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Preface

Our main motivation to write the present monograph comes from the desire to
make Nikulin’s article [171] more accessible. In this article he rewrote the classical
theory of integral quadratic forms in terms of the discriminant quadratic form. In
geometry this is particularly useful since the input often comes from the discrimi-
nant form as demonstrated e.g. in [168, 169, 170, 172, 173].

The importance and scope of Nikulin’s work [171] was immediately realized
by the algebraic geometry community. At the same time a need was felt for an
introductory exposition of the number theoretic aspects required to understand
the details of Nikulin’s densely written article. Unfortunately, to this date no
such work exists in the literature, although the prepublication [156] of R. Miranda
and D. Morrison serves this goal to some extent. Since they ultimately aimed
at a full explanation of [154, 155] – which extends Nikulin’s results considerably –
their report, while starting out on an elementary level, quickly becomes technically
involved.

Instead, we started on a more elementary level, developing the theory of integral
quadratic forms gradually, with regular excursions to apply the theory developed so
far to disparate fields such as topology, singularity theory and algebraic geometry,
notably to K3 and Enriques surfaces. The reader we have in mind is an algebraic
geometer or topologist without a broad background on quadratic forms. For this
reason in the first few chapters several classical results concerning quadratic forms
are explained in detail.

In this way we hope to have succeeded not only in making Nikulin’s work more
accessible, but that we also have shown that these results have applications in
many different fields of mathematics. TO DO: acknowlegments
Noordwijkerhout, Eindhoven,
July 2024 C. Peters

H. Sterk
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Introduction

Brief Historical Remarks

The subject of quadratic forms is a very old one. It traces back to the problem
of finding the Pythagorean triples, some of which were known to the Babylonians
around 2000 BCE. A modern way of enumerating those triples starts from the
rational points on the plane quadric curve 𝑥2 +𝑦2 = 𝑧2; the latter admits a rational
parametrization from which all Pythagorean triples can be written down. This old
example shows the interplay between number theory and geometry.

Later other quadratic equations were investigated, notably by Brahmagupta
who in 628 found a conditional method to solve the equation 𝑥2 − 𝑛𝑦2 = 1, now
called Pell’s equation. Later Bhāskara II around 1150 solved Pell’s equation un-
conditionally.

In Europe this equation was studied much later by Fermat, and a solution was
published by the British mathematician Brouncker after Fermat in a 1657 letter
announced he could solve the equation, and challenged others to do so. More than
a century later, Gauss wrote his famous Disquisitiones Arithmeticae (1801) which
contains a substantial part devoted to the theory of binary quadratic forms (i.e.,
quadratic forms in two variables) over the integers.

The algebraic theory of quadratic forms, that is, the study of quadratic forms
over arbitrary commutative rings, only started in the 20th century. The main
protagonists are E. Witt (cf. [251]) and M. Eichler (cf. [67]). Analytic theory also
plays a major role for positive definite forms since there are strong relations to
theta functions as explained by C.L. Siegel in [212, 213, 214].

The earliest monographs on integral quadratic forms are [112, 246, 177, 151] by
B. Jones, G. Watson, O. O’Meara, respectively J. Milnor–D. Husemoller. The first
three develop the classical theory in more or less detail, while the last reference
provides a short original treatment of unimodular forms and is also devoted to
applications to topology. The algebraic and analytic theory from that epoch is
masterly explained in J. Cassels’ book [36].

As mentioned in the preface, V. Nikulin’s work [171] brings the classical al-
gebraic theory in a new phase through his original and influential reformulation
thereof in terms of the discriminant form associated to an integral quadratic form.

Kaleidoscopic View of This Book

As is clear from the title of the book, symmetric and quadratic forms are inti-
mately related. This relation should be well-understood from the start. An 𝑛-ary
quadratic form over a commutative ring 𝑅 is just a quadratic function in 𝑛 variables
𝑥1, . . . ,𝑥𝑛, say 𝑞 =

∑
1≤𝑖≤𝑗≤𝑛 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 with coefficients 𝑎𝑖𝑗 in 𝑅. The associated upper
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triangular matrix 𝐴 = (𝑎𝑖𝑗) defines a symmetric matrix 𝐵 = 𝐴 + 𝐴T = (𝑏𝑖𝑗) leading
to a symmetric form, the polar form

∑
1≤𝑖,𝑗≤𝑛 𝑏𝑖𝑗𝑥𝑖𝑦𝑗 of 𝑞. Whenever we work in a

situation where 2 is invertible, every symmetric matrix 𝐵 can be decomposed as
𝐵 = 𝐴+𝐴T with 𝐴 upper-triangular and with entries in 𝑅. If this is the case, there
is no essential difference between symmetric and quadratic forms. Unfortunately
this does not apply to integral forms since a polar form of an integral symmetric
form always has even diagonal elements. Such symmetric bilinear forms are called
”even forms”. Those that are not even are simply called ”odd”.

Our main objects of investigation are indeed the integral symmetric forms, and
a long introductory chapter is devoted to these. The reader opting for a more
general set-up might as well start right away with Chapter 6. However, since the
general theory exposed in these later chapters is quite technical, Chapter 1 offers
a more leisurely treatment of the central concepts along with several illustrative
basic examples. For instance we explain the genus of a lattice which encapsulates
local information. Alongside we give an inventory of basic 𝑝-adic lattices. We also
introduce the discriminant form, both locally and globally.

Before embarking on the full classification, in Chapter 2 we first deal with
indefinite unimodular forms since, as remarked by J. Milnor (cf. [151]), their clas-
sification is much simpler and can be explained using less advanced tools. This
has also the advantage that this results in a classification of intersection lattices of
compact manifolds, since by Poincaré duality these lattices are unimodular. Some
topological applications thereof are given in Section 2.5.

Quadratic forms over the rational numbers play of course a central role. Their
classification is explained in Chapter 3 where we largely follow Chapter IV in
J. P. Serre’s monograph [204]. After this somewhat abstract chapter we have
inserted two chapters in which we discuss several constructions for lattices and
apply these to coding theory and topology. More in detail, in Chapter 4 we turn
to graphs related to the Euclidean algorithm and apply these considerations to
lens spaces, (complex) surface singularities and surface fibrations. As a byproduct,
following C.T.C. Wall in [245], a lattice is constructed whose discriminant form is
a given cyclic torsion form, a result playing a decisive role in Chapter 12. Then,
in Chapter 5 we investigate some lattices constructed by algebraic means (linear
codes, number fields and quaternion algebras). These results are first applied to
Kummer surfaces, following [168], and then following ideas [17] of A. Beauville, to
surfaces with many nodes.

From Chapter 6 on, we broaden our perspective and reconsider quadratic and
symmetric forms over an arbitrary commutative unital ring 𝑅, adding assumptions
on 𝑅 as we go from Chapter 6 to Chapter 10. In these chapters we develop the
necessary fundamental theory. For instance, the later classification results are
based on a splitting principle, proven in Chapter 6, which reduces classification to
rank one and two. This is used in Chapter 8 to obtain the classification over fields.
Furthermore, it leads in Chapters 9 and 10 to a classification of torsion quadratic
forms and of symmetric 𝑝-adic lattices. Before this, in Chapter 7, we prove the
more elementary, but fundamental results of Cartan–Dieudonné on reflections and
those of E. Witt about splitting off isotropic subspaces. The importance of the
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first result reveals itself later in the Chapters 13 and 14 where we show how it leads
to the spinor norm and to spinor equivalence. The second leads to the concept of
the Witt index which generalizes the notion of the index of a real quadratic form
to forms over other fields. In our book this notion plays a less important role.

We point out that, contrary to the usual simplification in many elementary
textbooks, characteristic two is incorporated in our treatment. This has a rea-
son: many applications make essential use of this characteristic, for instance the
description of supersingular K3 surfaces as discussed in Section 19.5, or in estab-
lishing the count of the number of elliptic fibrations on general Enriques surfaces
(cf. Corollary 21.2.4). As examples of typical characteristic two concepts we men-
tion the Arf invariant which comes up in Section 8.2, and the Dickson invariant
which is treated in Section 16.2.

In Chapter 11 we start elaborating Nikulin’s theory and show that the genus
of an integral quadratic lattice1 is completely determined by its index and dis-
criminant quadratic form. Next, in Chapter 12, following the approach [56] of A.
Durfee, we show that a torsion quadratic form is the discriminant form of some
lattice. Provided some easily verifiable conditions are satisfied, the index and tor-
sion quadratic form determine a unique genus of even integral lattices. In the last
section of this chapter, Section 12.5, we derive analogous results for odd lattices.

If a genus is non-empty, how many isometry classes are there? This question
is addressed in Chapter 14 and can be considered as the main technical pillar on
which the classification of indefinite integral lattices rests. We observe in Sec-
tion 1.12 of the introductory chapter that the number of isometry classes of a
definite lattice in a genus grows enormously with the (absolute value of) its dis-
criminant. Fortunately, for indefinite lattices the situation is drastically different
and is much more manageable. The problem can be tackled by splitting it up into
two problems of a very different nature:

• The first step is to investigate spinor-equivalence which is intermediate be-
tween equivalence(=isometry) and genus-equivalence. The number of spinor
genera in a given genus is the order of a “computable” finite group. From
the genus invariants one can often deduce that this group is trivial and so,
by Nikulin’s approach, this translates as a condition on the rank, index and
discriminant form.

• The second step consists of finding conditions which imply that spinor-
equivalent lattices are isometric. As we shall explain, this is a consequence of
the strong approximation theorem. The surprising main result here is that
a spinor genus of an indefinite lattice of rank at least 3 contains only one
isometry class.

After these (elaborate) steps, we arrive at the final result, Theorem 14.4.2, which, in
this formulation, is of course also due to Nikulin. In the remainder of Chapter 14
as well as in Chapter 15 the results obtained so far are used to derive several
lattice-theoretic consequences that are useful for geometric applications such as

1In this introduction lattices are assumed to be non-degenerate.
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criteria for embedding lattices in unimodular lattices and for extending isometries
of sublattices to the entire lattice.

The next two chapters are devoted to isometry groups of quadratic vector spaces
and of quadratic lattices respectively. In the first, Chapter 16, we also discuss some
typical characteristic 𝑝 topics such as counting the orders of the orthogonal groups
over finite fields, the notion of a rotation in characteristic 2 using the Dickson
invariant, and also the classical application of quadratic forms over the field 𝔽2 to
theta-characteristics. In the next chapter, Chapter 17, special attention is given
to isometry groups generated by hyperplane reflections as well as to Eichler–Siegel
transformations. The latter provide a powerful tool to investigate isometry groups
of Lorentzian lattices. These also turn out to be useful in the study of monodromy
groups of isolated singularities as illustrated in Chapter 18.

In the last 40 years the techniques developed in this book have been predomi-
nantly applied to K3 surfaces as well as to Enriques surfaces. Already in Nikulin’s
fundamental article [171] several such applications were given; D. Morrison con-
sidered in [158] applications to special K3 surfaces, whereas W. Barth–C. Peters
as well as I. Dolgachev applied these to Enriques surfaces (cf. [16, 51]). We also
want to point out the applications to supersingular K3 surfaces as given by A. N.
Rudakov and I. R. Šafarevič in [199]. These and several other applications find
their place in Chapters 19–21.

In the first two appendices we have assembled some more or less well-known
material which is used in the book, mainly for easy reference but also to give
the non-expert a synoptic view of subject material on which several examples are
based. The last appendix is devoted to technical results on quadratic forms, some
of which are used in the main body of the text. It is worthwhile to mention that
it contains some less known statements and proofs of Witt’s extension theorem
and the Cartan–Dieudonné theorem over local rings in which 2 is not invertible.
The appendix also contains proofs of some technical results on dyadic forms that
are used in the main text but would divert the reader too much from the already
involved line of reasoning.

What Other Monographs on Quadratic Lattices Offer

As already mentioned, the present monograph on quadratic forms serves a limited
goal. Consequently, some aspects of the theory have been barely touched upon
whereas others have been completely ignored. Many classic articles can be found
in the collected works of of E. Witt [252] and of C.-L. Siegel [215, 216, 217, 218].

There are also several excellent monographs available. Apart from the ones
already mentioned, we want to briefly discuss some older as well as some more
recent standard books on quadratic forms.

To start, M. Eichler’s book [67] is a classic book focussing on orthogonal and
spinor groups over several kinds of fields and requires basic knowledge of algebraic
number theory. For forms over algebraic number fields one should also consult Y.
Lam’s book [132] as well as the second rewritten edition [133]. Here the theory of
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the Witt rings find their proper place; for instance, the formidable progress due to
A. Pfister has been explained in these books. For the original work by A. Pfister
see [188].

Next, in the more recent book [123] by M.-A. Knus the purely algebraic aspects
of quadratic forms are treated, as well as those of Hermitian forms. Furthermore,
extensive material on Clifford algebras, Azumaya algebras and the 𝐾-theory of
quadratic and Hermitian forms can be found in this treatise.

The book [201] of W. Scharlau has a different flavour: non-commutative alge-
bras equipped with an involution come up and also transcendental extensions play
a role.

Readers interested in applications to cryptography and cryptoanalysis may con-
sult L. Gerstein’s book [84], and, finally, those interested in applications to alge-
braic geometry may want to read the exposition [70], written by R. Elman, N.
Karpenko and A. Merkurjev. It requires ample understanding of algebraic geom-
etry in a scheme-theoretic setting, the natural setting for arithmetic applications.



6 List of Notation

List of Notation

Symbol meaning page

disc(𝑏) discriminant of 𝑏 15
𝑏𝑞 polar form of 𝑞 14
⦹ orthogonal direct sum 16
𝐿ℚ,𝐿ℝ 𝐿 ⊗ℤ ℚ,𝐿 ⊗ℤ ℝ 19
rad(𝑏) radical of 𝑏 20, 146
𝜏(𝐿, 𝑏) index of (𝐿, 𝑏) 23
⟨𝑎⟩ integral form (𝑥, 𝑦) ↦→ 𝑎𝑥𝑦 23

[ 12𝑎] integral quadratic form 𝑥 ↦→ 1
2𝑎𝑥

2 23
𝐿(𝑚) lattice 𝐿 with form scaled by 𝑚 23
𝑈 the hyperbolic plane 23
(𝐿Γ, 𝑏Γ) lattice associated to a graph Γ 23
𝐸8 root lattice for the Dynkin graph 𝐸8 23
Γ𝑛 pos. definite lattice of rank 𝑛, 𝑛 ≡ 0 mod 8 25
𝐿 ≃ 𝐿′ or 𝑏 ≃ 𝑏′ 𝐿 and 𝐿′ are isometric 25
O (𝑏) or O (𝐿) the orthogonal group of the lattice (𝐿, 𝑏) 26, 158
𝜎𝑥 reflection in the vector 𝑥 26, 158
W𝜖 (𝐿) the Weyl group of 𝐿 27
W𝜏 (𝑉) Witt index of 𝑉 27, 167
𝐿∗ Homℤ (𝐿,ℤ), the dual of 𝐿 28
𝑏𝐿 correlation morphism 28, 149
dg𝐿 discriminant group 𝐿∗/𝐿 28
ℓ(𝐺) length of the finite group 𝐺 28
𝑏ℚ, 𝑞ℚ extension of 𝑏, 𝑞 to 𝐿ℚ 30

𝑏
#
𝐿 discriminant bilinear form 30

𝑞
#
𝐿 discriminant quadratic form 30

𝐿𝐺 , 𝐿𝐺 𝐺-invariant, anti-invariant sublattice of 𝐿 36
1𝑛 square identity matrix of size 𝑛 40
𝐿𝑝, 𝑝 a prime 𝐿 ⊗ℤ ℤ𝑝 41
𝑏𝑝 the ℤ𝑝-bilinear extension of 𝑏 41
D(𝑅) the group 𝑅×/(𝑅×)2 42
P the collection of places of ℚ 43
𝐿∞ (𝐿ℝ, 𝑏ℝ), 𝐿ℝ = 𝐿 ⊗ ℝ and 𝑏ℝ = 𝑏 ⊗ ℝ 43

𝑏
#
𝐿𝑝

discriminant bilinear form on dg𝐿𝑝 43

𝑞
#
𝐿𝑝

discriminant quadratic form on dg𝐿𝑝 43

𝔤(𝐿) the genus of 𝐿 43

⟨𝑢𝑝𝑘⟩ 𝑝-adic form 𝑢𝑝𝑘𝑥𝑦 on ℤ𝑝, 46

⟨𝑢𝑝−𝑘⟩ torsion form 𝑢𝑝−𝑘𝑥𝑦 on ℤ/𝑝𝑘ℤ 46

𝑈𝑘 quadratic 𝑝-adic binary form 𝑝𝑘𝑥𝑦 47

𝑢𝑘 torsion quadratic binary form 𝑝−𝑘𝑥𝑦 47
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𝑉𝑘 binary dyadic form 2𝑘 (𝑥2 + 𝑥𝑦 + 𝑦2) 47

𝑣𝑘 torsion quadratic binary form 2−𝑘 (𝑥2 + 𝑥𝑦 + 𝑦2) 47
ΛK3 K3-lattice 57
ΛEnr Enriques-lattice 57
𝜎(𝐿) modulo 8-invariant of 𝐿 60
H𝑋 the middle cohomology (mod torsion)

of an oriented compact manifold 𝑋 64
𝑆𝑋 intersection form on H𝑋 64
𝑋 # 𝑋′ connected sum of 𝑋 and 𝑋′ 64
𝑤𝑘 (𝑋) 𝑘-th Stiefel-Withney class of 𝑋 66
𝑐𝑘 (𝑋) 𝑘-th Chern class of 𝑋 67
𝑇𝑋 holomorphic tangent bundle of 𝑋 67
𝐾𝑋 canonical bundle of 𝑋 67
ℙ𝑛 complex projective 𝑛-space 66
𝑄 ℙ1 × ℙ1 as a differentiable manifold 66
K3 K3 surface as as differentiable manifold 67
𝜀𝑣 (𝑞) Hasse invariant of 𝑞 at a place 𝑣 ∈ P 69
(𝑎 , 𝑏)𝑣 Hilbert symbol at a place 𝑣 ∈ P 69, 426

𝐴𝑛,𝐷𝑛,𝐸𝑛, 𝑇𝑝,𝑞,𝑟 root lattices (Dynkin diagrams) 79–81

𝐴𝑛, �̃�𝑛,𝐸𝑛 extended Dynkin diagrams 81
ℤ1,𝑛 Lorentz lattice 84
[𝑏0, 𝑏1, . . . , 𝑏𝑚] continued fraction defined by the 𝑏𝑗 93
Γa graph associated to a 92
𝐿(𝑡, 𝑠) lens space of type (𝑡, 𝑠) 99
ln 𝑐, 𝑐′ linking number of 𝑐 and 𝑐′ 101
𝜏16 (𝑋) index mod 16 of the manifold 𝑋 102
𝐴𝑡,𝑠 Hirzebruch–Jung singularity 107
NS(𝑋) Néron–Severi group/lattice of 𝑋 107, 445
𝜌(𝑋) Picard number of 𝑋 107, 445
𝑝𝑎 (𝐷) arithmetic genus of the curve 𝐷 108, 445
[𝐷] class of divisor 𝐷 110
MWL(𝐸𝐾 ) Mordell–Weil group/lattice 114
𝜒(O𝑋 ) genus of a surface 𝑋 110, 434
Γ𝐶 lattice associated to a code 𝐶 ⊂ 𝔽𝑛𝑞 120

𝐶Gol binary extended Golay code 123
Γ24 Leech lattice 123
𝑀24 Matthieu group 123

𝑆≤𝑘 (𝑊) 𝑘-th order Reed–Muller code on 𝑊 124
D𝑚+1 Reed–Muller code 𝑆≤1 (𝔽𝑚2 ) 125
C𝑚 Linear functions on 𝔽𝑚2 as a code 125
ΛKum abstract Kummer lattice 128
ΛNik Nikulin lattice 129
N𝐾/𝑘, Tr𝐾/𝑘 norm form, resp. trace form for 𝐾/𝑘 131( 𝑎 ,𝑏
𝑘

)
quaternion algebra over 𝑘 137

𝑄(𝑅) fraction field of an integral domain 𝑅 143
𝑉∗, 𝑉∗

𝐹 duals of 𝑅-module 𝑉 144
O (𝑉, 𝑏) isometry group of (𝑉, 𝑏) 145
⟨𝑟⟩𝑅 form (𝑥, 𝑦) ↦→ 𝑟𝑥𝑦 on 𝑅 145
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Symbol meaning page

rad(𝑏) radical of the symmetric form 𝑏 146
rad(𝑞) radical of the quadratic form 𝑞 146
𝐶𝑚 cyclic group of order 𝑚 147
⟨𝑎−1𝑚⟩ torsion bilinear form on ℤ/𝑚ℤ 147
𝑈𝑅 hyperbolic 𝑅-plane 153
𝑈𝑉 hyperbolic module associated to 𝑉 155
𝑈𝐿,𝑞 split hyperbolic inner product space 155
℘ Artin–Schreier map (in characteristic 2) 172
arf (𝑞) Arf invariant of 𝑞 172
SO (𝐿) group of rotations of the lattice 𝐿 158
𝜎𝑆 symmetry in the sublattice 𝑆 158

𝑟𝑏𝐿 reduction map O (𝐿, 𝑏) → O (𝑏#𝐿 ), 159

𝑟𝐿 = 𝑟
𝑞
𝐿 —- respectively, O (𝐿, 𝑞) → O (𝑞#𝐿 ) 270

𝑊 (𝑅) Witt group/ring of 𝑅 168
[𝑉] class of the lattice 𝑉 in the Witt ring 168
𝛿(𝑏), 𝛿(𝑞) reduced discriminant 183
𝜇 2-adic invariant 206

( 12𝐺,
1
2𝑏) halving of a torsion bilinear form 𝑏 on 𝐺 191

g(𝐿) genus invariant of a lattice 𝐿 216, 238
𝐿𝑟,𝑢 𝑝-adic lattice ⟨𝑢⟩ ⦹⦹𝑟−1⟨1⟩ 208
𝐿𝑏# normal form for 𝑝-adic lattice, 𝑝 ≠ 2

with discriminant form 𝑏# 208

𝐿
(1)
𝑞#

,𝐿
(2)
𝑞#

normal forms for dyadic lattices

with discriminant quadratic form 𝑞# 213
𝜏8 index mod 8 222
𝜔(−) standard additive character 224
C(𝑞),C(𝐿) Clifford algebra of 𝑞 or 𝐿 245, 256
C0 (𝑞),C0 (𝐿) even Clifford algebra of 𝑞 or 𝐿 245, 256
Clif (𝑞), Clif0 (𝑞) Clifford group, special Clifford group of 𝑞 249
C𝑝,𝑞 real Clifford algebra 246
Mat(𝑛,𝐾) 𝑛 × 𝑛 matrices over 𝐾 248
Nmspin (𝑢) spinor norm of 𝑢 251
Spin(𝑞),Pin(𝑞) (s)pin group of 𝑞 251
SO+ (𝑞) reduced orthogonal group of 𝑞 251
S𝑉 ,S𝐿,S𝑉𝑝 ,S𝐿𝑝 image of the spinor norm w.r. to 𝑉,𝐿,𝑉𝑝 ,𝐿𝑝 254

Spin(𝐿),Pin(𝐿) (s)pin group of 𝐿 256
O+ (𝐿),SO+ (𝐿) reduced orthogonal groups of 𝐿 256

O# (𝐿) ker
(
𝑟𝐿 : O (𝐿) → O (𝑞#𝐿 )

)
270

SO# (𝐿) ker
(
𝑟𝐿 : SO (𝐿) → SO (𝑞#𝐿 )

)
270.

Nm𝜖
spin 𝜖-spinor norm 293

O𝜖 (𝐿)
{
𝑔 ∈ O (𝐿) | Nm𝜖

spin (𝑔) = 1
}

293

C𝑉 component of the light cone in 𝑉 295
W𝜖 (𝐿) Weyl group of 𝐿 308
∆𝜖 (𝐿), 𝐿𝜖-root set of 𝜖-roots in 𝐿 and sublattice they span 308

O𝜖,# (𝐿) O𝜖 (𝐿) ∩O# (𝐿) 309

SO (𝐿)
𝜌𝑛−−→ Aut(𝐿/𝑛𝐿) group homomorphism induced by 𝐿 → 𝐿/𝑛𝐿 309
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O (𝐿) [𝑛] ker (𝜌𝑛) 309
∆(𝐿), 𝐿root ∆𝜖 (𝐿), 𝐿𝜖-root for 𝜖 = −1 309
𝜓𝑓,𝑦 Eichler–Siegel transformation 317

𝜓𝑈 (𝐿′) certain subgroup of O (𝑈 ⦹ 𝐿′) 321
Λ orbit of Λ under the reflection group for Λ 325
𝑇 1
𝑝,𝑞,𝑟 a certain Dynkin diagram 329

Λ𝑋,𝑥 Milnor lattice of (𝑋,𝑥) 333
𝜇 Milnor number of singularity 333
DF discriminant locus for the family F 334
𝜈 Tjurina number of a singularity 334
Mon(Λ𝑋,𝑥) monodromy group of (𝑋,𝑥) 336
Mon(Λ𝑛,𝑑) monodromy for universal family

of degree 𝑑 hypersurfaces in ℙ𝑛+1 338
Oℓ (𝐿) isometries of 𝐿 fixing ℓ ∈ 𝐿 339

C𝑋 , resp. C
Käh
𝑋 positive cone, resp. Kählercone of 𝑋 343, 436

Camp
𝑋 ample cone inside NS(𝑋)ℝ 344, 436

M moduli space of marked K3 surfaces 349
M𝑆 moduli space of 𝑆-marked K3 surfaces 351
Aut𝑠 (𝑋) group of symplectic automorphisms

of the K3 surface 𝑋 364
𝐺𝐶 stabilizer of 𝐶 in the group 𝐺 364
𝜙 The Euler totient function 366
M𝐺 moduli space of 𝐺-marked K3 surfaces 370
𝜄Nik abstract Nikulin involution 391
𝑓! Gysin map in cohomology 399
𝜄Enr lattice Enriques involution 407
Aut𝑠 (𝑌) group of semi-symplectic automorphisms

of the Enriques surface 𝑌 415
𝐶𝑛 cyclic group of order 𝑛 421(
𝑥

𝑝

)
Legendre symbol 426

𝜀(−) standard character 426
∥ − ∥𝑝 𝑝-adic norm 422
𝑣𝑝 𝑝-adic valuation 422

Ω
𝑝
𝑋 sheaf of homomorphc 𝑝-forms on 𝑋 434

𝐻𝑝,𝑞 (𝑋) subspace of 𝐻𝑝+𝑞 (𝑋,ℂ) of (𝑝, 𝑞)-classes 434
ℎ𝑝,𝑞 (𝑋) dim𝐻𝑝,𝑞 (𝑋) 434
𝑝𝑔 (𝑋) dim𝐻2,0 (𝑋) for a surface 𝑋 434
𝑞(𝑋) dim𝐻1,0 (𝑋) for a surface 𝑋 434
F𝑛 Hirzebruch surface 438
𝐷(𝐿, 𝑏) period domain for (𝐿, 𝑏) 443
𝑃𝑚 (𝑋) 𝑚-th plurigenus of 𝑋 445
𝜅(𝑋) Kodaira dimension of 𝑋 445
𝐽𝑛 standard symplectic form 429
Sp(𝑉) group of symplectic automorphisms of 𝑉 430
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Interdependence of Chapters

Lower level chapters require all chapters from higher levels except Chapter 1.

Chapter 2 Chapter 3

Chapter 1

Chapter 4 Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9 and 10 +

Chapter 11

Chapter 12

Chapter 14Chapter 13 Chapter 15

Chapter 19, 20,21

Chapter 16,17

Chapter 18



List of Basic Notions

Adjoint map for (𝑉, 𝑏): morphism

𝑉
𝑏𝑉−−→ 𝑉∗

𝐹 sending 𝑥 to 𝑏(𝑥,−)

Binary form: symmetric or quadratic
form in 2 variables

Correlation map: see Adjoint map

Discriminant of 𝑅-bilinear form 𝑏: value
of det(𝐵𝑬) modulo squares,
where 𝐵𝑬 is the Gram matrix
with respect to a basis 𝑬

discriminant bilinear form: the torsion
form given by (𝑥, 𝑦) ↦→
𝑏𝑄(𝑅) (𝑥, 𝑦) mod 𝑅

discriminant quadratic form: the tor-
sion quadric form given by
𝑞#𝐿 (𝑥) = 𝑞𝑄(𝑅) (𝑥) mod 𝑅

discriminant group of (𝐿, 𝑏): torsion
group 𝐿∗/𝑏𝐿 (𝐿) where 𝑏𝐿 is the
correlation morphism

dyadic lattice, – symmetric/quadr. form:
ℤ2-lattice, 2-adic symmet-
ric/quadr. form

Equivalent lattices: sublattices of an in-
ner product space 𝑉 related by
an isometry of 𝑉

exponent of the torsion group 𝑅/𝑝𝑒𝑅:
the integer 𝑒

Gram matrix of a symmetric form 𝑏:
the matrix (𝑏(𝑒𝑖 , 𝑒𝑗)) w.r. to
a basis {𝑒1, . . . , 𝑒𝑛}

Inner product space over 𝑅: a unimodu-
lar symmetric free 𝑅-module of
finite rank

integral lattice: a free ℤ-module 𝐿 of fi-
nite rank equipped with a sym-
metric bilinear form

quadratic — : an even integral
lattice

non-degenerate — : a lattice
with non-zero discriminant

unimodular — : a lattice with
discriminant = ±1

isometry between 𝑅-symmetric modules:
bijective 𝑅-linear map preserv-
ing the bilinear forms

Jordan decomposition of a 𝑝-primary
module: direct sum decompo-
sition into homogeneous sum-
mands

Jordan splitting of a 𝑝-primary module:
orthogonal direct sum decom-
position into homogeneous
summands

Jordan splitting of a 𝑝-adic lattice 𝐿:
𝐿 = ⦹𝑚

𝑘=1
𝐿𝑘 (𝑝𝑘) with 𝐿𝑘 uni-

modular

Length of finite abelian group 𝐺: mini-
mal number of generators of 𝐺

Non-degenerate form: form whose corre-
lation morphism is an injection

Quadratic 𝐹-valued 𝑅-module: 𝑅-
module endowed with an 𝐹-
valued quadratic form

quadratic 𝑅-module: a quadratic 𝑅-
valued 𝑅-form

quadratic inner product space over 𝑅:
unimodular free quadratic 𝑅-
module of finite rank

quadratic torsion 𝑅-module: 𝑄(𝑅)/𝑅-
valued quadratic form over 𝑅

quadratic torsion group: torsion group
endowed with a ℚ/ℤ-valued
quadratic form



12 List of Basic Notions

Radical of a quadratic 𝑅-module (𝑉, 𝑞)
𝑉⊥ ∩ {𝑥 ∈ 𝑉 | 𝑞(𝑥) = 0}

radical of a symmetric 𝑅-module 𝑉: 𝑉⊥

root (vector): 𝑥 ∈ 𝐿 primitive, non-
isotropic, s.t. 𝐿 is preserved by
the reflection 𝜎𝑥

root lattice: integral lattice spanned by
its roots

Split hyperbolic inner-product space:
lattice 𝐿 ⊕ 𝐿∗ with form
(𝑥,𝑓) ↦→ 𝑞(𝑥) + 𝑓(𝑥)

Sylow decomposition of torsion module 𝑇 :
𝑇 = ⊕𝑝𝑇𝑝 with 𝑇𝑝 a 𝑝-primary
module

symmetric 𝐹-valued 𝑅-module: 𝑅-
module endowed with an 𝐹-

valued symmetric form
symmetric 𝑅-module: symmetric 𝑅-

valued 𝑅-module
symmetric torsion 𝑅-module: 𝑄(𝑅)/𝑅-

valued 𝑅-bilinear symmetric
form

symmetric torsion group: torsion group
endowed with a ℚ/ℤ-valued
symmetric form

Ternary form: quadratic form in 3 vari-
ables

Unimodular form: form whose correla-
tion morphism is an isomor-
phism
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Symmetric and Quadratic Forms, an Overview

Introduction

This longer chapter is meant as an overview of all the themes that will be treated
in depth in later chapters. It focusses on the special case of integral lattices after
we have reviewed the pertinent linear algebra in Section 1.1. The general theory
over arbitrary rings is postponed until Chapter 6.

There are a few basic concepts and ideas that play a major role in this book.
Among these are the notions of discriminant, orthogonality, decomposability, index
and signature, treated in Sections 1.1, 1.2 and 1.3. A first set of examples of lattices
are introduced in Section 1.4. These come up later as building blocks.

What it means to say that two lattices are the same, and what automor-
phisms of lattices are, is explained in Section 1.5. Here the theorems of Witt
and Dieudonné-Cartan are promoted.

A further central concept is the discriminant form and Section 1.6 is devoted
to its basic properties. With help of this tool, in Section 1.7 we can give further
elementary examples: neighbouring lattices, 𝑝-elementary lattices and overlattices.
We return to these examples in later chapters, for example in Chapter 15 in which
we consider the embedding problem for lattices: can a given lattice be embedded
in another given lattice and if so, is the embedding unique? In Section 1.8 we
introduce the reader to this circle of ideas.

To classify lattices it is often helpful to “localize”. This leads to 𝑝-adic lattices
and the concept of genus. Section 1.9 offers a comprehensive introduction. From
the list of examples of 𝑝-adic lattices we present here, all others can be constructed
as will be shown in later chapters. A genus contains only finitely many equiva-
lence classes of lattices as we show in Section 1.10. We furthermore point out the
innovative approach to the genus initiated by Nikulin. This approach gives the
discriminant form a central place which is one more reason to explain this notion
in more detail in this introductory chapter.

In Sections 1.12, 1.13 we point out the drastically different behaviour of lattices
with a “form of a fixed sign” (definite lattices) and the indefinite ones.

We have interspersed this chapter with (sub)sections called ”outlook”. These
are meant as beacons shining light on central results to which we return later in
the book.

Finally, Section 1.11, headed ”excursion” contains further results mostly with-
out proofs but which mention interesting related developments, a full treatment of
which would lead us too far afield.
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1.1 Quadratic Forms: a Review of Linear Algebra

Before we pass to lattices we review some concepts from linear algebra. So we
start with a finite dimensional vector space 𝑉 over any field 𝑘 and select some
basis 𝑬 = {𝑒1, . . . , 𝑒𝑛}. A symmetric bilinear form on 𝑉 is given by a function

𝑏 : 𝑉 × 𝑉 −−−−−→ 𝑘

such that

1. 𝑏 is linear in each of its two arguments, that is 𝑏(𝛼𝑥 + 𝛽𝑦, 𝑧) = 𝛼𝑏(𝑥, 𝑧) +
𝛽𝑏(𝑦, 𝑧) for all 𝛼, 𝛽 ∈ 𝑘, 𝑥, 𝑦, 𝑧 ∈ 𝑉, and similarly for the second argument;

2. 𝑏(𝑥, 𝑦) = 𝑏(𝑦,𝑥) for all 𝑥, 𝑦 ∈ 𝑉.

