge structures. Note
that it has weight d as a Hodge module and that the underlying perverse
sheaf is Q

S
[d]. The constant sheaf Q

S
underlies an object in the derived

category of Hodge modules, namely the complex QHdg
S [−d] consisting of a

single Hodge module placed in degree d. One also needs a name for it:

QHdg
S

:= QHdg
S [−d]. (45)

I now pass to the construction of extensions of variations (V, F ) to any
good compactification S̄ of S. For the D-module extension one takes the
extension of (V,∇) to a vector bundle Ṽ on S̄ equipped with the extension of
∇ to a connection ∇̃ with regular poles along D = S̄−S (Def. 11.3.2). It is
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well known that the F filtration also extends in such a way that Ṽ becomes
a filtered D-module on S̄. For the rational component one then takes the
intersection complex ICS(V ) defined in (34). One can show that its De
Rham complex is a resolution of ICS(V ), which provides the comparison
map ι : ICS(V )→ Ṽ[d]. Hence:

Theorem. Let U be a smooth complex algebraic variety with good compacti-
fication S. Let (V, F ) a polarizable variation of Hodge structure of weight m
with corresponding rational DU -module VHdg

U = ((V,∇), F•, ι, V [d]). Then

VHdg
S = ((Ṽ, ∇̃), F•, ι, IC(V ))

is a Hodge module of weight m+ d, the Hodge module extension of VHdg
U .

For the next step assume that S is just any compactification of U which
might singular. We have seen that ICS(V ) still exists and is the rational
component of a Hodge module VHdg

Z supported on Z. More generally, if
i : Z ↪→ S is the inclusion of a closed subvariety of S then i∗ICS(V ) is still
perverse on S. Also Hodge modules behave well under such inclusions:

Lemma 12.2.4. Let i : Z ↪→ S be an inclusion of a closed subvariety and
let V be a Hodge module on Z. Then i∗V is a Hodge module on S.

In fact, although a complete proof will not be given here, this proves the
better part of the following result:

Theorem 12.2.5. Let i : Z ⊂ S is an irreducible complex subvariety. Let
V = (V, F ) be a polarisable variation of Hodge structure of weight m on
U ⊂ Z, a Zariski open subset consisting of smooth points. Then

VHdg
S = i∗V

Hdg
Z

is a Hodge module of weight m+dimZ whose rational component is i∗ICZ(V ).

Set

HMS(k) = Category of Hodge modules of weight k supported on S.

There is a converse to Theorem 12.2.5. To formulate it one needs the concept
of strict support:

Definition 12.2.6. A Hodge module has strict support on Z, a subvariety of
S, if its underlying rational component has support on Z, but no submodule
nor quotient module has support on a strictly smaller subvariety.

Theorem 12.2.7. The category HMS(k) is abelian. Any Hodge module
V ∈ HM(k) can be written

V =
⊕
Z

(iZ)∗V
Hdg
Z ,

where VHdg
Z is the Hodge module extension associated to a polarizable varia-

tion of weight k− dimZ supported on a dense open smooth subset of Z and
where iZ : Z ↪→ S is the inclusion of a closed subvariety.

Finally I can state the converse to Theorem 12.2.5:
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Theorem 12.2.8. Any Hodge module of weight m with strict support Z ⊂ X
is of the form i∗V

Hdg
Z where V is a variation of Hodge structures of weight

m− dimZ with base a Zariski dense open subset of smooth points of Z.

So, if one wishes, this can be used as an alternative definition for Hodge
modules and in this way it will be used in these lectures.

Corollary 12.2.9. There is a natural functor hsS → HMS which associates
to a variation of Hodge structure on a Zariski-dense smooth subset of a sub-
variety Z ↪→ S the Hodge module extension of its associated Hodge module.
This functor is an equivalence of categories.

This corollary implies that in the statement of Theorem 11.1.4 one should
work with Hodge modules, i.e. one should replace hsS by HMS :

Theorem 12.2.10 (Existence of the relative motivic Hodge characteris-
tic-bis). There is a morphism of rings χc/S : K0(VarS)→ K0(HM/S), fitting
into a commutative diagram

K0(VarS)
χc
/S

−−−→ K0(HM/S)

K0(Perv(S)C).

Q
Q
Q
Qs ?

χctop⊗1C rat/S

It is this version which will be proved in § 13.4.

12.3. Direct Images

The main theorem as reformulated above as Theorem 12.2.10 partly
claims existence of a relative Hodge characteristic. Clearly, the construction
should use the direct images of the constant sheaf. Let me first consider
what to do in the smooth situation.

Example 12.3.1. Continuing example 11.3.4, consider a proper morphism
f : X → S between smooth algebraic varieties. Let f0 : X0 → S0 be the
restriction of f to the set of regular values of f . Then Rkf0

∗QX0 under-
lies a polarizable variation V of Hodge structure of weight k and VHdg

S is a
Hodge module of weight k + dimS. The underlying perverse sheaf is the
perverse extension of Rkf0

∗QX0 [d], d = dimS. As remarked above (Exam-
ples 10.2.5.4) this perverse sheaf in general only gives a direct summand of
the perverse direct image πRk+df∗QX

. So these two should not be confused.
However, in two cases one gets everything: since f∗QX

= Q
S

and
R2nf∗QX

= LnS , n the relative dimension of X/S one gets

πRdf∗QX
= Q

S
[d], πR2n+df∗QX

= LnS [d].

Surprisingly, if f is projective, for all k the complex πRk+df∗QX
is the

perverse component of a Hodge module. See the next theorem 12.3.2.

Theorem 12.3.2 (Decomposition theorem, [Sa88, Thm. 5.3.1]). Let
f : X → S be a projective morphism between smooth complex algebraic
varieties and let M = (M,α,MQ) be a weight m Hodge module on X. Then
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Hkf∗M is a Hodge module of weight m + k whose rational component is
πHkf∗MQ. There is a non-canonical isomorphism in Db(HM):

Rf∗M =
⊕
k

(
Hkf∗M

)
[−k].

Remark 12.3.3. By Theorem 12.2.7 there is a further decomposition over
subvarieties Z of S

Hkf∗M =
⊕
Z

(iZ)∗ (V k)Hdg
Z , (46)

where (V k)Hdg
Z is the Hodge module extension of a variation V k

Z0 of Hodge
structure of weight k + m − dimZ on a Zariski-dense open subset Z0 of Z
consisting of smooth points.

Usually, the conjunction of Theorem 12.3.2 and the above splitting is
called the decomposition theorem. It implies a decomposition for the ratio-
nal component MQ of M:

πRkf∗MQ =
⊕
Z

(iZ)∗ ICZ(V k
Z0).

Example 12.3.4. Let f : X → S be a projective map between smooth
algebraic varieties. Apply Theorem 12.3.2 to the Hodge module QHdg

X . It
follows that

Rf∗Q
Hdg
X =

⊕
k

(
Hkf∗Q

Hdg
X

)
[−k]

and hence

[Rf∗Q
Hdg
X ] =

∑
(−1)k[Hkf∗Q

Hdg
X ] ∈ K0(HMS).

The decomposition (46) for Hkf∗Q
Hdg
X gives contributions from variations

supported on various subvarieties of S. By example 12.3.1, one of these
is Rkf0

∗QX0 , supported on the set S0 of regular values of f and further
variations all supported on subvarieties of the discriminant locus of f .

Example 12.3.5. It is instructive to go back to Example 11.1.5.2. To the
variation of Hodge structure V 1

S0
there is associated the Hodge module VHdg

S

whose underlying perverse sheaf is j∗(R1f∗QX
)|S0)[1] with j : S0 ↪→ S the

inclusion. Its stalk at p ∈ ∆ is the subspace inside H1(Xt), t close to p of in-
variants under the local monodromy-action. It is no longer a Hodge module
since the restriction functor i∗p does not preserve Hodge modules. The mixed
Hodge structure supported on p that one gets is an example of a mixed Hodge
module. These will be treated in Lecture 13. Note that inside K0(HM(S)
there still is a decomposition [VHdg

S ] = [VHdg
S0

] −
∑

p∈∆

(
Np[Q]p + Vgp

)
into

Hodge modules. To compare this with (38), first note that [Rf∗Q
Hdg
X ] =

[Rf∗QHdg
X

] where the notation (45) is used. Indeed, the two complexes differ
by a shift of two. Now, by example 12.3.1, one has H1(Rf∗Q

Hdg
X ) = Q

S
[1],

H3(Rf∗Q
Hdg
X ) = LS [1]. Moreover, H2(Rf∗Q

Hdg
X ) = VHdg

S hence

[Rf∗Q
Hdg
X ] = Q

S
+ LS + [VHdg

S ].