Such a form is uniquely determined by the symmetric matrix

𝐵𝑬 = (𝑏𝑖𝑗) ∈ 𝑘𝑛×𝑛, 𝑏𝑖𝑗 = 𝑏(𝑒𝑖 , 𝑒𝑗),

the Gram matrix of 𝑏 with respect to 𝑬. Indeed, writing 𝑥 =
∑
𝑥𝑖𝑒𝑖 and

𝑦 =
∑
𝑦𝑖𝑒𝑖 we find

𝑏(𝑥, 𝑦) =
(
𝑥1, . . . ,𝑥𝑛

) ©«
𝑏11 · · · 𝑏1𝑛
...

...

𝑏𝑛1 · · · 𝑏𝑛𝑛

ª®®¬
©«
𝑦1
...

𝑦𝑛

ª®®¬ .
The function 𝑥 ↦→ 𝑏(𝑥,𝑥) is an example of a quadratic form , that is, a function
𝑞 : 𝑉 → 𝑘 for which

1. 𝑞(𝛼𝑥) = 𝛼2𝑞(𝑥), 𝛼 ∈ 𝑘 and 𝑥 ∈ 𝑉;

2. the form 𝑏𝑞 (𝑥, 𝑦) = 𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦) is a symmetric bilinear form on 𝑉,
the polar form of 𝑞. In particular, setting 𝑦 = 𝑥, we find

𝑏𝑞 (𝑥,𝑥) = 2𝑞(𝑥).

Using these properties and starting for instance with

𝑞(𝑥1𝑒1+· · ·+𝑥𝑛𝑒𝑛) = 𝑞(𝑥1𝑒1+· · ·+𝑥𝑛−1𝑒𝑛−1)+𝑞(𝑥𝑛𝑒𝑛)+𝑏𝑞 (𝑥1𝑒1+· · ·+𝑥𝑛−1𝑒𝑛−1,𝑥𝑛𝑒𝑛),

the quadratic form 𝑞 can be expressed in matrix form as follows:

𝑞(𝑥) =
(
𝑥1, . . . ,𝑥𝑛

)
𝑄︷                        ︸︸                        ︷©«

𝑞11 · · · · · · 𝑞1𝑛

0 𝑞22 · · ·
...

...
. . .

. . .
...

0 · · · 0 𝑞𝑛𝑛

ª®®®®®¬
©«
𝑥1
...

𝑥𝑛

ª®®¬ , (1.1)

where 𝑞𝑖𝑖 = 𝑞(𝑒𝑖) and 𝑞𝑖𝑗 = 𝑏𝑞 (𝑒𝑖 , 𝑒𝑗) if 𝑖 < 𝑗. We observe two things:
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1. The matrix 𝑄 is not always determined by the polar form 𝑏𝑞. To see this,
observe that 𝑏𝑞’s Gram matrix is 𝐵𝑬 = 𝑄 + 𝑄T, so that 𝑞𝑖𝑗 = 𝑏𝑖𝑗 if 𝑖 < 𝑗,
𝑞𝑖𝑗 = 𝑏𝑗𝑖 if 𝑖 > 𝑗, and 𝑏𝑖𝑖 = 2𝑞𝑖𝑖. Hence 𝑞𝑖𝑖 can only be recovered if the
characteristic is different from 2.

2. Given a bilinear form 𝑏, the polar form of the quadratic form 𝑥 ↦→ 𝑏(𝑥,𝑥)
equals 2𝑏 and so in characteristic 2 this is zero.

These observations show that characteristic 2 is special. For the remaining char-
acteristics we may divide by 2 and there is a perfect correspondence between
quadratic forms and symmetric bilinear forms.

Remark 1.1.1. 1. If we don’t insist on 𝑄 being upper triangular, the Gram matrix
𝐵𝑬 of the polar form of a quadratic form can be written in many ways as 𝐵𝑬 = 𝑆+𝑆T,
while still 𝑥𝑆𝑥T = 𝑥𝑄𝑥T for all vectors 𝑥 ∈ 𝑘𝑛. Indeed, in characteristic ≠ 2 the
matrix 𝑄 can be replaced by any matrix 𝑆 = 𝑄 + 𝐴, where 𝐴 is anti-symmetric,
and in characteristic 2 we can take 𝑆 = 𝑄 +𝐴, where 𝐴 is symmetric and has zeros
on the diagonal. We leave the easy verification as an exercise.
2. There are analogous definitions for the above notions for 𝑅-valued forms on a
finite rank free 𝑅-module over a commutative ring 𝑅. This will be treated exten-
sively in Chapter 7. The case 𝑅 = ℤ is the topic of the remainder of the chapter.
3. Since 2 is not invertible in ℤ there is again a difference between integral bilinear
forms and polar forms of integral quadratic forms. We shall see (cf. Proposi-
tion 1.2.5) that the latter correspond to so-called even forms.

We list some basic properties of symmetric bilinear forms. Similar properties
hold for quadratic forms by considering their polar forms. We say that the form 𝑏
is non-degenerate if and only if det(𝐵𝑬) ≠ 0. This does not depend on the choice
of basis. Indeed, in another basis 𝑭, say 𝑓𝑗 =

∑
𝑘 𝑐𝑘𝑗𝑒𝑘, 𝑘 = 1, . . . ,𝑛, we readily find

𝐵𝑭 = 𝐶T𝐵𝑬𝐶, 𝐶 = (𝑐𝑖𝑗), (1.2)

and so det𝐵𝑭 = (det𝐶)2 det𝐵𝑬 . For a non-degenerate form the determinant of the
Gram matrix is well defined up to multiplication with non-zero squares. This gives
the discriminant of 𝑏, denoted

disc(𝑏) = det𝐵𝑬 · (𝑘×)2 ∈ 𝑘×/(𝑘×)2.

A pair (𝑉, 𝑏) of a finite dimensional vector space equipped with a non-degenerate
symmetric bilinear form is also called an inner product space . An equivalent
intrinsic way of phrasing non-degeneracy follows from

Proposition 1.1.2. The form 𝑏 is non-degenerate if and only if for any non-zero
𝑥 ∈ 𝑉 there exists 𝑦 ∈ 𝑉 with 𝑏(𝑥, 𝑦) = 1 (equivalently: 𝑦 ↦→ 𝑏(𝑥, 𝑦) is non-trivial).

Proof. Let 𝑒1 = 𝑥 be the first vector of the basis 𝑬 = {𝑒1, . . . , 𝑒𝑛} and let 𝐵𝑬 be the
Gram matrix of 𝑏. Suppose 𝑏(𝑥,𝑉) = 0, then (1, 0, . . . , 0) 𝐵𝑬 (𝑦1, . . . , 𝑦𝑛)T = 0 for all
(𝑦1, . . . , 𝑦𝑛) ∈ 𝑘𝑛 and so (1, 0, . . . , 0) 𝐵𝑬 = 0, which means that 𝐵𝑬 is not invertible,
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contrary to the assumption. Hence, there exists 𝑧 ∈ 𝑉 with 𝑏(𝑥, 𝑧) = 𝑎 ≠ 0 and we
can take 𝑦 = 𝑎−1𝑧.

Conversely, let 𝐸 = {𝑒1, . . . , 𝑒𝑛} be a basis of 𝑉 and suppose det𝐵𝐸 = 0.
Then there exists a non-zero vector (𝑥1, . . . ,𝑥𝑛) ∈ 𝑘𝑛 with (𝑥1, . . . ,𝑥𝑛)𝐵𝐸 = 0,
so that (𝑥1, . . . ,𝑥𝑛)𝐵𝐸 (𝑦1, . . . , 𝑦𝑛)⊤ = 0 for all (𝑦1, . . . , 𝑦𝑛) ∈ 𝑘𝑛. This translates
into 𝑏(𝑥, 𝑦) = 0 for all 𝑦 ∈ 𝑉, where 0 ≠ 𝑥 = 𝑥1𝑒1 + · · · + 𝑥𝑛𝑒𝑛, contradicting the
assumption. □

Related to the usual direct sums in vector space theory (which we assume
known), in the setting of symmetric bilinear forms a central role is played by
orthogonality: we say that two sets 𝑆, 𝑇 ⊂ 𝑉 are (mutually) orthogonal if 𝑏(𝑠, 𝑡) = 0
for all 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . If, moreover, 𝑆 is a subspace and 𝑇 = {𝑥 ∈ 𝑉 | 𝑏(𝑥, 𝑆) = 0},
we write 𝑇 = 𝑆⊥ and call 𝑇 the orthogonal complement of 𝑆. It is a linear
subspace of 𝑉. The subspace 𝑉⊥ is called the radical of 𝑏. We state an important
(well-known) splitting principle.

Lemma 1.1.3. Let 𝑆 be a subspace of 𝑉 and let 𝑏 be a symmetric bilinear form
on 𝑉.

1. 𝑏 is non-degenerate if and only if the radical of 𝑏 is {0}. In the case 𝑏 is
non-degenerate, dim 𝑆⊥ + dim 𝑆 = dim𝑉. Moreover, (𝑆⊥)⊥ = 𝑆.

2. If 𝑏 and 𝑏 |𝑆 are non-degenerate, then 𝑆 ⊕ 𝑆⊥ = 𝑉 and 𝑏 |𝑆⊥ is non-degenerate.
Conversely, if 𝑏 is non-degenerate and 𝑉 = 𝑆 ⊕ 𝑆⊥, then 𝑏 restricts non-
degenerately to 𝑆 and 𝑆⊥.

Proof. 1. If 𝑥 ∈ 𝑉⊥, then 𝑏(𝑥, 𝑦) = 0 for all 𝑦 ∈ 𝑉, and conversely. In other words,
𝑥 ∈ 𝑉⊥ if and only if the coordinate vector of 𝑥 belongs to the kernel of the Gram
matrix 𝐵𝑬 , where 𝑬 is a basis. So the radical of 𝑏 is 0 precisely if 𝐵𝐸 is invertible,
that is, disc(𝑏) ≠ 0. If 𝑏 is non-degenerate and {𝑒1, . . . , 𝑒𝑛} is a basis of 𝑉 extending
a basis {𝑒1, . . . , 𝑒𝑠} of 𝑆, then from the chain 𝑉 ⊃ 𝑒⊥1 ⊃ 𝑒⊥1 ∩𝑒⊥2 ⊃ · · · ⊃ 𝑒⊥1 ∩· · ·∩𝑒⊥𝑛 =

𝑉⊥ = {0} we infer that dim 𝑆⊥ = dim(𝑒⊥1 ∩ · · · ∩ 𝑒⊥𝑠 ) = 𝑛 − 𝑠 = dim𝑉 − dim 𝑆.

To show that (𝑆⊥)⊥ = 𝑆, observe that clearly 𝑆 ⊂ (𝑆⊥)⊥ and that 𝑆 and (𝑆⊥)⊥
have the same dimension by the formula just derived.
2. The intersection 𝑆 ∩ 𝑆⊥ equals the radical of (𝑆, 𝑏|𝑆), and so is trivial by the
previous part of the lemma. By the dimension formula and part 1 we obtain
dim(𝑆 + 𝑆⊥) = dim 𝑆 + dim 𝑆⊥ = dim𝑉 so that 𝑉 = 𝑆 + 𝑆⊥. Using a basis of 𝑉
consisting of a basis of 𝑆 and one of 𝑆⊥ the non-zero determinant of the resulting
Gram matrix is the product of the corresponding Gram matrices for 𝑏|𝑆 and 𝑏|𝑆⊥ .
Hence the latter is non-zero so that 𝑏|𝑆⊥ is non-degenerate. The same argument
can be used for the last statement. □

An orthogonal direct sum decomposition 𝑉 = 𝑆 ⊕ 𝑇 as in the above lemma will
be denoted

𝑉 = 𝑆 ⦹ 𝑇 .
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Proposition 1.1.4. Let 𝑘 have characteristic different from 2. Then every inner
product space (𝑉, 𝑏) of positive dimension has a basis in which the Gram matrix is
diagonal.

Proof. We claim that there exists a vector 𝑢 with 𝑏(𝑢,𝑢) ≠ 0. Indeed, if not, the
quadratic form 𝑥 ↦→ 𝑏(𝑥,𝑥) would be zero and hence so would be its polar form
2𝑏. Using the assumption on the characteristic we deduce that 𝑏 = 0, contrary to
our assumption.

Consequently, by Lemma 1.1.3 one has an orthogonal direct sum decomposition
𝑉 = 𝑘𝑢⦹𝑢⊥with 𝑏 |𝑢⊥ non-degenerate. We conclude by induction on the dimension.

□

Remark 1.1.5. The technique used in the proof of the preceding proposition shows
that every quadratic form in characteristic different from 2 is diagonalizable; if
there is a non-zero radical, say of dimension 𝑛, all diagonalized forms have precisely
𝑛 zeros on the diagonal. If 𝑘 is a field of characteristic 2, this is no longer true.
Consider for example the so-called hyperbolic plane over 𝑘, 𝑈 = 𝑘 · 𝑒 ⊕ 𝑘 · 𝑓 with
bilinear form given by 𝑏(𝑒, 𝑒) = 𝑏(𝑓,𝑓) = 0, 𝑏(𝑒,𝑓) = 1. Since 𝑏(𝑥,𝑥) = 0 for all
𝑥 ∈ 𝑈, this form is not diagonalizable.

Finally a word about the comparison of forms. A metric linear map between
two 𝑘-vector spaces 𝑉,𝑉′ equipped with symmetric bilinear forms, say (𝑉, 𝑏) and
(𝑉′, 𝑏′), is a linear map 𝑓 for which 𝑏′(𝑓(𝑥),𝑓(𝑦)) = 𝑏(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑉. If 𝑏
is non-degenerate, 𝑓 is injective. If, moreover, 𝑓 is bijective, then 𝑏′ is also non-
degenerate and 𝑓 is called an isometry . Two inner product spaces are said to be
isometric if there exists an isometry between them.

1.2 First Acquaintance with Integral Lattices

By an integral (symmetric) lattice we mean a pair (𝐿, 𝑏) consisting of a free ℤ-
module 𝐿 of finite rank and a symmetric bilinear form 𝑏 on 𝐿 with integral values.
Since a free ℤ-module 𝐿 of rank 𝑛 admits a basis 𝑬 = {𝑒1, . . . , 𝑒𝑛}, an integer valued
form 𝑏 on 𝐿 is completely determined by its Gram matrix 𝐵𝑬 = (𝑏(𝑒𝑖 , 𝑒𝑗)) ∈ ℤ𝑛×𝑛 as
in the case of vector spaces equipped with a symmetric bilinear form. If we change
to the basis 𝑭 of 𝐿, by (1.2) we have 𝐵𝑭 = 𝐶T𝐵𝑬𝐶, where 𝐶 is the transition matrix.
Since 𝐶 is invertible and integral, we have det𝐶 = ±1 and hence det𝐵𝑬 = det𝐵𝑭 .
We conclude that the discriminant of 𝑏 is a well-defined integer.

Remark 1.2.1. 1. If (𝐿, 𝑏) is an integral lattice of rank two, the form 𝑏 is also called
a binary form .
2. If instead of being ℤ-valued, 𝑏 has values in ℚ, the above argument shows that
the determinant of a Gram matrix for 𝑏 is still independent of the choice of a basis
for 𝐿. This rational number will also be called “discriminant” of 𝑏 and denoted
as disc(𝑏) ∈ ℚ. For the sake of simplicity we prefer to work with ℤ-valued forms.
This restriction occasionally necessitates however to adapt an argument slightly.
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As for forms on vector spaces, a lattice (𝐿, 𝑏) (or its form 𝑏) is called non-
degenerate if disc(𝑏) ≠ 0. If disc(𝑏) = ±1 it is called unimodular . These notions
can be defined intrinsically as in Lemma 1.6.1.

There are two basic types of symmetric forms, the even forms 𝑏 characterized
by 𝑏(𝑥,𝑥) being even for all 𝑥 ∈ 𝐿, and the remaining ones which are called odd
forms. The parity of a lattice is the property of being even or odd.

Submodules 𝑆 of 𝐿 give new lattices by restricting the symmetric form to 𝑆.
We call such a submodule a sublattice of 𝐿. If 𝑆 has the same rank as 𝐿, the
index 𝑒 = [𝐿 : 𝑆] = |𝐿/𝑆 | is finite (and conversely). Hence, if 𝑥 ∈ 𝐿, then 𝑒 · 𝑥 ∈ 𝑆.
For such sublattices there is an important observation:

Lemma 1.2.2. If 𝐿 is a non-degenerate lattice and 𝐿′ ⊂ 𝐿 a sublattice of finite
index, then

disc(𝐿′) = [𝐿 : 𝐿′]2 · disc(𝐿).

Proof. Using the theory of elementary divisors (cf. Lemma A.1.1) there is a basis
𝑬 = {𝑒1, . . . , 𝑒𝑛} for the ℤ-module 𝐿 such that for some positive integers 𝑑1, . . . ,𝑑𝑛
the set 𝑬′ = {𝑑1𝑒1, . . . ,𝑑𝑛𝑒𝑛} is a basis for 𝐿′. Then

disc(𝐿′) = det (𝐵𝑬′)
= (𝑑1 · · · 𝑑𝑛)2 det (𝐵𝑬)
= [𝐿 : 𝐿′]2 disc(𝐿). □

Remark 1.2.3. One can also use matrices to describe sublattices. For instance, if
{𝑒1, . . . , 𝑒𝑛} is a basis of 𝐿, then a sublattice 𝐿′ of finite index can be described as
the span of 𝑣1, . . . , 𝑣𝑛, where 𝑣𝑖 =

∑𝑛
𝑗=1 𝑎𝑖𝑗𝑒𝑗 , 𝑖 = 1, . . . ,𝑛, and where the matrix

𝐴 = (𝑎𝑖𝑗) has integer entries and non-zero determinant. Using the basis 𝑬′ as in
the proof of the lemma, one derives that [𝐿 : 𝐿′] = | det(𝐴) |.

A proper sublattice 𝐿′ ⊊ 𝐿 of maximal rank is never primitive in the following
sense.

Definition 1.2.4. A submodule or sublattice 𝑆 of 𝐿 is called primitive 1 if one
of the following equivalent assertions is true.

1. For 𝑥 ∈ 𝐿, if the non-zero integral multiple 𝑛𝑥 belongs to 𝑆, then 𝑥 belongs
to 𝑆;

2. 𝐿/𝑆 is free of torsion;

3. Any basis for 𝑆 can be extended to a basis for 𝐿;

4. For some submodule 𝑆′ of 𝐿 one has 𝐿 = 𝑆 ⊕ 𝑆′.

A non-zero vector 𝑥 ∈ 𝐿 is called primitive, if the sublattice ℤ𝑥 it generates is
primitive, that is, if 𝑥 = 𝑛 · 𝑦 for some 𝑦 ∈ 𝐿, then 𝑛 = ±1.

1𝑆 is automatically free
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Let us check the equivalence. Clearly 1 and 2 are equivalent, and so are 3 and
4. To see the equivalence of 2 and 3, first of all, if a basis {𝑒1, . . . , 𝑒𝑚} of 𝑆 can be
extended to a basis {𝑒1, . . . , 𝑒𝑛} of 𝐿, the span of {𝑒𝑚+1, . . . , 𝑒𝑛} is a free submodule
of rank 𝑛−𝑚 isomorphic to 𝐿/𝑆 and hence 𝐿/𝑆 is free of torsion. Conversely, if 𝐿/𝑆
is a free module of rank 𝑛−𝑚 with basis {𝑓𝑚+1, . . . ,𝑓𝑛}, we may write 𝑓𝑗 = 𝑒𝑗 mod 𝑆
for 𝑒𝑗 ∈ 𝐿, 𝑗 = 𝑚 + 1, . . . ,𝑛. If {𝑒1, . . . , 𝑒𝑚} is a basis for 𝑆, then {𝑒1, . . . , 𝑒𝑛} gives a
basis for 𝐿. □

If 𝑆 ⊂ 𝐿 is any free submodule, its primitive closure2 is the smallest primitive
submodule of 𝐿 containing 𝑆, i.e.

𝑆ℚ ∩ 𝐿 = {𝑥 ∈ 𝐿 | 𝑛𝑥 ∈ 𝑆 for some 𝑛 ∈ ℤ},

where 𝑆ℚ = 𝑆 ⊗ℤ ℚ is the associated rational vector space. In particular, if 𝑆 has
the same rank as 𝐿, then its primitive closure is 𝐿.

Quadratic forms have been discussed in the context of vector spaces. In the
lattice case we have a similar notion: an integral quadratic form is a function
𝑞 : 𝐿 → ℤ that satisfies the same two conditions as we had for vector spaces:

1. 𝑞(𝛼𝑥) = 𝛼2𝑞(𝑥) for all 𝛼 ∈ ℤ and all 𝑥 ∈ 𝐿;

2. The polar form 𝑏𝑞 (𝑥, 𝑦) := 𝑞(𝑥 +𝑦) −𝑞(𝑥) −𝑞(𝑦) is a symmetric bilinear form
on 𝐿.

The pair (𝐿, 𝑞) is called an integral quadratic lattice . Note that 𝑏𝑞 (𝑥,𝑥) =

2𝑞(𝑥), so that the polar form is even. Conversely, if (𝐿, 𝑏) is an even lattice, the
quadratic form 𝑞(𝑥) = 1

2𝑏(𝑥,𝑥) is integral and 𝑏 is the polar form of 𝑞. Summa-
rizing:

Proposition 1.2.5. The polar form of an integral quadratic form is even and,
conversely, every even form 𝑏 is the polar form of the integral quadratic form
𝑞(𝑥) = 1

2𝑏(𝑥,𝑥).

Remark 1.2.6. If 𝐵 = (𝑏𝑖𝑗) is a real symmetric matrix of size 𝑛 × 𝑛, there is a
corresponding symmetric form 𝑏(𝑥, 𝑦) defined by

∑𝑛
𝑖,𝑗=1 𝑏𝑖𝑗𝑥𝑖𝑦𝑗 . Note that 𝑏(𝑥,𝑥) =∑𝑛

𝑖,𝑗=1 𝑏𝑖𝑗𝑥𝑖𝑥𝑗 has integral values on ⊕𝑛ℤ precisely if 𝑏𝑖𝑖 ∈ ℤ, 2𝑏𝑖𝑗 ∈ ℤ if 𝑖 ≠ 𝑗.

Unfortunately, det𝐵 then need not be integral. For instance the matrix

(
1 1

2
1
2 1

)
having determinant 3/4 would then represent the quadratic form 𝑥2 + 𝑥𝑦 + 𝑦2. In
cases where a matrix will be used to define an integral lattice, we shall therefore
adhere to Kneser’s convention from [122], i.e., as in formula (1.1) a quadratic
form (𝑥1, . . . ,𝑥𝑛) ↦→ ∑

1≤𝑖≤𝑗≤𝑛 𝑞𝑖𝑗𝑥𝑖𝑥𝑗 corresponds to the upper triangular matrix
𝑄 = (𝑞𝑖𝑗) and conversely. Then the quadratic form is integral if and only if 𝑄
has integral entries and its polar form corresponds to 𝐵 = 𝑄 + 𝑄T, a form with

2Other terminology sometimes found in the literature: saturation of 𝑆 or saturated overlattice
of 𝑆.
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even integral entries on the diagonal and with det𝐵 integral. Thus 𝑥2 + 𝑥𝑦 + 𝑦2

corresponds to a polar form with Gram matrix

(
2 1
1 2

)
.

One could also consider quadratic forms
∑𝑛

𝑖,𝑗=1 𝑞𝑖𝑗𝑥𝑖𝑥𝑗 , starting from a symmet-
ric integral matrix (𝑞𝑖𝑗). J.W. Cassels [36] calls such forms classically integral
after Gauß. However, this excludes forms like 𝑥2 + 𝑥𝑦 + 𝑦2.

1.3 Orthogonality

For lattices, the concept of orthogonality is as for vector spaces. Let (𝐿, 𝑏) be a
lattice. If 𝑆 ⊂ 𝐿 is a sublattice, its orthogonal complement

𝑆⊥ = {𝑥 ∈ 𝐿 | 𝑏(𝑥, 𝑆) = 0}

is a sublattice. The null-space or radical of 𝑏,

rad(𝑏) = 𝐿⊥ = {𝑥 ∈ 𝐿 | 𝑏(𝑥, 𝑦) = 0 ∀𝑦 ∈ 𝐿}

is the sublattice orthogonal to all of 𝐿. By extending scalars, i.e., 𝐿ℚ = 𝐿 ⊗ℤ ℚ,
various results in the vector space case carry over to the case of lattices. For
instance, the null-space of 𝑏 corresponds to the kernel of the Gram matrix 𝐵𝑬 and
(𝐿, 𝑏) is non-degenerate if and only if its null-space is 0.

Since the radical is a primitive sublattice, we can always write (𝐿, 𝑏) = (𝐿′, 𝑏 |𝐿′)⦹
rad(𝑏) with 𝑏 |𝐿′ non-degenerate. This occasionally enables us to restrict to non-
degenerate lattices. However, note that, even if 𝑏 is non-degenerate, its restriction
to a sublattice may have a non-zero radical. For instance, this happens if 𝐿 contains
isotropic vectors, that is vectors 𝑥 ∈ 𝐿 − {0} with 𝑏(𝑥,𝑥) = 0. If the restriction
of 𝑏 to a non-trivial subspace of 𝐿 is identically zero, then this subspace of is called
an isotropic subspace . If 𝑏 is even, e.g., 𝑏 is the polar form of 𝑞, its suffices that
𝑞(𝑥) = 0 for all 𝑥 belonging to the subspace.

The relation between sublattices and their orthogonal complements is as fol-
lows.

Lemma 1.3.1. Let (𝐿, 𝑏) be a non-degenerate lattice.

1. If 𝑆1 ⊂ 𝑆2 ⊂ 𝐿, then 𝑆⊥1 ⊃ 𝑆⊥2 .

2. The orthogonal complement 𝑇 = 𝑆⊥ of any sublattice 𝑆 is primitive and 𝑇 ⊥

is the primitive closure of 𝑆. Furthermore,

(a) rank(𝑆) + rank(𝑇 ) = rank(𝐿) and if 𝑏 |𝑆 is non-degenerate then 𝑆 ∩ 𝑇 =

{0}.
(b) If 𝑏 |𝑆 is non-degenerate, then 𝑆 ⦹ 𝑇 is a sublattice of 𝐿 of finite index,

say 𝑒. If, moreover, 𝑆 is primitive and 0 < rank(𝑆) < rank(𝐿), then
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there are integers 𝑐𝑆 , 𝑐𝑇 such that

disc(𝑆) = 𝑒 · 𝑐𝑆
disc(𝑇 ) = 𝑒 · 𝑐𝑇
disc(𝐿) = 𝑐𝑆𝑐𝑇 .

In particular, 𝐿 is unimodular if and only if | disc(𝑆) | and | disc(𝑆⊥) | are
equal to 𝑒 = [𝐿 : 𝑆 ⦹ 𝑆⊥].

Proof. 1. If 𝑥 ∈ 𝑆⊥2 we have 𝑏(𝑥, 𝑦) = 0 for all 𝑦 ∈ 𝑆2 and hence a fortiori for all
𝑦 ∈ 𝑆1.
2. If for some non-zero integer 𝑛 the vector 𝑛𝑥 is orthogonal to 𝑆, then so is 𝑥.
Clearly 𝑆 ⊂ 𝑇 ⊥ and since 𝑏 is non-degenerate, rank(𝑇 ⊥) = rank(𝑆). Since 𝑇 ⊥ is
primitive it must be the primitive closure of 𝑆.

(a) The first assertion follows from the linear algebra assertion Lemma 1.1.3.1.
Suppose next that 𝑏 |𝑆 is non-degenerate. If 𝑥 ∈ 𝑆 ∩ 𝑇 , then 𝑏(𝑥, 𝑦) = 0 for
all 𝑦 ∈ 𝑆 and since 𝑏 |𝑆 is non-degenerate, 𝑥 = 0.

(b) The first assertion is a direct consequence of (a). One would like to prove the
remaining assertions by directly comparing Gram matrices for suitable bases
for 𝑆, 𝑇 and 𝐿, but this seems hard. Instead, following [122, Satz 14.5], we
enlarge 𝐿 to �̃� := 𝐿⦹ 𝑆 (−1) and let 𝑆 = {(𝑥,𝑥) ∈ 𝐿⦹ 𝑆 (−1) | 𝑥 ∈ 𝑆}. Observe
that the form on 𝐿⦹ 𝑆 (−1) restricts to 0 on this sublattice. In this enlarged
lattice 𝑇 and 𝑆 are orthogonal, just as 𝑆 and 𝑇 . Next, we make use of the
primitivity of 𝑇 inside 𝐿 to choose a direct sum splitting 𝐿 = 𝑀 ⊕ 𝑇 . Since
𝑆 ∩ 𝐿 = {0} in �̃�, this gives a direct sum decomposition

�̃� = 𝑀 ⊕ 𝑇 ⊕ 𝑆.

Let 𝑬 = {𝑬𝑀 ,𝑬𝑇 ,𝑬𝑆} be a basis of �̃� adapted to this splitting. Our construc-
tion is such that the matrix for the symmetric form adapted to this basis is
of the form

𝑏𝑬 =
©«
∗ ∗ 𝐶T

∗ 𝑏𝑬𝑇 0
𝐶 0 0

ª®¬ .
Hence

disc(�̃�) = (−1)𝑘𝑐2𝑆 disc(𝑇 ), 𝑐𝑆 = det(𝐶), 𝑘 = rank(𝑀) = rank(𝑆).

On the other hand, since �̃� = 𝐿⦹ 𝑆 (−1), we find

disc(�̃�) = (−1)𝑘 disc(𝐿) disc(𝑆),

and hence disc(𝐿) disc(𝑆) = 𝑐2𝑆 disc(𝑇 ).
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Because 𝑆 is primitive, in 𝐿 we have 𝑆 = 𝑇 ⊥ and we can do the same for 𝑇
resulting in disc(𝐿) · disc(𝑇 ) = 𝑐2𝑇 disc(𝑆). Multiplying the results, one gets
disc(𝐿) = ±𝑐𝑆 · 𝑐𝑇 . Now use Lemma 1.2.2 to conclude that

𝑐2𝑆 disc(𝑇 ) disc(𝑆) = 𝑐2𝑆 disc(𝑆 ⦹ 𝑇 ) = 𝑐2𝑆𝑒
2 disc(𝐿).

Since also 𝑐2𝑆 disc(𝑇 ) disc(𝑆) = disc(𝐿) (disc(𝑆))2, we find disc(𝑆) = ±(𝑒 · 𝑐𝑆)
and – similarly – disc(𝑇 ) = ±(𝑒 · 𝑐𝑇 ). We replace 𝑐𝑆 by ±𝑐𝑆 , where the sign is
the same as in the expression disc(𝑆) = ±(𝑒 · 𝑐𝑆), and similarly for 𝑐𝑇 . Then
we must have disc(𝐿) = 𝑐𝑆𝑐𝑇 .

□

Remark 1.3.2. Let 𝑆 ⊂ 𝐿 be a non-degenerate sublattice of a non-degenerate lattice
𝐿. Instead of 𝑇 = 𝑆⊥, suppose 𝑇 ⊂ 𝐿 is only known to be orthogonal to 𝑆. Then
𝑆 ∩ 𝑇 = {0}, since 𝑆 is non-degenerate. Suppose that in addition 𝑆 ⦹ 𝑇 has finite
index in 𝐿. Then 𝑇 = 𝑆⊥ if and only if 𝑇 is primitive in 𝐿, and a similar assertion
holds for 𝑇 .

Contrary to what happens for inner product spaces, a non-degenerate sublattice
does not always split off orthogonally.

Example 1.3.3. The hyperbolic lattice is the rank two ℤ-module ℤ2 equipped

with the form with Gram matrix

(
0 1
1 0

)
. Take for 𝑆 the lattice spanned by the

non-isotropic vector (1, 1) with orthogonal complement ℤ · (1,−1). The vectors
(𝑘, 0) and (0, ℓ) for 𝑘 and ℓ odd do not belong to 𝑆 ⦹ 𝑆⊥.

As shown by the preceding example, if 𝑆 is a non-degenerate sublattice, the
sum 𝑆⦹𝑆⊥ need not be equal to the full lattice, but is merely a sublattice of finite
index. If this index is 1 then we do have a direct sum splitting 𝐿 = 𝑆 ⦹ 𝑆⊥, and if
𝑆 ≠ 0 we say that 𝑆 splits off and that 𝐿 is decomposable . If such a sublattice
does not exist, 𝐿 is called indecomposable . For classification purposes it suffices
to enumerate the indecomposable ones.

We mention one important case where we do have a splitting:

Corollary 1.3.4. If 𝑆 is a unimodular sublattice of a non-degenerate lattice 𝐿,
then 𝐿 = 𝑆 ⦹ 𝑆⊥. If, moreover, 𝐿 is unimodular, then 𝑆⊥ is unimodular.

Proof. Since disc(𝑆) = 𝑒 · 𝑐𝑆 = ±1 we must have 𝑒 = 1 which means exactly that
𝐿 = 𝑆 ⦹ 𝑆⊥. If 𝐿 is unimodular, then ±1 = disc(𝐿) = disc(𝑆) disc(𝑆⊥) so that
disc(𝑆⊥) = ±1. □

Apart from the discriminant there is a further basic lattice invariant which
comes from considering the extension (𝐿ℝ, 𝑏ℝ) of (𝐿, 𝑏) to the real numbers. As
we have seen (cf. Proposition 1.1.4 and Remark 1.1.5), we can diagonalize 𝑏ℝ and,
adapting the orthogonal basis, a diagonal form can be written as 𝑥2

1 + · · · + 𝑥2
𝑟 −

𝑥2
𝑟+1 − · · · − 𝑥2

𝑟+𝑠 with only 1 and −1 as coefficients. A similar expression can also
be realized in other bases. It turns out that the pair of non-negative integers (𝑟, 𝑠)
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is unique; it is called the signature of 𝑏. This is the content of Sylvester’s law
which we prove later (see Corollary 8.1.3). For non-degenerate lattices, instead of
the signature, one may equivalently give the index 𝜏(𝑏) = 𝑟 − 𝑠.

The lattice 𝐿 is called positive (negative) semi-definite if 𝑠 = 0 (respectively, 𝑟 =
0) and positive (negative) definite if moreover 𝑟 + 𝑠 = 𝑛. Otherwise we speak of an
indefinite lattice . Note that a positive (negative) definite lattice is automatically
non-degenerate.

Outlook. For definite lattices the way a lattice splits into indecomposable
ones, is unique. See Theorem 1.12.3. For indefinite ones, this is in general
not the case. See for example Lemma 4.1.5 where we deal with the so-called
Enriques lattice.

1.4 Examples of Integral Lattices

The most basic examples of such lattice are rank one lattice. These are of the form

⟨𝑎⟩ = lattice ℤ with symmetric form (𝑥, 𝑦) ↦→ 𝑎𝑥𝑦.

Note that, according to this convention, for any even integer 𝑎 the polar form of
the integral quadratic form on ℤ given by 𝑥 ↦→ 1

2𝑎𝑥
2 is the symmetric form ⟨𝑎⟩.

We usually denote this quadratic form also by ⟨𝑎⟩, but by [ 12𝑎] in case confusion
might be possible. 3

If 𝐿 is a lattice with form 𝑏 and 𝑚 ∈ ℤ, we put

𝐿(𝑚) = 𝐿 with form (𝑥, 𝑦) ↦→ 𝑚 · 𝑏(𝑥, 𝑦).

In the examples we often use a dot to denote symmetric bilinear forms and so,
instead of 𝑏(𝑣,𝑤), we write 𝑣 · 𝑤.

1. The hyperbolic plane 𝑈. We have encountered this lattice before in Ex-
ample 1.3.3. It is the lattice 𝑈 = ℤ𝑒⊕ℤ𝑓 for which 𝑒 ·𝑓 = 1 and 𝑒 ·𝑒 = 𝑓 ·𝑓 = 0.
We have disc(𝑈) = −1. The polar form of the quadratic lattice endowed with
the quadratic form

𝑥1𝑒 + 𝑥2𝑓 ↦→ 𝑥1𝑥2

is the form 𝑈. The hyperbolic plane is an even lattice.

2. Lattices associated to graphs. Given an undirected graph Γ without
loops and no multiple edges, one defines a symmetric bilinear form 𝑏Γ on the

3Many sources, such as [156], use a different convention, e.g. the quadratic form 𝑎𝑥2 and the
bilinear form 𝑎𝑥𝑦 are both denoted by ⟨𝑎⟩.
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free abelian group on the set of vertices 𝑉 by setting for 𝑣,𝑤 ∈ 𝑉

𝑏Γ (𝑣,𝑤) =

−2 if 𝑣 = 𝑤

1 if 𝑣 and 𝑤 are connected by an edge

0 otherwise.

The lattice is denoted 𝐿Γ, an example of a so-called root lattice , by definition
a lattice having a basis consisting of roots. In the present setting a root, or
(−2)-root is just a vector 𝑒 with 𝑏Γ (𝑒, 𝑒) = −2 (see Section 1.5 below for
more on roots). In particular, such lattices are always even. The graph Γ
is the Dynkin diagram of the lattice 𝐿Γ. For classification purposes the
Dynkin diagram 𝐸8 below plays a central role: The associated lattice 𝐸8 (−1)

• • • • • • •

•

Figure 1.4.1: The Dynkin diagram 𝐸8

is even and negative definite. We have disc(𝐸8 (−1)) = 1. See the detailed
calculations in Section 4.1. Of course, for 𝐸8, we take the same underlying
module, but reverse the sign in the bilinear form.

3. The lattices Γ𝑛. These are the positive definite lattices of rank 𝑛 divisible
by 4 constructed as follows. Start from the standard lattice 𝐸 (1) = ℤ𝑛 in
the vector space ℚ𝑛 equipped with the dot-product, that is, the standard
euclidean product. Let 𝐸 (0) ⊂ 𝐸 (1) be the sublattice consisting of vectors
𝑥 ∈ 𝐸 (1) with 𝑥 · 𝑥 even. This is equivalent to demanding that

∑
𝑥𝑗 be even.

Clearly, the index of 𝐸 (0) in 𝐸 (1) is 2 and so by Lemma 1.2.2, disc(𝐸 (0)) = 4.
Now take

𝐸 (1)

Γ𝑛 = ℤ
(
1
2 , . . . ,

1
2

)︸      ︷︷      ︸
𝑒

+𝐸 (0) ⊂ ℚ𝑛 so that 𝐸 (0)
- 
<<

� q

""
Γ𝑛.

Some explanation is in order. Note that 𝑒 · 𝑒 = 1
4𝑛 is integral since 𝑛 is

divisible by 4 and it is even if and only if 𝑛 is divisible by 8. Secondly,
2𝑒 = (1, . . . , 1) ∈ 𝐸 (0) since 𝑛 is even and so 𝐸 (0) has also index 2 in Γ𝑛.
Hence, since disc(𝐸 (0)) = 4, again by Lemma 1.2.2, also Γ𝑛 is unimodular.

Summarizing: for all 𝑛 divisible by 4, the lattice Γ𝑛 is unimodular. If 𝑛 is
divisible by 8, it is even and unimodular.
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1.5 Isometry and Equivalence

Homomorphisms between integral lattices are module homomorphisms that respect
the bilinear forms. Such homomorphisms need not be injective. To see this, if 𝜑 :
(𝐿, 𝑏) → (𝐿′, 𝑏′) preserves the forms and 𝜑(𝑥) = 0, then 𝑏(𝑥, 𝑦) = 𝑏′(𝜑(𝑥),𝜑(𝑦)) = 0
for all 𝑦 ∈ 𝐿 and so 𝑥 ∈ ker(𝑏). If on the contrary 𝑏 is non-degenerate, 𝜑 is always
injective and then we have an isometric embedding . As for inner product spaces,
two lattices (𝐿, 𝑏) and (𝐿′, 𝑏′) are said to be isometric, written as 𝐿 ≃ 𝐿′ or 𝑏 ≃ 𝑏′,
if there is an isometry 𝑓 : 𝐿 → 𝐿′, that is, an isomorphism of free ℤ-modules such
that 𝑏′(𝑓(𝑥),𝑓(𝑦)) = 𝑏(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐿. The forms 𝑏 and 𝑏′ are then said to
be isometric or integrally equivalent .

In the special case (𝐿, 𝑏) = (𝐿′, 𝑏′) and 𝑓 has an inverse, linear algebra tells
us that det(𝑓) = ±1. Then 𝑓 is called a rotation , respectively a reflection , if
det(𝑓) = 1, respectively −1.

Let 𝑓 : 𝐿 → 𝐿′ be an isomorphism, 𝑬 a basis for 𝐿, 𝑬′ a basis for 𝐿′. If 𝐹 is the
matrix of the isomorphism 𝑓 : 𝐿 → 𝐿′ with respect to 𝑬 and 𝑬′, then

𝑓 is an isometry ⇐⇒ 𝐹T𝐵𝑬′𝐹 = 𝐵𝑬 ,

where 𝐵𝑬 , 𝐵𝑬′ is the Gram matrix of 𝑏 with respect to a basis 𝑬 of 𝐿, respectively
of 𝑏′ with respect to 𝑬′ of 𝐿′

Similarly, if 𝐿 is a non-degenerate lattice, taking a basis 𝑭 of a sublattice 𝑆
(with Gram matrix 𝐵𝑭), we have:

𝑓 : 𝑆 ↩→ 𝐿 is an isometric embedding ⇐⇒ 𝐹T𝐵𝑬𝐹 = 𝐵𝑭 . (1.3)

Examples 1.5.1. 1. The lattice Γ8 is isometric to 𝐸8. To see this, one takes as a
basis for Γ8 the roots

𝛼0 = ( 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ),
𝛼1 = ( 12 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ),

𝛼2 = ( − 1, 1 , 0 , 0 , 0 , 0 , 0 , 0 ),
𝛼3 = ( 0 ,− 1, 1 , 0 , 0 , 0, 0 , 0 ),
𝛼4 = ( 0 , 0 ,− 1, 1 , 0 , 0 , 0 , 0 ),
𝛼5 = ( 0 , 0 , 0 ,− 1, 1 , 0 , 0 , 0 ),
𝛼6 = ( 0 , 0 , 0 , 0 ,− 1, 1 , 0 , 0 ),
𝛼7 = ( 0 , 0 , 0 , 0 , 0 ,− 1, 1 , 0 )

and checks that these give the Dynkin diagram 𝐸8 (see Fig. 1.4.1) discussed earlier.
2. The two unimodular positive definite lattices 𝐸8 ⦹ 𝐸8 and Γ16 of rank 16 are
not isometric. Indeed, 𝐸8 ⦹ 𝐸8 is a root lattice, but this is not the case for Γ16.
To see this, observe that the function

∑16
𝑖=1 (𝑥𝑖 + 1

2 )
2 = 2 has no solution since the

minimum of the left-hand side is 4, hence the only roots are ±𝑒𝑗 ± 𝑒𝑘, 𝑗 ≠ 𝑘, where
{𝑒1, . . . , 𝑒16} is the standard basis of ℚ16. However, the vector 𝑒 = ( 12 , . . . ,

1
2 ) is

not in the sublattice generated by these roots. A similar statement is true for all
lattices Γ8𝑚 with 𝑚 ≥ 2: for 𝑚 ≥ 2 the lattice Γ8𝑚 is not a root lattice.

One of the purposes of lattice theory is to classify lattices up to isometry. To
this end we need isometry invariants. Here are the most obvious ones:
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Lemma 1.5.2. For non-degenerate lattices the discriminant, index and parity are
isometry invariants.

Proof. The discriminant has been defined using a basis of the underlying ℤ-module.
An isometry sends a basis of the source lattice to a basis of the target, and so
preserves the discriminant. Two isometric lattices remain isometric under ring-
extension and so are isometric over ℝ and thus have the same index. As to parity:
this can be tested on a basis and as we have remarked, an isometry sends a basis
to a basis of the target lattice. □

Corollary 1.5.3. Let 𝑎 , 𝑎 ′ ∈ ℤ. The lattices ⟨𝑎⟩ and ⟨𝑎 ′⟩ are isometric if and only
if 𝑎 = 𝑎 ′.

Automorphisms of a lattice 𝐿 preserving the bilinear form 𝑏 form the isometry
group of (𝐿, 𝑏), denoted

O (𝑏) (or O (𝐿)) = {𝜑 ∈ Autℤ (𝐿,𝐿) | 𝑏(𝜑(𝑥),𝜑(𝑦)) = 𝑏(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐿}.

Isometric lattices have isomorphic isometry groups. More precisely, if 𝑓 : 𝐿 → 𝐿′ is
an isometry, and 𝜑 ∈ O (𝐿) an auto-isometry of 𝐿, then 𝑓◦𝜑◦𝑓−1 is an auto-isometry
of 𝐿′ and the homomorphism which sends 𝜑 ∈ O (𝐿) to 𝑓◦𝜑◦𝑓−1 ∈ O (𝐿′) is an
isomorphism.

Since we can multiply the equation 𝑏(𝜑(𝑥),𝜑(𝑦)) = 𝑏(𝑥, 𝑦) by a non-zero inte-
ger, we have:

Lemma 1.5.4. If 𝐿 is an integral lattice, then for all 𝑘 ∈ ℤ, 𝑘 ≠ 0, the lattice 𝐿(𝑘)
has the same automorphism group as 𝐿.

Remark 1.5.5. If 𝑏 is an even integral form, then 𝑏 is the polar form of an integral
quadratic form 𝑞. A lattice automorphism preserving 𝑞 of course preserves 𝑏,
but the converse is also true: an isometry (an automorphism preserving 𝑏) also
preserves 𝑞 since 𝑞(𝑥) = 1

2𝑏(𝑥,𝑥). So we can and shall use the notation O (𝑏) and
O (𝑞) interchangeably.

A lattice always has the isometries id𝐿 and −id𝐿. If 𝐿 has even rank, −id𝐿
is a rotation and otherwise it is a reflection. Recall that euclidean vector spaces
admit hyperplane reflections which are examples of reflections since they have
determinant −1 as one verifies by choosing a suitable basis. Not all lattices admit
such hyperplane reflections. To see this, it is convenient to view a lattice 𝐿 as
sitting in 𝐿ℚ = 𝐿 ⊗ℤ ℚ. A hyperplane reflection exists if the vector 𝑥 normal to the
hyperplane does not belong to it, i.e., 𝑥 is non-isotropic. For vector spaces there
is a well-known formula for the reflection defined by 𝑥:

𝐿ℚ
𝜎𝑥−−→ 𝐿ℚ, 𝑦 ↦→ 𝑦 − 2𝑏(𝑥, 𝑦)

𝑏(𝑥,𝑥) 𝑥. (1.4)

Observe that the image of 𝐿ℚ under 𝜎𝑥 − id is the line ℚ · 𝑥 and if 𝜎𝑥𝐿 = 𝐿, the
image of 𝐿 is a lattice in this line. Because 𝜎𝑥 = 𝜎𝑎 ·𝑥 for all 𝑎 ∈ ℚ× we may thus
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scale 𝑥 so that 𝑥 ∈ 𝐿. We also may assume that 𝑥 is primitive. The formula then
tells us that 𝜎𝑥 preserves 𝐿 ⊂ 𝐿ℚ if and only if

2𝑏(𝑥, 𝑦) ∈ 𝑏(𝑥,𝑥) · ℤ for all 𝑦 ∈ 𝐿. (1.5)

A primitive 𝑥 ∈ 𝐿 with 𝑏(𝑥,𝑥) = 𝑘 ≠ 0 satisfying this condition is called a 𝑘-root .
For example, if 𝑘 = ±1 or 𝑘 = ±2 the condition (1.5) is automatically true. Let us
set this apart.

Lemma 1.5.6. Let (𝐿, 𝑏) be a lattice. The reflection in a hyperplane orthogonal
to a vector 𝑥 ∈ 𝐿 with 𝑏(𝑥,𝑥) = ±1 or with 𝑏(𝑥,𝑥) = ±2 preserves the lattice. All
such vectors 𝑥 are roots.

An isometry 𝜑 of 𝐿 preserves 𝑘-roots and since

𝜎𝜑(𝑥) = 𝜑𝜎𝑥𝜑
−1,

the group generated by reflections in 𝑘-roots (for fixed 𝑘) is a normal subgroup
of the isometry group of 𝐿. In an even lattice we mostly consider those roots for
which 𝑞(𝑥) = 1

2𝑏(𝑥,𝑥) = ±1 and often refer to these simply as roots, ±2-roots, or
also roots of type 𝜖 ∈ {+,−}. The corresponding group of reflections is denoted

W𝜖 (𝐿) := {group generated by 𝜎𝑥 | 𝑥 ∈ 𝐿, 𝑞(𝑥) = 𝜖}

and will be referred to as the Weyl group of 𝐿. This is somewhat ambiguous, but
the context makes clear whether 𝜖 = 1 or −1. If the lattice is definite, there is of
course no confusion about signs. A lattice spanned by its 𝑘-roots (for all possible
𝑘) is called a root lattice . Examples of root lattices can be found in Sections 4.1
and 4.2.

Outlook. From linear algebra we know that the orthogonal group of a real inner
product space is generated by reflections, and the Cartan–Dieudonné theorem,
which we prove in Section 7.2, implies that this is also true for the orthogonal
group O (𝑏ℚ) where 𝑏 is possibly indefinite. Indeed, this holds over any field of
characteristic distinct from 2.

The theorems of Witt treated in Section 7.2 focus on the role of the isotropic
vectors in vector spaces such as 𝐿ℚ. In our situation these theorems state that
there is an orthogonal decomposition

𝐿ℚ = 𝑈 ⦹ 𝑆, (Witt decomposition),

where 𝑈 is an even-dimensional space which contains the isotropic vectors while
𝑆 contains none. This decomposition is unique up to isometry. In particular,
half the dimension of 𝑈 is an invariant of 𝐿ℚ, the Witt index , W𝜏 (𝐿ℚ). This
invariant can be defined for 𝐿ℝ as well. Here W𝜏 (𝐿ℝ) is related to the signature
(𝑟, 𝑠): W𝜏 (𝐿ℝ) = min(𝑟, 𝑠).
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1.6 Discriminant Forms

If (𝐿, 𝑏) is an integral lattice, the collection of the ℤ-linear functions on 𝐿 taking
values in ℤ constitute a ℤ-module, the dual of 𝐿,

𝐿∗ = Homℤ (𝐿,ℤ).

It is a free ℤ-module of the same rank as 𝐿 and we can compare the two using the
correlation morphism

𝑏𝐿 : 𝐿 → 𝐿∗, 𝑥 ↦→ 𝑏𝐿 (𝑥), 𝑏𝐿 (𝑥)𝑦 = 𝑏(𝑥, 𝑦). (1.6)

Observe that the matrix representation of 𝑏𝐿 with respect to a basis 𝑬 = {𝑒1, . . . , 𝑒𝑛}
of 𝐿 and the dual basis 𝑬∗ = {𝑒∗1, . . . , 𝑒∗𝑛} of 𝐿∗ is just the Gram matrix:

𝑏𝐿 (𝑒𝑖) =
∑︁
𝑗

𝑏(𝑒𝑖 , 𝑒𝑗)𝑒∗𝑗 . (1.7)

Consequently, one deduces:

Lemma 1.6.1. For an integral lattice the correlation morphism 𝑏𝐿 is injective
if and only if 𝐿 is non-degenerate, and 𝑏𝐿 is an isomorphism if and only if 𝐿 is
unimodular.

Let 𝑆 ⊂ 𝐿 be a sublattice of 𝐿. The map 𝛽𝑆 : 𝐿 → 𝑆∗ which assigns to
𝑥 ∈ 𝐿 the linear map on 𝑆 given by 𝑦 ↦→ 𝑏(𝑥, 𝑦), 𝑦 ∈ 𝑆, extends the correlation
map 𝑏𝑆 : 𝑆 → 𝑆∗ on 𝑆 to 𝐿. Since ker 𝛽𝑆 = 𝑆⊥, there is an induced injective

homomorphism 𝛽𝑆 : 𝐿/𝑆⊥ → 𝑆∗.

Lemma 1.6.2. Let 𝑆 ⊂ 𝐿 be a sublattice. If 𝑆 is primitive and 𝐿 unimodular, the
morphism 𝛽𝑆 : 𝐿/𝑆⊥ −−→ 𝑆∗ is an isomorphism of ℤ-modules.

Proof. Assume that 𝑆 is primitive and that 𝐿 is unimodular. To show that 𝛽𝑆 is an
isomorphism, it suffices to show that 𝛽𝑆 is surjective. Since 𝐿 is unimodular, first
of all 𝑏𝐿 is onto. Secondly, since 𝑆 is primitive, the restriction map 𝑟𝑆 : 𝐿∗ → 𝑆∗

is surjective. Indeed, write 𝐿 = 𝑆 ⊕ 𝑆′, then 𝑓 : 𝑆 → ℤ extends to 𝑓 : 𝐿 → ℤ by
setting 𝑓(𝑠, 𝑠′) = 𝑓(𝑠) for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′. Consequently 𝛽𝑆 = 𝑟𝑆 ◦𝑏𝐿 is surjective as
well. □

Remark. The variant 𝛽𝑆 of the correlation morphism is to be discussed in generality
in Section 6.2.

Since 𝑏𝐿 is an injection if and only if 𝑏 is non-degenerate, we can and shall
identify 𝑏𝐿 (𝐿) with its image in 𝐿∗ in the case of a non-degenerate 𝐿. In that case
the quotient 𝐿∗/𝐿 is a finite group, the discriminant group

dg𝐿 := 𝐿∗/𝐿.

From the theory of elementary divisors (cf. Lemma A.1.1) it follows that the free
ℤ-module 𝐿∗ has a basis {𝜀∗1, . . . , 𝜀∗𝑛} such that for some positive integers 𝑑1, . . . ,𝑑𝑛,
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the vectors 𝑑1𝜀
∗
1, . . . ,𝑑𝑛𝜀

∗
𝑛 form a basis for 𝐿. In these bases, the matrix of the cor-

relation morphism is diagonal with the 𝑑𝑗 on the diagonal and so has determinant
equal to 𝑑1 · · · 𝑑𝑛. Up to sign this equals disc(𝑏). As 𝐿 is non-degenerate, 𝑑1 · · · 𝑑𝑛
is the index of 𝐿 in 𝐿∗, and so

| dg𝐿 | = [𝐿∗ : 𝐿] = | disc(𝐿) |. (1.8)

We make a few elementary observations concerning the discriminant group. In our
setting dg𝐿 = 𝐿∗/𝐿 ≃ ⊕𝑛

𝑗=1ℤ/𝑑𝑗ℤ where we may discard those 𝑑𝑗 for which 𝑑𝑗 = 1.

Since ℓ(dg𝐿), the minimal number of generators of dg𝐿, is the number of non-trivial
elementary divisors (see e.g. A.1.3), one has

ℓ(dg𝐿) ≤ rank(𝐿). (1.9)

If 𝑏 is non-degenerate, the injective correlation map 𝑏𝐿 : 𝐿 → 𝐿∗ extends to
𝐿ℚ and then gives a ℚ-linear isomorphism. Via this isomorphism the ℚ-bilinear
extension 𝑏ℚ of 𝑏 can be transported to give a non-degenerate ℚ-bilinear form 𝑏ℚ
on 𝐿∗

ℚ
. For the form 𝑏ℚ on 𝐿∗

ℚ
we also have a correlation map, say 𝑏𝐿∗

ℚ
: 𝐿∗

ℚ
→ (𝐿∗

ℚ
)∗.

Recall that there is a natural identification

𝜆 : 𝐿ℚ
≃−→ (𝐿∗ℚ)

∗ (1.10)

which associates to 𝑥 ∈ 𝐿ℚ the function 𝜆𝑥 on 𝐿∗
ℚ

given by 𝑓
𝜆𝑥↦−→ 𝑓(𝑥). The

correlation maps turn out to be compatible with the isomorphism 𝜆 and preserve
the lattice structure as well, as we show now together with some other basic facts.

Lemma 1.6.3. Let 𝐿 be a non-degenerate integral lattice.

1. If one identifies 𝐿ℚ with 𝐿∗
ℚ

using the correlation map, then 𝐿∗ is the free
ℤ-module inside 𝐿ℚ consisting of those 𝑦 ∈ 𝐿ℚ for which 𝑏ℚ(𝑦,𝐿) ⊂ ℤ.

2. If 𝐴 = 𝑏𝑬 is the Gram matrix of 𝑏 with respect to the basis 𝑬, then 𝐴−1 is
the Gram matrix of 𝑏ℚ with respect to the dual basis 𝑬∗.

3. Under the identification of 𝐿ℚ = 𝐿∗
ℚ

given by the correlation map, 𝐴, respec-

tively 𝐴−1, is also the matrix expressing the ℚ-basis 𝑬 in 𝑬∗, or the other
way around.

4. 𝑏𝐿∗
ℚ
◦𝑏𝐿ℚ = 𝜆. Under this map 𝐿 and (𝐿∗)∗ become identified.

Proof. 1. Since the correlation map induces an isomorphism 𝐿ℚ
≃−→ 𝐿∗

ℚ
, every 𝜇 ∈ 𝐿∗

ℚ

is of the form 𝜇 = 𝑏𝐿 (𝑥) for some 𝑥 ∈ 𝐿ℚ. Then the functional 𝜇 = 𝑏𝐿 (𝑥) belongs
to 𝐿∗ if and only if

𝜇(𝐿) ⊂ ℤ ⇐⇒ 𝑏ℚ(𝑥,𝐿) ⊂ ℤ.

2. We have seen (cf. (1.7)) that the matrix of the correlation map with respect to
𝑬 and 𝑬∗ is the Gram matrix 𝐴. Let 𝐶 be the Gram matrix of 𝑏ℚ with respect to
𝑬∗. By definition

𝑏ℚ(𝑏𝐿𝑥, 𝑏𝐿𝑦) = 𝑏(𝑥, 𝑦) (1.11)
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which translates as 𝐴T𝐶𝐴 = 𝐴 and hence 𝐶 = 𝐴−1.
3. The correlation map being given by the matrix 𝐴 with respect to the bases
𝑬,𝑬∗, this means exactly that the column vectors of 𝐴 express the basis vectors of
𝑬 in the basis 𝑬∗.
4. Since

𝜆𝑥 (𝑏𝐿ℚ (𝑦)) = 𝑏𝐿ℚ (𝑦) evaluated in 𝑥

= 𝑏ℚ(𝑦,𝑥) = 𝑏ℚ(𝑥, 𝑦)
= 𝑏ℚ(𝑏𝐿ℚ (𝑥), 𝑏𝐿ℚ (𝑦)) by (1.11)

= 𝑏𝐿∗
ℚ
(𝑏𝐿ℚ (𝑥)) evaluated in 𝑏𝐿ℚ (𝑦),

we see that under the composition of the correlation maps, 𝑥 ∈ 𝐿ℚ corresponds to
𝜆𝑥 and hence 𝑏𝐿∗

ℚ
◦𝑏𝐿ℚ = 𝜆. If 𝑥 ∈ 𝐿, 𝜆𝑥 is integral on 𝐿∗ and so 𝜆(𝐿) = (𝐿∗)∗. □

We now come to an important construction, that of a torsion form on the
discriminant group. First we discuss the bilinear version.

Definition 1.6.4. Let (𝐿, 𝑏) be a non-degenerate integral lattice. The discrim-
inant bilinear form is the ℚ/ℤ-valued bilinear form on the discriminant group
of 𝐿 given by

𝑏#𝐿 : dg𝐿 × dg𝐿 → ℚ/ℤ, (𝑥, 𝑦) ↦→ 𝑏ℚ(𝑥, 𝑦) mod ℤ. (1.12)

Since 𝑏ℚ(𝑥 + 𝑢, 𝑦 + 𝑣) ≡ 𝑏ℚ(𝑥, 𝑦) mod ℤ for 𝑥, 𝑦 ∈ 𝐿∗, 𝑢, 𝑣 ∈ 𝐿, 𝑏#𝐿 is well defined.

The form is non-degenerate in the sense that 𝑏#𝐿 (𝑥, dg𝐿) = 0 precisely if 𝑥 = 0. To

see this, note that 𝑏#𝐿 (𝑥, dg𝐿) = 0 translates as 𝑏(𝑥 + 𝐿,𝐿∗) ∈ ℤ implying 𝑥 + 𝐿 = 𝐿,
i.e., 𝑥 = 0.

Secondly, we introduce a version for integral quadratic forms:

Definition 1.6.5. Let 𝑞 be a non-degenerate quadratic form with polar form 𝑏.
Extending 𝑞 in a ℚ-quadratic fashion to 𝐿ℚ, we have the discriminant quadratic
form :

𝑞#𝐿 : dg𝐿 → ℚ/ℤ, 𝑥 ↦→ 𝑞ℚ(𝑥) mod ℤ. (1.13)

Since
𝑞ℚ(𝑥 + 𝑢) = 𝑞ℚ(𝑥) + 𝑞ℚ(𝑢) + 𝑏ℚ(𝑥,𝑢)

≡ 𝑞ℚ(𝑥) mod ℤ for 𝑥 ∈ 𝐿∗ and 𝑢 ∈ 𝐿,

this is well defined. Even forms 𝑏 have a discriminant quadratic form relative to
the integral quadratic form 𝑞(𝑥) = 1

2𝑏(𝑥,𝑥), since 𝑏 then is the polar form of 𝑞.

The pair (dg𝐿, 𝑏
#
𝐿 ) is an example of a symmetric torsion group (and (dg𝐿, 𝑞

#
𝐿 )

is an example of a quadratic torsion group).

Remark 1.6.6. In the literature (e.g. in [171]) often a different convention is used,

namely 𝑞#𝐿 (𝑥) = 𝑏ℚ(𝑥,𝑥) mod 2ℤ, i.e., we get a ℚ/2ℤ-valued form instead of a ℚ/ℤ-
valued form. This is equivalent to our approach since multiplication by 2 induces

an isomorphism ℚ/ℤ ≃−→ ℚ/2ℤ which links the two.
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Definition 1.6.7. A non-zero subgroup of a torsion group is called isotropic with
respect to a symmetric bilinear form (respectively a quadratic form) if the bilinear
form (quadratic form) is identically zero on the subgroup.

Examples 1.6.8. 1. Let us consider the rank one module ℤ𝑒 with form given
by 𝑏(𝑒, 𝑒) = 𝑎 , 𝑎 ≠ 0, i.e., ⟨𝑎⟩. The dual module is generated by 𝜀∗ = 𝑎−1𝑒 and
𝑏ℚ(𝜀∗, 𝜀∗) = 𝑎−2 · 𝑎 = 𝑎−1. Hence the discriminant group 𝑎−1ℤ𝑒/ℤ𝑒 ≃ ℤ/𝑎ℤ is
equipped with the bilinear form which takes the value 𝑎−1 mod ℤ on the pair
(𝜀∗, 𝜀∗).

For the quadratic form 𝑞 associated with the rank one forms ⟨𝑎⟩ with 𝑎 even,
this goes as follows. With 𝑒 and 𝜀∗ as before, one has 𝑞(𝑒) = 1

2𝑎 since 𝑞(𝑒) = 1
2𝑏(𝑒, 𝑒),

and so 𝑞(𝜀∗) = 𝑞(𝑎−1𝑒) = 𝑎−2 · 1
2𝑎 = 1

2𝑎
−1 = 1

2𝑏ℚ(𝜀
∗, 𝜀∗). On the level of the

discriminant group 𝑎−1ℤ𝑒/ℤ𝑒 this equality induces the equality 𝑞(𝜀∗) = 1
2𝑏ℚ(𝜀

∗, 𝜀∗)
in the value group ℚ/ℤ.
2. If 𝐿 is any non-degenerate lattice, then the dual module of 𝐿(𝑘) equals 𝑘−1𝐿∗.
Indeed, for 𝑥 ∈ 𝐿ℚ we have

𝑥 ∈ 𝐿(𝑘)∗ ⇐⇒ 𝑘 · 𝑏(𝑥, 𝑦) ∈ ℤ ∀𝑦 ∈ 𝐿

⇐⇒ 𝑏(𝑘 · 𝑥, 𝑦) ∈ ℤ ∀𝑦 ∈ 𝐿

⇐⇒ 𝑘 · 𝑥 ∈ 𝐿∗.

Suppose that 𝐿 is in addition unimodular of rank 𝑛. Then 𝐿 = 𝐿∗, hence 𝐿(𝑘)∗ =

𝑘−1𝐿. Hence all elementary divisors of the discriminant group of 𝐿(𝑘) are equal to
𝑘 so that dg𝐿(𝑘) = 𝑘−1𝐿/𝐿 ≃ ⊕𝑛ℤ/𝑘ℤ. In this case, all entries of the Gram matrix
of dg𝐿(𝑘) are in 𝑘−1ℤ/ℤ and so the discriminant form of 𝐿(𝑘) is 𝑘−1ℤ/ℤ-valued.

Let us next explain how to find the discriminant group from the Gram matrix 𝐴
of 𝐿 with respect to an 𝐿-basis 𝑬. We just observed that the rows (and columns, by
symmetry) of 𝐴−1 express the dual basis 𝑬∗ for 𝐿∗ in the basis 𝑬 for 𝐿. Elementary
row and column operations that are unimodular correspond to new bases for 𝐿
and for 𝐿∗ (viewed as ℤ-modules). Hence suitable bases can be found so that 𝐴
is equivalent to a diagonal form. We shall show that using elementary row and
column operations carefully, the diagonal elements give the elementary divisors of
𝐿∗/𝐿:

Step 1: since 𝐴 is non-singular, no column is zero and by a row operation we
move a non-zero entry 𝐴1 to place (1, 1). Using integral row and column addition,
replace the other entries in the first column and row by 0 or by a non-zero element
with absolute value < |𝐴1 |.

Step 2: repeat step 1 with such a non-zero element, and so on until all entries
in the first column and row are 0 except the (new) entry 𝐴1,1.

Step 3: if there is a non-zero entry 𝐴𝑖,𝑗 , 𝑖, 𝑗 ≥ 2, that is not divisible by 𝐴1,1

we add the 𝑖-the row to the first and start step 1 and 2 anew. Repeating this step
makes all entries 𝐴1,𝑗 , 𝑗 ≥ 2, 𝐴𝑖,1, 𝑖 ≥ 2 zero, and makes the entries 𝐴𝑖,𝑗 , 𝑖, 𝑗 ≥ 2,
divisible by 𝐴1,1.

Step 4: repeat steps 1–3 with the matrix (𝐴𝑖,𝑗), 𝑖, 𝑗 ≥ 2.
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Example 1.6.9. On 𝐿 = ℤ𝑒1 ⊕ ℤ𝑒2 ⊕ ℤ𝑒3 consider the even form 𝑏𝐴 given by the

Gram matrix 𝐴 =
©«
−2 1 0
1 2 1
0 1 −2

ª®¬. The form 𝑏𝐴 is also the polar form of an integral

quadratic form 𝑞𝐴. It is best to exchange rows 1 and 2 so that the first column

and row can be handled quickly, yielding
©«
1 0 0
0 5 2
0 1 −2

ª®¬. Now we repeat the steps

for

(
5 2
1 −2

)
by first exchanging rows 1 and 2. Finally we arrive at

©«
1 0 0
0 1 0
0 0 12

ª®¬
so that dg𝐿 ≃ ℤ/12ℤ ≃ ℤ/22ℤ × ℤ/3ℤ. The third column of the inverse matrix

𝐴−1 = 1
12

©«
−5 2 1
2 4 2
1 2 −5

ª®¬ represents a vector 𝑒∗3 ∈ 𝐿∗ which is obviously of order 12

modulo 𝐿 and so must generate dg𝐿. Then the discriminant forms are given by
𝑏𝐴,ℚ(𝑒∗3, 𝑒∗3) = 7

12 mod ℤ and 𝑞𝐴,ℚ(𝑒3) = 7
24 mod ℤ.

Generalizing the previous example, we consider any non-degenerate integral
lattice (𝐿, 𝑏) and let 𝐴 = 𝑏𝑬 be the Gram matrix of 𝑏 with respect to a basis
𝑬 for 𝐿. Since the Gram matrix of 𝑏ℚ with respect to the dual basis 𝑬∗ equals

𝐴−1, considering its entries in ℚ/ℤ, we obtain a matrix representing 𝑏#𝐿 . As in
that example, we may choose a basis {𝜀∗1, . . . , 𝜀∗𝑛} of 𝐿∗ which is adapted to the
elementary divisors {𝑑1, . . . ,𝑑𝑟} of the torsion group dg𝐿, that is,

• {𝑒1 = 𝑑1𝜀
∗
1, . . . , 𝑒𝑟 = 𝑑𝑟𝜀

∗
𝑟 , 𝑒𝑟+1 = 𝜀∗𝑟+1, . . . , 𝑒𝑛 = 𝜀∗𝑛} is a basis of 𝐿;

• the classes of {𝜀∗1, . . . , 𝜀∗𝑟 } modulo 𝐿 give a set 𝑺 of generators for the discrim-
inant group dg𝐿.

The set 𝑺 is called an ordered basis of dg𝐿 and we shall investigate the shape of
the Gram matrix 𝐵𝑺 of the discriminant form on such a basis 𝑺. First note that
since 𝑏ℚ(𝑒𝑖 , 𝜀∗𝑗 ) ∈ ℤ, 𝑏ℚ(𝜀∗𝑖 , 𝜀∗𝑗 ) = 𝑑𝑖

−1𝑏ℚ(𝑒𝑖 , 𝜀∗𝑗 ) ∈ 𝑑𝑖
−1ℤ for 𝑖, 𝑗 = 1, . . . , 𝑟. Secondly,

all 𝑑𝑖 divide 𝑑𝑟 and so 𝐵𝑺 is 𝑑−1𝑟 ℤ/ℤ-valued and, by the preceding remarks, is
represented by the ℚ-valued matrix

𝐵′ =

©«

𝛽11
𝑑1

𝛽12
𝑑1

· · · 𝛽1𝑟
𝑑1

𝛽21
𝑑1

𝛽22
𝑑2

· · · 𝛽2𝑟
𝑑2

...
. . .

...
...