Since [VHdg
S ] = [VHdg

S0
]−
∑

p∈∆

(
Np[Q]p + Vgp

)
= −VS0−

∑
p∈∆

(
Np[Q]p + Vgp

)
this result coincides with the right hand side of (38).



LECTURE 13

Motives in the Relative Setting, Mixed Hodge
Modules

13.1. Variations of Mixed Hodge Structure

Suppose that f : X → Y is a morphism of complex algebraic varieties
where X and Y may be singular. The analysis in the previous Lectures
leading to the Hodge theoretic character χc/S does not suffice since now the
cohomology groups Hk(f−1s) carry mixed Hodge structures instead of pure
Hodge structures. One has to enlarge the scope of the study to variations of
mixed Hodge structures, a concept which comes up naturally in the geomet-
ric setting as I now explain. There exists a Zariski-open dense subset S ⊂ Y
consisting of smooth points of Y such that the restriction to S of Rkf∗QX

is
a local system. The collection of mixed Hodge structures Hk(f−1s), s ∈ S
is the prototype of a variation of mixed Hodge structure:

Definition 13.1.1. Let S be a complex manifold. A variation of mixed
Hodge structure on S is a triple (V, F,W ) consisting of a local system V of
finite dimensional rational vector spaces on S, a finite decreasing filtration
F of V = V ⊗Q OS by holomorphic subbundles (the Hodge filtration), a
finite increasing filtration W of the local system V by local subsystems (the
weight filtration).
These data should satisfy the following conditions:

i) for each s ∈ S the Hodge and weight filtrations induce a
mixed Hodge structure on the fibre of V at s;

ii) the connection ∇ : V → V ⊗OS Ω1
X whose sheaf of horizon-

tal sections is VC satisfies the Griffiths’ transversality condi-
tion

∇(Fp) ⊂ Fp−1 ⊗ Ω1
S .

The notion of a morphism of variations of mixed Hodge structure is defined
in the obvious way.
A variation of mixed Hodge structure will be called graded-polarizable if the
induced variations of pure Hodge structure GrWk V are all polarizable.

Example 13.1.2. Suppose that one has a morphism f : X → S as in the
beginning of this section but where Rkf∗QX

is already a local system and
where S is smooth. Then it underlies a variation of mixed Hodge structure.
If f is quasi-projective, this variation of mixed Hodge structure is graded-
polarizable. Let me refer to this situation as a geometric variation of mixed
Hodge structure. The goal now is to single out the extra properties satisfied
by such geometric variations. It turns out to be crucial to study what

89
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happens at infinity, i.e. near the divisor which compactifies S to a good
compactification.

The first step is to consider a graded polarizable variation of mixed
Hodge structure (V,W,F ) over the punctured unit disc ∆∗, say with pa-
rameter t. As W is a filtration of V by local subsystems, the monodromy
operator preserves W ; moreover the monodromy theorem (in the weak form
as stated as Lemma 7.1.1) guarantees that the monodromy of each GrW V
is quasi-unipotent. Hence the monodromy of V is quasi-unipotent. For sim-
plicity one assumes that the monodromy T of V is in fact unipotent. Put
V0 = (ψtVQ)0 and N = log T : V0 → V0 and let W denote the induced filtra-
tion on V0. Let M be the weight filtration of the nilpotent endomorphism
Grk(N) on GrWk V0 as defined in Lemma 7.1.2 and let kM = M [k].

Definition 13.1.3. A weight filtration of N relative to W is a filtration W̃
of V such that

i) NW̃i ⊂ W̃i−2

ii) W̃ induces kM on GrWk V0.

By [Del80, (1.6.13)] there is at most one weight filtration of N on V0

relative to W . If it exists, it is called the weight filtration of N relative to
W denoted M = M(N ;W ).

Let Ṽ denote the canonical extension of V to a holomorphic vector bundle
on ∆ such that the connection extends to one with a logarithmic pole at
0 with nilpotent residue. The filtration W extends to Ṽ and GrWk Ṽ is
the canonical extension for GrWk V. Let kF denote the Hodge filtration on
GrWk V. It extends to a filtration kF̃ of GrWk Ṽ.

Definition 13.1.4. i) A variation of mixed Hodge structure
(V,W,F ) over the punctured unit disc ∆∗ is called admissible
if it is graded-polarizable, the monodromy T is unipotent and
the weight filtration M(N,W ) of N = log T relative to W

exists. Moreover, the filtration F extends to a filtration F̃ of
Ṽ which induces kF̃ on GrWk Ṽ for each k.

ii) Let Y be a compact complex analytic space and S ⊂ Y a
smooth Zariski-open subset. A graded polarizable variation
of mixed Hodge structure (V,W,F ) on S is called admissible
(with respect to the embedding S ⊂ Y ) if for every holomor-
phic map i : ∆→ Y which maps ∆∗ to S and such that i∗V
has unipotent monodromy, the variation i∗(V,W,F ) on ∆∗

is admissible.

The following two results are fundamental:

Theorem 13.1.5 ([St-Z, ElZ86, Kash86]). Geometric variations are ad-
missible.

Theorem 13.1.6 ([St-Z, ElZ03]). Let V be an admissible variation of
mixed Hodge structure on S. Then for each k the vector space Hk(S, V )
carries a canonical mixed Hodge structure.
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13.2. Mixed Hodge Modules

Admissible variations of mixed Hodge structure on S are the basic ex-
amples of mixed Hodge modules on S. The precise definition is complicated
but it is easy to describe the category MHW(S) they belong to, at least in
the case where S is a smooth algebraic variety.

For the full theory, consult [Sa90]; see also [P-S, Chap 14] which serves
as a guide for what follows.

First introduce the category of bi-filtered rational D-modules consisting
of a filtered rational D-module (M, F,M) together with a filtration W on
(M,M), the weight filtration. This is a pair of filtrations compatible with
the comparison isomorphism. Note that GrWk (M, F,M,W ) is a filtered
rational D-module. One further demands that these be polarizable weight
k Hodge modules on S. The full subcategory generated by such bi-filtered
rational D-modules is the desired category MHW(S). If S is no longer
smooth, one needs to adapt the definition in that one needs to work with D-
modules on arbitrary algebraic varieties. This can be done as follows. The
concept of a D-module is local and locally the variety S can be embedded
in a smooth variety X. By definition, a DS module is a DX -module whose
support is contained in S.

Mixed Hodge modules have to satisfy more requirements which I won’t
make explicit. Suffices to say that an admissible variation is a special case
as will be explained next.

Definition 13.2.1. Let V = (V,W,F ) be an admissible variation of mixed
Hodge structure on a smooth complex variety S. It gives rise to the holo-
nomic DS-module V = V ⊗Q OS which is filtered by WkV = Wk V ⊗Q OS
and FpV = F−pV. Together with the comparison isomorphism given by

ι : (V [d],W )⊗ C→ DrS(V,W )

the triple (V,∇), F,W, ι, V [d]) belongs to MHW(S). It is a mixed Hodge
module VHdg. In fact, it is a so called smooth mixed Hodge module on S.

To get a feeling for the usefulness of mixed Hodge modules without
getting bogged down by their construction, the following axiomatic approach
is suitable.
Axioms for mixed Hodge modules

A) For each complex algebraic variety X there exists an abelian sub-
category MHM(X) of MHW(X), the category of mixed Hodge mod-
ules on X with the following properties:
− The functor which associates to a mixed Hodge module its

perverse component extends to a faithful functor

ratX : DbMHM(X)→ Db
cs(X). (47)

One says that

M ∈ MHM(X) is supported on Z ⇐⇒ ratXM is supported on Z.