𝛽𝑟1
𝑑1

𝛽𝑟2
𝑑2

· · · 𝛽𝑟𝑟
𝑑𝑟

ª®®®®®®®®®¬
for certain 𝛽𝑖𝑗 = 𝛽𝑗𝑖 ∈ ℤ. (1.14)

In other words, the first row and column belong to 𝑑−11 ℤ, the remaining entries
in the second row and column to 𝑑−12 ℤ, etc. The corresponding entries of 𝐵𝑺 =

𝐵′ mod ℤ then are well defined in ℚ/ℤ.
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A non-degenerate even form 𝑏 has Gram matrix 𝐴 = 𝑄+𝑄T where 𝑄 is an inte-
gral valued upper triangular matrix and the corresponding discriminant quadratic
form (with values in ℚ/ℤ) is then represented by an upper triangular ℚ-valued
matrix 𝑄′ = (𝑞′𝑖𝑗) such that 𝑄′+𝑄′T = 𝐵′ as in (1.14). So modulo ℤ the diagonal el-

ements 𝑞′𝑖𝑖 =
1
2𝐵

′
𝑖𝑖 =

1
2𝑑

−1
𝑖 · 𝑏ℚ(𝑒𝑖 , 𝜀∗𝑖 ) take values in (2𝑑𝑟)−1ℤ/ℤ instead of in 𝑑−1𝑟 ℤ/ℤ.

This generalizes what we saw in Example 1.6.8.1 for cyclic discriminant groups.

Remark 1.6.10. Of course, the form 𝑏ℚ on 𝐿∗
ℚ
does not in general assume integral

values on 𝐿∗, but, as we have seen, if 𝑑 is the largest elementary divisor of dg𝐿,
then 𝑑 · 𝑏ℚ |𝐿∗ is integer valued. More generally, if 𝜌 ∈ ℤ, 𝜌 > 0, is such that
𝜌 · 𝑏ℚ |𝐿∗ assumes integral values, we can consider the lattice 𝐿∗ (𝜌), that is, 𝐿∗

equipped with 𝜌 · 𝑏ℚ. Example 1.6.8.2 can be generalized to this situation by
expressing the elementary divisors of the discriminant group of 𝐿∗ (𝜌) in terms of
the elementary divisors 𝑑1, . . . ,𝑑𝑟 of dg𝐿, where these satisfy the usual divisibility
relations 𝑑1 |𝑑2 | · · · |𝑑𝑟. To start with, the dual module of 𝐿∗ (𝜌) equals 1/𝜌 · (𝐿∗)∗.
There is a basis {𝜀∗1, . . . , 𝜀∗𝑛} for 𝐿∗ such that

𝑬 = {𝜀1 = 𝑑1𝜀
∗
1, . . . , 𝜀𝑟 = 𝑑𝑟𝜀

∗
𝑟 , 𝜀

∗
𝑟+1, . . . , 𝜀

∗
𝑛}

is a basis for 𝐿 ⊂ 𝐿∗. We identify 𝐿 and its double dual using the composition
𝑏𝐿∗

ℚ
◦𝑏𝐿ℚ of the correlation maps. (So 𝐿∗ (𝜌)∗/𝐿∗ (𝜌) is isomorphic to 1

𝜌𝐿/𝐿
∗ (𝜌).) Since

1/𝜌 · 𝑬 is a basis of (𝐿∗ (𝜌))∗ = 1/𝜌 · 𝐿 ⊂ 1/𝜌 · 𝐿∗, we see that 𝑑∗1 = 𝜌/𝑑1, . . . ,𝑑∗𝑟 =

𝜌/𝑑𝑟,𝑑∗𝑟+1 = 𝜌, . . . ,𝑑∗𝑛 = 𝜌 yield the elementary divisors of dg𝐿∗ (𝜌) by leaving out
terms for which 𝑑𝑗 = 𝜌. The discriminant quadratic form of 𝑏 takes values in
(2𝑑)−1ℤ/ℤ, while the discriminant quadratic form for the lattice 𝐿∗ (𝜌) takes values
in (2𝜌)−1ℤ/ℤ.

1.7 More Examples

Making use of the dual of a lattice, we can now discuss several important concepts
that come up later. We first claim that if we have an inclusion 𝑀 ⊂ 𝑁 of non-
degenerate lattices of the same rank, then 𝑁∗ ⊂ 𝑀∗ and [𝑀∗ : 𝑁∗] = [𝑁 : 𝑀]. This
can be seen by taking a basis {𝑒1, . . . , 𝑒𝑛} for 𝑁 as in the proof of Lemma 1.2.2,
ensuring the existence of positive integers 𝑑1, . . . ,𝑑𝑛, such that {𝑑1𝑒1, . . . ,𝑑𝑛𝑒𝑛} is
a basis for 𝑀. This proves the claim since then {𝑑−11 𝑒∗1, . . . ,𝑑

−1
𝑛 𝑒∗𝑛} is a basis for

𝑀∗.

1.7.A Neighbouring Lattices. Two lattices 𝐸 (1) and 𝐸 (2) are neighbours if they
contain a common index 2 sublattice 𝐸 (0) , that is:

𝐸 (1)

𝐸 (1) neighbour of 𝐸 (2) ⇐⇒ ∃𝐸 (0) with 𝐸 (0) '
�index 2 55

� w

index 2
))
𝐸 (2) .
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Lemma 1.2.2 implies that neighbouring lattices have the same discriminant, but
we can say more. Recall that the discriminant group is a torsion group and so has
a Sylow decomposition into 𝑝-primary parts.

Lemma 1.7.1. Neighbouring lattices of a non-degenerate lattice 𝑁 have the same
discriminant. For odd primes 𝑝 the 𝑝-primary part of the discriminant group of a
neighbour of 𝑁 is isomorphic to the 𝑝-primary part of 𝑁∗/𝑁. In particular, dis-
criminant groups of neighbouring lattices with odd discriminant are all isomorphic.

Proof. Let 𝐿 be a lattice with [𝑁 : 𝐿] = 2. We already remarked that disc(𝐿) =

4 disc(𝑁) and so disc(𝐿) only depends on 𝑁.
From the sequence of inclusions 𝐿 ⊂ 𝑁 ⊂ 𝑁∗ ⊂ 𝐿∗ one derives two exact

sequences of torsion abelian groups

0 → 𝑁/𝐿 → 𝐿∗/𝐿 → 𝐿∗/𝑁 → 0, 0 → 𝑁∗/𝑁 → 𝐿∗/𝑁 → 𝐿∗/𝑁∗ → 0.

Since [𝑁 : 𝐿] = 2 = [𝐿∗ : 𝑁∗], both 𝑁/𝐿 in the first sequence and 𝐿∗/𝑁∗ in the
second sequence are isomorphic to ℤ/2ℤ. These sequences are stable under taking
𝑝-primary parts. Assume that 𝑝 is an odd prime. Then the first sequence shows
that the 𝑝-primary part of 𝐿∗/𝐿 is isomorphic to the 𝑝-primary part of 𝐿∗/𝑁 and
the second that the 𝑝-primary part of 𝐿∗/𝑁 is isomorphic to the 𝑝-primary part
of 𝑁∗/𝑁. □

If, in the situation of the proof of the lemma, the order of 𝑁∗/𝑁 is odd, the
second sequence splits. If the first sequence splits, then

𝐿∗/𝐿 ≃ 𝑁∗/𝑁 ⊕ ℤ/2ℤ ⊕ ℤ/2ℤ

and so the 2-primary part of 𝐿∗/𝐿 is isomorphic to ℤ/2ℤ ⊕ ℤ/2ℤ. If it does not
split, the 2-primary part of 𝐿∗/𝐿 is isomorphic to the non-split extension of ℤ/2ℤ
by ℤ/2ℤ, i.e., ≃ ℤ/4ℤ. For unimodular neighbours 𝐿∗/𝐿 is 2-primary and both
cases may occur as shown by the following examples.

1. Let 𝑛 > 0 be an odd integer. Start with the index 2 sublattice 𝐸 (0) of ℤ𝑛

consisting of vectors such that 𝑥 · 𝑥 is even; equivalently, the vectors 𝑥 whose
coordinate sum 𝑥1 + · · · + 𝑥𝑛 is even. As for the dual we find the two index 2
inclusions

𝐸 (0) 2⊂ Z𝑛
2⊂ (𝐸 (0))∗.

Let (𝑥1, . . . ,𝑥𝑛) ∈ 𝐸 (0) . By subtracting suitable integral multiples of the vectors
(1,−1, 0, . . . , 0), . . . , (0, . . . , 1,−1) we then get an element of the shape (0, . . . , 0,𝑑)
in 𝐸 (0) . So 𝑑 must be even, showing that 𝑒1 − 𝑒2, . . . , 𝑒𝑛−1 − 𝑒𝑛, 2𝑒𝑛 spans 𝐸 (0) .
Clearly, they are independent.

Now 𝑓 = 1
2

∑
𝑖 𝑒𝑖 takes integral values on 𝐸 (0) , is not in ℤ𝑛, and satisfies 2𝑓 ∈

ℤ𝑛−𝐸 (0) since 𝑛 is odd. So 𝑓 determines an element of order 4 in the discriminant
group (𝐸 (0))∗/𝐸 (0) . Hence this group is cyclic of order 4.

In case 𝑛 > 0 is even, the non-zero elements in the discriminant group are the
classes of 𝑒1, 𝑓 = 1

2

∑
𝑖 𝑒𝑖, 𝑒1 + 𝑓, all of order 2.
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2. Let 𝐿 be an odd unimodular lattice so that 𝑥 · 𝑥 is odd for at least one vector
𝑥 ∈ 𝐿. Let 𝐿(0) be the subset of vectors 𝑦 ∈ 𝐿 for which 𝑦 · 𝑦 is even. This
is a sublattice, since (𝑦1 + 𝑦2) · (𝑦1 + 𝑦2) ≡ 𝑦1 · 𝑦1 + 𝑦2 · 𝑦2 mod 2. Moreover, if
𝑥, 𝑦 ∉ 𝐿(0) , then 𝑥 + 𝑦 ∈ 𝐿(0) , so that [𝐿 : 𝐿(0)] = 2. In fact 𝐿(0) is the kernel of
the surjective homomorphism 𝐿 → ℤ/2ℤ which sends 𝑥 ∈ 𝐿 to 𝑥 · 𝑥. Consider
(𝐿(0))∗ = Homℤ (𝐿(0) ,ℤ). Recall that for unimodular lattices such as 𝐿 we have
𝐿 = 𝐿∗. So, since 𝐿 has index 2 in (𝐿(0))∗, we obtain a chain of inclusions of
lattices, each of index 2 in the next:

𝐿(0) ⊂ 𝐿 = 𝐿∗ ⊂ (𝐿(0))∗.

Since (𝐿(0))∗/𝐿(0) is a group of order 4, there are at most 3 integral lattices
strictly contained between 𝐿(0) and its dual, one of these being 𝐿. Any other
intermediate submodule gives a lattice, precisely if the ℚ-valued form restricts
to an integer valued form. In that case it is a (unimodular) neighbour of 𝐿.

We give an easy example. Consider 𝑊 = ⟨1⟩ ⦹ ⟨−1⟩ with basis {𝑒,𝑓}. Then
𝑊 (0) is spanned by 𝑒 +𝑓 and 𝑒−𝑓 and so is isometric to 𝑈 (2). The dual lattice
is spanned by 1

2 (𝑒 + 𝑓) and
1
2 (𝑒 − 𝑓). So the discriminant group in this case is

isomorphic to ℤ/2ℤ ⊕ ℤ/2ℤ.
The two neighbours of 𝑊 are 𝑈′ = ℤ(𝑒 + 𝑓) ⊕ ℤ( 12 (𝑒 − 𝑓)) and 𝑈′′ = ℤ(𝑒 − 𝑓) ⊕
ℤ( 12 (𝑒 + 𝑓)), both isometric to 𝑈. So from the three unimodular lattices that

contain 𝑊 (0) precisely one is odd, namely 𝑊.

1.7.B 𝒑-Elementary Lattices. Given a prime number 𝑝, a 𝑝-elementary lattice
is a non-degenerate integral lattice (𝐿, 𝑏) such that 𝑝𝐿∗ ⊂ 𝐿. Hence, if 𝑥 ∈ 𝐿∗, then
𝑝𝑥 ∈ 𝐿 which is equivalent to dg𝐿 = 𝐿∗/𝐿 being a ℤ/𝑝ℤ-module. These come up
naturally: 𝐿 is 𝑝-elementary in case disc(𝐿) = ±𝑝, or, if 𝐿 is unimodular, then 𝐿(𝑝)
is 𝑝-elementary. Furthermore, orthogonal sums of 𝑝-elementary lattices are again
𝑝-elementary.

Note that if 𝑝𝐿∗ ⊂ 𝐿, then the form on 𝑝𝐿∗ is divisible by 𝑝. To see this, take
𝑥, 𝑦 ∈ 𝑝𝐿∗. Then 𝑦 ∈ 𝐿 and 𝑥 ∈ 𝑝𝐿∗, so 𝑥 · 𝑦 ∈ 𝑝ℤ. In particular, if 𝑝 = 2, 2𝐿∗ is
even.

As we have seen, the discriminant form 𝑏#𝐿 is the non-degenerate form on dg𝐿
induced by 𝑏ℚ and is a priori ℚ/ℤ-valued. In our situation, dg𝐿 is 𝑝-torsion and

so 𝑏#𝐿 now has values in 𝑝−1ℤ/ℤ ⊂ ℚ/ℤ. Equivalently, we may view (dg𝐿, 𝑏
#
𝐿 ) as

an 𝔽𝑝-vector space equipped with a non-degenerate 𝔽𝑝-valued form and write the
latter as

𝑊𝐿 = (𝐿∗/𝐿, ·𝑊𝐿 ).

The inclusions 𝑝𝐿∗ ⊂ 𝐿 ⊂ 𝐿∗ suggest a second quotient,

𝑉𝐿 = (𝐿/𝑝𝐿∗, ·𝑉𝐿 ),

where 𝑥 ·𝑉𝐿 𝑦 = 𝑏(𝑥, 𝑦) mod 𝑝, 𝑥, 𝑦 ∈ 𝐿/𝑝𝐿∗. Since 𝑉𝐿 ⊂ 𝐿∗/𝑝𝐿∗, it is a 𝔽𝑝-vector
space in a natural way and ·𝑉𝐿 is non-degenerate since 𝑏 is. Indeed, if 𝑏(𝑥,𝐿) ∈ 𝑝ℤ
then 𝑥/𝑝 ∈ 𝐿∗ and so the class of 𝑥 in 𝐿/𝑝𝐿∗ is zero.
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So a 𝑝-elementary lattice comes associated with two 𝔽𝑝-spaces 𝑉𝐿 and 𝑊𝐿

equipped with non-degenerate forms. As to their dimensions, one has

rank(𝐿) = dim𝑊𝐿 + dim𝑉𝐿. (1.15)

This is implied by the short exact sequence of groups

0 → 𝐿∗/𝐿 � 𝑝𝐿∗/𝑝𝐿 → 𝐿/𝑝𝐿 → 𝐿/𝑝𝐿∗ → 0.

The situation for quadratic forms and their discriminant quadratic forms is differ-
ent however, since the latter takes values in (2𝑝)−1ℤ/ℤ. For 𝑝 ≠ 2 the values are
of the form 𝑎/2𝑝 mod ℤ with 𝑎 = 0 or (𝑎 ,𝑝) = 1 and so, if 2−1 is the inverse of
2 in 𝔽𝑝 we can replace 𝑎/2𝑝 mod ℤ with 𝑎 · 2−1 ∈ 𝔽𝑝. For 𝑝 = 2 this is no longer
possible. We distinguish two cases:

Definition 1.7.2. A 2-elementary even lattice is a type I lattice if its discrimi-
nant quadratic form is 1

2ℤ/ℤ-valued and it is a type II lattice otherwise, i.e.,
its discriminant quadratic form takes at least one value in 1

4ℤ/ℤ− 1
2ℤ/ℤ.

Type I lattices have non-degenerate polar forms and then dim𝑊𝐿 is even. Using
the isomorphism ℤ/2ℤ ≃ 𝔽2, the vector space 𝑊𝐿 gets the structure of an 𝔽2-inner
product space. For type II this does not make sense. Moreover, for a type II
lattice, neither dim𝑉𝐿 nor dim𝑊𝐿 need to be even.

The hyperbolic form 𝑈 (2) with discriminant form 𝑢(2) is an example of a type
I form. An example of a type II lattice is the lattice ⟨2⟩, with corresponding
quadratic form [1] and the discriminant quadratic form takes the value 1

4 on the
generator.

Example 1.7.3. Suppose that a finite group 𝐺 acts through isometries on a non-
degenerate lattice (𝐿, 𝑏). Two sublattices canonically associated to this action are:

𝐿𝐺 = {𝑥 ∈ 𝐿 | 𝑔𝑥 = 𝑥 for all 𝑔 ∈ 𝐺}, 𝐿𝐺 = (𝐿𝐺)⊥.
Both lattices are primitive sublattices of 𝐿. We claim that they are also non-
degenerate. To see this, by Lemma 1.1.3.2, it suffices to remark that writing any
𝑥 ∈ 𝐿 as

𝑥 =
1

𝑛
𝑡𝐺 (𝑥) +

(
𝑥 − 1

𝑛
𝑡𝐺 (𝑥)

)
, 𝑡𝐺 :=

∑︁
𝑔∈𝐺

𝑔 ∈ ℤ[𝐺], 𝑛 = |𝐺 |,

one obtains an orthogonal direct sum decomposition 𝐿ℚ = 𝐿𝐺
ℚ
⦹ 𝐿𝐺 ,ℚ as we show

now. Each element in the first summand is 𝐺-invariant. Since 𝑏(𝑡𝐺 (𝑥), 𝑡𝐺 (𝑥)) =

𝑛𝑏(𝑥, 𝑡𝐺 (𝑥)) for all 𝑥 ∈ 𝐿, it is orthogonal to
(
𝑥 − 1

𝑛 𝑡𝐺 (𝑥)
)
. Finally, if 𝑦 ∈ 𝐿𝐺 ∩ 𝐿𝐺,

then 𝑏(𝑦, 1𝑛 𝑡𝐺 (𝑥) +
(
𝑥 − 1

𝑛 𝑡𝐺 (𝑥)
)
) = 0 for all 𝑥 and so 𝑦 = 0 and the above writing

gives a direct sum splitting. It follows that 𝐿𝐺 ⦹ 𝐿𝐺 is a finite index sublattice of
𝐿. Moreover, the decomposition also shows that 𝑛𝐿 ⊂ 𝐿𝐺 ⦹ 𝐿𝐺.

Suppose next that 𝐿 is unimodular. From the inclusion 𝑛𝐿 ⊂ 𝐿𝐺⦹𝐿𝐺 we obtain

1

𝑛
𝐿 =

1

𝑛
𝐿∗ = (𝑛𝐿)∗ ⊃ (𝐿𝐺 ⦹ 𝐿𝐺)∗,
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which implies
𝑛(𝐿𝐺)∗ ⦹ 𝑛(𝐿𝐺)∗ ⊂ 𝐿

and so, since 𝑡𝐺 = 𝑛 · id on the first summand and 𝑡𝐺 = 0 on the second summand
(since 𝑡2𝐺 = 𝑛𝑡𝐺), we get inclusions 𝑛(𝐿𝐺)∗ ⊂ 𝐿𝐺 and 𝑛(𝐿𝐺)∗ ⊂ 𝐿𝐺. So, if 𝑛 is a

prime number, 𝐿𝐺 and 𝐿𝐺 are 𝑛-elementary.
We observed that, for any 𝑛, prime or not, 𝐿𝐺 ⦹ 𝐿𝐺 has finite index in 𝐿. This

means that 𝐿 is an example of an overlattice of 𝐿𝐺 ⦹ 𝐿𝐺, a concept we treat next.

1.7.C Overlattices. An overlattice of a non-degenerate symmetric lattice
(𝑁, 𝑏) is an integral lattice 𝐿 containing 𝑁 as a finite index sublattice. In particular
𝑏ℚ |𝐿 is integer valued. If the latter form is even, we say that 𝐿 is a quadratic
overlattice .

Observe that since the index [𝐿 : 𝑁] is finite, one has 𝑁 ⊂ 𝐿 ⊂ 𝐿∗ ⊂ 𝑁∗, leading
to the chain of inclusions

𝐿/𝑁 ⊂ 𝐿∗/𝑁 ⊂ 𝑁∗/𝑁 = dg𝑁 .

The discriminant form 𝑏#𝑁 restricts to zero on 𝐿/𝑁 since 𝑏ℚ |𝐿 is integral valued.

In other words, 𝐿/𝑁 is an isotropic subgroup of 𝑏#𝑁 . If 𝑁 is even, replacing 𝑏#𝑁
with 𝑞#𝑁 (derived from 𝑞(𝑥) = 1

2𝑏(𝑥,𝑥)), we obtain a subgroup isotropic for the
quadratic torsion form. The converse also holds:

Proposition 1.7.4. 1. The overlattices 𝐿 of a non-degenerate lattice (𝑁, 𝑏) are
in one-to-one correspondence with the isotropic subspaces H of (dg𝑁 , 𝑏

#
𝑁 ).

The correspondence is given by

𝐿 ↦−→ H𝐿 := 𝐿/𝑁
H ↦−→ 𝐿H := {𝑦 ∈ 𝑁∗ | 𝑦 mod 𝑁 ∈ H}.

2. The discriminant group of an overlattice 𝐿 is (𝐿/𝑁)⊥/(𝐿/𝑁) with discrimi-
nant form induced by the form 𝑏#𝑁 on 𝑁∗/𝑁 (observe that 𝑏#𝑁 |𝐿/𝑁 = 0). Uni-

modular overlattices 𝐿 correspond to maximal isotropic subspaces of (dg𝑁 , 𝑏
#
𝑁 ),

that is, overlattices 𝐿 for which (𝐿/𝑁)⊥ = 𝐿/𝑁.

3. If 𝑏 is even and 𝑞(𝑥) = 1
2𝑏(𝑥,𝑥), there is a one-to-one correspondence between

subspaces isotropic with respect to the discriminant quadratic form on the one
hand and even overlattices of 𝑁 on the other hand.

Proof. 1. We have seen the first correspondence. To see the second correspondence,
it suffices to show that the form 𝑏ℚ on 𝐿H is integer valued. Suppose 𝑥, 𝑦 ∈ 𝑁∗

such that 𝑥 = 𝑥 mod 𝑁, 𝑦 = 𝑦 mod 𝑁 ∈ H. Since 𝑏#𝑁 (𝑥, 𝑦) = 0 by assumption,
𝑏(𝑥, 𝑦) ∈ ℤ.

That the two correspondences are each other’s inverse is immediate. For in-
stance, one has

𝐿𝐿/𝑁 = {𝑦 ∈ 𝑁∗ | 𝑦 mod 𝑁 ∈ 𝐿/𝑁} = 𝐿.



38 1 Symmetric and Quadratic Forms, an Overview

2. First we show that (𝐿/𝑁)⊥ = 𝐿∗/𝑁 in 𝑁∗/𝑁. Fix 𝑥 ∈ 𝑁∗/𝑁, with 𝑥 ∈ 𝑁∗. Then
𝑥 ∈ (𝐿/𝑁)⊥ if and only if 𝑏#𝑁 (𝑥, 𝑦) = 0 (mod ℤ) for all 𝑦 ∈ 𝐿/𝑁. This is equivalent

to 𝑥 ∈ 𝐿∗/𝑁. So 𝐿∗/𝑁 = (𝐿/𝑁)⊥. Since the form 𝑏#𝑁 vanishes on 𝐿/𝑁, the quotient
(𝐿/𝑁)⊥/(𝐿/𝑁) comes with a form induced by 𝑏ℚ. But this quotient is naturally
isomorphic to (𝐿∗/𝑁)/(𝐿/𝑁) � 𝐿∗/𝐿 which also inherits its form from 𝑏ℚ.
3. For quadratic overlattices the proof is the same, replacing the discriminant
bilinear form with the discriminant quadratic form. □

We illustrate the above technique with two examples.

Examples 1.7.5. 1. We return to the lattice 𝑈 (2) in example 2 on page 34. The
bilinear form is denoted 𝑏. Retaining the notation used there, 𝑈 (2) = Z(𝑒 + 𝑓) +
Z(𝑒 − 𝑓), where 𝑏(𝑒, 𝑒) = 1, 𝑏(𝑓,𝑓) = −1, and 𝑏(𝑒,𝑓) = 0. Now 𝑈 (2)∗/𝑈 (2) =
1
2𝑈 (2)/𝑈 (2) with the induced discriminant symmetric form 𝑏# has three isotropic

subspaces (of order 2): ⟨𝑒⟩, ⟨ 12 (𝑒 − 𝑓)⟩, ⟨ 12 (𝑒 + 𝑓)⟩. These correspond to the three
overlattices 𝑊 = Z𝑒+Z𝑓, 𝑈′ = Z(𝑒+𝑓) +Z( 12 (𝑒−𝑓)), and 𝑈′′ = Z(𝑒−𝑓) +Z( 12 (𝑒+𝑓)),
respectively. With respect to the discriminant quadratic form 𝑞# induced by the

quadratic form 𝑞(𝑥) = 1
2𝑏(𝑥,𝑥) on 𝑈 (2), however, only ⟨ 12 (𝑒 − 𝑓)⟩ and ⟨ 12 (𝑒 + 𝑓)⟩

are isotropic (note that 𝑞# (𝑒) = 1
2 (mod Z)). So the quadratic form ‘detects’ the

even overlattices 𝑈′ and 𝑈′′.
2. Consider the quadratic lattice 𝑁 = ℤ8 (2). In 𝑁∗/𝑁 take the span of the vectors
1
2 (1, 1, 1, 1, 0, 0, 0, 0),

1
2 (1, 1, 0, 0, 1, 1, 0, 0),

1
2 (1, 1, 0, 0, 0, 0, 1, 1),

1
2 (1, 0, 0, 1, 1, 0, 0, 1).

This is an isotropic subspace of dimension 4. This leads to an even overlattice
𝐿 in which 𝑁 is a sublattice of index 24. By Lemma 1.2.2 disc(𝐿) = 1 and so
𝐿 ≃ 𝐸8 since up to isometry 𝐸8 is the only positive definite quadratic lattice of
rank 8 (see Section 1.12 for further background). Lemma 4.1.6 gives an alternative
explanation of this embedding by looking at roots.

Taking the span of 1
2 (1, 1, 1, 1, 0, 0, 0, 0),

1
2 (0, 0, 0, 0, 1, 1, 1, 1),

1
2 (0, 0, 1, 1, 1, 1, 0, 0)

in 𝑁∗/𝑁 we obtain in a similar way an even overlattice isometric to 𝐷8 studied
in Section 4.1.A. Indeed, a basis consisting of roots is given by the vectors in 𝑁∗

(corresponding to the roots 𝛼1, . . . ,𝛼8 of the corresponding Dynkin diagram on
page 81)

𝛼1 = (0, 0, 0, 0,− 1
2 ,−

1
2 − 1

2 ,−
1
2 ), 𝛼2 = (0, 0, 0, 0, 1

2 ,
1
2 ,

1
2 ,−

1
2 ),

𝛼3 = (0, 0, 0, 0,− 1
2 ,

1
2 ,−

1
2 ,

1
2 ), 𝛼4 = (0, 0, 12 ,−

1
2 ,

1
2 ,−

1
2 , 0, 0),

𝛼5 = (− 1
2 ,

1
2 ,−

1
2 ,

1
2 , 0 , 0, 0, 0), 𝛼6 = ( 12 ,−

1
2 − 1

2 ,−
1
2 , 0, 0, 0, 0),

𝛼7 = (− 1
2 ,−

1
2 ,

1
2 ,

1
2 , 0, 0, 0, 0), 𝛼8 = ( 12 ,

1
2 ,

1
2 ,

1
2 , 0, 0, 0, 0).

Proposition 1.7.4 also leads to the next result:

Lemma 1.7.6. Let 𝑆 be a non-degenerate primitive sublattice of a unimodular
lattice 𝐿 and 𝑇 = 𝑆⊥ its orthogonal complement. Then there is a natural isometry

dg𝑆
≃−→ dg𝑇 (−1) of discriminant bilinear forms. If 𝐿 is even it is an isometry of

discriminant quadratic forms.

Proof. The lattice 𝑁 = 𝑆 ⦹ 𝑇 has finite index in 𝐿 and so 𝐿 is an overlattice of
𝑁. There are inclusions of free ℤ-modules 𝑁 ↩→ 𝐿 = 𝐿∗ ↩→ 𝑁∗, giving an inclusion
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𝐿/𝑁 ↩→ 𝑁∗/𝑁 = dg𝑆 ⊕ dg𝑇 . If we compose this injection with the projections on
the two factors, two morphisms of finite abelian groups result, 𝜋𝑆 : 𝐿/𝑁 → dg𝑆
and 𝜋𝑇 : 𝐿/𝑁 → dg𝑇 . Since 𝑆 and 𝑇 are primitive, Lemma 1.3.1 implies that
[𝐿 : 𝑁] = | dg𝑆 | = | dg𝑇 | so that the above torsion groups 𝐿/𝑁, dg𝑆 and dg𝑇
all have the same cardinality. We shall argue that they are in fact canonically
isomorphic. We start with the observation that the maps 𝐿 = 𝐿∗ → 𝑆∗ → 𝑆∗/𝑆
and 𝐿 = 𝐿∗ → 𝑇 ∗ → 𝑇 ∗/𝑇 have their kernels in 𝑁. To see this, suppose that,
for 𝑥 ∈ 𝐿, the functional 𝑥 ↦→ 𝑏(𝑥,−)|𝑆 is of the form 𝑏(𝑠,−)|𝑆 for some 𝑠 ∈ 𝑆.
Then 𝑥 − 𝑠 ∈ 𝑆⊥ = 𝑇 and consequently 𝑥 ∈ 𝑆 ⦹ 𝑇 = 𝑁. A similar argument
holds for 𝑇 . This implies that 𝜋𝑆 and 𝜋𝑇 are injective and hence isomorphisms,

whence the announced natural identification 𝜓 = 𝜋𝑇 ◦𝜋−1
𝑆 : dg𝑆

≃−→ dg𝑇 under which
𝐿/𝑁 becomes the graph of 𝜓. The isomorphism 𝜓 is an anti-isometry in the sense
that it sends the discriminant form on dg𝑆 to the negative of the one on dg𝑇 .
Indeed, Proposition 1.7.4 implies hat 𝐿/𝑁 is a (maximal) isotropic subspace of the
discriminant group dg𝑆 ⦹ dg𝑇 . □

Next, we discuss a criterion for extending isometries 𝜆 : 𝑁 → 𝑁′ to overlattices

𝐿 of 𝑁 and 𝐿′ of 𝑁′ respectively. The ℚ-extension 𝜆ℚ : 𝑁ℚ
∼−→ 𝑁′

ℚ
sends 𝑁∗ to (𝑁′)∗

and so there is an induced isometry of the discriminant forms

𝑟𝑁,𝑁′ (𝜆) : (dg𝑁 , 𝑏
#
𝑁 ) ≃−→ (dg𝑁′ , 𝑏

#
𝑁′).

Clearly 𝜆 extends to the overlattices if and only if 𝜆ℚ sends 𝐿 to 𝐿′. This implies
that in the commutative diagram

𝑁∗ 𝜆ℚ //

��

(𝑁′)∗

��
𝑁∗/𝑁 = dg𝑁OO

� ?

𝑟𝑁,𝑁′ (𝜆)
∼ // dg𝑁′ = (𝑁′)∗/𝑁′

OO

� ?
𝐿/𝑁 // 𝐿′/𝑁′,

the dashed arrow exists, that is, 𝑟𝑁,𝑁′ (𝜆) sends 𝐿/𝑁 to 𝐿′/𝑁′ if and only if 𝜆
extends. A similar argument applies to quadratic lattices. In other words, we have
shown:

Proposition 1.7.7 (Extending isometries). Let 𝐿, 𝐿′ be overlattices of non-degenerate

symmetric (or quadratic) lattices 𝑁, 𝑁′ respectively. An isometry 𝜆 : 𝑁
∼−→ 𝑁′ ex-

tends to an isometry 𝐿
∼−→ 𝐿′ if and only if the isomorphism induced by 𝜆 on the

discriminant groups sends 𝐿/𝑁 to 𝐿′/𝑁′. In particular, 𝜆 ∈ O (𝑁) extends to an
isometry of 𝐿 if and only if 𝑟𝑁,𝑁′ (𝜆) preserves 𝐿/𝑁.
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1.8 Lattice Embeddings

To be able to embed a given integral lattice 𝑆 in another lattice 𝐿 there is an
obvious restriction, namely rank(𝑆) ≤ rank(𝐿). Even more specifically, if (𝑠+, 𝑠−)
is the signature of 𝑆 and (ℓ+, ℓ−) that of 𝐿 we must have 𝑠+ ≤ ℓ+ and 𝑠− ≤ ℓ−.

By way of example we show that, surprisingly, all even lattices can be embedded
in an orthogonal sum of hyperbolic planes, provided the above conditions are
satisfied.

Lemma 1.8.1. Every even lattice (𝑆, 𝑏) of rank 𝑠 ≤ 𝑎 can be isometrically embed-
ded in

𝐿 = 𝑈 ⦹ · · ·⦹𝑈︸          ︷︷          ︸
𝑎 copies

as a primitive sublattice such that 𝑆⊥ ≃ 𝑆 (−1) ⦹ ⦹(𝑎−𝑠)𝑈, where we view 𝑆 as
embedded in 𝐿.

Proof. We provide an explicit embedding of 𝑆 in 𝐿.4 It is no restriction to assume
that 𝑆 has rank 𝑠 = 𝑎 . Let {𝑒𝑗 ,𝑓𝑗} be a basis of the 𝑗-th copy of 𝑈 in 𝐿 and choose
𝑬 = {𝑒1, . . . , 𝑒𝑎 ,𝑓1, . . . ,𝑓𝑎 } as basis for 𝐿, so that the Gram matrix of the form on
𝐿 with respect to 𝑬 becomes (

0 1𝑎
1𝑎 0

)
.

Pick any basis {𝑐1, . . . , 𝑐𝑎 } of 𝑆 and let 𝑠𝑖𝑗 = 𝑏(𝑐𝑖 , 𝑐𝑗). As in (1.1) let

𝑠 =

©«

1
2 𝑠11 𝑠12 · · · · · · 𝑠1𝑎
0 1

2 𝑠22 𝑠23 · · · 𝑠2𝑎

0 0
. . .

. . .
...

0 0
. . . 1

2 𝑠𝑎−1,𝑎−1 𝑠𝑎−1𝑎
0 · · · · · · 0 1

2 𝑠𝑎𝑎

ª®®®®®®®¬
be the matrix of the associated quadratic form, so that 𝑠 + 𝑠T is the matrix of the
symmetric form on 𝑆. We define a primitive embedding 𝑖 : 𝑆 ↩→ 𝐿 on the coordinate
level by sending the coordinate column vector 𝑢 corresponding to

∑
𝑢𝑖𝑐𝑖 to the

coordinate vector 𝐴𝑢, where 𝐴 =

(
𝐼𝑎
𝑠T

)
(the presence of the block 𝐼𝑎 guarantees

that 𝑖(𝑆) is primitive). Then we have

𝐴T

(
0 𝐼𝑎
𝐼𝑎 0

)
𝐴 = 𝑠 + 𝑠T.

Hence formula (1.3) tells that 𝑖 is an isometric primitive embedding. Put 𝐵 =

(
𝐼𝑎
−𝑠

)
.

Since

𝐵T

(
0 𝐼𝑎
𝐼𝑎 0

)
𝐵 = −(𝑠 + 𝑠T),

4We prove a more general statement in Section 6.2.



1.9 On 𝑝-Adic Lattices and the Genus 41

this defines a primitive embedding 𝑗 : 𝑆 ↩→ 𝐿 with 𝑗 (𝑆) isometric to 𝑆 (−1). On
the other hand,

𝐴T

(
0 𝐼𝑎
𝐼𝑎 0

)
𝐵 = 0

and so 𝑗 (𝑆) is the orthogonal complement of 𝑖(𝑆) in 𝐿 (here we also use that
rank(𝑆) = rank(𝑆⊥)). Hence we conclude 𝑖(𝑆)⊥ ≃ 𝑆 (−1). □

Outlook. We give a glimpse of what can be found in Section 15.2, es-
pecially about the role which the discriminant form plays in embedding
questions. Suppose we have a primitive embedding of a non-degenerate
lattice 𝑆 into an even unimodular lattice 𝐿. In Lemma 1.7.6 we proved by
means of the technique of overlattices that 𝑆 and 𝑇 = 𝑆⊥ have isomorphic
discriminant groups and opposite discriminant quadratic forms. Reversing
the procedure, suppose that 𝑆 and 𝑇 are two non-degenerate even lattices

together with an abstract isomorphism 𝜓 : dg𝑆
≃−→ dg𝑇 inducing opposite

discriminant quadratic forms. It turns out that there is an even unimodular
overlattice 𝐿 of 𝑆 ⦹ 𝑇 which induces 𝜓 as in the cited example. In favor-
able situations the isometry class of 𝐿 is uniquely determined. This is for
instance the case if 𝑆 is indefinite as stated by Theorem 2.4.1. In that case,
using Nikulin’s results, this ultimately leads to the criteria enumerated in
Theorem 15.2.3 which ensure that 𝑆 is embeddable in 𝐿. Uniquess of a
given embedding 𝑆 ↩→ 𝐿 is a more difficult question. See Theorem 15.2.6.

A related problem is the extension problem for isometries: suppose that
we have a sublattice 𝑆 ⊂ 𝐿, 𝐿 unimodular, and two isometries 𝜎 ∈ O (𝑆),
respectively 𝜏 ∈ O (𝑇 ), 𝑇 = 𝑆⊥. When can one extend the isometry 𝜎 ⊕ 𝜏 of
𝑆⦹𝑇 to 𝐿? Of course it extends as an isometry of 𝐿ℚ, so the question is: un-
der which condition does the latter preserve the lattice 𝐿? Theorem 15.1.7
tells us that this is the case if and only if the isometries �̄�, 𝜏 induced by 𝜎,
respectively 𝜏 on the discriminant groups satisfy the relation 𝜓◦�̄� = 𝜏. We
shall use this criterion in several examples.

1.9 On 𝒑-Adic Lattices and the Genus

To classify an integral lattice (𝐿, 𝑏), one traditionally passes to its localizations 𝐿𝑝
at primes 𝑝. By definition, 𝐿𝑝 = 𝐿 ⊗ℤ ℤ𝑝, where ℤ𝑝 is the ring of 𝑝-adic integers.5

One extends the form 𝑏 in a ℤ𝑝-linear fashion which results in a symmetric form
𝑏𝑝 on 𝐿𝑝. Summarizing, we have

𝐿𝑝 := 𝐿 ⊗ℤ ℤ𝑝, 𝑏𝑝 the 𝑝-adic bilinear extension of 𝑏.

If, instead, one starts with a quadratic lattice (𝐿, 𝑞), an analogous process yields
the pair (𝐿𝑝, 𝑞𝑝).

5We invite the reader to recall the basics on 𝑝-adic numbers as assembled in Appendix A.2.



42 1 Symmetric and Quadratic Forms, an Overview

The pair (𝐿𝑝, 𝑏𝑝) is an example of a 𝑝-adic lattice . Abstractly, a 𝑝-adic lattice
is a free finite rank ℤ𝑝-module equipped with a ℤ𝑝-valued ℤ𝑝-bilinear symmetric
form. So this resembles the definition of an integral lattice given in Section 1.2:
one just replaces ℤ everywhere by the 𝑝-adic integers ℤ𝑝. Similar remarks apply
to quadratic forms. The notion of isometry also extends in the obvious way

The definition of the discriminant proceeds in an analogous fashion: it is the
determinant of a matrix representing the form in a basis. As for forms on 𝑘-vector
spaces, the resulting number disc(𝑏𝑝) is only well defined up to multiplication with
a square of a 𝑝-adic unit. Writing the discriminant of a non-degenerate form 𝑏𝑝 as
disc(𝑏𝑝) = 𝑢 · 𝑝𝑘 for some unit 𝑢, this means that 𝑢 should be viewed in the factor
group ℤ×

𝑝/(ℤ×
𝑝)2, and thus interpreted it is an isometry invariant. The same type of

group comes up when we shall consider forms on 𝑅-modules where 𝑅 is an arbitrary
commutative ring 𝑅 with unit. This motivates to introduce the shorthand

D(𝑅) := 𝑅×/(𝑅×)2. (1.16)

As for forms on vector spaces and on free ℤ-modules, we say that the lattice (𝐿𝑝, 𝑏𝑝)
is non-degenerate if disc(𝑏𝑝) ≠ 0 and unimodular if disc(𝑏𝑝) is itself a unit up
to squares, i.e., belongs to D(ℤ𝑝).

Recall the structure of the group D(ℤ𝑝) as described in Appendix A.2: if 𝑝
is an odd prime, this group is cyclic of order two and has representatives 1 and
any non-square unit 𝜀. So the discriminant of a non-degenerate 𝑝-adic lattice
has a representative of the form 𝑝𝑘 or 𝜀 · 𝑝𝑘, where 𝑘 is a non-negative integer;
unimodularity then means 𝑘 = 0. Also, for every 𝑘 there are exactly two isometry
classes of rank one lattices, ⟨𝑝𝑘⟩ and ⟨𝜀𝑝𝑘⟩. For the prime 2 this is slightly more
involved as we explain below in Example 1.9.5.2.

As for integral lattices, the correlation morphism 𝑥 ↦→ 𝑏𝑝 (𝑥,−) for the 𝑝-
adic lattice (𝐿𝑝, 𝑏𝑝) is injective (an isomorphism) precisely if the lattice is non-
degenerate (respectively unimodular), and similarly for quadratic lattices. The
proof is the same. So in the non-degenerate situation 𝐿𝑝 embeds in the dual
𝐿∗𝑝 = Homℤ𝑝 (𝐿𝑝,ℤ𝑝) via the correlation morphism. The quotient dg𝐿𝑝 = 𝐿∗𝑝/𝐿𝑝 is
a finite 𝑝-primary group, i.e., a finite group for which all elements are annihilated
by a suitable power of 𝑝. We observe also that the relation (1.8), which relates the
index to the discriminant, has a 𝑝-adic analog:

| dg𝐿𝑝 | = [𝐿∗𝑝 : 𝐿𝑝] = 𝑝𝑣, if disc(𝐿𝑝) = unit · 𝑝𝑣. (1.17)

To see this, remark that ℤ𝑝 is a principal ideal domain (the only non-trivial ide-
als are (𝑝𝑘), 𝑘 a positive integer) so that the theory of elementary divisors (cf.
Lemma A.1.1) is applicable. Here the principal divisors are no longer integers, but
ideals in ℤ𝑝 and the argument leading to (1.8) gives (1.17).

The form 𝑏𝑝 induces a ℚ𝑝/ℤ𝑝-valued discriminant symmetric form 𝑏#𝐿𝑝 and

(𝐿𝑝, 𝑞𝑝), using the polar form 𝑏ℚ𝑝 to define 𝐿∗𝑝, leads to a discriminant quadratic

form 𝑞#𝐿𝑝 on dg𝐿𝑝 :

𝑏#𝐿𝑝 : dg𝐿𝑝 × dg𝐿𝑝 −−→ ℚ𝑝/ℤ𝑝

𝑞#𝐿𝑝 : dg𝐿𝑝 −−→ ℚ𝑝/ℤ𝑝.
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The pair (dg𝐿𝑝 , 𝑏
#
𝐿𝑝
) is an example of a symmetric 𝑝-primary torsion group

and (dg𝐿𝑝 , 𝑞
#
𝐿𝑝
) is an example of a quadratic 𝑝-primary torsion group. These

will be examined in more detail in Section 10.2.
As we just said, 𝑝-adic lattices arise naturally when one localizes an integral

lattice at a prime. More generally, we can localize at a so called “place”. A finite
place is just a prime number, but in addition there is a place at ∞:

𝐿∞ = 𝐿ℝ = 𝐿 ⊗ ℝ equipped with the ℝ-bilinear extension 𝑏ℝ of 𝑏.

The set of all places of ℚ is denoted by P. This can be generalized to number
fields where there are more places at infinity corresponding to embeddings of the
field in the real or complex numbers. Except in Chapter 5.1 we won’t make use of
this.

Two isometric lattices have isometric localizations. The converse need not be
true, as indicated in the outlook at the end of this section. This motivates the
concept of the genus of a lattice:

Definition 1.9.1. The genus 𝔤(𝐿) of a lattice 𝐿 is the set of isometry classes of
lattices 𝐿′ such that 𝐿′𝑣 ≃ 𝐿𝑣 for all places 𝑣 ∈ P. We then say that the lattices 𝐿
and 𝐿′ belong to the same genus, or, that they are genus-equivalent .

As we just said, a genus may contain several isometry classes. However, passing
to the level of ℚ-vector spaces, isometry is the same as genus-equivalence. We shall
prove this in Chapter 3.

If 𝐿 is non-degenerate, then so are its localizations, and likewise for unimodu-
larity, and taking the discriminant commutes with localization:

disc(𝐿𝑣) = disc(𝐿)𝑣. (1.18)

This requires some explanation, since the two discriminants belong to different
groups. Indeed, for the local lattices disc(𝐿𝑝) ∈ D(ℤ𝑝) and disc(𝐿∞) ∈ D(ℝ), while
disc(𝐿) ∈ ℤ which explains the right-hand side. Since there are natural embeddings
ℤ ⊂ ℤ𝑝, ℤ ⊂ ℝ, we can write the right-hand side also as a multiplicative factor class
disc(𝐿) · (ℤ×

𝑝)2, respectively disc(𝐿) · (ℝ×)2. The equality states that this procedure
gives the localized discriminants. As a side remark, consistent with what we just
said, we shall usually take ±1 as values for disc(𝐿∞).

We wish to point out that we can figure out the value of disc(𝐿) from the local
discriminants. Here one needs one more ingredient (cf. Appendix A.1): any finite
abelian group 𝐺 decomposes into a direct product of its 𝑝-primary subgroups 𝐺𝑝

and so |𝐺 | = ∏
𝑝 |𝐺𝑝 |. Combined with equation (1.8) on page 29 and (1.17) this

gives the following formula

disc(𝐿) = disc(𝐿∞) ·
∏
𝑝

|𝑝-primary part of dg𝐿 |

= disc(𝐿∞)︸    ︷︷    ︸
±1

∏
𝑝

𝑝𝑣(𝑝) .
(1.19)
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The right-hand side up to sign corresponds exactly to the prime power decompo-
sition of | disc(𝐿) |; and the sign is indeed disc(𝐿∞). We give a direct application.

Proposition 1.9.2. 1. The discriminant is a genus-invariant: all lattices of
the same genus have the same discriminant.

2. The parity of a lattice is a genus-invariant: lattices of the same genus are
either all even or all odd.

Proof. 1. This is clear, since by uniqueness of the prime power decomposition of
| disc(𝐿) |, giving disc(𝐿) is equivalent to giving the set of local discriminants.
2. A form is even if 𝑏(𝑥,𝑥) ∈ 2ℤ for all 𝑥 ∈ 𝐿, which is the case if and only if 𝐿2 is
even, that is if 𝑏(𝑥,𝑥) ∈ 2ℤ2 for all 𝑥 ∈ 𝐿2. □

Example 1.9.3. Suppose that 𝐿 has discriminant −22 · 32 · 74. Then the local
discriminants at the places ∞, 2, 3, 7 are −1, 7 · 22, 2 · 32, 6 · 74. This is clear for the
place at∞. For the prime 2 one observes that −32 ·74 ≡ 7 mod 8 and Theorem A.2.1
tells us that the units in ℤ2 modulo squares of units are represented modulo 8
by one of the four numbers 1, 3, 5, 7. For the primes 3 and 7 we observe that
−22 · 74 ≡ 2 mod 3 respectively −22 · 32 ≡ 6 mod 7.

Conversely, given local discriminants −1, 7 ·22, 2 ·32, 6 ·74 at the places ∞, 2, 3, 7
and 1 elsewhere, we retrieve the global discriminant −22 · 32 · 74. Note that apart
from the sign of 𝐿∞, only the 𝑝-adic orders of the local discriminants are relevant
in determining the global discriminant.

Taking the discriminant form of 𝐿 also commutes with localization. This re-
quires some explanation as well, since the forms 𝑏#𝐿 and 𝑏#𝐿𝑝 take values in different

rings: the discriminant form 𝑏#𝐿 restricted to the 𝑝-primary part [dg𝐿]𝑝 of the

discriminant group can be seen to take values in ℚ(𝑝)/ℤ, where ℚ(𝑝) is the set of
rational numbers of the form 𝑞/𝑝𝑟, 𝑞 ∈ ℤ, gcd(𝑝, 𝑞) = 1. Via the canonical isomor-
phism ℚ(𝑝)/ℤ ≃ ℚ𝑝/ℤ𝑝 (cf. Section A.2) we get a ℚ𝑝/ℤ𝑝-valued form. This is the
discriminant form of the localization 𝐿𝑝. We summarize all this in the commutative
diagram

integral lattice (𝐿, 𝑏)
localization in 𝑝

//

discriminant bil. form
��

𝑝-adic lattice (𝐿𝑝, 𝑏𝑝)

discriminant bil. form
��

symmetric torsion

group 𝑏#𝐿 𝑝-primary part
// 𝑝-primary symmetric

torsion group 𝑏#𝐿𝑝

(1.20)

The lower arrow for general torsion groups is to be interpreted as follows. Let (𝐺, 𝑏)
be a symmetric torsion group and 𝐺𝑝 the subgroup of elements of 𝐺 annihilated
by some power of 𝑝. Then the values of the form 𝑏 |𝐺𝑝 are annihilated by a power
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of 𝑝 and so 𝑏 |𝐺𝑝 has values in ℚ(𝑝)/ℤ ≃ ℚ𝑝/ℤ𝑝. Hence (𝐺𝑝, 𝑏 |𝐺𝑝 ) is a 𝑝-primary
symmetric torsion group.

A similar story holds for even lattices (𝐿, 𝑏𝑞) if we replace the discriminant bi-
linear form by the discriminant quadratic form. We shall see later (cf. Section 10.3)
that every torsion form splits orthogonally into its 𝑝-primary parts, and so we have:

Lemma 1.9.4. Two integral symmetric forms of the same genus have isomet-
ric discriminant bilinear forms and two quadratic forms of the same genus have
isometric discriminant quadratic forms.

Next we exhibit several basic examples of 𝑝-adic lattices. We shall prove in
Chapter 9 that a 𝑝-adic lattice decomposes into direct sums with each summand
isometric to one of the lattices in the examples below. We shall moreover show
that symmetric and quadratic torsion forms decompose accordingly. We want
to remark however that finding such a decomposition for a localization of a given
integral lattice, e.g. for the root lattice 𝐸8 or the other root lattices to be discussed
in Section 4.1, is not obvious. See e.g. Example 11.1.5.2 and Examples 11.2.5.3
and 4.

Examples 1.9.5. 1. Let 𝑝 be an odd prime. Every non-zero 𝑝-adic integer is of
the form (unit 𝑢)·𝑝𝑘, 𝑘 ≥ 0, and this leads to the forms ⟨𝑢𝑝𝑘⟩ on ℤ𝑝, explicitly
given by

(𝑥, 𝑦) ↦→ 𝑢 · 𝑝𝑘 · 𝑥𝑦, 𝑥, 𝑦 ∈ ℤ𝑝.

Note that ⟨𝑢𝑝𝑘⟩ ≃ ⟨𝑢𝑎2𝑝𝑘⟩ for any 𝑎 ∈ ℤ×
𝑝 through 𝑥 ↦→ 𝑎−1𝑥 and ⟨𝑢𝑝𝑘⟩ ≃

⟨𝑣𝑝𝑘⟩ implies 𝑢 = 𝑎2𝑣 for some 𝑎 ∈ ℤ∗
𝑝. The discriminant takes values in the

group D(ℤ𝑝) and so, since for an odd prime 𝑝 this group is cyclic of order two
generated by a non-square modulo 𝑝, the two lattices ⟨𝑝𝑘⟩ and ⟨𝜖 ·𝑝𝑘⟩ with 𝜖 a
non-square modulo 𝑝 are not isomorphic. These represent all possible isometry
classes for bilinear or quadratic such forms, since obviously a rank 1 form is
classified by its discriminant.

A rank one quadratic form 𝑞 is determined by 𝑞(1) = 𝑢𝑝𝑘, 𝑘 ≥ 0. Replacing
𝑢 by 𝑢 + 𝑝 one does not change its isometry class since by Theorem A.2.1.1
𝑢−1 (𝑢 + 𝑝) ≡ 1 mod 𝑝 is a square and so ⟨(𝑢 + 𝑝)𝑝𝑘⟩ ≃ ⟨𝑢𝑝𝑘⟩. Hence we may
assume that 𝑢 is an even unit. Then the polar form of 𝑥 ↦→ 1

2𝑢 ·𝑝
𝑘𝑥2 is the form

(𝑥, 𝑦) ↦→ 𝑢𝑝𝑘𝑥𝑦. This quadratic form is denoted by ⟨𝑢𝑝𝑘⟩ - or - if confusion is
likely, by [ 12𝑢𝑝

𝑘].
As for discriminant forms, a complete classification will be given in Section 6.1.
In our case 𝐿 = ⟨𝑢 · 𝑝𝑘⟩ and then 𝐿∗ = 𝑝−𝑘ℤ𝑝 so that the discriminant group is
𝐿∗/𝐿 = 𝑝−𝑘ℤ𝑝/ℤ𝑝 ≃ ℤ/𝑝𝑘ℤ. The induced ℚ(𝑝)/ℤ-valued form on 𝐿∗/𝐿 can then
be identified with the symmetric form (𝑥, 𝑦) ↦→ 𝑢 · 𝑝−𝑘𝑥𝑦 on ℤ/𝑝𝑘ℤ, denoted
⟨𝑢 · 𝑝−𝑘⟩.
For a non-degenerate quadratic lattice (𝐿, 𝑞) we define 𝐿∗ using the form 𝑏𝑞.
Then in a similar way we identify the quadratic form on 𝐿∗/𝐿 with the quadratic
form6 ⟨𝑢 · 𝑝−𝑘⟩ = [ 12𝑢 · 𝑝−𝑘] on ℤ/2𝑝𝑘ℤ given by 𝑥 ↦→ 1

2𝑢𝑝
−𝑘𝑥2. The isometry

6Both the Miranda–Morrison notation [156] as well as C.T.C. Wall’s notation [245] is com-
pletely different.
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class of the form depends on 𝑢 ∈ D(ℤ𝑝). Hence we have two non-isometric
forms, depending on 𝑢 being a square or not.

2. Now let 𝑝 = 2. Usually a 2-adic lattice is called a dyadic lattice and the
underlying symmetric (quadratic) form a dyadic symmetric (quadratic)
form. For a fixed 𝑘 ≥ 0 we get four dyadic symmetric forms ⟨𝑢 · 2𝑘⟩ given by

(𝑥, 𝑦) ↦→ 𝑢 · 2𝑘𝑥𝑦, 𝑢 ∈ {±1,±3}.

Indeed, by Theorem A.2.1, the group D(ℤ2) of units modulo squares of units in
ℤ2 is represented by one of these numbers modulo 8. This gives the complete
classification of rank one dyadic lattices. For the dyadic quadratic forms ⟨𝑢 ·
2𝑘⟩ = [𝑢 · 2𝑘−1] given by

𝑥 ↦→ 𝑢 · 2𝑘−1𝑥2, 𝑘 ≥ 1,

the situation is similar.7

The corresponding discriminant forms are the ℚ(2)/ℤ-valued symmetric forms
on ℤ/2𝑘ℤ denoted ⟨𝑢 · 2−𝑘⟩. These give the polar forms of the quadratic forms
[𝑢 · 2−𝑘−1] on ℤ/2𝑘ℤ, 𝑢 ∈ {±1,±3}, 𝑘 ≥ 1, and are given by

(𝑥, 𝑦) ↦→ 𝑢 · 2−𝑘𝑥𝑦.

In Section 6.1 we shall discuss the classification of these torsion forms. In
contrast to the lattice case, for low values of 𝑘, units 𝑢,𝑢′ that are different
modulo squares might give rise to isometric symmetric or quadratic torsion
forms.

3. The 𝑝-adic hyperbolic plane 𝑈 = 𝑈0 and 𝑈𝑘 = 𝑈 (𝑝𝑘), 𝑘 ≥ 1, give rank two
symmetric 𝑝-adic lattices as follows, regardless whether 𝑝 is an odd prime or
𝑝 = 2. By definition, the Gram matrix of 𝑈𝑘 in the standard basis of ℤ2

𝑝 is

𝑈𝑘 =

(
0 𝑝𝑘

𝑝𝑘 0

)
=

(
0 𝑝𝑘

0 0

)
+

(
0 0
𝑝𝑘 0

)
.

We have disc(𝑈𝑘) = −𝑝2𝑘. Observe that 𝑈𝑘 is the polar form of the quadratic
form

(𝑥1,𝑥2) ↦→ 𝑝𝑘𝑥1𝑥2.

We shall denote this form also by 𝑈𝑘. Its discriminant group 𝑝−𝑘𝑈𝑘/𝑈𝑘 ≃
⊕2 (ℤ/𝑝𝑘ℤ) carries the quadratic form given by

(𝑥1,𝑥2) ↦→ 𝑝−𝑘𝑥1𝑥2 ∈ ℚ(𝑝)/ℤ, (𝑥1,𝑥2) ∈ ⊕2 (ℤ/𝑝𝑘ℤ).

Its polar form has Gram matrix

𝑢𝑘 =

(
0 𝑝−𝑘

𝑝−𝑘 0

)
=

(
0 𝑝−𝑘

0 0

)
+

(
0 0
𝑝−𝑘 0

)
.

The discriminant quadratic form of 𝑈𝑘 is also denoted 𝑢𝑘.

7Nikulin’s notation differs between the symmetric and quadratic forms which we denote 𝑢𝑘 , 𝑣𝑘,
but does not change notation for the forms on ℤ/2𝑘ℤ. The Miranda–Morrison notation is com-
pletely different.
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4. For 𝑝 = 2 the rank 2 bilinear dyadic lattice 𝑉𝑘, 𝑘 ≥ 0, is given by the matrix
2𝑘𝑉, where

𝑉 =

(
2 1
1 2

)
=

(
1 1
0 1

)
+

(
1 0
1 1

)
.

So 𝑉𝑘 has discriminant 3 · 22𝑘. In particular, 𝑉0 = 𝑉 is unimodular. The
decomposition of 𝑉 indicates that 𝑉𝑘 is the polar form of the corresponding
quadratic form (also denoted 𝑉𝑘) given by

(𝑥1,𝑥2) ↦→ 2𝑘 (𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2).

The dyadic quadratic torsion form given by

(𝑥1,𝑥2) ↦→ 2−𝑘 (𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2), (𝑥1,𝑥2) ∈ (ℤ/2𝑘ℤ)⊕2 (1.21)

is isometric to the discriminant quadratic form of 𝑉𝑘. To see this, note that the
length of dg𝑉𝑘 equals the rank of 𝑉𝑘 and then the Gram matrix of the bilinear

discriminant form with respect to the dual basis is given by (𝑉𝑘)−1 ≡ 2−2𝑘𝑉𝑘 ≡
𝑣𝑘 mod ℤ. This is the Gram matrix of the polar form of (1.21) over ℚ(2)/ℤ
since

𝑣𝑘 =

(
2−𝑘+1 2−𝑘

2−𝑘 2−𝑘+1

)
=

(
2−𝑘 2−𝑘

0 2−𝑘

)
+

(
2−𝑘 0
2−𝑘 2−𝑘

)
.

As in the case of 𝑢𝑘, we shall denote the quadratic discriminant form of 𝑉𝑘 also
by 𝑣𝑘.

Observe that while the quadratic forms 𝑢1 and 𝑣1 are not isometric (just con-
sider their values on non-zero vectors), there is no difference between the sym-
metric torsion forms 𝑢1 and 𝑣1 since the Gram matrix of 𝑣1 has the integer
2 · 2−1 = 1 on the diagonal which is zero in ℚ(2)/ℤ as is the case for 𝑢1.

Outlook. Two ℚ-vector spaces equipped with non-degenerate forms, say
(𝑉, 𝑏) and (𝑉′, 𝑏′) that have isometric localizations 𝑉𝑣 ≃ 𝑉′

𝑣 at all places
𝑣 ∈ P are themselves isometric. This is also called the Hasse principle
and will be shown in Chapter 3. It follows that integral forms of the same
genus are rationally equivalent. However, a genus of an integral lattice can
have more than one isometry class. For instance, it turns out that the
non-isometric lattices Γ16 and Γ8 ⦹ Γ8 that we considered in Example(4)
in Section 1.4 belong to the same genus. However, the genus of an even
indefinite unimodular lattice contains only one isometry class. This follows
for example from an important (non-classical) characterization of the genus:

Theorem (Characterization of the genus, [171, Cor. 1.9.4]). The genus
of an even non-degenerate lattice 𝐿 is determined by its signature and its
discriminant quadratic form. In particular, an even unimodular lattice 𝐿
belongs to a unique genus determined by its signature.

This result will be proven in Section 11.3 but the unimodular case is, as
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we said, much simpler and is treated in Chapter 2.
Clearly, we also want an existence result. Here a new concept enters the

scene: 𝜏8 (𝑞#), the index modulo 8 of a torsion quadratic group (𝐺, 𝑞#).
This is by definition the index modulo 8 of any even form whose discriminant
form equals a given non-degenerate torsion quadratic group. In Chapter 12
we show that this is a well-defined concept and that it can be calculated
effectively. We can now formulate a simplified version of Nikulin’s existence
result (the full version is Theorem 12.4.4):

Theorem (Existence of even lattices, [171, Th. 1.10.1]). Given a pair of
non-negative integers (𝑟+, 𝑟−) and a non-degenerate torsion quadratic group
(𝐺, 𝑞#) with 𝜏8 (𝑞#) ≡ 𝑟+ − 𝑟− mod 8. Then there exists a non-degenerate
even lattice 𝐿 of rank 𝑟 = 𝑟+ + 𝑟−, signature (𝑟+, 𝑟−) and with discriminant
form (𝐺, 𝑞#) if ℓ(𝐺) < 𝑟, where ℓ is the minimal number of generators of
𝐺.

Example 1.9.6. Consider the form 𝑞# = ⟨−3 · 2−1⟩ = [−3 · 2−2], i.e., the
form on ℤ/2ℤ sending a generator to −3

4 ∈ ℚ/ℤ We find 𝜏8 (𝑞#) = 1 (cf.
Proposition 12.3.3) and thus there exists a negative definite even lattice of
rank 7 whose discriminant form equals 𝑞#. Indeed, 𝐸7 (−1) is such a lattice
(cf. Table 4.1.1).

The analogous results (characterization of the genus and existence) in
the odd case are discussed in Section 12.5.

1.10 Finiteness Results

We have seen that the discriminant of a lattice is a basic isometry invariant. We
prove a classical finiteness result which involves this invariant:

Theorem 1.10.1 (Eisenstein–Hermite). Fix positive integers 𝑛,𝑑. There are only
finitely many isometry classes of non-degenerate integral lattices 𝐿 of rank 𝑛 and
| disc(𝐿) | ≤ 𝑑.

We shall show that this theorem is in fact a consequence of a classical bound
on discriminants which uses a further invariant of a lattice 𝐿:

𝑚𝐿 = min
𝑦∈𝐿−{0}

|𝑏(𝑦, 𝑦) |. (1.22)

Since 𝑏 is integer valued, this minimum exists and it is equal to zero if and only if
𝐿 has isotropic vectors.

Proposition 1.10.2. Let (𝐿, 𝑏) be a non-degenerate integral lattice of rank 𝑛.
Either 𝑚𝐿 = 0, which means that 𝐿 contains an isotropic vector, or we have

0 < 𝑚𝐿 ≤
(
4

3

) 𝑛−1
2

· 𝑑
1
𝑛

𝐿 , 𝑑𝐿 = | disc(𝐿) |.
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Proof. We may assume that 𝐿 does not contain isotropic vectors. Let 𝑒 ∈ 𝐿 be
such that

𝑚𝐿 = |𝑏(𝑒, 𝑒) |.
Then 𝑒 is primitive and can be completed to a basis 𝑬 = {𝑒 = 𝑒1, 𝑒2, . . . , 𝑒𝑛} of 𝐿.
The proof is by induction on 𝑛. The case 𝑛 = 1 is clear. For the induction step we
use the orthogonal projection defined by 𝑒. To make sense of this, we embed 𝐿 in
the vector space 𝑉 = 𝐿ℚ equipped with the ℚ-linear extension of the form 𝑏 which
we continue to denote 𝑏. The orthogonal projection

𝜋 : 𝑉 → 𝑊 = 𝑒⊥, 𝑥 ↦→ 𝑥 − 𝑏(𝑥, 𝑒)
𝑏(𝑒, 𝑒) 𝑒 (1.23)

then maps 𝐿 to a (non-integral) lattice 𝐿′ of rank 𝑛 − 1 with basis 𝑬′ = 𝜋(𝑬 − {𝑒}).
The form 𝑏 restricts to 𝐿′ as a form having values in 𝑏(𝑒, 𝑒)−1 · ℤ because of the
formula (1.23) for the projection. So there is an invariant 𝑚𝐿′ , which is positive
since 𝐿′ ⊂ 𝑉 and 𝑉 does not contain isotropic vectors. We show next that

𝑑𝐿 = |𝑏(𝑒, 𝑒) | · 𝑑𝐿′
= 𝑚𝐿 · 𝑑𝐿′ . (1.24)

Since the (non-integral) lattice �̃� = 𝐿 + 1

𝑏(𝑒, 𝑒)ℤ · 𝑒 contains 𝐿 as a sublattice

of index |𝑏(𝑒, 𝑒) |, we have 𝑑𝐿 = [�̃� : 𝐿]2𝑑�̃� = 𝑏(𝑒, 𝑒)2𝑑�̃�. On the other hand,

�̃� =
1

𝑏(𝑒, 𝑒)ℤ · 𝑒 ⦹ 𝐿′ and so 𝑑�̃� =
1

|𝑏(𝑒, 𝑒) |𝑑𝐿
′ . Combining the two expressions we

obtain 𝑑𝐿 = |𝑏(𝑒, 𝑒) | · 𝑑𝐿′ .
Every 𝑥′ ∈ 𝐿′ is by construction “close” to a point of the lattice 𝐿: write

𝑥′ = 𝜋(𝑢) = 𝑢 + 𝜆 · 𝑒, 𝜆 ∈ ℚ, 𝑏(𝑥′, 𝑒) = 0,

and choose 𝑘 ∈ ℤ such that

𝑥′ = 𝑢 + 𝑘 · 𝑒︸   ︷︷   ︸
𝑥∈𝐿

+(𝜆 − 𝑘︸︷︷︸
𝑡

) · 𝑒, |𝑡 | ≤ 1

2
.

Now apply this to a vector 𝑥′ ∈ 𝐿′ for which |𝑏(𝑥′,𝑥′) | = 𝑚𝐿′ so that

𝑚𝐿 ≤ 𝑏(𝑥,𝑥) = 𝑏(𝑥′,𝑥′) + 𝑡2𝑏(𝑒, 𝑒) (1.25)

= 𝑚𝐿′ + 𝑡2𝑚𝐿 (1.26)

≤ 𝑚𝐿′ +
1

4
𝑚𝐿 (1.27)

and so 𝑚𝐿 ≤ 4
3𝑚𝐿′ . The induction procedure can be applied to 𝐿′, even if 𝑏 is not

integer valued on 𝐿′ because first of all the form 𝑏(𝑒, 𝑒) · 𝑏 restricts to an integer
valued form on 𝐿′ and, secondly, the desired inequality is insensitive to scaling 𝑏.
The induction hypothesis states

𝑚𝐿′ ≤
(
4

3

) 𝑛−2
2

· 𝑑
1

𝑛−1
𝐿′ .
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By (1.24), we have 𝑑𝐿 = 𝑚𝐿𝑑𝐿′ and so

𝑚𝐿 ≤
(
4

3

) 𝑛
2
(
𝑑𝐿
𝑚𝐿

) 1
𝑛−1

which implies

𝑚𝑛
𝐿 ≤

(
4

3

) 𝑛(𝑛−1)
2

𝑑𝐿,

another expression of the desired inequality. □

Remark 1.10.3. The absolute value of the discriminant 𝑑𝐿 of a lattice 𝐿 can be
related to the volume of a fundamental domain for 𝐿 in 𝑉 = 𝐿ℝ. To explain this,
observe that there exists an orthogonal basis 𝑩 = {𝑏1, . . . , 𝑏𝑛} of 𝑉 with respect to
𝑏 in which the Gram matrix for 𝑏 reads

𝐼𝑝,𝑛−𝑝 = diag(1, . . . , 1︸  ︷︷  ︸
𝑝

,−1, . . . ,−1︸       ︷︷       ︸
𝑛−𝑝

).

We put a euclidean structure on 𝑉 by declaring 𝑩 to be an orthonormal basis. The
parallelepiped in 𝑉 determined by the basis 𝑬 for 𝐿 defined by

𝑃𝐿 = {𝑥1𝑒1 + · · · + 𝑥𝑛𝑒𝑛 | 0 ≤ 𝑥𝑗 ≤ 1, 𝑗 = 1, . . . ,𝑛} (1.28)

is a fundamental domain for 𝐿. Let the matrix 𝐸 = (𝑒𝑖𝑗) relate the bases 𝑩 and
𝑬, that is 𝑒𝑖 =

∑
𝑗 𝑒𝑗𝑖𝑏𝑗 . The volume of 𝑃𝐿 with respect to the euclidean metric in

which B is an orthonormal basis equals | det𝐸 |. Now we use the change of basis
formula (1.2) to relate the Gram matrices 𝐵𝑬 for 𝑏 with respect to 𝑬 and 𝐼𝑝,𝑛−𝑝
with respect to 𝑩. We find

𝐵𝑬 = 𝐸T𝐼𝑝,𝑛−𝑝 𝐸

and so, taking determinants, this gives

𝑑𝐿 = (det𝐸)2 = vol2 (𝑃𝐿).