− The functor which associates to a mixed Hodge module its
underlying D-module extends to a faithful functor

DmodX : DbMHM(X)→ Db
coh(DX). (48)
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B) The category of mixed Hodge modules supported on a point is the
category of graded polarizable rational mixed Hodge structures; the
functor “rat” associates to the mixed Hodge structure the under-
lying rational vector space.

C) The weight filtration W is such that
− morphisms preserve the weight filtration strictly;
− the object GrWk M is semisimple in MHM(X);
− if X is a point, the W -filtration is the usual weight filtration

for the mixed Hodge structure.
− A Hodge module M of weight k is a mixed Hodge module with

a one-step weight filtration WkM = M while Wk−1M = 0,
i.e. a pure weight k mixed Hodge module. Conversely, a pure
mixed Hodge module of weight k is a Hodge module of weight
k. Consequently

K0(MHM(X)) = K0(HM(X)) (49)

Since MHM(X) is an abelian category, the cohomology groups of
any complex of mixed Hodge modules on X are again mixed Hodge
modules on X. With this in mind, one says that for a complex
M ∈ DbMHM(X) the weight satisfies

weight[M]
{
≤ n,
≥ n ⇐⇒ GrWi Hj(M) = 0

{
for i > j + n
for i < j + n.

D) The duality functor DX of Verdier lifts to MHM(X) as an involu-
tion, also denoted DX , in the sense that DX◦ratX = ratX◦DX .

E) For each morphism f : X → Y between complex algebraic varieties,
there are induced functors f∗, f! : DbMHM(X) → DbMHM(Y ),
f∗, f ! : DbMHM(Y ) → DbMHM(X) interchanged under duality
and which lifts the analogous functors on the level of constructible
complexes and D-modules. Moreover, the adjoint relation

Hom(f∗K,L) = Hom(K, f∗L)

holds in Db(MHM(X)) and lift the corresponding adjoint relation
on the level of constructible complexes and D-modules. The ad-
junction morphisms (28) extend to

f# : L→ f∗f
∗L, f# : f!f

!L→ L. (50)

F) The functors f!, f
∗ do not increase weights in the sense that if M

has weights ≤ n, the same is true for f!M and f∗M.
G) The functors f !, f∗ do not decrease weights in the sense that if M

has weights ≥ n, the same is true for f !M and f∗M.
By way of terminology, M ∈ DbMHM(X) is pure of weight n if it has weight
≥ n and weight ≤ n, i.e. for all j ∈ Z the cohomology sheaf Hj(M) has
pure weight j + n: only GrWj+nH

j(M) might be non-zero. A Hodge module
M of weight k is an example, since H0(M) = M has pure weight k and all
other cohomology vanishes.

A morphism preserves weights, if it neither decreases or increases weights.
For proper maps, for the ordinary direct images one has f∗ = f!, almost by
definition. This holds on the level of constructible complexes, but also on
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the level of filtered D-modules, hence for Hodge modules. It follows that
Axiom F) and G) imply:

H) For proper maps between complex algebraic varieties f∗ = f! and
hence preserves weights.

13.3. Some Consequences of the Axioms

The starting point is the observation that the cohomology groups of any
complex of mixed Hodge modules M on X is a mixed Hodge module on X.
A consequence of Axiom A) then is:

Lemma 13.3.1. The cohomology functors Hq : DbMHM(X) → MHM(X)
are compatible with the functor ratX in the sense that for any bounded com-
plex M of mixed Hodge modules one has

ratX [HqM] = πHq[ratXM].

The right hand side is perverse cohomology as introduced in § 10.2.

Axiom E) and B) imply:

Lemma 13.3.2. Let aX : X → pt be the constant map to the point. For
any complex M of mixed Hodge modules on X

Hp(X,M) := Hp((aX)∗M) (51)

is a mixed Hodge structure.

Note that Lemma 13.3.1 implies that for a complex of sheaves over a
point perverse cohomology is ordinary cohomology. So, by (30) the rational
component Hp((aX)∗M) of the hypercohomology group Hp(X,M) is just
Hp(X,M) which explains the notation. Hence by axiom B):

Corollary 13.3.3. Let M be mixed Hodge module whose rational component
is the perverse sheaf MQ. Then the hypercohomology group Hp(X,MQ) has
a natural mixed Hodge structure.

Let me explain how this leads to mixed Hodge structures on ordinary
and compactly supported cohomology. To start with, from axiom A) and B)
it follows that there is a unique element QHdg ∈ MHM(pt ) whose rational
component is the unique Hodge structure on Q of type (0, 0). Define the
complexes of mixed Hodge modules

QHdg
X

:= a∗XQHdg, DXQHdg
X

:= a!
XQHdg

Note that even if X is smooth projective, these are not in general mixed
Hodge modules, e.g. by Example 12.2.3) one knows that QHdg

X = QHdg
X

[d],
d = dimX, is a Hodge module and QHdg

X
is a complex of Hodge modules

concentrated entirely in degree −d. In this case this is a pure weight 0
complex, but this is not the case in general since a∗X and a!

X do not preserve
weights; the axioms imply only that the first has weights ≤ 0 while the
second has weights ≥ 0. This can be used to show:

Proposition 13.3.4. (1) Hk(X) and Hk(X) have mixed Hodge structures;
(2) Hk

c (X) and HBM
k (X) have mixed Hodge structures of weights ≤ k,respectively

≥ −k.
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(3) A morphism f : X → Y induces morphisms of Hodge structures f∗ :
Hk(Y )→ Hk(X), f∗ : Hk(X)→ Hk(Y ).
(4) A proper morphism f : X → Y induces morphisms of Hodge structures
f∗ : Hk

c (Y )→ Hk
c (X), f∗ : HBM

k (X)→ HBM
k (Y ).

Proof : Since aX lifts the analogous functor on the level of constructible
complexes, the rational component of QHdg

X
is QX and that of DXQHdg

X
its

Verdier dual. By Corr. 13.3.3 both Hp(X) and its Verdier dual, which, using
(29) is the the Borel-Moore homology group Hp(X,DXQ

X
) = HBM

−p (X),
have natural mixed Hodge structures. Similarly, e.g. using (30), ordinary
homology Hp(X) as well as its Verdier dual, H−pc (X), cohomology with
compact support, have natural mixed Hodge structures. This proves (1).

As to weights, (aX)!a
∗
XQHdg has weights ≤ 0 and (aX)∗a!

XQHdg has
weights ≥ 0. Hence Hk

c (X) = Hk((aX)!a
∗
XQHdg) has weights ≤ k and

HBM
k (X) = H−k((aX)∗a!

XQHdg) has weights ≥ −k. This proves (2).
As to morphisms, the adjunction morphism (50) applied to L = QHdg

Y
directly gives morphisms of mixed Hodge structures

f∗ : Hk(Y,Q)→ Hk(Y, f∗f∗QY
) = Hk(X,Q)

and, similarly, for the compactly supported cohomology.
For homology, apply the second relation (50) to (aY )!QHdg to get

(aX)!◦(aX)!QHdg = (aY )!f!f
!(aY )!QHdg → (aY )!(aY )!QHdg

and hence

f∗ : H−k(X) = Hk((aX)!◦(aX)!QHdg)→ H−k((aY )!QHdg) = H−k(Y ).

For Borel-Moore homology, replace (aX)! and (aY )! by (aX)∗ and (aY )∗. �
Another example is cohomology with support. In § 10.1 it was stated

that with i : Z ↪→ X a closed embedding, Hp
Z(X) = Hp(i∗i!QX

) which is
the rational component of the p-th hypercohomology of the Hodge module
i∗i

!QHdg
X

. Since i! and i∗ do not decrease weights, i∗i!QHdg
X

has weights ≥ 0
and hence Hp

Z(X) has weights ≥ k.

Remark 13.3.5. These mixed Hodge structures coincide with the ones
constructed by Deligne and which were discussed in Lecture 2. This is not
hard to prove if X is a smooth algebraic variety, or if X can be embedded
in a smooth algebraic variety. See the remark at end of [Sa90, § 4.5]. It is
true in general, but highly non-trivial since Saito’s approach does not work
well in the setting of cubical or simplicial spaces. See [Sa00, Cor. 4.3].

13.4. The Motivic Hodge Characteristic

At last, I now can extend the definition from Example 12.3.4 valid for
projective maps between smooth varieties to the general setting:

Definition 13.4.1. Let f : X → S be a morphism between complex alge-
braic varieties. The axioms imply that f!QHdg

X
is a complex of mixed Hodge

modules. The motivic Hodge characteristic is defined by

χc/S(X) := [f!QHdg
X

] =
∑

(−1)k[Hkf!QHdg
X

] ∈ K0(MHM(S)) = K0(HMS).

The last equality is (49).
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This gives the construction of the motivic Hodge characteristic claimed
by Theorem 12.2.10. What remains to be shown is compatibility with the
scissor relations. To explain how to do this, let me go back to the underlying
rational components. I have shown in Example 10.2.3 that for these the
scissor relations are respected because of the distinguished triangle (32).
The same argument holds for mixed Hodge modules provided I show:

Proposition 13.4.2. Let M be a mixed Hodge module on X. Let i : Z → X
be a closed subvariety and let j : U ↪→ Xbe the inclusion of the complement
U = X −Z into X. Then in Db(MHM(X)) one has distinguished triangles:

i∗i
!M→M→ j∗j

∗M→ [1],
j!j
∗M→M→ i∗i

∗M→ [1].

}
(52)

Sketch of Proof. The axioms for mixed Hodge modules imply that second
triangle is obtained from the first by the duality operator. It suffices there-
fore to show that the first triangle is distinguished. This can be reduced to
a local construction as follows. One can cover X by affine subsets, still de-
noted by X over which Z is the zero set of some regular functions f1, . . . , fr.
Put Xi = X − f−1

i (0) and for I ⊂ {1, . . . , r}, set XI =
⋂
i∈I Xi, and let

jI : XI ↪→ X be the natural inclusion. Note that for I = {1, . . . , r} one gets
back j : U ↪→ X. There are quasi-isomorphisms in the category DbMHM(X)

i∗i
!M ∼−→ [· · · 0→M → B1 → B2 · · · → Br → 0], Bk =

⊕
|I|=k

(jI)∗j∗IM

j∗j
∗M ∼−→ [· · · 0→ B1 → B2 → B3 · · · → Br → 0], Bk in degree k − 1.

This is a straightforward calculation and using this local description it fol-
lows that j∗j∗M is quasi-isomorphic to the cone on i∗i

!M → M, i.e. the
first sequence of (52) is distinguished. It remains to show that these locally
constructed triangles glue together. See [Sa90, 4.4.1] for details. �





LECTURE 14

The Motivic Chern Class Transformation

14.1. Riemann-Roch for Smooth Projective Varieties

If X is any smooth complex algebraic variety and E a vector bundle on
X one has Chern classes

ck(E) ∈ H2k(X).

The Chern roots γk(E) are formally introduced by writing

1 + tc1(E) + · · · trcr(E) =
r∏

k=1

(1 + tγk(E)), r = rank(E).

Using these, one defines the Chern and Todd character:

ch(E) =
∑
k

eγk ,

td(E) =
∏
k

Q(γk), Q(t) :=
tet

et − 1
.

They take values in Heven(X) =
⊕

kH
2k(X) – denominators force ratio-

nal coefficients. These characters occur in the Hirzebruch-Riemann-Roch
theorem [Hir, Theorem 21.1.1] valid when X is compact

χ(X,E) :=
∑

(−1)k dimHk(X,E) =
∫
X

ch(E) · td(TX). (53)

The Todd class is well defined on the level of K0(X), the Grothendieck
group of vector bundles on X which for X smooth coincides with K0(X),
the Grothendieck group of coherent sheaves on X. The τ -class is defined
using the Todd class of X:

τ([E]) = ch(E) · td(TX) ∈ Heven(X), τ([OX ]) = td(TX) (54)

and Riemann-Roch states that χ(X,E) = τd([E]), d = dimX. The χ-
characteristic is the specialization for y = 0 of the χy characteristic

χy(X,E) :=
∑
q≥0

∑
k≥0

(−1)k dimHk(X,E ⊗ Ωp
X)yp ∈ Z[y]

The Chern character is the specialization to y = 0 of the generalized Chern
character

chy(E) :=
∑
k

e(1+y)γk

The function Q(t) is a formal power series in t with rational coefficients. It
is obtaind by setting y = 0 in the two following formal power series in two
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variables

Qy(t) :=
t(1 + y)

1− e−t(1+y)
− ty, Q̃y(t) :=

t(1 + ye−y)
1− e−t

which leads to the following genera in Heven(X)[y]:

Ty(E) =
∏
kQy(γk) =

∑
p≥0 T

p(E)yp, (55)

T̃y(E) =
∏
k Q̃y(γk) =

∑
p≥0 T̃

p(E)yp. (56)

The component T pn(E) of T p(E) in H2n(X) is a polynomial in the Chern
classes of E. In the Riemann-Roch theorem only the top-degree expressions
occur, those with n = dimX. These one gets by integrating over X. More
generally, write [Ty(E)]n for the power series

[Ty(E)]n :=
∑
p≥0

T pn(E)yp ∈ H2n(X)[y].

The formula [Hir, 1.8 (15)] can be generalized easily to give the relations[
ch(E) · T̃y(TX)

]
n

= [chy(E) · Ty(TX)]n ∀n ≥ 0

The Hirzebruch-Riemann-Roch theorem then implies the generalized Hirzebruch-
Riemann-Roch theorem (cf. [Hir, 12.1 (8)–(10)])

χy(X,E) =
∑
p

∫
X

[
ch(E ⊗ ΛpΩ1

X) · td(TX)
]
yp

=
∫
X

[
ch(E) ·

∑
p

td(TX) · ch(ΛpΩ1
X)yp

]

=
∫
X

ch(E) · T̃y(TX)

=
∫
X

chy(E) · Ty(TX).

14.2. The Motivic Chern Class Transformation

One of the main results from [B-S-Y] is:

Theorem 14.2.1 ( [B-S-Y, Theorem 3.1]). There exists unique homomor-
phisms

Ty, T̃y : K0(VarS)→ HBM
even(S)[y]

commuting with proper push forwards and satisfying the normalization con-
dition

Ty(id : S → S) = Ty(TS) ∩ [S], T̃y(id : S → S) = T̃y(TS) ∩ [S],

whenever S is smooth and equi-dimensional.

The proof of Theorem 14.2.1 uses the existence of the motivic Chern
class transformation:

Theorem 14.2.2 ([B-S-Y, Thm. 2.1]). There is a unique group homomor-
phism

χCh : K0(VarS)→ K0(S)[y]
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commuting with proper push forwards and which satisfies the normalization
condition

χCh(id : S → S) =
∑

[ΛqΩ1
S ]yq

for S smooth and pure dimensional.

Proof : The definition of the Chern class character is based on the filtered
De Rham complex (ΩX , F ) as introduced by Du Bois [DuB]. One sets

χCh(id : S → S) =
∑

(−1)p[GrpF ΩS ]yp

where by definition

[GrpF ΩS ] :=
∑
j

(−1)j [Hj(GrpF ΩS)] ∈ K0(S).

Note that for S smooth (ΩS , F ) is the usual De Rham complex with the triv-
ial filtration whose graded pieces are locally free sheaves ΛqΩ1

S = Ωp
S placed

in degree p with no higher cohomology sheaves so that [GrpF ΩS ] = (−1)p[Ωp
S ]

and χCh(id : S → S) =
∑

[Ωp
S ]yp which shows the normalization. Then com-

patibility with proper push forwards f : X → S forces the definition

χCh[f : X → S] =
∑

(−1)pf∗[GrpF ΩX ]yp, (57)

where f∗[F ] =
∑

(−1)j [Rjf∗F ]. To show that this determines the Chern
character completely one uses a different representation of K0(VarS) as gen-
erated by isomorphism classes of proper f : X → S modulo the acyclity
relation defined as follows: [X ′] − [Y ′] = [X] − [Y ] whenever i : Y ↪→ X
a closed embedding, π : X ′ → X a proper morphism, both fitting in a
cartesian diagram

Y −−→ X ′y yπ
Y

i−−→ X.