Proof of Theorem 1.10.1. The proof is by induction on the rank 𝑛 of 𝐿. For 𝑛 = 1
the assertion is clear. We use the invariant 𝑚𝐿 defined by (1.22) and first construct
a finite set of isometry classes of auxiliary lattices 𝑆 of rank 1 or 2 that may occur
as a sublattice of 𝐿.

Case 1 Suppose that 𝑚𝐿 ≠ 0 and that 𝑥0 ∈ 𝐿 satisfies |𝑥0 ·𝑥0 | = 𝑚𝐿. Put 𝑆 = ℤ𝑥0.
Since 𝑆 has rank 1 there are at most two possible isometry classes for 𝑆.

Case 2 If 𝑚𝐿 = 0 pick a primitive isotropic vector 𝑒1 and define 𝑆 ⊂ 𝐿 as follows.
The set of integers 𝑒1 · 𝐿 is an ideal in ℤ, generated by, say, 𝑘 > 0. So in a basis
𝑬 = {𝑒1, . . . , 𝑒𝑛} the entries of the first row and column of the matrix 𝐵𝑬 are all
divisible by 𝑘 and since 𝑛 ≥ 2 we have that 𝑘2 is a divisor of 𝑑𝐿 and hence we have

𝑘2 ≤ 𝑑𝐿 ≤ 𝑑. (1.29)
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Let 𝑒′2 ∈ 𝐿 be such that 𝑒1 · 𝑒′2 = 𝑘. Since

(𝑒′2 + 𝑡𝑒1) · (𝑒′2 + 𝑡𝑒1) = 𝑒′2 · 𝑒′2 + 2𝑡𝑒1 · 𝑒′2
= 𝑒′2 · 𝑒′2 + 2𝑡𝑘,

we may add to 𝑒′2 a suitable integral multiple of 𝑒1 to achieve the inequality |𝑒′2 ·𝑒′2 | ≤
𝑘. In this situation we set 𝑆 = ℤ𝑒1 +ℤ𝑒′2. Then | disc(𝑆) | = 𝑘2 ≤ 𝑑 by (1.29) and so
𝑑𝑆 = | disc(𝑆) | is bounded. Hence there are only finitely many possibilities for the
isometry classes of the lattice 𝑆.

We want to apply the induction hypothesis to 𝑇 = 𝑆⊥ by showing that 𝑑𝑇 =

| disc(𝑇 ) | is bounded as well. We do this by applying Lemma 1.3.1, but we first
need to see that in both cases 𝑆 is primitive. In case 1 this is clear since by
minimality 𝑥0 is primitive. Otherwise we have 𝑆 = ℤ𝑒1 +ℤ𝑒′2 with 𝑒1 primitive and
𝑒′2 chosen such that 𝑒1 · 𝑒′2 = 𝑘 generates 𝑒1 · 𝐿. So, if 𝑧 = 𝑎𝑒1 + 𝑏𝑒′2 ∈ 𝐿ℚ ∩ 𝑆, then
𝑏𝑘 = 𝑧 · 𝑒1 ∈ 𝑘ℤ and so 𝑏 ∈ ℤ and then, by primitivity of 𝑒1, also 𝑎 ∈ ℤ. This
shows that 𝑆 is primitive in this case too. Since we assume that | disc(𝐿) | ≤ 𝑑,
Lemma 1.3.1, 2(b) implies:

𝑑𝑇 ≤ 𝑑𝑆 · 𝑑𝐿 ≤ 𝑑𝑆 · 𝑑

and thus 𝑑𝑇 is bounded. Since rank(𝑇 ) < 𝑛, the induction hypothesis applies and
we conclude that there are finitely many isometry classes for 𝑇 .

To conclude, observe that

𝑆 ⦹ 𝑇 ⊂ 𝐿 ⊂ 𝐿∗ ⊂ 𝑆∗ ⦹ 𝑇 ∗.

This implies that for 𝐿 there are only finitely many possible isometry classes, since
up to isometry 𝐿 is a lattice between two ℚ-valued ℤ-modules from a finite list. □

By Proposition 1.9.2.1 all lattices of the same genus have the same discriminant,
and so the following consequence is immediate.

Corollary 1.10.4 (Finiteness of isometry classes in a genus). Every genus contains
at most finitely many isometry classes of lattices.

This motivates:

Definition 1.10.5. The class number of a genus is the number of isometry
classes of that genus.

Example 1.10.6 ([36, Ch. 9.3]). The estimate of Proposition 1.10.2 can in some
cases be used to show that the class number is 1 for a given genus. As an ex-
ample consider the odd form 𝑏 in ℤ3 whose Gram matrix is the diagonal matrix
diag(1, 1,−3). There are no isotropic vectors since 𝑥2 + 𝑦2 = 3𝑧2 has no non-trivial
integral solution. As we announced in the outlook at the end of Section 1.9, by
the Hasse principle to be shown in Chapter 3, a form 𝑏′ of the same genus as 𝑏 is
rationally equivalent to 𝑏. In particular, 𝑏′ has no isotropic vectors (over ℚ and
integrally) and then the estimate of Proposition 1.10.2 shows that there exists a
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non-isotropic vector 𝑎 with 𝑏′(𝑎 , 𝑎) ≤ 4
3 · 3 1

3 < 2. In other words, 𝑏′(𝑎 , 𝑎) = ±1
and by Corollary 1.3.4 we can split off ℤ𝑎 . Then 𝑏′ is equivalent to ⟨±1⟩ ⦹ 𝑏′′

where 𝑏′′ is either an even or an odd binary form with discriminant ±3 (use that
the discriminant is a genus invariant). The binary form 𝑏′′ contains an element 𝑐
such that 𝑏′′(𝑐, 𝑐) = ±1 in the odd case and an element 𝑒 such that 𝑏′′(𝑒, 𝑒) = ±2
in the even case. The existence of such elements is again based on the estimate in
Proposition 1.10.2 for the rank 2 case: if the lattice contains no isotropic vectors
(as in the situation at hand), then there exists a non-zero element 𝑥 in our rank
two lattice such that

0 < |𝑏′′(𝑥,𝑥) | ≤
(
4

3

)1/2
· 𝑑1/2

𝐿′′ =
2
√
3
·
√
3 = 2.

In the odd case, respectively even case, this provides us with the elements 𝑐, 𝑒 as
desired.

• We first consider the case of an odd 𝑏′′, i.e., there is a vector 𝑐 with 𝑏′′(𝑐, 𝑐) =
±1 and so ⟨±1⟩ splits off from 𝑏′′. Since the index is a genus invariant we
find that 𝑏′ is either equivalent to 𝑏, or to diag(1,−1, 3). But the latter has
an isotropic vector and hence can be discarded. Concluding, in this situation
the form 𝑏′ is isometric to 𝑏.

• In the even case, there is an element 𝑒 with 𝑏′′(𝑒, 𝑒) = ±2. The Gram matrix

with respect to a basis {𝑒,𝑓′} is of the form ±
(
2 𝛽
𝛽 𝛾

)
with 𝛾 even. Using

disc(𝑏′′) = ±3 we get 2𝛾 − 𝛽2 = ±3 and it follows that 𝛽 is odd. By looking
at the equation modulo 4 we conclude that the case −3 does not occur.
In the basis {𝑒,𝑓 = 𝑓′ − 1

2 (𝛽 + 1)𝑒} the form has Gram matrix ±𝐴2 where

𝐴2 =

(
2 −1
−1 2

)
. This is the matrix for the Dynkin diagram 𝐴2 which will

come up again in Section 4.1. To complete the argument, first note that in
this case the condition on the signature forces 𝑏′ ≃ ⟨−1⟩ ⦹ 𝐴2 and, finally,
remark that the Gram matrix of 𝑏 in the basis {(1, 1, 1), (1,−1, 0), (1, 2, 1)} is

indeed
©«
−1 0 0
0 2 −1
0 −1 2

ª®¬ and so also in this case 𝑏′ is isometric to 𝑏.

Note that this argument also shows that a positive even definite form of rank 2
with discriminant 3 is isometric to 𝐴2.

1.11 Excursion: Small Lattice Vectors and the Sphere Pack-
ing Problem

For a lattice 𝐿 without isotropic vectors there is an alternative approach to bound
the invariant 𝑚𝐿 = min𝑦∈𝐿−{0} |𝑏(𝑦, 𝑦) | as explained in [151, II.1]. See also [36, Ch.
5.3]. It gives a much sharper bound than the one of Theorem 1.10.1.
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Let us outline this method. As in Remark 1.10.3 one starts by embedding 𝐿 in
the real vector space 𝑉 = 𝐿ℝ and then one chooses an orthogonal basis 𝑬 such that
the matrix for 𝑏ℝ becomes the diagonal matrix 𝐼𝑝,𝑛−𝑝. The inner product 𝑏 is then
(up to 𝑛 − 𝑝 minus signs) the same as the standard (positive definite) euclidean
metric in which 𝑬 becomes an orthogonal basis. In particular, comparing 𝑏 and
the euclidean norm ∥ ∥2 we have |𝑏(𝑥,𝑥) | ≤ ∥𝑥∥2. So, if a ball of radius 𝑟 contains
a lattice point 𝑥 ≠ 0, then 0 < ∥𝑥∥2 ≤ 𝑟2 and so if 𝑥 is non-isotropic, we also have
0 < |𝑏(𝑥,𝑥) | ≤ 𝑟2.

Next, to obtain a bound for 𝑟, instead of Proposition 1.10.2, one invokes
Minkowski’s theorem. This result tells us that if a symmetric convex body 𝐾
in euclidean 𝑛-space satisfies the volume estimate vol(𝐾) > 2𝑛 · vol(𝑃𝐿), with 𝑃𝐿
the fundamental domain as described in (1.28), then 𝐾 must contain a non-zero
lattice point. Following [151, II, Cor. 1.5], if we apply Minkowski’s theorem to
balls 𝐾 = 𝐵 (𝑟) of varying radius 𝑟, an optimal value for 𝑟 is found which yields a
much better estimate for the invariant 𝑚𝐿 (cf. (1.22)):

𝑚𝐿 ≤ 4

(
1

𝜔𝑛

)2/𝑛
· 𝑑1/𝑛

𝐿 , 𝜔𝑛 = vol(𝐵 (1)) = 𝜋
𝑛
2

Γ(1 + 𝑛
2 )

.

Here Γ is the Gamma function. To see that this is indeed a better estimate, observe
that Stirling’s formula, which states that Γ(1 + 𝑥) is asymptotic to 𝑥𝑥𝑒−𝑥

√
2𝜋𝑥,

implies

𝜔
− 2
𝑛

𝑛 ∼ 1

𝑒𝜋
· 𝑛.

So the coefficient of 𝑑1/𝑛
𝐿 grows linearly in contrast with the exponential coefficient

in Proposition 1.10.2. In fact, for small 𝑛 one finds the following table. Cf. [151,
II.1].

𝑛 1 2 3 4 5 6 7 8 9

4

(
1

𝜔𝑛

)2/𝑛
1 1, 27.. 1, 54.. 1, 80.. 2, 06.. 2, 31.. 2, 57.. 2, 82.. 3, 07..

Applications to the sphere packing problem are given in [151, II.7]. This
problem asks to find the maximal possible density

𝜌(𝑃) = lim
𝑟→∞

vol(𝑃∩𝑄𝑟)/vol(𝑄𝑟), 𝑄𝑟 = {𝑥 = (𝑥1, . . . ,𝑥𝑛) ∈ ℝ𝑛 | |𝑥𝑖 | ≤ 𝑟, 𝑖 = 1, . . . ,𝑛}

for sphere packings in ℝ𝑛, that is, unions 𝑃 of non-overlapping balls of a fixed
radius in ℝ𝑛. A positive definite lattice 𝐿 gives rise to a sphere packing, say 𝑃(𝐿),
by centering a ball of radius 𝑟 at each lattice point where (2𝑟)2 = 𝑚𝐿. Its density
turns out to be given by the formula

𝑚𝐿 = 4

(
𝜌(𝑃(𝐿))

𝜔𝑛

)2/𝑛
· 𝑑1/𝑛

𝐿 .

Note that Minkowski’s inequality translates into 𝜌(𝑃(𝐿)) ≤ 1.
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We further point out some related references. Many record densities for higher
ranks are discussed in the monograph [44]. In Chapter 13 of [202] one finds an
overview of algebro-geometric constructions leading to many record densities in
low rank. Finally, [233, 41] contains recent optimality results concerning 𝐸8, re-
spectively the Leech lattice. We treat this lattice of rank 24 in some detail in
Chapter 5, § 5.1.B, after we explain the relation between codes and lattices.

1.12 Positive Definite Lattices

1.12.A Low rank lattices, and mass formulas. In Section 1.4 we have seen a
few examples of indecomposable positive definite unimodular lattices8 : the lattice
⟨1⟩, the root lattice 𝐸8 and the lattices Γ𝑛 for 𝑛 divisible by 8. M. Kneser [119]
has shown that all unimodular lattices of rank 𝑛 ≤ 13 are orthogonal sums of these
lattices, and that for 𝑛 = 14, 15, 16 an indecomposable odd unimodular lattice
of rank 𝑛 exists and no other one of that rank (up to isometry). Although for
larger 𝑛 there is no classification, there is a formula for the number of isometry
classes of rank 𝑛 lattices in terms of 𝑛, the Siegel–Minkowski formula [212, 153].
This formula is a weighted count of the isometry classes [Γ], counted with weight
1/|O (Γ) |. This is a non-zero rational number since the isometry group of a definite
lattice is finite.

Let us consider this for unimodular lattices. For those, as we have seen in
the ”outlook” on page 48, the rank and parity alone determine the genus. So the
genus 𝑀𝑛 of an even unimodular rank 𝑛 lattice 𝐿 depends on 𝑛 alone and gives the
“restricted” mass9

𝑚𝑛 = mass(𝑀𝑛) :=
∑︁

Γ∈𝑀𝑛 ,𝑛=8𝑘

1

|O (Γ) | .

Following [204, Ch. V.2.3], the Siegel-Minkowski formula in this case then states

𝑚𝑛 =
𝐵2𝑘

8𝑘

4𝑘−1∏
𝑗=1

𝐵𝑗

4𝑗
,

where
𝑡

𝑒𝑡 − 1
=

∞∑︁
𝑘=0

𝐵𝑘
𝑘!
𝑡𝑘, 𝐵1 =

1

6
, 𝐵2 =

1

30
, 𝐵3 =

1

30
, 𝐵5 =

5

66
.

The numbers 𝐵𝑘 are the Bernoulli numbers. From this formula, after (tedious)
calculations (see [204, Ch. V.2.3] and [152, end of Ch. II.9]), we get estimates on
the number of isometry classes in 𝑀𝑛, resulting in Table 1.12.1.

We already remarked on the examples of positive definite lattices of row rank
given in Section 1.4. The table integrates M. Kneser’s results we just mentioned

8Indecomposable: not the orthogonal sum of non-trivial sublattices.
9We shall prove in Chapter 2, that the rank of an even unimodular lattices is divisible by 8

(seeTheorem 2.4.2).
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Table 1.12.1: Number #𝑀𝑛 of isometry classes of even unimodular lattices of given
rank 𝑛

𝑛 = 8𝑘 8 16 24 32 40
#𝑀𝑛 1 2 24 ≥ 107 ≥ 1051

and we see that 𝐸8 is the only rank 8 unimodular quadratic lattice and that the
only two rank 16 unimodular quadratic lattices are the two lattices 𝐸8 ⦹ 𝐸8 and
Γ16 (these are non-isometric, as we have seen in Example 1.5.1.2). In the outlook
that follows we discuss the case 𝑛 = 24.

Outlook. From Table 1.12.1 we see that there are 24 classes of unimodular
positive definite even lattices of rank 24. Such a lattice is called aNiemeier
lattice named after H. Niemeier who was the first to investigate these
systematically. Among their many properties we quote:

Theorem 1.12.1 ([167],[44, Ch. 16]). The 24 isometry classes of Niemeier
lattices are classified by their root sublattice, i.e., the sublattice spanned by
the 2-roots. The latter is either 0 (no roots present) or of maximal rank 24.

There is a complete list of such lattices (loc. cit.). As examples we
mention ⦹3𝐸8, Γ16 ⦹ 𝐸8 and Γ24. Another example is the Leech lattice
Λ24 which is to be dealt with in § 5.1.B. It is the unique Niemeier lattice
without roots. In the same subsection one also finds the relation between
the Golay code and the (unique) Niemeier lattice with root lattice 𝐴24

1 .
We shall revisit these lattices in Section 20.3 where they are seen to play

a special role in the study of finite groups which act on K3-surfaces.

We have mentioned before that in the unimodular case the genus of an even lattice
is determined by its rank. This need not be so in the non-unimodular situation.
The mass in this situation is a sum over the isometry classes of forms within a
fixed genus:

mass(𝔤(𝐿)) :=
∑︁

Γ∈𝔤(𝐿)

1

|O (Γ) | .

The full Minkowski–Siegel mass formula has many ingredients and is too compli-
cated to state here. Its derivation uses analytic tools and falls outside the scope of
this book. For a modern treatment see e.g. [43].

1.12.B Theta functions and isospectral non-isometric manifolds. For de-
tails on this subject, see [204, Ch. VII.6.5] and [149]. The crucial observation here
is that one can associate a theta function to every even non-degenerate positive
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definite lattice 𝐿 given by

𝜃𝐿 (𝑧) :=
∑︁
𝑥∈𝐿

𝑞
1
2
𝑥·𝑥, 𝑞 := 𝑒2𝜋𝒊𝑧.

The above series converges on the upper half plane (see loc. cit.). It is called the
theta function of the lattice 𝐿. The theta function encodes the eigenvalues
of the Laplace operator on the flat torus 𝑉/𝐿∗, where 𝑉 is the real vector space
𝐿ℝ. Indeed, for each 𝑥 ∈ 𝐿, there is a corresponding eigenfunction 𝑦 ↦→ 𝑞𝑥·𝑦 with
eigenvalue (2𝜋)2𝑥 ·𝑥. This has an interesting geometric consequence, first remarked
by J. Milnor [149]:

Theorem 1.12.2. The two flat tori 𝑉/𝐿1 and 𝑉/𝐿2, 𝐿1 = Γ16, 𝐿2 = 𝐸8 ⦹ 𝐸8,
are not isomorphic as Riemannian manifolds but they are isospectral, that is, they
have the same spectrum for the Laplace operator.

Sketch of the proof. We should comment on the statement of the theorem. By con-
struction, the two lattice structures are induced from 𝑉 = ℝ16 with the euclidean
norm and so the induced metric on the tori comes from the standard euclidean
metric. In particular, the induced Riemannian structures cannot be isomorphic,
since there is no orthogonal transformation of ℝ16 sending 𝐿1 to 𝐿2 because Γ16

and 𝐸8 ⦹ 𝐸8 are not isometric as we have seen in Example 1.5.1.2.
As to the spectra of the two Laplace operators, we saw that these are en-

coded in the associated theta functions. As shown in [204, Ch. VII.6.5], the
two theta functions are equal to the unique cusp form 𝐸4 of weight 8, i.e. 𝐸4 =

1 + 480
∑∞

𝑚=1 𝜎7 (𝑚)𝑞𝑚, where 𝜎𝑘 (𝑚) = ∑
𝑑 |𝑚 𝑑𝑘. Since the two lattices 𝐿𝑖, 𝑖 = 1, 2,

are unimodular, 𝐿∗𝑖 = 𝐿𝑖 and so, by the definition of the theta functions, the two
corresponding tori are isospectral. □

Theta functions have also been employed in relation to codes. See Chapter
II of W. Ebeling’s monograph [64]. As will be explained in Section 5.1, codes
define lattices and the theta functions in loc. cit. are precisely associated to these
lattices. In Section 16.4 we shall discuss the relation between quadratic forms and
the Riemann theta function and its cousins. These are theta functions in several
variables and are crucial in the study of compact Riemann surfaces.

1.12.C Unique decomposition. We finish this section by showing a remarkable
property of positive definite lattices which is not valid in the indefinite situation:

Theorem 1.12.3 ([66], Unique splitting of definite lattices). A definite lattice can
be written in a natural (hence unique) way as an orthogonal sum of indecomposable
lattices.

Proof. (Compare [117]) Let 𝐿 be a positive definite lattice. A non-zero vector 𝑥 ∈ 𝐿
is called minimal if it is not the sum 𝑥 = 𝑦 +𝑧 of two vectors 𝑦, 𝑧 ∈ 𝐿 whose lengths
are strictly shorter than that of 𝑥. Since the procedure of writing vectors as sums
of shorter and shorter vectors must stop, 𝐿 is spanned by its collection of minimal
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vectors. If 𝐿 is an orthogonal sum, every minimal vector belongs to just one of the
summands.

Let us say that two minimal vectors 𝑥,𝑥′ can be connected if there is a finite
sequence 𝑥 = 𝑥0,𝑥1, . . . ,𝑥𝑚 = 𝑥′ of minimal vectors with 𝑥𝑗−1 ·𝑥𝑗 ≠ 0 for 1 ≤ 𝑗 ≤ 𝑚.
This defines an equivalence relation. Obviously, every equivalence class spans
an indecomposable sublattice of 𝐿, and distinct equivalence classes span mutual
orthogonal sublattices. As the minimal vectors span 𝐿, these orthogonal sublattices
produce the required splitting of 𝐿. □

1.13 Outlook: Indefinite Lattices

Indefinite lattices behave completely differently when compared to the def-
inite case. For example, often there is only one isometry class in a genus.
This is in particular true for indefinite unimodular lattices where there is
a complete classification which we shall examine in Chapter 2. Recall that
there are two types of lattices distinguished by their parity: the even and the
odd lattices. In both (unimodular) cases the genus is completely specified
by giving the rank and the index. In fact, this also determines the isometry
class. We shall state the resulting classification result and illustrate it with
a few examples.

Theorem. The isometry class of an indefinite unimodular lattice is uniquely
determined by its parity, rank and index. Moreover, even unimodular lat-
tices have index divisible by 8. Indefinite odd unimodular forms are diago-
nalizable over the integers (hence isometric to orthogonal direct sums of ⟨1⟩
and ⟨−1⟩ ). Indefinite even unimodular lattices of any rank exist as long as
the index is divisible by 8.

Examples 1.13.1. 1. Let 𝐿 be a unimodular lattice of rank 7 and index
−1. Then 𝐿 must be odd and the form is diagonalizable, 𝐿 ≃ ⟨1⟩⦹3 ⦹
⟨−1⟩⦹4.

2. A unimodular even lattice of rank 22 and signature (3, 19) is isometric
to

ΛK3 := 𝑈⦹3 ⦹ 𝐸8 (−1)⦹2.

This is the so-called K3 lattice .
3. An even unimodular lattice of rank 10 and signature (1, 9) is isometric

to the Enriques lattice

ΛEnr := 𝑈 ⦹ 𝐸8 (−1).

4. (Rank 2 indefinite unimodular lattices.) Let 𝐿 = ℤ𝑒1 +ℤ𝑒2 with Gram

matrix

(
0 1
1 𝑎

)
. We claim that if 𝑎 is even then 𝐿 ≃ 𝑈, and if 𝑎 is odd,

then 𝐿 ≃ ⟨1⟩⦹ ⟨−1⟩. Indeed, if 𝑎 is even, use the basis {𝑒1, 𝑒2 − 1
2𝑎𝑒1},

while if 𝑎 = 2𝑘 + 1 is odd, use the basis {𝑒2 − 𝑘𝑒1, 𝑒2 − (𝑘 + 1)𝑒1}. This
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confirms the classification theorem in the case of unimodular rank 2
lattices of signature (1, 1).

Indefinite but non-unimodular lattices also often have a unique isometry
class in their genus. See Corollary 14.4.3 which states:

Theorem 1.13.2 ([171, 1.13.3], [118]). Let 𝐿 be an even non-degenerate
indefinite lattice of rank 𝑟. Assume that the discriminant group of 𝐿 can be
generated by at most 𝑟 − 2 elements. Then the genus of 𝐿 consists of one
isometry class.

Example 1.13.3. As soon as 𝐿 is even, indefinite, and splits off an even
unimodular lattice (this is always a lattice of rank ≥ 2) the assumption of
the above theorem is satisfied. For example, using Example 1.6.8.2, the
lattices 𝑈 ⦹ 𝐸8 (𝑠) as well as Γ4𝑘 (𝑠) ⦹ 𝑈 ⦹ · · ·⦹𝑈︸          ︷︷          ︸

𝑡 copies

, 𝑠 ≠ 0, 𝑘, 𝑡 ≥ 1 are is

unique in their genus.

Historical and Bibliographical Notes. Most of this Chapter’s material is very
classical and can be found for instance in the books by J. Cassels [36] and M. Kneser
[122]. We especially mention our debt to M. Kneser for the proof of Proposition 1.3.1.2
as well as for the proofs in Section 1.10 (cf. Satz 14.5, respectively §20 in [122]). Less
classical is the concept of discriminant form, which figures predominantly in V. Nikulin’s
works [171]. The thesis [56] of A. Durfee which predates Nikulin’s work also introduces
and investigates properties of the discriminant form in the guise of ”induced form”. The
reader may further consult Chapter II of the preprint [156] by R. Miranda and D. Morrison
which inspired some of our proofs. The procedure to calculate the elementary divisors we
gave in Section 1.6 is modeled on the lucid explanation given in § 87 of Seifert–Threlfall’s
opus [203].

In Sections 1.11 and 1.12 somewhat more recent topics are discussed and there we have

given ample references to the literature. Here we only mention the origin of some of the

terminology used in these sections. Firstly, Niemeier lattices have been named after the

author of [167]. Next, the term ”Enriques lattice” is named after the Italian geometer F.

Enriques (1871–1946), famous for his work [71] on the classification of algebraic surfaces.

Finally, K3 surfaces have been so named by A. Weil in his ”Final report on contract AF

18(603)-57”, c.f. [248] after the three mathematicians Kummer, Kodaira and Kummer as

well as after the mountain K2 in Kashmir which is notably hard to climb.
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Indefinite Unimodular Integral Lattices

Introduction

In this chapter (𝐿, 𝑏) denotes an integral lattice. We shall often write 𝑥 · 𝑦 in place
of 𝑏(𝑥, 𝑦). The goal is to give a short and elementary proof of the classification
result for indefinite unimodular lattices as announced in Section 1.13:

Theorem. An indefinite unimodular lattice is uniquely determined by its parity,
rank and index.

For odd lattices the proof is easy (see Section 2.3), and in Section 2.4 we use
the technique of neigbouring lattices (see Section 1.4) to reduce the even case
to the odd case. The proof uses the classification of unimodular lattices in rank
≤ 4, indefinite or not (cf. Theorem 2.2.1), and the 𝜎-invariant which is the ”index
mod 8”. This is explained in Section 2.1. The only deep result on which the
proof depends is Meyer’s theorem which we shall discuss in Section 3.3 of the next
chapter.

In Section 2.5 we describe some applications to the topology of compact man-
ifolds.

2.1 Reduction Modulo a Prime and Characteristic Elements

We need a few concepts and results that apply to lattices that are not necessarily
indefinite or unimodular. Below we shall make use of reduction modulo 2 which is
a special case of reduction modulo a prime 𝑝, which we now explain.

Definition 2.1.1. Let (𝐿, 𝑏) be an integral lattice and 𝑝 a prime number. Its
reduction modulo 𝑝 consists of the 𝔽𝑝-vector space 𝐿/𝑝𝐿 equipped with the
symmetric 𝔽𝑝-bilinear form induced by 𝑏.

If 𝑏 is the bilinear form induced by 𝑏, then disc(𝑏) ∈ 𝔽𝑝. This discriminant
can be zero, even if 𝑏 is non-degenerate. However, if 𝑏 is non-degenerate with
discriminant prime to 𝑝, then 𝑏 is non-degenerate and so, by definition, (𝐿/𝑝𝐿, 𝑏)
is an inner product space. Let us consider the special case 𝑝 = 2.

Lemma 2.1.2. Let (𝐿, 𝑏) be an even integral lattice with disc(𝑏) odd. The inner
product space 𝑉 = (𝐿/2𝐿, 𝑏) has even dimension and the rank of 𝐿 is also even.

Proof. Since disc(𝑏) is odd, the form 𝑏 is non-degenerate. We show that 𝑉 has
even dimension. Let 𝑥 ∈ 𝑉 be any non-zero vector. Since the product is non-
degenerate, by Proposition 1.1.2 there exists 𝑦 ∈ 𝑉, 𝑦 ≠ 𝑥, with 𝑏(𝑥, 𝑦) = 1 and
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{𝑥, 𝑦} spans a non-degenerate plane 𝑈 (here we use that 𝐿 is even). Then 𝑈⊥ is a
non-degenerate subspace of 𝑉 and by induction it has even dimension. □

Remark 2.1.3. An inner product space in characteristic 2 such as 𝑉 is a symplectic
space. These are treated from a general point of view in Appendix A.5.

We use reduction modulo 2 to define so-called characteristic elements:

Definition 2.1.4. Let 𝐿 be an integral lattice with odd discriminant. We say that
𝑢 ∈ 𝐿 is a characteristic element if 𝑢 · 𝑥 ≡ 𝑥 · 𝑥 mod 2 for every 𝑥 ∈ 𝐿.

Example 2.1.5. For an even integral lattice with odd discriminant 𝑥 · 𝑥 is even
by definition, and so 𝑢 = 0 is a characteristic element.

The basic result is as follows.

Lemma 2.1.6. Every lattice 𝐿 with odd discriminant has a characteristic element
𝑢 ∈ 𝐿. Moreover, its so-called 𝜎-invariant

𝜎(𝐿) := 𝑢 · 𝑢 mod 8

does not depend on the choice of the characteristic element. It is an additive
invariant, that is, for all lattices 𝐿 and 𝑀 with odd discriminant we have 𝜎(𝐿⦹𝑀) =
𝜎(𝐿) + 𝜎(𝑀).

Proof. As before we consider the inner product space 𝑉 = 𝐿/2𝐿. We shall denote
the image of 𝑥 in 𝑉 by 𝑥. For simplicity we write 𝑥 · 𝑦 instead of 𝑏(𝑥, 𝑦) and
similarly for 𝑏(𝑥, 𝑦). The function 𝑥 ↦→ 𝑥 · 𝑥 is linear:

𝛼𝑥 + 𝛽𝑦 · 𝛼𝑥 + 𝛽𝑦 = �̄�2 𝑥 · 𝑥 + 𝛽2 𝑦 · 𝑦
= �̄� 𝑥 · 𝑥 + 𝛽 𝑦 · 𝑦,

because we are in characteristic 2. Since the correlation map 𝑥 ↦→ 𝑥 · − is an
isomorphism, this function, like every linear function on 𝑉, is of the form 𝑢 · 𝑥 for
a unique 𝑢 ∈ 𝑉. Any preimage 𝑢 ∈ 𝐿 then satisfies

𝑢 · 𝑥 ≡ 𝑥 · 𝑥 mod 2,

and so 𝑢 is a characteristic element.
We note that 𝑢 · 𝑢 mod 8 is indeed an invariant of 𝐿. Since 𝑢 is unique, any

other characteristic element is of the form 𝑢′ = 𝑢 + 2𝑥 and we have

𝑢′ · 𝑢′ = 𝑢 · 𝑢 + 4(𝑢 · 𝑥 + 𝑥 · 𝑥︸        ︷︷        ︸
≡0 mod 2

)

≡ 𝑢 · 𝑢 mod 8.

Characteristic elements are clearly additive. □

Remark 2.1.7. The above concerns only lattices with odd discriminant, the only
cases we need later on.
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Example 2.1.8. • Let 𝐿 be the symmetric lattice 𝐿 = ⦹𝑝⟨1⟩⦹⦹𝑞 ⟨−1⟩. Since
±𝑒 is characteristic for the unimodular lattice ℤ · 𝑒 with 𝑒 · 𝑒 = ±1 and because
of additivity, 𝜎(𝐿) ≡ 𝑝 − 𝑞 = 𝜏(𝐿) mod 8, where, we recall, 𝜏(𝐿) is the index
of 𝐿.

• For an even lattice the zero vector is a characteristic element and so for even
lattices we have 𝜎(𝐿) ≡ 0 mod 8.

2.2 Classification in Rank At Most Four

To prove the classification result mentioned in the introduction to this chapter we
first need a classification result for small rank.

Theorem 2.2.1 (Classification in rank ≤ 4). Let 𝐿 be a unimodular lattice of rank
at most 4. Then either 𝐿 is odd and diagonalizable, or, if 𝐿 is even, 𝐿 ≃ 𝑈, or
𝐿 ≃ 𝑈 ⦹𝑈.

Proof. We use induction on the rank 𝑛. The assertion being obvious for 𝑛 = 1 we
assume 𝑛 > 1. We first apply the estimate of Proposition 1.10.2, which in this case
states that 𝐿 contains either an isotropic vector or a vector 𝑥 with 0 < |𝑥 · 𝑥 | ≤
(4/3)3/2 < 2. So there are two possibilities:

First case There is a vector 𝑥 ∈ 𝐿 with 𝑥 · 𝑥 = ±1. Then by Corollary 1.3.4,
𝐿 = ℤ𝑥 ⦹ 𝑥⊥. If 𝐿′ = 𝑥⊥ is odd, it has an orthogonal basis and we are done.
Otherwise, by induction 𝐿′ = 𝑈 with basis {𝑦, 𝑧} for which 𝑦 · 𝑦 = 𝑧 · 𝑧 = 0
and 𝑦 · 𝑧 = 1. Then {𝑥 + 𝑦,𝑥 ∓ 𝑧,𝑥 + 𝑦 ∓ 𝑧} forms an orthogonal basis for 𝐿.

Second case In this case we assume there is no vector 𝑥 ∈ 𝐿 with 𝑥 · 𝑥 = ±1.
Then there is a primitive vector 𝑥1 ≠ 0 with 𝑥1 · 𝑥1 = 0. It is part of a basis
{𝑥1, . . . ,𝑥𝑛} for 𝐿. Let {𝑥∗1, . . . ,𝑥∗𝑛} be the dual basis. Since 𝐿 is unimodular
this is a basis for 𝐿. The sublattice 𝐿1 = ℤ𝑥1 + ℤ𝑥∗1 has Gram matrix(

0 1
1 𝑎

)
.

Example 1.13.1.5 determines the isometry class of 𝐿1 according to the parity
of 𝑎 . If 𝑎 is odd, 𝐿1 is diagonalizable and there is a vector 𝑥 with 𝑥 · 𝑥 = ±1,
which we have excluded. So 𝑎 is even and 𝐿1 ≃ 𝑈. By Corollary 1.3.4,
𝐿 ≃ 𝑈 ⦹ 𝐿⊥1 . Since 𝐿⊥1 is unimodular and does not contain a vector with
𝑥 · 𝑥 = ±1, 𝐿⊥1 is either 0 or of rank 2 and not diagonalizable. In that case
𝐿⊥1 ≃ 𝑈 by induction. □

Corollary 2.2.2. Let 𝐿 be an indefinite unimodular lattice, then

• 𝐿 contains an isotropic vector, that is, a non-zero vector 𝑥 with 𝑥 · 𝑥 = 0;

• 𝐿 is isometric to either 𝑈 ⦹ 𝐿′ or to 𝑊 ⦹ 𝐿′′ where 𝐿′ as well as 𝐿′′ are
unimodular, 𝑈 is the hyperbolic plane and 𝑊 = ⟨1⟩ ⦹ ⟨−1⟩.
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Proof. For rank at most 4 the first statement follows from the preceding theorem.
For larger rank Meyer’s theorem, Corollary 3.3.4, guarantees the existence of an
isotropic vector.