The proof is similar in spirit as that of Bittner’s theorem. This is then used
in conjuction with the fact that the filtered Du Bois complex respects the
acyclicity relation [DuB, Prop. 1.3]. �

Remark . 1) The authors of [B-S-Y] use the terminology Chern class trans-
formation mC∗; they explain that the terminology is inspired by the Chern-
Schwarz-MacPherson Chern class transformation defined for singular vari-
eties and of which it is a generalization. See the Introduction of loc. cit.
2) The normalization χCh(idX) =

∑
(−1)q[ΛqΩ1

X ] for non-singular X makes
it possible to read off the Chern classes cq(X) := cq(TX) from the classes
[ΛqΩ1

X ] using the easily established formulas

cq(X) =
q∑

k=0

(−1)k ch(ΛkΩ1
X) td(TX).

To be able to prove Theorem 14.2.1, I need a to extend the constructions
leading up to Riemann-Roch to include singular varieties. First of all, for
possibly singular varieties X one needs to work with K0(X) and Borel-
Moore homology HBM

even(X). Instead of the top degree one works with degree
0 which is obtained by taking the cap–product with the fundamental class
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[X]. Next the Todd genus generalizes as follows (see [B-F-M]): there is a
homomorphism

τ : K0(X)→ HBM
even(X)

with the property that for smooth X, modulo the Poincar-duality isomor-
phism Heven(X) ∼−→ HBM

even, this morphism coincides with (54). Moreover, if
for arbitrary X one also puts td(TX) := τ([OX ]), the Riemann-Roch for-
mula (53) still holds for vector bundles on X, but one needs a variant. First
extend the homomorphism τ to

τy : K0(X)→ HBM
even(X)[y, (1 + y)−1],

as follows. For [F ] ∈ K0(X), let τk[F ] ∈ HBM
2k (X) be the degree 2k com-

ponent of τ([F ]). Then setting τy([F ]) :=
∑

k≥0 τk([F ]) · (1 + y)−k, one
has

Theorem (The generalized Hirzebruch-Riemann-Roch formula). For any
vector bundle E on a possibly singular complex algebraic variety X one has

[τy([E])]0 =
[
ch(E) · T̃y(TX)

]
∩ [X] = [chy(E) · Ty(TX)] ∩ [X].

One further extension is needed: extend τy linearly to obtain a homo-
morphism τy : K0(X)[y] → HBM

even(X)[y, (1 + y)−1] and now, finally, I can
give the
Proof of Theorem 14.2.1. There is a commutative triangle

K0(VarS)
χCh

xxqqqqqqqqqq
Ty , fTy

))RRRRRRRRRRRRR

K0(S)[y]
τy ,τ // HBM

even(S)[y, (1 + y)−1]

defining Ty and T̃y. Their uniqueness and normalization conditions follow
from the uniqueness and normalization for χCh. The fact that the maps Ty
and T̃y don’t need denominators involving (1 + y) comes from the fact that
these are absent for smooth X by their very definition (see (55) and (56))
and the fact that K0(VarS) is generated by smooth varieties proper over S,
by the relative variant of Bittner’s theorem. �

Remark . There is a variant of the above in which Borel-Moore homology
has been replaced by the total Chow group

⊕
p Chow(X). It uses the Fulton

apprach to Chern classes [Fulton]. This gives finer invariants.

14.3. Hodge Theoretic Aspects

As an application of the theory of mixed Hodge modules, I shall discuss
the Hodge theoretic construction of the Chern class transformation from
[B-S-Y].

Start by recalling that a mixed Hodge module on S contains as part
of its data a filtered (holonomic) DS-module. Consider the category FDS
of filtered DS-modules (M, F ). The morphisms are those DS-linear maps
which respect the filtration. The De Rham complex exists in the context
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of filtered modules. Loosely speaking, one should consider Ωk
S as having

filtering degree −k. More formally, introduce

F`(Dr•SM) =
=
[
F`M→ Ω1

S(F`+1M)→ · · · → ΩdX
S (F`+dM)

]
[−d].

}
(58)

This defines a filtration of Dr•SM by subcomplexes, the filtered De Rham
complex Dr•S(M, F ). It is a filtered complex of OS-modules whose mor-
phisms are only CS-linear. However, for a filtered DS-module, the mor-
phisms in any of the associated graded complexes areOS-linear. This implies
the following result.

Lemma 14.3.1. Let K0(S) be the Grothendieck group for the category of
coherent OS-modules. The De Rham functor induces the De Rham charac-
teristic

DrS : K0(FDS) → K0(S)[y, y−1]
[(V, F )] 7→

∑
(−1)j [GrFj Dr•S(V, F )]yj .

}
(59)

This is compatible with proper pushforwards, in the sense that for ϕ : S → T
a proper map between algebraic manifolds, there is a commutative diagram

K0(FDS) −→ K0(S)[y, y−1]yϕ∗ yϕ∗
K0(FDT ) −→ K0(T )[y, y−1].

Here I have assumed that S is smooth. However, if S is singular, as
mentioned before (see the beginning of 13.2) D-modules can be defined.
Moreover, this is also true for the De Rham functor and its gradeds give
functors

GrFj Dr•S : DbFDS → Db
coh(OS).

This is very well explained in [Sa00, § 1]. It follows that the De Rham
characteristic can be defined in the singular case as well.

Proposition 14.3.2. One has the equality

χCh = DrS◦χ
c
/S : K0(Var/S)→ K0(S)[y].

Proof : This follows immediately from the uniqueness statement in Theo-
rem 14.2.2, the fact that by construction the right hand side is compatible
with proper push forwards and the fact that for S smooth the values of the
right hand side on [id : S → S] equals

∑
[Ωq
S ]yq. �

14.4. Stringy Matters

I shall use the results on motivic integration collected in Appendix B.
The naive motivic ring M := K0(Var)[L−1] and a certain completion, the
so-called dimension completion M̂ (Definition B.3.3) and a certain subring
thereof M̂0 (see (63)) come into play, or rather relative invariants of such.
Since y is invertible in K0(X)[y, y−1] as well as in Heven

BM (X)[y, y−1], send-
ing L−1 to (−y) one can extend the three transformations χCh, Ty, T̃y to
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homomorphisms

χ∧Ch : M̂S → K0(S[y]
[[
y−1
]]

T∧y , T̃y
∧

: M̂S → Heven
BM (s)[y]

[[
y−1
]]
.

In this setting, if Z is a subscheme of Y one has introduced the motivic
volume ∫

J∞(X)
L− ordZdµY ∈ M̂

and in the relative situation one can compose it with any of the three trans-
formations χ∧Ch, T

∧
y , T̃y

∧
yielding the stringy motivic Chern character, and

stringy motivic T -characteristics associated to pairs (Y,Z) defined over S.
This applies in particular whenever Y is a resolution of singularities of X,
assumed to have only canonical Gorenstein singularities, and Z is the dis-
crepancy divisor (Theorem B.4.4). When the latter has only simple normal
crossings, the motivic volume of (Y,Z) does not depend on the resolution; it
is the motivic log-volume vol(X) and the corresponding stringy characters
give the invariants χ∧Ch

◦ vol(X), T∧y ◦ vol(X) and T̃y
∧
◦ vol(X).

For the relation with the elliptic class introduced by Borisov-Libgober
see the discussion in [B-S-Y, Example 3.4].



APPENDIX B

Motivic Integration

B.1. Why Motivic Integration?

Motivic integration was introduced by Kontsevich [Ko] to prove the
following result conjectured by Batyrev: let

X1

π1   B
BB

BB
BB

B X2

π2~~||
||

||
||

X

be two crepant resolutions of the singularities of a projective Calabi-Yau
variety X having at most canonical Gorenstein singularities. Recall that
a normal projective variety X of dimension n is called Calabi-Yau if the
canonical divisor KX is trivial and H i(X,OX) = 0 for 0 < i < n. In
the context of mirror symmetry one forgets about these last conditions: it is
customary to call X Calabi-Yau as soon as KX = 0 (and the singularities are
mild), see [Baty]. Crepant (as in non discrepant) means that the pullback
of the canonical divisor class on X is the canonical divisor class on Xi, i.e.
the discrepancy divisor Ei = KXi −π∗iKX is numerically equivalent to zero.
In this situation Batyrev showed, using p-adic integration, that X1 and X2

have the same Betti numbers. Kontsevich used motivic integration to show
that X1 and X2 even have the same Hodge numbers.

This problem was motivated by the topological mirror symmetry test of
string theory which asserts that if X and X∗ are a mirror pair of smooth
Calabi-Yau varieties then they have mirrored Hodge numbers

hi,j(X) = hn−i,j(X∗).

As the mirror of a smooth Calabi-Yau might be singular, one cannot restrict
to the smooth case and the equality of Hodge numbers actually fails in this
case. Therefore Batyrev suggested, inspired by string theory, that one should
look instead at the Hodge numbers of a crepant resolution, if such exists1.
The independence of these numbers from the chosen crepant resolution is
Kontsevich’s result. This makes the stringy Hodge numbers hi,jst (X) of X,
defined as hi,j(X ′) for a crepant resolution X ′ of X, well defined. The mirror
symmetry conjecture thus has been modified by asserting that the stringy
Hodge numbers of a mirror pair are equal [Baty-Bor]. Batyrev’s conjecture
has been proved as follows:

1 Calabi-Yau varieties do not always have crepant resolutions.

103



104 B. MOTIVIC INTEGRATION

Theorem B.1.1 (Kontsevich). Birationally equivalent smooth Calabi-Yau
varieties have the same Hodge numbers.2

For a proof of a more general statement see Prop. B.4.7. For the moment,
to give an indication where it is all leading to, I give a
Sketch of the proof. The idea is to assign to any variety a volume in a
suitable ring M̂ such that the information about the Hodge numbers is
retained. The following diagram illustrates the construction of M̂:

Var //

PHdg $$H
HHHHHHHH
K0(Var) //

��

M //

��

M̂

��
Z[u, v] �

� // Z[u, v, (uv)−1] �
� // Z[u, v, (uv)−1]∧

The diagonal map is the Hodge number polynomial. The Hodge charac-
teristic factors through the naive Grothendieck ring K0(Var) which is the
universal object with the latter property. This explains the left triangle of
the diagram.

The bottom row of the diagram is the composition of a localization
(inverting uv) and a completion with respect to negative degree. M̂ is
constructed analogously, by first inverting L−1 (a pre-image of uv) and then
completing appropriately (negative dimension). Whereas the bottom maps
are injective, the map K0(Var)→ M̂ is most likely not injective. The need
to work with M̂ instead of K0(Var) arises in the setup of integration theory
and will become clear later.

Clearly, by construction it is now enough to show that birationally equiv-
alent Calabi-Yau varieties have the same volume, i.e. the same class in M̂.
This is achieved via the all important birational transformation rule of mo-
tivic integration, to be proved below (Theorem B.4.4). Roughly it asserts
that for a proper birational map π : Y → X the class [X] ∈ M̂ is an
expression in Y and KY/X only:

[X] =
∫
Y

L− ordKY/X dµY

To finish the proof let X1 and X2 be birationally equivalent Calabi-Yau
varieties. Resolve the birational map to a Hironaka hut:

Y
π1

~~}}
}}

}}
}} π2

  A
AA

AA
AA

A

X1
//_______ X2

By the Calabi-Yau assumption one has KXi ≡ 0 and therefore KY/Xi ≡
KY − π∗iKXi ≡ KY . Hence the divisors KY/X1

and KY/X2
are numer-

ically equivalent. This numerical equivalence implies in fact an equality
of divisors KX/X1

= KX/X2
since, again by the Calabi-Yau assumption,

2 There is also a proof by Ito [Ito] of this result using p-adic integration, thus contin-
uing the ideas of Batyrev who proved the result for Betti numbers using this technique.
Furthermore the weak factorization theorem allows for a proof avoiding integration of any
sort.
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dimH0(X,KY ) = dimH0(Xi,OXi) = 1. By the transformation rule [X1] is
an expression depending only on Y and KX/X1

= KX/X2
. The same is true

for [X2] and thus we have [X1] = [X2] as desired. �

B.2. The Space of Formal Arcs of a Complex Algebraic Manifold

Let X be a complex algebraic manifold of dimension d. Any (germ) of
an analytic curve γ : ∆→ X at p, say with γ(0) = p defines a formal arc at
p, i.e. a morphism

γ : Spec C [[z]] −→ X with γ(0) = p.

Dually this corresponds to a morphism of C-algebras OX,p → C [[z]]. Com-
posing with the truncation map C [[z]] → C [[z]] /(zk+1) we get a k-th order
arc at p, i.e. a morphism Spec C [[z]] /(zk+1) → X with γ(0) = p. Varying
p ∈ X gives an affine bundle Jk(X) → X with fibres ' Adk. Subsequent
truncations give affine bundles Jk+1(X)→ Jk(X) with fibres ' Ad and then
the space of all formal arcs in X is

J∞(X) := lim←−
k

Jk(X).

Mapping arcs at p to the base point p gives the affine bundle

π : J∞(X)→ X.

The truncation maps induces surjections

πk : J∞(X)→ Jk(X).

Recall that a a formal arc γ corresponds to a homomorphism γ∗ : OX →
C [[z]]. If Y ⊂ X is a subvariety, or, more generally, a subscheme, the order
of vanishing ordY (γ) of γ of along Y is the supremum of k such that the
map

OX
γ∗

−−→ C [[z]]→ C [[z]] /(zk)
sends IY to zero. For a (k − 1)-jet γ ∈ Jk−1(X) to send IY to zero means
precisely that γ ∈ Jk−1(Y ). Thus ordY (γ) is the supremum of all k such
that the truncation πk−1(γ) lies in Jk−1(Y ). One clearly has:

ordY (γ) 6= 0 ⇔ π(γ) ∈ Y,
ordY (γ) ≥ k ⇔ πk−1(γ) ∈ Jk−1Y and
ordY (γ) =∞ ⇔ γ ∈ J∞(Y ).

(60)

B.3. The Motivic Measure

Spaces of formal arcs don’t have a class in K0(Var), but the spaces of
finite order arcs Jk(X) and any subvariety in it has a well defines class in
this ring. The goal is to measure certain subsets in J∞(X) that are finitely
determined, i.e. of the form C = π−1

k (B) for a certain non-negative integer
k and B any subvariety. The problem is that then also C = π−1

k+`(B`) with
B` the inverse image of B under the projection Jk+`(X) → Jk(X). The
latter is an affine bundle with fibre ' Ad` and so the equation [B] · L−dk =
· · · = [B] ·Ld` ·L−d(k+`) = [B`] ·L−d(k+`) shows that the motivic log-volume

µ̃X(C) = [B] · L−dk ∈M = K0(Var)[L]−1, C = π−1
k (B) (61)

is well defined. More generally, this applies to cylinder sets:
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Definition B.3.1. A subset C ⊆ J∞(X) of the space of formal arcs is called
a cylinder set if C = π−1

k (Bk) for some non-negative integer k and Bk ⊆
Jk(X) a constructible subset (Recall that a subset of a variety is constructible
if it is a finite, disjoint union of (Zariski) locally closed subvarieties). Its
motivic volume is given by (61).

The collection of cylinder sets forms an algebra of sets; that is, J∞(X) =
π−1

0 (X) is a cylinder set, as are finite unions and complements (and hence
finite intersections) of cylinder sets.