Once we have a primitive 𝑥 ∈ 𝐿 with 𝑥 · 𝑥 = 0, examining the last part of the
proof of Theorem 2.2.1 we see that the second assertion is true. □

2.3 Odd Indefinite Forms

The lattices ⦹𝑝⟨1⟩ ⦹ ⦹𝑞 ⟨−1⟩ with 𝑝, 𝑞 ≥ 1 provide examples of odd indefinite
unimodular lattices. The next theorem shows that these are all.

Theorem 2.3.1. Every odd indefinite unimodular lattice is diagonalizable, that
is, isometric to an orthogonal direct sum of copies of ⟨1⟩ and ⟨−1⟩. In particular,
such lattices are classified by their rank and index.

Proof. We use induction with respect to the rank. Let 𝐿 be an odd lattice. For rank
at most 4 the assertion follows from Theorem 2.2.1. Next, apply the representabil-
ity result Corollary 2.2.2 to find a non-zero primitive 𝑥1 ∈ 𝐿 with 𝑥1 · 𝑥1 = 0.
Complete this to a basis {𝑥1, . . . ,𝑥𝑛} of 𝐿 and form the dual basis {𝑥∗1, . . . ,𝑥∗𝑛}
of 𝐿 (since 𝐿 is unimodular this is also a basis for the lattice). Since 𝐿 is odd,
there is an index 𝑗 such that 𝑥∗𝑗 · 𝑥∗𝑗 is odd. If 𝑥∗1 · 𝑥∗1 happens to be odd, we let
𝐿1 = ℤ𝑥1 + ℤ𝑥∗1. If however 𝑥

∗
1 · 𝑥∗1 is even but 𝑥∗

𝑘
· 𝑥∗

𝑘
odd for some 𝑘 > 1, then set

𝐿1 = ℤ𝑥1 +ℤ(𝑥∗1 +𝑥∗𝑘). In both cases 𝐿1 is a sublattice of 𝐿 such that the Gram ma-

trix with respect to the given basis is

(
0 1
1 𝑎

)
with 𝑎 odd. From Example 1.13.1.5,

we know that 𝐿1 ≃ ⟨1⟩⦹ ⟨−1⟩ since 𝑎 is odd. So 𝐿 ≃ ⟨1⟩⦹ ⟨−1⟩⦹ 𝐿⊥1 . Now choose
a sign so that ⟨±1⟩ ⦹ 𝐿⊥1 is indefinite and apply the induction hypothesis to this
odd unimodular indefinite lattice. □

2.4 Even Indefinite Forms

Theorem 2.4.1. Two even indefinite unimodular lattices with the same rank and
index are isometric.

Proof. Let 𝐿 be an even indefinite unimodular lattice. By Corollary 2.2.2, 𝐿 is
isometric to 𝐿′⦹𝑈 where 𝐿′ is an even unimodular lattice. Note that 𝐿′ might be
definite so that a simple induction argument is not possible.

Instead, we employ the technique of neighbouring lattices to link even and odd
unimodular lattices so that we can use our previous classification for odd lattices.
To be specific, we use the construction detailed in Example 1.7.A and start with
the odd lattice 𝐿′ ⦹ 𝑊, 𝑊 = ⟨1⟩ ⦹ ⟨−1⟩. The sublattice consisting of vectors
𝑥 ∈ 𝐿′⦹𝑊 with 𝑥 ·𝑥 even is isometric to 𝐿′⦹𝑈 (2). The even neighbours of 𝐿′⦹𝑊
all contain this lattice and are contained in 𝐿′∗ ⦹ 1

2𝑈 (2) ≃ 𝐿′ ⦹ 1
2𝑈 (2). So 𝐿′ does
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not play a role in the argument of Example 1.7.A.2 (where 𝐿′ = 0) and this shows
that there are two even neighbours, both isometric to 𝐿′⦹𝑈 = 𝐿. Now suppose we
have another even indefinite unimodular lattice Λ with the same rank and index
as 𝐿. We may write it again as Λ′ ⦹ 𝑈, and consider Λ′ ⦹ 𝑊. As for 𝐿′ ⦹ 𝑊,
the even neighbours of Λ′ ⦹𝑊 are isometric to Λ. Now the two odd unimodular
lattices 𝐿′ ⦹𝑊,Λ′ ⦹𝑊 are indefinite and have the same rank and index. So, by
the classification in the odd case, Theorem 2.3.1, they are isometric. Hence so are
their neighbours. It follows that 𝐿 and Λ are isometric. □

What is missing is an exhaustive list of even indefinite unimodular lattices.
We have seen that 𝐸8 is an even unimodular lattice and so is 𝐸8 (−1). So any
orthogonal direct sum of copies of hyperbolic planes and copies of 𝐸8 or 𝐸8 (−1)
must belong to the list. To see that the list is complete we need a property of the
index.

Theorem 2.4.2. For every unimodular lattice 𝐿, indefinite or not, we have 𝜎(𝐿) =
𝜏(𝐿) mod 8, that is, the index modulo 8 is the 𝜎-invariant. If, moreover, 𝐿 is even,
the index is divisible by 8.

Proof. Recall from Lemma 2.1.6 that every unimodular lattice 𝐿 has an invariant
𝜎(𝐿) ∈ ℤ/8ℤ and we saw in Example 2.1.8 that 𝜎(𝐿) ≡ 𝜏(𝐿) for unimodular lattices
𝐿 that are diagonalizable. By the classification result for odd lattices this comprises
all odd unimodular indefinite lattices. If 𝐿 is even, 𝑀 = 𝐿⦹ ⟨1⟩⦹ ⟨−1⟩ is odd and
by additivity 𝜎(𝐿) = 𝜎(𝑀) ≡ 𝜏(𝑀) = 𝜏(𝐿) mod 8. On the other hand, for even 𝐿
we have seen (again in Example 2.1.8) that 𝜎(𝐿) = 0 and so 𝜏(𝐿) ≡ 0 mod 8. □

According to Lemma 2.1.2 the rank 𝑟 of any even unimodular lattice is even.
Theorem 2.4.2 states that the index 𝜏 is divisible by 8. Using the pairs (𝑟, 𝜏) with
𝑟 > 0 even and |𝜏 | < 𝑟 divisible by 8, the lattices ⦹𝑎𝐸8 (±1)⦹𝑏𝑈 with 𝑎 = 1

8 |𝜏 | and
𝑏 = 1

2 (𝑟 − |𝜏 |) realize all possible ranks and indices for even indefinite unimodular
lattices. If we combine the above two theorems, we deduce the following final
classification result.

Corollary 2.4.3 (Existence and uniqueness for indefinite even unimodular lat-
tices). Let 𝐿 be an even unimodular and indefinite lattice of (necessarily even)
rank 𝑟 and index 𝜏 = 8𝑎𝜀, where 𝑎 is a non-negative integer and 𝜀 = ±1. Then 𝐿 is
isometric to

(𝐸8 ⦹ · · ·⦹ 𝐸8)︸               ︷︷               ︸
𝑎 summands

(𝜀) ⦹ 𝑈 ⦹ · · ·⦹𝑈︸          ︷︷          ︸
𝑏 summands

, 𝑏 =
1

2
(𝑟 − |𝜏 |).

Example 2.4.4. Applying this to the lattice 𝐸8 ⦹𝐸8 (−1) a lattice of rank 16 and
index 0, we obtain 𝐸8 ⦹ 𝐸8 (−1) ≃ ⦹8𝑈.
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2.5 Applications to Topology

2.5.A The intersection form on manifolds. Consider a compact connected
oriented topological manifold 𝑋 of dimension 4𝑑 with cohomology ring 𝐻∗ (𝑋,ℤ).
The orientation gives an isomorphism 𝐻4𝑑 (𝑋,ℤ) ≃ ℤ so that the cup-product form
on the middle cohomology group modulo torsion

H𝑋 := 𝐻2𝑑 (𝑋,ℤ)/torsion,

becomes a bilinear pairing

𝑆𝑋 : H𝑋 × H𝑋 −→ ℤ, (2.1)

which, by Poincaré duality, is unimodular. It is called the intersection form of
𝑋.1 The intersection form is symmetric since 2𝑑 is even. Any form 𝑏 with 𝑏 = 𝑆𝑋
for an oriented topological or differentiable manifold 𝑋 is said to be topologically,
respectively differentiably represented. If 𝑏 and 𝑏′ are represented, then so is
𝑏 ⦹ 𝑏′. To see this, one uses the connected sum construction: if 𝑋 and 𝑋′ are
two manifolds of the same dimension, say 𝑑, their connected sum 𝑋#𝑋′ is
constructed by taking out a 𝑑-disc from 𝑋 and 𝑋′ and glueing 𝑋 and 𝑋′ along
the boundary spheres. This can be done differentiably if 𝑋 and 𝑋′ are smooth
manifolds. See e.g. [150].
The result we are referring to reads as follows.

Lemma 2.5.1. If 𝑋,𝑋′ are two four-manifolds, then we have 𝑆𝑋#𝑋′ = 𝑆𝑋 ⦹ 𝑆𝑋′.

Write the signature of the intersection form 𝑆𝑋 as (𝑏+𝑋 , 𝑏−𝑋). If 𝑆𝑋 happens
to be indefinite, its isometry class is completely determined by the parity (even
or odd) and the index of 𝑆𝑋 . We want to apply this to simply connected man-
ifolds of dimension 4. In that case the cohomology has no torsion anyway (see
Example 2.5.5).

For such four-manifolds we have a celebrated result of Freedman [73] which –
in simplified form – states:

Theorem 2.5.2. The oriented homeomorphism type of a simply connected four-
manifold 𝑋 is completely determined by 𝑆𝑋 and, moreover, any unimodular form
can occur in this way as the intersection form of some simply connected four-
manifold.

Now as we have seen in Section 1.12, the number of non-isomorphic definite
forms goes up quite drastically with the rank and so this holds also for the number
of non-isomorphic four-manifolds with definite intersection form. However, the
situation changes dramatically for the subclass of differentiable four-manifolds.
Indeed, Donaldson obtained a striking result:

1Topologists usually say that the intersection form is non-degenerate which means that the
form 𝑆𝑋 with respect to a chosen integral basis for H𝑋 gives an invertible matrix, which is
equivalent to unimodularity. Under Poincaré-duality cup product of cohomology classes translates
into intersection of homology classes. In the middle homology this gives the intersection numbers
of two (oriented) transversely intersecting cycles. This explains the terminology.
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𝑋

𝑋′
𝑋

𝑋′

𝑋#𝑋′

Connected sum of 𝑋 and 𝑋′

Theorem 2.5.3 (Donaldson [54]). If a simply connected differentiable four-manifold
𝑋 has a definite intersection form it is diagonalizable over ℤ and so

𝑆𝑋 = ⟨1⟩ ⦹ · · ·⦹ ⟨1⟩ or 𝑆𝑋 = ⟨−1⟩ ⦹ · · ·⦹ ⟨−1⟩.

In particular, it cannot be an even form.

Hence, in a sense ”most” topological four-manifolds with definite intersection
form do not admit differentiable structures. Together with the classification results
for indefinite unimodular forms in this chapter, it follows that the only forms that
can possibly be differentiably represented are the diagonal forms, or else, forms
isometric to direct sums of the hyperbolic plane and the forms 𝐸8 (±1). To find out
which, will be investigated in the next subsection.

2.5.B Representability by differentiable four-manifolds. A word of warn-
ing here. Freedman’s theorem 2.5.2 tells us that for any simply connected four-
manifold 𝑋 its intersection form 𝑆𝑋 is a complete invariant and so, if for two
such manifolds the intersection forms are isometric, the manifolds are oriented
homeomorphic. However, if these manifolds have a differentiable structure, the
homeomorphism need not be realizable by a diffeomorphism. Indeed, there are
counterexamples. See [15, Ch. IX].

Let us now go down the list of allowable unimodular forms. As explained in
Appendix B.3.(1), the form ⟨1⟩ is the intersection form of the complex projec-
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tive plane ℙ2 and then ⟨−1⟩ is the one of the plane with the opposite orientation.
Lemma 2.5.1 then implies that by taking connected sums all odd unimodular di-
agonal lattices can be represented differentiably.

The hyperbolic plane 𝑈 is represented by a product of two 2-spheres, or, what
is the same, by 𝑄 = ℙ1 × ℙ1 where ℙ1 is the complex projective line (or Riemann
sphere). Note also that 𝑄 is isomorphic to a smooth complex quadric surface
in ℙ3. See loc. cit. What about other even forms? One might first ask about
topological restrictions. There are classical topological invariants, e.g., the Stiefel–
Whitney classes 𝑤𝑘 (𝑋) ∈ 𝐻𝑘 (𝑋,𝔽2), where the coefficient field is 𝔽2, the field
of two elements. See e.g. [152] for their definition and properties. For us the
second Stiefel–Whitney class turns out to be pertinent. As shown in loc. cit., for
four-dimensional manifolds 𝑋 satisfies

𝑏′(𝑥,𝑥) = 𝑏′(𝑤2 (𝑋),𝑥) for all 𝑥 ∈ 𝐻2 (𝑋,𝔽2).

Proposition 2.5.4 (Criterion for even forms). Let 𝑋 be a compact differentiable
four-manifold such that 𝐻∗ (𝑋,ℤ) has no 2-torsion. Then 𝑆𝑋 is even if and only if
the second Stiefel–Whitney class 𝑤2 (𝑋) vanishes.

Proof. Let us relate 𝑤2 to the integral intersection form. To do this, consider the
short exact sequence of groups

0 → ℤ
×2−−→ ℤ → ℤ/2ℤ → 0

and the following portion of the long exact sequence in cohomology

· · · → 𝐻2 (𝑋,ℤ) ×2−−→ 𝐻2 (𝑋,ℤ) 𝜋−→ 𝐻2 (𝑋,ℤ/2ℤ) → · · · . (2.2)

This becomes a short exact sequence if the integral cohomology has no 2-torsion
and then there is an element in 𝐻2 (𝑋,ℤ) that maps to 𝑤2 (𝑋). This element is
then an integral characteristic element and so, if 𝑤2 (𝑋) = 0, the intersection form
is even and conversely. □

Example 2.5.5. Let 𝑋 be a simply connected four-manifold. For these 𝐻1 (𝑋,ℤ) =
0 and then 0 = Tors(𝐻1 (𝑋,ℤ)) = Tors(𝐻2 (𝑋,ℤ)), by the universal coefficient theo-
rem and Poincaré duality (cf. for example [86, Ch. 28]). Hence there is no torsion
at all in the cohomology. So, if 𝑤2 (𝑋) = 0, the intersection form is even.

If 𝑤2 = 0 there is a well-known restriction on the index:

Theorem 2.5.6 (Rohlin [196]). For a compact differentiable four-manifold 𝑋 with
𝑤2 (𝑋) = 0, the index is divisible by 16.

Proposition 2.5.4 and Theorem 2.5.6 have the following consequence.

Corollary 2.5.7. Let 𝑋 be a simply connected compact differentiable four-manifold
with even intersection form. Then the index of 𝑆𝑋 is divisible by 16.



2.5 Applications to Topology 67

2.5.C Representability using complex surfaces. Let us consider what hap-
pens for complex surfaces, that is four-manifolds 𝑋 which admit a complex struc-
ture. In that case, there are invariants in integral cohomology refining the Stiefel–
Whitney classes, the Chern classes 𝑐𝑖 (𝑋) ∈ 𝐻2𝑖 (𝑋,ℤ). The class 𝑤2 (𝑋) is just the
modulo 2 restriction of 𝑐1 (𝑋). Hence if 𝐻∗ (𝑋,ℤ) has no 2-torsion, 𝑐1 (𝑋) is an
integral characteristic element.

Corollary 2.5.8. Let 𝑋 be a simply connected complex manifold of dimension 2
such that 𝑐1 (𝑋) is 2-divisible in 𝐻2 (𝑋,ℤ). Then 𝑆𝑋 is an even form. Examples
include K3 surfaces (see below) and smooth hypersurfaces in ℙ3 of even degree.
See Table B.3.1.

For complex surfaces 𝑋 the class −𝑐1 (𝑋) admits an alternative description as
the cohomology class of the canonical line bundle 𝐾𝑋 = Λ2𝑇 ∗

𝑋 since 𝑐1 (𝑋) = 𝑐1 (𝑇𝑋) =
𝑐1 (Λ2𝑇𝑋) = −𝑐1 (Λ2𝑇 ∗

𝑋 ). Holomorphic sections of 𝐾𝑋 are exactly the holomorphic
2-forms. So, if for example 𝑋 admits a nowhere vanishing holomorphic 2-form, the
bundle 𝐾𝑋 is trivial and 𝑐1 (𝑋) = 0.

The invariant 𝑐2 (𝑋) ∈ 𝐻4 (𝑋,ℤ) ≃ ℤ is ”purely topological”: it can be identi-
fied with the Euler number 𝑒(𝑋). The index of the intersection form 𝑆𝑋 can be
expressed in terms of 𝑐1 (𝑋) and 𝑐2 (𝑋)2 as follows.

𝜏(𝑋) = 1

3
(𝑐21 (𝑋) − 2𝑐2 (𝑋)) = 1

3
(𝐾𝑋 · 𝐾𝑋 − 2𝑒(𝑋)) .

Hence, if 𝐾𝑋 is the trivial line bundle, the index is determined by the Euler number
𝑒(𝑋).

As we have seen, an even indefinite lattice of index ±16𝑏, 𝑏 ≥ 0, is of the form

𝐸𝑎 ,±𝑏 := ⦹𝑎𝑈 ⦹⦹2𝑏𝐸8 (±1), 𝑎 ≥ 1.

The simplest indefinite forms of index 16 are 𝐸1,±1 = 𝑈 ⦹ 𝐸8 ⦹ 𝐸8 and it is not
known whether these are representable by differentiable manifolds and neither is
this known for 𝐸2,±1. However 𝐸3,−1 does occur: it is isometric to the intersection
lattice 𝑆K3 where K3 is a K3-surface. See Appendix B.3.(4). A K3 surface with
its opposite orientation, −K3 represents 𝐸3,1 and so, using connected sums we can
represent 𝐸3𝑚,±𝑚. Since 𝑈 = 𝐸1,0 is represented by the quadric 𝑄 = ℙ1 × ℙ1, for
any pair of integers (𝑚,𝑛) with 𝑚 ≥ 0 and 𝑛 ≥ 1 we can thus represent 𝐸3𝑚+𝑛,±𝑚
by the differentiable four-manifold

𝑋 (±𝑚,𝑛) = ± [K3# · · · #K3]︸                ︷︷                ︸
𝑚 copies

# 𝑄# · · · #𝑄︸          ︷︷          ︸
𝑛 copies

. (2.3)

The following classical conjecture would imply that these cover all (differen-
tiably) representable lattices.

Conjecture (The 11/8 Conjecture). For every simply connected oriented differ-
entiable four-manifold 𝑋 with even intersection form we have the inequality

𝑏2 (𝑋) ≥ 11

8
|𝜏(𝑋) |.

2cf. Appendix B.2 for some further details and references.
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Indeed, we show that any 𝑋 as in the conjecture must then be homeomorphic
to one of the manifolds 𝑋 (±𝑚,𝑛) of (2.3). First of all, by Donaldson’s result,
Theorem 2.5.3, the form must be indefinite. Next, Rohlin’s theorem shows that
its index is divisible by 16 so that ±𝑚 = 𝜏(𝑋)/16 is an integer. Moreover,

𝑛 =
1

16
(8𝑏2 (𝑋) − 11|𝜏(𝑋) |)

is an integer since an even unimodular intersection form is isometric to a direct
sum of copies of 𝑈 and ±𝐸8 so that 𝑏2 is even. The 11/8 Conjecture just says
that this number is non-negative. It follows that 𝑋 is oriented homeomorphic to
𝑋 (±𝑚,𝑛).

The conjecture is true for complex surfaces. For a proof see e.g. [15, Ch. IX.3]
where also the representability of indefinite forms by complex and almost complex
surfaces is discussed. In particular, any such surface is oriented homeomorphic to
some 𝑋 (𝑚,𝑛) and the two forms 𝐸1,1 or 𝐸2,1 can only be represented, if at all, by
non-algebraic differentiable four-manifolds.

Historical and Bibliographical Notes. This chapter is based on Milnor’s ap-
proach from [151]. The application to the homotopy classification of four-manifolds [151,
Thm. V.1.5] has been superseded by Freedman’s groundbreaking work [73] and, in the
differentiable setting, by Donaldson’s results [54, 55]. This leads to the applications we
present here. It is an extract from [15, Chapter IX]. See als [183]. For more on the
topology of surfaces, see [184].



3

Quadratic Forms over ℚ and ℚ𝑝

Introduction

In this chapter we discuss the classification of non-degenerate quadratic forms over
the rationals. We have seen (cf. Proposition 1.1.4) that such forms are diagonal-
izable. However, it is not straightforward to decide effectively whether two given
diagonal forms are isometric as illustrated by the following calculation. Consider
the quadratic form in two variables 2𝑥2 + 3𝑦2. We claim that it is isometric to
6
5𝑥

2 + 5𝑦2. This can be shown as follows.

2𝑥2 + 3𝑦2 = 2𝑢2 + 4𝑢𝑣 + 5𝑣2, 𝑥 = 𝑢 + 𝑣, 𝑦 = 𝑣,

= 2𝑢2 + 5(𝑣 + 2

5
𝑢)2 − 4

5
𝑢2

=
6

5
𝑢2 + 5𝑤2, 𝑤 = 𝑣 + 2

5
𝑢.

Let us sketch how to solve the classification problem for (diagonalized) rational
forms effectively.
Step 1: Local classification. The basic local invariant is the Hasse invariant
𝜀𝑣 (𝑞) of 𝑞, obtained from the Hilbert symbols (𝑎 , 𝑏)𝑣, 𝑎 , 𝑏 ∈ ℚ×

𝑣 , discussed in
Appendix A.4:

𝜀𝑣 (𝑞) :=
∏
𝑖<𝑗

(𝑎𝑖 , 𝑎𝑗)𝑣, with 𝑞(𝑥) =
∑︁

𝑎𝑗𝑥
2
𝑗 , (3.1)

where we tacitly use the convention that an empty product is 1 so that 𝜀𝑣 (𝑞) = 1
for a rank one form.

We shall show (Proposition 3.1.3) that this is indeed an invariant of 𝑞𝑣. Then,
for a finite place 𝑝 we derive the following classification result (cf. Theorem 3.3.1):

𝑞 and 𝑞′ are isometric over ℚ𝑝 ⇐⇒

rank(𝑞) = rank(𝑞′)
disc(𝑞) = disc(𝑞′)(up to squares)

𝜀𝑝 (𝑞) = 𝜀𝑝 (𝑞′).

As to the place at infinity, one knows from linear algebra that real quadratic
forms are classified by their rank and index (cf. also Theorem 8.1.5):

𝑞 and 𝑞′ are isometric over ℝ ⇐⇒
{
rank(𝑞) = rank(𝑞′)

𝜏(𝑞) = 𝜏(𝑞′).

Step 2: Global classification. In Section 3.3 we take up the classification over ℚ
where we show the Hasse principle which states that two non-degenerate forms
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𝑞, 𝑞′ over ℚ are isometric if and only if 𝑞𝑣 ≃ 𝑞′𝑣 for all places 𝑣 ∈ P. We deduce
this important principle from the Hasse-Minkowski theorem which states that a
rational form represents 0 if and only if it does so at all places. We shall not
prove this theorem, but refer to [204, IV.3.2]. So the Hasse principle and the local
classification imply the classification result over the rationals. Explicitly, we have
for non-degenerate forms 𝑞 and 𝑞′ :

𝑞 and 𝑞′ are isometric over ℚ ⇐⇒


rank(𝑞) = rank(𝑞′)

𝜏(𝑞) = 𝜏(𝑞′)
disc(𝑞) = disc(𝑞′) (up to squares)

𝜀𝑝 (𝑞) = 𝜀𝑝 (𝑞′) for all primes 𝑝.

Let us finish this introduction by calculating the Hasse invariants for the forms
at the start of this introduction. These two forms, 2𝑥2 + 3𝑦2 and 6

5𝑥
2 + 5𝑦2, are

manifestly positive definite, have the same discriminant, and so, to show that they
are isometric it suffices to prove that (2, 3)𝑝 = ( 65 , 5)𝑝 for all prime numbers 𝑝.
First note that by Theorem A.4.4 we have (2, 3)𝑝 = 1 for 𝑝 ≠ 2, 3, and (2, 3)2 = −1
and (2, 3)3 =

(
2
3

)
= −1. Let us check that we get the same values for the other

Hilbert symbol, using the standard rules:(
6
5 , 5

)
𝑝
=

(
5, 65

)
𝑝

by (A.7)

= (5,−6)𝑝 by (A.11)

= (−6, 5)𝑝 by (A.7)

= (−2, 5)𝑝 (3, 5)𝑝 by (A.10).

Again by Theorem A.4.4 this equals 1 unless 𝑝 = 2, 3, 5. For 𝑝 = 2 we get
(−2, 5)2 (3, 5)2 = (−1) · 1 = −1, for 𝑝 = 3 one gets (−2, 5)3 (3, 5)3 = 1 ·

(
5
3

)
= −1,

and finally (−2, 5)5 (3, 5)5 =
( −2
5

)
·
(
3
5

)
= 1. So indeed, for this example the two sets

of local invariants are the same.

3.1 The Hasse Invariant is Well Defined

In this section (𝑉, 𝑞) is a quadratic space over a field 𝑘 of characteristic ≠ 2.

We introduce a bilinear form by the formula

𝑥 · 𝑦 =
1

2
(𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦)) (3.2)

so that 𝑥 ·𝑥 = 𝑞(𝑥).1 Occasionally we shall speak of the hyperbolic plane 𝑘𝑒+𝑘𝑓.
As for integer lattices, this means that 𝑒 · 𝑒 = 𝑓 · 𝑓 = 0 and 𝑒 · 𝑓 = 1.

1Note that the polar form 𝑏𝑞 differs from this form by a factor 2.
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The concept of a contiguous chain of orthogonal bases will be used to
show that the Hasse invariant does not depend on the particular diagonalization.
By definition, such a chain starts from a given orthogonal basis and at each step
one forms a new orthogonal basis by replacing a finite number of vectors of the
basis, making sure that at least one vector stays the same.

Example 3.1.1. Take ℝ3 with the standard euclidean metric. Let {𝑒1, 𝑒2, 𝑒3} be
orthonormal. Take a rotation in the plane spanned by {𝑒2, 𝑒3} giving {𝑒1, 𝑒′2, 𝑒′3}
followed by a rotation in the plane {𝑒1, 𝑒′2} giving {𝑒′1, 𝑒′′2 , 𝑒′3}. This gives the con-
tiguous chain

{𝑒1, 𝑒2, 𝑒3} → {𝑒1, 𝑒′2, 𝑒′3} → {𝑒′1, 𝑒′′2 , 𝑒′3}.

Returning to the operation of contiguity, we have the following result:

Proposition 3.1.2. Suppose that dim𝑉 ≥ 3. Then any two orthogonal bases are
connected by a contiguous chain of orthogonal bases.

Proof. Let 𝑬 = {𝑒1, . . . , 𝑒𝑛} and 𝑬′ = {𝑒′1, . . . , 𝑒′𝑛} be two orthogonal bases. We
distinguish three situations.
1: the vectors 𝑒1, 𝑒

′
1 span a plane 𝑃, 𝑞 |𝑃 is non-degenerate and 𝑉 = 𝑃⦹𝑃⊥. In this

case we can find 𝑓1,𝑓
′
1 ∈ 𝑃 such that 𝑃 = 𝑘𝑒1 ⦹ 𝑘𝑓1 = 𝑘𝑒′1 ⦹ 𝑘𝑓′1. If 𝑔3, . . . , 𝑔𝑛 is an

orthogonal basis of 𝑃⊥, the following is a contiguous chain

𝑬 → (𝑒1,𝑓1, 𝑔3, . . . , 𝑔𝑛) → (𝑒′1,𝑓′1, 𝑔3, . . . , 𝑔𝑛) → 𝑬′.

2: {𝑒1, 𝑒′2} span a non-degenerate plane. After interchanging 𝑒′1 and 𝑒′2 in 𝑬′, we
can apply the argument from case (1).
3: the remaining case, i.e.

det

(
𝑞(𝑒1) 𝑒1 · 𝑒′𝑗
𝑒1 · 𝑒′𝑗 𝑞(𝑒′𝑗)

)
= 0 for 𝑗 = 1, 2. (3.3)

If this is the case, the idea is to find a vector 𝑒 = 𝑒′1 + 𝑎𝑒′2, 𝑎 ≠ 0, such that

• the plane 𝑘𝑒1 + 𝑘𝑒 is non-degenerate,

• 𝑒 is not isotropic.

Assuming the existence of such a vector 𝑒, the plane spanned by {𝑒′1, 𝑒′2} has a
second orthogonal basis {𝑒, 𝑒′′2 } since 𝑒 is not isotropic. Now

𝑬′′ = {𝑒, 𝑒′′2 , 𝑒′3, . . . , 𝑒′𝑛}

is an orthogonal basis of 𝑉 and 𝑬′ → 𝑬′′ is a contiguous chain. By assumption,
𝑘𝑒1 + 𝑘𝑒 is a plane to which 𝑞 restricts non-degenerately and as in case 1 there is
a contiguous chain from 𝑬 to 𝑬′′, hence also from 𝑬 to 𝑬′.

Let us check that there indeed exists a vector 𝑒 = 𝑒′1 + 𝑎𝑒′2 as desired. The first
condition reads

det

(
𝑞(𝑒1) 𝑒1 · 𝑒′1 + 𝑎 (𝑒1 · 𝑒′2)

𝑒1 · 𝑒′1 + 𝑎 (𝑒1 · 𝑒′2) 𝑞(𝑒′1) + 𝑎2𝑞(𝑒′2)

)
≠ 0.
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Using (3.3) this is seen to simplify into −2𝑎 (𝑒1 · 𝑒′1) (𝑒1 · 𝑒′2) ≠ 0. The second

condition, 𝑞(𝑒) = 𝑞(𝑒′1 + 𝑎𝑒′2) ≠ 0, translates into 𝑎2 ≠ −
𝑞(𝑒′1)
𝑞(𝑒′2)

. Since (3.3) implies

that 𝑒1 · 𝑒′𝑗 ≠ 0 for 𝑗 = 1, 2, we can find a vector 𝑒 satisfying the requirements if and

only if there exists an 𝑎 ≠ 0 with 𝑎2 ≠ −
𝑞(𝑒′1)
𝑞(𝑒′2)

. These conditions eliminate at most

three values of 𝑎 and so 𝑎 can be found if 𝑘 ≠ 𝔽3. For the field 𝔽3 the equations
(3.3) for 𝑗 = 1, 2 read

𝑞(𝑒1)𝑞(𝑒′1) = (𝑒1 · 𝑒′1)2 = 1

𝑞(𝑒1)𝑞(𝑒′2) = (𝑒1 · 𝑒′2)2 = 1,

and hence 𝑞(𝑒′1)/𝑞(𝑒′2) = 1. So if we take 𝑎 = 1, then 𝑎 ≠ 0 and 𝑎2 ≠ −𝑞(𝑒′1)/𝑞(𝑒′2).
□

We turn now to vector spaces over ℚ𝑣, 𝑣 ∈ P, and show:

Proposition 3.1.3. The Hasse invariant is well defined, i.e., independent of the
choice of orthogonal basis.

Proof. Let 𝑛 be the rank of the form and let us compare two diagonal forms

𝑞 =
∑︁

𝑎𝑗𝑥
2
𝑗 =

∑︁
𝑎 ′𝑗𝑦

2
𝑗 .

For 𝑛 = 1 both invariants are 1. For 𝑛 = 2, observe that by definition (𝑎1, 𝑎2)𝑝 = 1
if and only if 𝑧2 = 𝑎1𝑥

2
1 + 𝑎2𝑥

2
2 has a non-trivial solution in ℚ𝑝. This is the case

if and only if 𝑞(𝑥1,𝑥2) represents 0 or 1 = 𝑞(𝑥1,𝑥2) for some some (𝑥1,𝑥2) ∈ ℚ𝑝.
But this is independent of the representation of 𝑞 as a linear combination of two
squares.

For 𝑛 ≥ 3 we use induction on 𝑛. By Proposition 3.1.2 it suffices to consider two
bases in a contiguous chain having one basis vector in common. We show that the
Hasse invariant is the same for two such bases. Symmetry of the Hilbert symbol
implies that we may permute the elements of the basis at will. Hence we may
suppose that the first vectors of the bases are the same. Hence 𝑎 ′1 = 𝑎1 = 𝑞(𝑒1).
Since disc(𝑞) = 𝑎1 · · · 𝑎𝑛 = 𝑎1 · 𝑎 ′2 · · · 𝑎 ′𝑛, using equations (A.8) and (A.10) we have∏

𝑖<𝑗

(𝑎𝑖 , 𝑎𝑗)𝑝 = (𝑎1, 𝑎2 · · · 𝑎𝑛)𝑝
∏
2≤𝑖<𝑗

(𝑎𝑖 , 𝑎𝑗)𝑝

= (𝑎1,disc(𝑞)𝑎1)𝑝
∏
2≤𝑖<𝑗

(𝑎𝑖 , 𝑎𝑗)𝑝

and ∏
𝑖<𝑗

(𝑎 ′𝑖 , 𝑎 ′𝑗)𝑝 = (𝑎1, 𝑎 ′2 · · · 𝑎 ′𝑛)𝑝
∏
2≤𝑖<𝑗

(𝑎 ′𝑖 , 𝑎 ′𝑗)𝑝

= (𝑎1,disc(𝑞)𝑎1)𝑝
∏
2≤𝑖<𝑗

(𝑎 ′𝑖 , 𝑎 ′𝑗)𝑝.

Now by induction applied to 𝑒⊥1 we have
∏

2≤𝑖<𝑗 (𝑎𝑖 , 𝑎𝑗)𝑝 =
∏

2≤𝑖<𝑗 (𝑎 ′𝑖 , 𝑎 ′𝑗)𝑝 and the
result follows.

For 𝑣 = ∞ the result is a consequence of Sylvester’s law (cf. Corollary 8.1.3). □
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3.2 Representation by Forms

𝑉 is a vector space over a field 𝑘 of characteristic different from 2, 𝑞 a non-degenerate

quadratic form on 𝑉. Conform (3.2) one sets 𝑥 · 𝑦 = 1
2 [𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦)].