Example B.3.2. For k > 0, consider the set ord−1
Y (≥ k) = {γ ∈ J∞(X) |

ordY (γ) ≥ k} consisting of all formal arcs in X which vanish of order at least
k along Y . By what has just been observed ord−1

Y (≥ k) = π−1
k−1(Jk−1(Y )) is

a cylinder. Therefore, the level set ord−1
Y (k) is also a cylinder equal to

ord−1
Y (≥ k)− ord−1

Y (≥ k + 1) = π−1
k−1Jk−1(Y )− π−1

k Jk(Y ).

For k = 0 one has ord−1
Y (≥ 0) = π−1(X) = J∞(X) and ord−1

Y (0) = π−1(X)−
π−1(Y ).

On the other hand, the level set at infinity ord−1
Y (∞) = J∞(Y ) is not a

cylinder set. One would like to extend the measure to µX which is valid on
countable unions of disjoint cylinders and which has the defining property

µX

(⊔
k∈N

Ck

)
:=
∑
i∈N

µX(Ck) =
∑
i∈N

µ̃X(Ck). (62)

The problem however is that countable sums are not defined in M. Fur-
thermore it is not clear a priori that the measure as defined by the above
formula is independent of the choice of the decomposition into disjoint Ci.
To overcome these problems Kontsevich [Ko] introduced an auxiliary ring:

Definition B.3.3. Let M̂ denote the completion of the ringM with respect
to the dimension-filtration

· · · ⊇ F1M⊇ F0M⊇ F−1M⊇ · · ·

where for each m ∈ Z, FmV is the subgroup of M generated by elements of
the form [V ] · L−i for dimV − i ≤ −m. In other words, giving L dimension
1 the dimension function becomes well-defined onM (on finite formal sums
one extends additively) and ξ ∈ M has dimension ≤ −m if and only if
ξ ∈ Fm. Alternatively, with F−m = Fm one has dim(ξ) ≤ m if and only if
Fm.

The natural completion map is denoted φ :M−→ M̂. A series xk ∈M
converges in M̂ to φ(x) precisely when (x−xk) ∈ Fnk with limk→∞ nk =∞,
which is equivalent to limk→∞ dim(x− xk) = −∞.

Examples B.3.4. 1) If dimX = d as before and Y ⊂ X smooth of codi-
mension c, then dim Jk(Y ) = (d− c)(k + 1) and hence dim[Jk(Y )] · L−dk =
d− c(k + 1), i.e. [Jk(Y )] · L−dk ∈ Fc(k+1)−d and so the limit when k goes to
infinity is 0 ∈ M̂.
2) (Continuation of Example B.3.2) Under the same assumptions, the level
sets ord−1

Y (k) for k ≥ 1 have been expressed as cylinders; since Y is smooth,
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Jm(Y ) is an affine bundle with fibres ' A(d−c)m and µX(ord−1
Y (k)) =

[Y ] · L−ck · (Lc − 1). For k = 0 one gets µX(ord−1
Y (0)) = [X]− [Y ].

Replace now the measure µ̃X by the M̂-valued measure φ◦µ̃X . Using
(62) this modified measure can indeed be extended to a measure µX applica-
ble to countable unions

(⊔
k∈NCk

)
of disjoint cylinders Ck with lim

k→∞
µ̃X(Ck) =

0 and complements of such sets. The independence of choices is not trivial.
See [D-L99a, §3.2] or [Baty, §6.18]. One has:

Proposition B.3.5. Let Y ⊆ X be a nowhere dense subscheme of X, then
J∞(Y ) is measurable and has measure µX(J∞(Y )) equal to zero.

Sketch of Proof. Since ord−1
Y (∞) = J∞(Y ) is the decreasing intersection

of the cylinders ord−1
Y (≥ k + 1) = π−1

k Jk(Y ) its alleged volume should be
obtained as the limit of the volumes of these cylinders. The volume of
π−1
k Jk(Y ) is [Jk(Y )] · L−dk and the latter tends to zero in M̂. Therefore,
J∞(Y ), the intersection of these cylinder sets must have volume 0. This
argument, valid only for Y smooth can be adapted to singular Y . See
[Blick, § 4]. �

B.4. The Motivic Integral

As before let X be smooth and Y a subscheme. The motivic log-volume
of the pair (X,Y ) is∫

J∞(X)
L− ordY dµX =

∞∑
k=0

µ(ord−1
Y (k)) · L−k.

Observe that the level set at infinity is already left out from this summation
as it has measure zero. The fact that for cylinder sets A ⊆ B we have
dimµX(A) ≤ dimµX(B) when applied to ord−1

Y (k) ⊆ J∞(X) gives that
the dimension of µ(ord−1

Y (k)) · L−k is less or equal to d − k. The notion of
convergence in the ring M̂ then ensures the convergence of the sum. This
is illustrated by the following

Example B.4.1 (Continuation of Examples B.3.4.2). If Y is smooth of
codimension c in X, by the calculations of loc. cit. one has∑∞

k=0 µ(ord−1
Y (k)) · L−k = [X]− [Y ] + [Y ] · [Lc − 1] ·

∑
k≥1 L−(c+1)k

= [X]− [Y ] + [Y ] · [Lc − 1] · 1
Lc+1 − 1

.

Note that for c = 1 (the case of a smooth divisor) one gets simply X]− [Y ]+

[Y ] · 1
P1

. The general formula is :

Proposition B.4.2. Let Y =
∑s

i=1 riDi (ri > 0) be an effective divisor on
X with normal crossing support and such that all Di are smooth. Then∫

J∞(X)
L− ordY dµX =

∑
J⊆{1,...,k}

[D◦J ](
∏
j∈J

L− 1
Lrj+1 − 1

) =
∑

J⊆{1,...,k}

[D◦J ]∏
j∈J [Prj ]

.

As usual DJ =
⋂
j∈J Dj with D∅ = X, and one puts D◦J = DJ −

⋃
j 6∈J Dj.
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For details see either [Baty, Theorem 6.28] or [Craw, Theorem 1.17].

Corollary B.4.3. Let Y be an effective divisor on X with normal crossing
support. The motivic log-volume of the pair (X,Y ) belongs to the subring

M̂0 := φ
(
M
) [{ 1

Li − 1

}
i∈N

]
(63)

of the completed motivic ring M̂.

The discrepancy divisor KX′ − α∗KX of a proper birational morphism
α : X ′ → X between smooth varieties is the divisor of the Jacobian deter-
minant of α. The next result may therefore be viewed as the “change of
variables formula” for the motivic log-volume.

Theorem B.4.4 (Birational Transformation Rule). Let α : X ′ −→ X be
a proper birational morphism of between smooth varieties and let Dα :=
KX′ − α∗KX be the discrepancy divisor. Then the motivic log-volumes for
(X ′, α∗D +Dα) and (X,D) are the same.

Proof : Composition defines maps αt : Jt(X ′)→ Jt(X) for each t ∈ Z≥0∪∞.
An arc in X which is not contained in the locus of indeterminacy of α−1 has
a birational transform as an arc in X ′. By (60) and Proposition B.3.5, α∞
is bijective off a subset of measure zero.

The sets ord−1
Dα

(k), for k ∈ Z≥0, partition J∞(X ′) − ord−1
Dα

(∞). Thus,
for any s ∈ Z≥0 we have, modulo a set of measure zero, a partition

ord−1
D (s) =

⊔
k∈Z≥0

α∞(Ck,s) where Ck,s := ord−1
Dα

(k) ∩ ord−1
α∗D(s). (64)

The set α∞(Ck,s) as an image of a constructible set is constructible and in
fact a cylinder. Lemma B.4.5 below states that µ

(
Ck,s

)
= µ

(
α∞(Ck,s)

)
·Lk.

Use this identity and the partition (64) to calculate∫
J∞(X)

L− ordDdµX =
∑

k,s∈Z≥0

µ
(
α∞(Ck,s)

)
· L−s =

∑
k,s∈Z≥0

µ
(
Ck,s

)
· L−(s+k).

Set s′ := s + k. Clearly
⊔

0≤k≤s′ Ck,s′−k = ord−1
α∗D+W (s′). Substituting this

into the above leaves∫
J∞(X)

L− ordD =
∑

s′∈Z≥0

µ
(

ord−1
α∗D+W (s′)

)
·L−s′ =

∫
J∞(X′)

L− ordα∗D+W dµX′ ,

as required. �

Lemma B.4.5. µ
(
Ck,s

)
= µ

(
α∞(Ck,s)

)
· Lk.

Sketch of Proof. Both Ck,s and α∞(Ck,s) are cylinder sets so there exists
t ∈ Z≥0 and constructible sets B′t and Bt in J∞(X ′) and J∞(X) respectively
such that the following diagram commutes:

J∞(X ′) ⊃ Ck,s
α∞−−→ α∞(Ck,s) ⊂ J∞(X)yπt yπt

Jt(X ′) ⊃ B′t
αt−−→ Bt ⊂ Jt(X).
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A local calculation (cf. [D-L99a, Lemma 3.4(b)]) then shows that the re-
striction of αt to B′t is a Ck-bundle over Bt. It follows that [B′t] = [Ck] · [Bt]
and hence

µ
(
Ck,s

)
= [B′t] · L−(n+nt) = [Bt] · Lk · L−(n+nt) = µ

(
α∞(Ck,s)

)
· Lk

as required. �

Definition B.4.6. Let X denote a complex algebraic variety with at worst
Gorenstein canonical singularities. The motivic log-volume of X is defined
to be the motivic log-volume of the pair (Y,D), where ϕ : Y → X is any
resolution of singularities for which the discrepancy divisor has only simple
normal crossings.

Note first that the discrepancy divisor D is effective because X has at
worst Gorenstein canonical singularities. The crucial point however is that
the motivic log-volume of (Y,D) is independent of the choice of resolution:

Proposition B.4.7. Let ϕ1 : Y1 −→ X and ϕ2 : Y2 −→ X be resolutions
of X with discrepancy divisors D1 and D2 respectively. Then the motivic
log-volumes of the pairs (Y1, D1) and (Y2, D2) are equal.

Proof : Form a resolution Y0 which is common to the two resolutions:

Y0
ψ2−−→ Y2yψ1

yϕ2

Y1
ϕ1−−→ X

and let D0 denote the discrepancy divisor of ϕ0 = φ1◦ψ1 = ψ2◦ψ2. The
discrepancy divisor of ψi is D0 − ψ∗iDi. Indeed

KY0 = ϕ∗0(KX) +D0 = ψ∗i ◦ ϕ∗i (KX) +D0 = ψ∗i (KYi −Di) +D0

= ψ∗i (KYi) + (D0 − ψ∗iDi).

The maps ψi : Y0 −→ Yi are proper birational morphisms between smooth
projective varieties so Theorem B.4.4 applies:∫

J∞(Yi)
L− ordDidµYi =

∫
J∞(Y0)

L− ordψ∗
i
Di+(D0−ψ∗i Di)dµY0

=
∫
J∞(Y0)

L− ordD0dµY0 .

This proves the result. �

B.5. Stringy Hodge Numbers and Stringy Motives

Recall (8) that the Hodge number polynomial PHdg takes values in the
ring Z[u, v]. Clearly, PHdg(L) = uv so that this polynomial extends to

PHdg :M = K0(Var)[L−1]→ Z[u, v.(uv)−1].

One needs a further extension to the subring M̂0 (see (63)). The kernel of
the completion map φ :M = K0(Var)[L−1]→ M̂ is⋂

m∈Z
FmK0(Var)[L−1]. (65)
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For [V ]·L−i ∈ FmK0(Var)[L−1], the degree of the Hodge number polynomial
PHdg

(
[V ] · L−i

)
is 2 dimV − 2i ≤ −2m. The degree of the Hodge number

polynomial of an element Z in the intersection (65) must therefore be −∞;
that is, PHdg(Z) = 0. Thus Hodge number annihilates ker φ and hence
factors through φ (M). The result follows upon setting

PHdg

(
1

Li − 1

)
:= ((uv)i − 1)−1, i ∈ N.

By Corollary B.4.3 the motivic volume of (Y,D) lies in the subring M̂0.

Definition B.5.1. LetX be a complex algebraic variety of dimension n with
at worst Gorenstein canonical singularities. Let ϕ : Y → X be a resolution
of singularities for which the discrepancy divisor D =

∑r
i=1 aiDi has only

simple normal crossings. The stringy Hodge number function for X is

PstHdg(X) := PHdg

(∫
J∞(Y )

L− ordDdµX · LdX
)

=
∑

J⊆{1,...,r}

PHdg(D◦J) ·

∏
j∈J

uv − 1
(uv)aj+1 − 1

 , (66)

where we sum over all subsets J ⊆ {1, . . . , r} including J = ∅.

Remark B.5.2. That the stringy Hodge function does not change after
composing the resolution with a blow up along a smooth centre can be seen
by a direct calculation. Hence, if one uses the weak factorization theorem
(cf. Appendix 1 to Appendix 2), it follows directly that the stringy Hodge
function is independent of choices. This proves Batyrev’s conjecture without
integration as alluded to in footnote 2.

Theorem B.5.3 ([Ko]). Let X be a complex projective variety with at worst
Gorenstein canonical singularities. If X admits a crepant resolution ϕ : Y →
X then the Hodge numbers of Y are independent of the choice of crepant
resolution.

Proof : The discrepancy divisor D =
∑r

i=1 aiDi of the crepant resolution
ϕ : Y → X is by definition zero, so the motivic log-volume of X is the
motivic log-volume of the pair (Y, 0). Since each ai = 0 it’s clear that

PstHdg(X) =
∑

J⊆{1,...,r}PHdg(D◦J) = PHdg(Y ).

The stringy Hodge number function is independent of the choice of the
resolution ϕ. In particular, PHdg(Y ) = PstHdg(X) = PHdg(Y2) for ϕ2 : Y2 →
X another crepant resolution. It remains to note that PHdg(Y ) determines
the Hodge numbers (here one uses that Y is smooth and projective). �

I finally want to relate this topic with the topic of Grothendieck motives.
Recall the homomorphism χcmot : M→ K0(Mot) explained in Theorem A-
3.2. At present it is unknown whether or not χcmot annihilates the kernel of
the natural completion map φ :M→ M̂. Denef and Lœser conjecture that
it does (see [D-L98, Remark 1.2.3]). If this is true, extend χmot to a ring
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homomorphism

χst : M̂0 −→ K0(Mot) ·
[{

1
Li − 1

}
i∈N

]
such that the image of [D◦J ] under χst is equal to χmot(D◦J).

Definition B.5.4. Let X denote a complex algebraic variety with at worst
canonical, Gorenstein singularities and let ϕ : Y → X be any resolution of
singularities for which the discrepancy divisor D =

∑
aiDi has only simple

normal crossings. Assume that the above conjecture of Denef and Lœser
holds (so that χst is defined). The stringy motive of X is the element in
K0(Mot) ·

[{
1

Li−1

}
i∈N

]
given by the expression

χst(X) := χst

(∫
J∞(Y )

L− ordDdµX · LdX
)

=
∑

J⊆{1,...,r}

χcmot(D
◦
J) ·

∏
j∈J

L− 1
Laj+1 − 1


where we sum over all subsets J ⊆ {1, . . . , r} including J = ∅. As with the
definition of the stringy Hodge number function (see Definition B.5.1) one
multiplies by LdX for convenience.

Remark B.5.5. If X has a crepant resolution Y , D = 0 and χst(X) =∑
J⊆{1,...,r} χ

c
mot(D

◦
J) = χcmot(Y ). In particular, χcmot(Y ) is independent of

the crepant resolution which is a consequence of Konsevich’s Theorem.
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Soc. Math. France, 109, 41–81 (1981)

[Ehr] Ehresman, C.: Sur les espaces fibrés différentiables, C. R. Acad. Sci. Paris
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[L] Looijenga, E. : Motivic measures. Séminaire Bourbaki, 52ème année, 1999-
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