We say that 𝑞 represents 𝑎 ∈ 𝑘, or 𝑎 is represented by 𝑞 if for some non-zero
𝑥 ∈ 𝑉 one has 𝑞(𝑥) = 𝑎 . Note that 0 is represented if and only if there is an
isotropic vector. If this is the case we claim :

Lemma 3.2.1. If 𝑥 ∈ 𝑉 is isotropic, then 𝑞 represents all elements in 𝑘.

Proof. Let 𝑦 ∈ 𝑉 be a vector with 𝑥 · 𝑦 ≠ 0. Such a vector exists since the
bilinear form is non-degenerate. One may assume that 𝑥 · 𝑦 = 1 and, replacing
𝑦 with 𝑦 − 1

2𝑞(𝑦)𝑥, we may assume that in addition 𝑦 is isotropic. Then the
plane 𝑃 spanned by 𝑥 and 𝑦 is a hyperbolic plane and 𝑉 = 𝑃 ⦹ 𝑃⊥. Clearly,
𝑞( 12𝑎𝑥 + 𝑦) = 𝑎 . □

Remark 3.2.2. See also Lemma 6.3.8 where we prove the result in a more general
setting.

Lemma 3.2.3 (Representability criterion (characteristic ≠ 2)). Let 𝑎 ∈ 𝑘×. Then
the following conditions are equivalent:

1. 𝑞 represents 𝑎;

2. 𝑞 ≃ 𝑞′ ⦹ [𝑎] where 𝑞′ has rank 𝑛 − 1;

3. 𝑞⦹ [−𝑎] represents 0.

Proof. We only prove the non-trivial implications (1) =⇒ (2) and (3) =⇒ (1).
Suppose (1) holds: for some 𝑥 ∈ 𝑉 one has 𝑞(𝑥) = 𝑎 ≠ 0. Then 𝑉 = [𝑎] ⦹ 𝑥⊥ and
(2) follows.
Suppose that (3) holds, i.e. 𝑞⦹ [−𝑎] has a non-trivial zero, say 𝑞(𝑥+𝛼𝑒) = 0 where
𝑒 generates the summand [−𝑎]. So 𝑞(𝑥) − 𝛼2 · 𝑎 = 0. If 𝛼 = 0, that is, 𝑥 is an
isotropic vector, we apply Lemma 3.2.1. If not, then 𝑞(𝑥/𝛼) = 𝑞(𝑥)/𝛼2 = 𝑎 . In
both cases (1) follows. □

Next we investigate representability of 0 in 𝑝-adic fields. Let

𝑞(𝑥1, . . . ,𝑥𝑛) = 𝑎1𝑥
2
1 + · · · + 𝑎𝑛𝑥2

𝑛, 𝑎𝑗 ∈ ℚ𝑝, 𝑗 = 1, . . . ,𝑛,

be a non-degenerate form in 𝑛 variables. Depending on the dimension 𝑛, we de-
rive criteria for representability in terms of the discriminant and various Hilbert
symbols as follows.

Dimension 𝑛 = 2. We have a non-trivial solution for 𝑞(𝑥1,𝑥2) = 0 precisely when
−𝑎1/𝑎2 is a square, but modulo squares this equals −𝑎1𝑎2 = − disc(𝑞). Hence a
non-degenerate form 𝑞(𝑥1,𝑥2) represents 0 ⇐⇒ disc(𝑞) = −1 ∈ ℚ×

𝑝/(ℚ×
𝑝)2.
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Dimension 𝑛 = 3. Multiplying with −𝑎3 and replacing 𝑥3 with 𝑎3𝑥3 we see that
we may replace 𝑞(𝑥1,𝑥2,𝑥3) with −(𝑎1𝑎3𝑥2

1 + 𝑎3𝑎2𝑥
2
2 + 𝑥2

3). By the definition of
the Hilbert symbol this form represents zero if and only if (−𝑎3𝑎1,−𝑎3𝑎2)𝑝 = 1
(see Section A.4). Using the bilinearity of the Hilbert symbol we may expand this
equation

1 = (−1,−𝑎3𝑎2)𝑝 (𝑎3,−𝑎3𝑎2)𝑝 (𝑎1,−𝑎3𝑎2)𝑝
= (−1,−𝑎3𝑎2)𝑝 (𝑎3,−𝑎3𝑎2)𝑝 (𝑎1,−1)𝑝 (𝑎1, 𝑎3)𝑝 (𝑎1, 𝑎2)𝑝

=
(A.11)

(−1,−𝑎3𝑎2)𝑝 (𝑎1,−1)𝑝

𝜀𝑝 (𝑞)︷                              ︸︸                              ︷
(𝑎3, 𝑎2)𝑝 (𝑎1, 𝑎3)𝑝 (𝑎1, 𝑎2)𝑝

=
(A.7)

(−1,− 𝑎1𝑎2𝑎3︸  ︷︷  ︸
disc(𝑞)

)𝑝 · 𝜀𝑝 (𝑞)

= (−1,−disc(𝑞))𝑝 · 𝜀𝑝 (𝑞).

Hence a non-degenerate form 𝑞(𝑥1,𝑥2,𝑥3) represents 0 ⇐⇒ 𝜀𝑝 (𝑞) = (−1,−disc(𝑞))𝑝.

We first note a consequence:

𝑎 ≠ 0 is represented by 𝑎1𝑥
2
1 + 𝑎2𝑥2

2 ⇐⇒ (𝑎 ,−𝑎1𝑎2)𝑝 = (𝑎1, 𝑎2)𝑝. (3.4)

This follows from Lemma 3.2.3 which states that the above representability is
equivalent to −𝑎𝑥2

0 + 𝑎1𝑥2
1 + 𝑎2𝑥2

2 having an isotropic vector. By what we just said,
this occurs if and only if 𝜀𝑝 (𝑞) = (−1,−disc(𝑞))𝑝, i.e., (−𝑎 , 𝑎1)𝑝 (−𝑎 , 𝑎2)𝑝 (𝑎1, 𝑎2)𝑝 =

(−1, 𝑎𝑎1𝑎2)𝑝. This can indeed be rewritten as (𝑎 ,−𝑎1𝑎2)𝑝 = (𝑎1, 𝑎2)𝑝.

Dimension 𝑛 = 4. Here we have

a non-degenerate form
𝑞(𝑥1,𝑥2,𝑥3,𝑥4) represents 0

⇐⇒

either disc(𝑞) ≠ 1

or disc(𝑞) = 1 and

𝜀𝑝 (𝑞) = (−1,−1)𝑝.
(3.5)

To show this, observe first that by writing 𝑞(𝑥1,𝑥2,𝑥3,𝑥4) =
∑
𝑎𝑖𝑥

2
𝑖 as 𝑞 = 𝑞1 − 𝑞2,

where 𝑞1 = 𝑎1𝑥
2
1 + 𝑎2𝑥2

2 and 𝑞2 = −𝑎3𝑥2
3 − 𝑎4𝑥

2
4, we will be able to use (3.4). First

observe that 𝑞 represents 0 if and only if there exists an 𝑥 ≠ 0 modulo squares
represented by 𝑞1 and 𝑞2. The ‘if’ part is trivial, so we turn to the ‘only if’ part.
Suppose 𝑞(𝑦1, 𝑦2, 𝑦3, 𝑦4) = 0 with (𝑦1, 𝑦2, 𝑦3, 𝑦4) ≠ (0, 0, 0, 0). Either 𝑞1 (𝑦1, 𝑦2) ≠ 0
and we are done, or 𝑞1 (𝑦1, 𝑦2) = 0 and (𝑦1, 𝑦2) ≠ (0, 0), or 𝑞2 (𝑦3, 𝑦4) = 0 and
(𝑦3, 𝑦4) ≠ (0, 0). In the case 𝑞1 (𝑦1, 𝑦2) = 0 Lemma 3.2.1 implies that 𝑞1 represents
all elements in ℚ∗

𝑝 and we can take for 𝑥 any non-zero value of the form 𝑞2. The
case 𝑞2 (𝑦3, 𝑦4) = 0 is similar.

To rephrase the existence of an 𝑥 ≠ 0 modulo squares represented by 𝑞1 and 𝑞2,
note that changing a representing vector by a non-zero scalar multiple multiplies
the value of its quadratic form by its square, and so we may work at the level of
𝐷(ℚ𝑝) = ℚ×

𝑝/(ℚ×
𝑝)2. A similar remark applies to Hilbert symbols. Invoking (3.4)
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the condition is equivalent to the existence of a solution of the following system of
equations in 𝐷(ℚ𝑝):

(𝑥,−𝑎1𝑎2)𝑝 = (𝑎1, 𝑎2)𝑝
(𝑥,−𝑎3𝑎4)𝑝 = (−𝑎3,−𝑎4)𝑝.

We let 𝐴 and 𝐵 be the subset of 𝐷(ℚ𝑝) consisting of the solutions of the first and
second equation, respectively. The existence of a simultaneous solution is then
equivalent to 𝐴 ∩ 𝐵 ≠ ∅. Since 𝐴 and 𝐵 are non-empty (e.g., 𝑎1 ∈ 𝐴, −𝑎3 ∈ 𝐵), by
Lemma A.4.5 𝐴 ∩ 𝐵 = ∅ if and only if

𝑎1𝑎2 = 𝑎3𝑎4 and (𝑎1, 𝑎2)𝑝 = −(−𝑎3,−𝑎4)𝑝.

So the system has a solution precisely if not both equalities hold. This happens
if and only if 𝑎1𝑎2 ≠ 𝑎3𝑎4 (which comes down to disc(𝑞) ≠ 1) or 𝑎1𝑎2 = 𝑎3𝑎4 and
(𝑎1, 𝑎2)𝑝 = (−𝑎3,−𝑎4)𝑝. Now 𝑎1𝑎2 = 𝑎3𝑎4 is equivalent to disc(𝑞) = 𝑎1𝑎2𝑎3𝑎4 =

(𝑎1𝑎2)2 = 1. Using 𝑎1𝑎2 = 𝑎3𝑎4, (𝑎1, 𝑎2)𝑝 = (−𝑎3,−𝑎4)𝑝, and the rules for the
Hilbert symbol we rewrite the condition (𝑎1, 𝑎2)𝑝 = (−𝑎3,−𝑎4)𝑝 as

𝜀𝑝 (𝑞) = Π𝑖<𝑗 (𝑎𝑖 , 𝑎𝑗)𝑝 = (𝑎1, 𝑎2)𝑝 (𝑎1𝑎2, 𝑎3𝑎4)𝑝 (𝑎3, 𝑎4)𝑝
= (𝑎1, 𝑎2)𝑝 (𝑎3, 𝑎4)𝑝 (𝑎3𝑎4, 𝑎3𝑎4)𝑝 = (𝑎1, 𝑎2)𝑝 (𝑎3, 𝑎4)𝑝 (−1, 𝑎4)𝑝 (−1, 𝑎3)𝑝
= (−𝑎3,−𝑎4)𝑝 (−𝑎3, 𝑎4)𝑝 (−1, 𝑎3)𝑝 = (−𝑎3,−1)𝑝 (−1, 𝑎3)𝑝
= (−1,−1)𝑝.

So 𝑎1𝑎2 = 𝑎3𝑎4 and (𝑎1, 𝑎2)𝑝 = (−𝑎3,−𝑎4)𝑝 are equivalent to disc(𝑞) = 1 and
𝜀𝑝 (𝑞) = (−1,−1)𝑝. Hence there exists a solution to the system if and only if
disc(𝑞) ≠ 1 or disc(𝑞) = 1 and 𝜀𝑝 (𝑞) = (−1,−1)𝑝.

Dimension 𝑛 ≥ 5. Here we always have representability:

Theorem 3.2.4. Any quadratic form 𝑞 of rank ≥ 5 over ℚ𝑝 represents zero.

Proof. The proof is a bit roundabout. We first search 𝑎 ∈ ℚ×
𝑝 such that 𝑎 is

represented by 𝑎1𝑥
2
1 + 𝑎2𝑥

2
2 by making use of the criterion (3.4). In other words,

we want to solve the equation

(𝑥,−𝑎1𝑎2)𝑝 = 𝜀𝑝 (𝑞′) = ±1, 𝑞′ := 𝑎1𝑥
2
1 + 𝑎2𝑥2

2 ,

in D(ℚ𝑝). The latter can be viewed as an 𝔽2-vector space of dimension 𝑟 = 2 if
𝑝 is odd and of dimension 𝑟 = 3 if 𝑝 = 2. Lemma A.4.5 states that (𝑥, 𝑏)𝑝 = 𝜀
has either 2𝑟−1 or 2𝑟 solutions unless 𝑏 = 1 and 𝜀 = −1. Apply this to 𝑏 = −𝑎1𝑎2
and 𝜀 = 𝜀𝑝 (𝑞′). Now note that we cannot at the same time have −𝑎1𝑎2 = 1 and
(𝑎1, 𝑎2)𝑝 = −1 since −𝑎1𝑎2 = 1 would lead to (𝑎1, 𝑎2)𝑝 = (𝑎1,−𝑎1𝑎2)𝑝 = (𝑎1, 1)𝑝 = 1
by formulas (A.11) and (A.8) and so the exception of ”no solutions” is excluded.
Hence there are ≥ 2𝑟−1 elements 𝑎 ∈ D(ℚ𝑝) represented by 𝑞′.

A fortiori this holds for any form of rank ≥ 2, in particular for a form 𝑞 of rank
5. Since 2𝑟−1 ≥ 2, we can assume that 𝑎 ≠ disc(𝑞) in D(ℚ𝑝). Then by Lemma 3.2.3
one has

𝑞 ≃ 𝑞⦹ [𝑎],
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with 𝑞 of rank 4. Now disc(𝑞) = 𝑎−1 · disc(𝑞) ≠ 1 and so, by the criterion for the
existence of an isotropic vector for forms of rank 4 which we stated above, we see
that 𝑞 represents 0. But then also 𝑞 represents 0. If a rank 5 form represents 0,
then every form of higher rank does. □

As we just noticed, by Lemma 3.2.3 the preceding results have an immediate
consequence for representation of 𝑞 by non-zero numbers. Indeed, the form

𝑞𝑎 = 𝑎1𝑥
2
1 + · · · + 𝑎𝑛𝑥2

𝑛 − 𝑎𝑧2,

isometric to 𝑞 ⦹ ⟨−𝑎⟩, represents 0 if and only 𝑞 represents 𝑎 ∈ 𝑘∗. The relation
between the basic invariants is as follows.

disc(𝑞𝑎 ) = −𝑎 · disc(𝑞),

𝜀𝑝 (𝑞𝑎 ) = 𝜀𝑝 (𝑞)
∏
𝑗

(𝑎𝑗 ,−𝑎)𝑝

= (−𝑎 , 𝑎1 · · · 𝑎𝑛)𝑝𝜀𝑝 (𝑞)
= (−𝑎 ,disc(𝑞))𝑝𝜀𝑝 (𝑞).

So the preceding results have the following consequence:

Theorem 3.2.5 (Representability criterion (over ℚ𝑝)). Let 𝑞 be a non-degenerate
quadratic form over ℚ𝑝 of rank 𝑛 and 𝑎 ∈ ℚ×

𝑝. In order that 𝑎 be represented by 𝑞,
depending on its rank 𝑛, the necessary and sufficient condition is
for 𝑛 = 1: 𝑎 = disc(𝑞);
for 𝑛 = 2: (𝑎 ,−disc(𝑞))𝑝 = 𝜀𝑝 (𝑞);
for 𝑛 = 3: either 𝑎 ≠ − disc(𝑞), or 𝑎 = − disc(𝑞) and (−1,−disc(𝑞))𝑝 = 𝜀𝑝 (𝑞);
for 𝑛 ≥ 4: no condition (𝑎 is always represented by 𝑞).

Remark 3.2.6. If 𝑞 is the localization of a non-degenerate ternary form over ℚ, this
implies that 𝑞 assumes all values of ℚ×

𝑝 with one possible exception, 𝑒𝑝 := − disc(𝑞),
but this happens at most for the finite set of primes 𝑝 for which 𝜀𝑝 (𝑞) · (−1, 𝑒𝑝)𝑝 =

−1.

3.3 Classification

3.3.A Local classification.

Theorem 3.3.1. Two non-degenerate quadratic forms over ℚ𝑝 are isometric if
and only if they have the same rank, discriminant and Hasse invariant.

Proof. Isometric forms have the same invariants. Indeed, this is clear for the rank
and discriminant. For the Hasse invariant this is Proposition 3.1.3.

The converse is proved by induction. Let 𝑞1, 𝑞2 be two quadratic forms with
the same invariants. By Theorem 3.2.5 these forms represent the same elements
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in ℚ×
𝑝. Choose such an element 𝑎 , for instance the value taken by 𝑞1 on some

arbitrary non-zero vector, and apply Lemma 3.2.3 which implies

𝑞1 = 𝑞′1 ⦹ [𝑎], 𝑞2 = 𝑞′2 ⦹ [𝑎]

for forms 𝑞′1, 𝑞
′
2 of rank one less. Let us calculate their invariants.

disc(𝑞′1) = 𝑎−1 disc(𝑞1)
= 𝑎−1 disc(𝑞2)
= disc(𝑞′2),

𝜀𝑝 (𝑞′1) = 𝜀𝑝 (𝑞1) (𝑎 ,disc(𝑞′1))𝑝
= 𝜀𝑝 (𝑞2) (𝑎 ,disc(𝑞′2))𝑝
= 𝜀𝑝 (𝑞′2).

By the induction hypothesis 𝑞′1 ≃ 𝑞′2 and hence 𝑞1 ≃ 𝑞2. □

3.3.B Global results.

Theorem 3.3.2 (Hasse–Minkowski). A non-degenerate form 𝑞 over ℚ represents
0 if and only if 𝑞𝑣 represents zero for all places 𝑣 ∈ P.

We do not give a proof of this result since the proof uses techniques that are
foreign to the main theme of this book. We refer to [204, IV.3.2]. Let us deduce
some consequences of the Hasse–Minkowski result.

Corollary 3.3.3. A rational non-zero number 𝑎 is represented by a non-degenerate
form 𝑞 over ℚ precisely if for all 𝑣 ∈ P the number 𝑎 is represented over ℚ𝑣 by the
non-degenerate form 𝑞𝑣.

Proof. By Lemma 3.2.3 the form 𝑞 represents 𝑎 if and only if 𝑞 = 𝑞⦹⟨−𝑎⟩ represents
0. Now apply the theorem to 𝑞. □

Corollary 3.3.4 (Meyer’s theorem). A non-degenerate rational quadratic form of
rank ≥ 5 represents 0 if and only if it is indefinite.

Proof. This follows from Theorems 3.2.4, 3.3.2, and the fact that a real form
represents 0 precisely if it is indefinite. □

Now we are ready to prove the main classification result.

Theorem 3.3.5 (Hasse Principle). Two non-degenerate quadratic forms over ℚ

are isometric if and only if this is so locally, that is over each ℚ𝑣, 𝑣 ∈ P.
In other words: if 𝐿1 and 𝐿2 are two quadratic spaces over ℚ, then an isometry

𝐿1
∼−→ 𝐿2 exists if and only if isometries 𝐿1,𝑣

≃−→ 𝐿2,𝑣 exist for all places 𝑣 ∈ P.

Proof. We need to see that local equivalence implies global equivalence. Let 𝑞1, 𝑞2
be two locally equivalent quadratic forms over ℚ of rank 𝑛 ≥ 1. We use induction



78 3 Quadratic Forms over ℚ and ℚ𝑝

on 𝑛. Pick 𝑎 ∈ ℚ× represented by 𝑞1. Then also 𝑞2 represents 𝑎 by Corollary 3.3.3.
This covers the case 𝑛 = 1. For 𝑛 ≥ 2 we now have by Lemma 3.2.3

𝑞1 ≃ 𝑞′1 ⦹ [𝑎]
𝑞2 ≃ 𝑞′2 ⦹ [𝑎].

The local assumption implies that 𝑞′1 ⦹ [𝑎] ≃ 𝑞′2 ⦹ [𝑎] over every ℚ𝑣. This im-
plies that 𝑞′1 ≃ 𝑞′2 over any ℚ𝑣. This is a consequence of a general result, Witt’s
cancellation theorem 7.2.7, which we prove in a later chapter. Assuming this, by
induction there is a global isometry sending 𝑞′1 to 𝑞′2 and so also 𝑞1 is isometric to
𝑞2.

In the present situation we may avoid an appeal to Witt’s cancellation theorem
as follows. Let 𝑒1 ∈ 𝐿1, respectively 𝑒2 ∈ 𝐿2 span the summand [𝑎] and let
𝜙𝑣 : 𝐿1,𝑣 → 𝐿2,𝑣 be an isometry. It sends 𝑒1 to a vector 𝑒 ∈ 𝐿2,𝑣 with 𝑞2,𝑣 (𝑒) =

𝑞2,𝑣 (𝑒2) = 𝑎 . The two vectors 𝑒 + 𝑒2 and 𝑒 − 𝑒2 cannot both be isotropic (otherwise
their sum 2𝑒 would be isotropic). Say 𝑥 = 𝑒 − 𝑒2 is non-isotropic. Then the
reflection 𝜏 = 𝜎𝑥 is defined and permutes 𝑒 and 𝑒2. If 𝑦 = 𝑒 + 𝑒2 is not isotropic,
we use 𝜏 = −𝜎𝑦 to permute 𝑒 and 𝑒2. In either situation the isometry 𝜏 permutes
𝑒 and 𝑒2, so that 𝜏◦𝜙𝑣 (𝑒1) = 𝑒2. But then the isometry 𝜏◦𝜙𝑣 sends 𝑒⊥1 with the
form 𝑞′1 isometrically to 𝑒⊥2 equipped with 𝑞′2. Since this works for any place 𝑣, we
conclude that 𝑞′1 ≃ 𝑞′2. □

Remark 3.3.6. 1. If for all 𝑣 ∈ P we have isometries 𝜙𝑣 : 𝑞1,𝑣 → 𝑞2,𝑣, the above
theorem states that a global isometry exists. However its localization at 𝑣 ∈ P

need not be equal to 𝜙𝑣.

2. A non-degenerate real form 𝑞 is classified by its signature, (𝑠, 𝑡). Since disc(𝑞∞)
= (−1)𝑡 and 𝜀∞ (𝑞) = (−1)𝑡(𝑡−1)/2, the Hasse invariants and the discriminant
don’t suffice for the classification at ∞.

3. The Hilbert product formula (Theorem A.4.6) implies that∏
𝑣

𝜀𝑣 (𝑞) = 1, (3.6)

which makes sense since for almost all 𝑣 ∈ P one has 𝜀𝑣 (𝑞) = 1. See Section 12.4
for further existence conditions.

Historical and Bibliographical Notes. The topic of this chapter is classical. We

follow largely J.-P. Serre’s book [204, Ch. IV].



4

Forms Related to Graphs

Introduction

In Section 1.4 we have seen how to associate an integral lattice 𝐿Γ to a finite simple
graph Γ, the Dynkin diagram of the lattice. The corresponding lattices are root
lattices by construction. In this case 𝐿Γ has a basis consisting of (−2)-roots. In
Section 4.1 we introduce various examples of this kind of root lattice and calculate
the discriminant form. In Section 4.2 we extend the construction to weighted
graphs and discuss the other classical semi-definite lattices.

In Section 4.3 we explain how the euclidean algorithm and a variant of it
leads to graphs. The discriminant forms of the associated lattices realize all cyclic
quadratic torsion forms and this will be made use of in Section 12.3.

In Section 4.4 we relate continued fractions to the topology of lens spaces. Then,
in Section 4.5 we discuss an application to resolution of surface singularities, to
elliptic fibrations and to Mordell–Weil lattices.

4.1 Root Lattices Spanned by (−2)-Roots

In this section we use the labels to denote the roots. This is useful when we show how

various geometrically relevant lattices are related.

4.1.A Basic root lattices. We introduce the following root lattices that will
play a role in various applications. Note that all lattices are even.
1. The root lattice 𝐴𝑛 (−1). The graph for this lattice is as follows

• • • •
𝛼1 𝛼2 𝛼𝑛−1 𝛼𝑛

with negative definite form given by the matrix

𝑏𝐴𝑛 (−1) =

©«

−2 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . . · · ·

...

0 · · · 1 −2 1
0 · · · · · · 0 1 −2

ª®®®®®®®®¬
∈ ℤ𝑛×𝑛.
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This presentation makes it possible to calculate the discriminant recursively:

disc(𝐴𝑛 (−1)) = (−1)𝑛 (𝑛 + 1). (4.1)

We now show that this implies that the form 𝑏𝐴𝑛 is indeed negative definite. Clearly
𝑏𝐴1

is negative definite, and adding a vertex at a time changes the sign of the dis-
criminant as we see from (4.1). But since the form can be successively diagonalized
(over the real numbers) each time we add a variable, every eigenvalue is negative
and so the form is negative definite.
2. The lattices 𝑇𝑝,𝑞,𝑟. Here 𝑝, 𝑞, 𝑟 are positive integers. These are of rank 𝑝+𝑞+𝑟−2
and are defined by 𝑇 -shaped graphs of the form

• • • • • • •

•

•

•

𝛽1 𝛽2 𝛽𝑞−1 𝜀 𝛾𝑟−1 𝛾2 𝛾1

𝛼𝑝−1

𝛼2

𝛼1

The lattice 𝑇𝑝,𝑞,𝑟

Again, one can recursively find the discriminant:

disc(𝑇𝑝,𝑞,𝑟) = (−1)𝑝+𝑞+𝑟+1𝑝𝑞𝑟
(
1 − 1

𝑝
− 1

𝑞
− 1

𝑟

)
. (4.2)

This shows first of all, that the form is semi-negative definite if 𝑝−1 + 𝑞−1 + 𝑟−1 ≥ 1
and negative definite if strict inequality holds. Indeed, starting with the case
𝑝 = 𝑞 = 𝑟 = 1 we have a negative definite form and as long as strict inequality holds,
the discriminant alters sign if we add a vertex. Since the form can be diagonalized
inductively, this shows that the form remains negative definite until we attain the
limit situation where 𝑝−1 + 𝑞−1 + 𝑟−1 − 1 = 0 and then the form is degenerate. This
occurs for one of the three triples (𝑝, 𝑞, 𝑟) = (3, 3, 3), (2, 4, 4), (2, 3, 6). These define
the root lattices

𝐸6 (−1) = 𝑇3,3,3,

𝐸7 (−1) = 𝑇2,4,4,

𝐸8 (−1) = 𝑇2,3,6.

Continuing, for 𝑝−1 + 𝑞−1 + 𝑟−1 < 1 the graphs 𝑇𝑝,𝑞,𝑟 define lattices of signature
(1,𝑝 + 𝑞 − 3).
It is customary to set

𝐸𝑛 (−1) = 𝑇2,3,𝑛−3, 𝑛 ≥ 4, with disc(𝐸𝑛 (−1)) = (−1)𝑛+1 (𝑛 − 9),
𝐷𝑛 (−1) = 𝑇2,2,𝑛−2, 𝑛 ≥ 3, with disc(𝐷𝑛 (−1)) = (−1)𝑛4.
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• • • • • •

•

𝛼1 𝛼2 𝛼3 𝛼4 𝛼𝑛−2 𝛼𝑛−1

𝛼𝑛

• • • • •
•

•

𝛼1 𝛼2 𝛼3 𝛼𝑛−3 𝛼𝑛−2
𝛼𝑛−1

𝛼𝑛

The lattices 𝐸𝑛 (−1) and 𝐷𝑛 (−1)

Note that in particular, 𝐸8 (−1) = 𝑇2,3,6 = 𝐸9 (−1). From formula (4.2) we also see
which of the 𝑇𝑝,𝑞,𝑟 are unimodular (if 𝑝 ≤ 𝑞 ≤ 𝑟, it is easy to see that 𝑝 ≥ 3 leads
to no solutions). We find the lattices

𝐸8 (−1) = 𝑇2,3,5, 𝐸10 (−1) = 𝑇2,3,7.

The second lattice turns out to be isometric to the Enriques lattice (see Exam-
ple 1.13.1.4.) to which we come back in Lemma 4.1.5. The lattices 𝐸𝑛 have another
description as sublattices of the Lorentz lattice. See § 4.1.C below. The lattices
𝐷𝑛 also have another description which we now give.

Lemma 4.1.1. Let ℤ𝑛 = ⦹𝑛⟨1⟩ be the standard euclidean lattice. The sublattice
consisting of the integral vectors (𝑥1, . . . ,𝑥𝑛) ∈ ℤ𝑛 (−1) for which

∑𝑛
𝑗=1 𝑥𝑗 ≡ 0 mod 2

is isometric to 𝐷𝑛 (−1).

Proof. Let {𝑒1, . . . , 𝑒𝑛} be the standard basis of ℤ𝑛 (−1) and consider the roots
𝛼𝑗 = 𝑒𝑗 − 𝑒𝑗+1, 𝑗 = 1, . . . ,𝑛 − 1, and 𝛼0 = −𝑒1 − 𝑒2. It is easily seen that these roots
form a diagram of type 𝐷𝑛 (−1). The lattice spanned by these roots contains all
roots of the form 𝑒𝑖 ± 𝑒𝑗 , 𝑖 ≠ 𝑗, and all vectors 2𝑒𝑗 , and all of these vectors have
even coordinate sum. Conversely, writing

𝑥1𝑒1 + · · · + 𝑥𝑛𝑒𝑛 = 𝑥1 (𝑒1 − 𝑒2) + (𝑥1 + 𝑥2) (𝑒2 − 𝑒3)+
· · · + (𝑥1 + · · · + 𝑥𝑛−1) (𝑒𝑛−1 − 𝑒𝑛)+

+ 1

2
(𝑥1 + · · · + 𝑥𝑛︸          ︷︷          ︸

even

)2𝑒𝑛,

one sees that all vectors with even coordinate vectors are in the lattice 𝐷𝑛 (−1).
□

Well-known properties of so-called irreducible root systems for which we refer
to [103, Ch. III], especially §10.4 therein, imply the following useful observation:

Observation 4.1.2. Two 2-roots in each of the indecomposable root lattices 𝐴𝑛,
𝐷𝑛, 𝐸6, 𝐸7, 𝐸8 are conjugate under the Weyl group of the lattice.

We come back to these root lattices in Section 17.2.A.

3. Semi-definite root lattices spanned by −2-roots. These consist of the so-
called 𝐴-𝐷-𝐸-series and their extensions. These come up in many contexts, as we
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shall see later. We first introduce them, and in Proposition 4.1.4 we show that the
list is complete. From the extended graphs (which give semi-definite forms with
a non-trivial null-space) the corresponding definite Dynkin diagrams are obtained
by omitting the white vertex.

Dynkin diagrams 𝐴𝑛, 𝐷𝑛 and extensions 𝐴𝑛, 𝐷𝑛

•

•

•

•

•

◦
1

1

1

1

1

1

𝛼2

𝛼3

𝛼1

𝛼0

𝛼4 𝛼𝑛
•

• • • •
•

•

◦𝛼0

𝛼1

𝛼2 𝛼3 𝛼𝑛−3 𝛼𝑛−2
𝛼𝑛−1

𝛼𝑛
1

1
2 2 2 2

1

1

Dynkin diagrams 𝐸6 (−1),𝐸7 (−1) and extensions 𝐸6 (−1),𝐸7 (−1)

• • • ••

•

◦

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5

1 2 3 2 1

𝛼6

𝛼0

2

1

• • • • • •

•

◦
𝛼0

1

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6

2 3 4 3 2 1

𝛼7
2

Dynkin diagram 𝐸8 (−1 and its extension 𝐸8 (−1)

• • • • • • •

•

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7

2 4 6 5 4 3 2

𝛼8
3

◦
𝛼0

1

The null-space of the lattice of the extended graph is one-dimensional and spanned
by the linear combination of all of the indicated roots with the coefficients written
below the roots. For example the root 𝛼0 + · · · + 𝛼𝑛 spans the null-space of 𝐴𝑛

and 𝛼1 + 2𝛼2 + 3𝛼3 + 2𝛼4 + 𝛼5 + 2𝛼6 + 𝛼0 spans the one of 𝐸6. We leave the (easy)
verification of this to the reader. These calculations also yield:

Lemma 4.1.3. The sublattice of 𝐸8 (−1) orthogonal to the root 𝛽 = 2𝛼1+4𝛼2+6𝛼3+
5𝛼4 + 4𝛼5 + 3𝛼6 + 2𝛼7 + 3𝛼8 is isometric to 𝐸7 (−1). Consequently, the orthogonal
complement of every root in 𝐸8 (−1) is isometric to 𝐸7 (−1).

Proof. In �𝐸8 (−1) the root 𝛽 corresponds to −𝛼0 so that 𝛽 · 𝛼𝑖 = 0 for 𝑖 = 1, . . . , 6,
and, clearly, the part of the graph of 𝐸8 obtained by omitting 𝛼7 is the graph of
𝐸7. By Observation 4.1.2 this then holds for all roots in 𝐸8 (−1). □

4.1.B Characterization of the semi-definite Dynkin diagrams. We let Γ
be a connected graph on 𝑛 + 1 vertices {𝑒1, . . . , 𝑒𝑛+1} with 𝑒𝑖 · 𝑒𝑖 = −2 and 𝑒𝑖 · 𝑒𝑗 = 0
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if the vertices are 𝑒𝑖 and 𝑒𝑗 are not connected and = 1 if they are connected. If
𝑥 =

∑
𝑥𝑖𝑒𝑖 we then have

𝑥 · 𝑥 =
∑︁
𝑗

𝑥2
𝑗 (𝑒𝑗 · 𝑒𝑗) + 2

∑︁
𝑖<𝑗

𝑥𝑖𝑥𝑗 (𝑒𝑖 · 𝑒𝑗) ≤ −
∑︁
𝑗

2 · 𝑥2
𝑗 + 2

∑︁
𝑖<𝑗

|𝑥𝑖𝑥𝑗 | (𝑒𝑖 · 𝑒𝑗)

= (
∑︁
𝑗

|𝑥𝑗 |𝑒𝑗) · (
∑︁
𝑗

|𝑥𝑗 |𝑒𝑗).
(4.3)

Proposition 4.1.4. Let Γ be as above.

1. If 𝑏Γ is negative semi-definite, there are two possibilities, namely 𝑏Γ is nega-
tive definite or 𝑏Γ is negative semi-definite and 𝑏Γ ⊗ℚ has a one-dimensional
null-space spanned by a vector all of whose coordinates are positive.

2. The form 𝑏Γ is negative definite if and only if it is one of the Dynkin diagrams
𝐴𝑛 (−1), 𝐷𝑛 (−1), 𝐸6 (−1), 𝐸7 (−1), 𝐸8 (−1). In the negative semi-definite case
we have in addition the extended Dynkin diagrams (with the exception of�𝐴(−1) where two edges meet in two vertices).

Proof. 1. We let 𝑁 be the null-space of 𝑏Γ⊗ℚ. Let 𝑥 be isotropic. For any 𝑦 ∈ ℚ𝑛+1

and 𝑎 ∈ ℚ we have (𝑎𝑥 + 𝑦) · (𝑎𝑥 + 𝑦) ≤ 0 so that 2𝑎 𝑥 · 𝑦 + 𝑦 · 𝑦 ≤ 0. Then 𝑥 · 𝑦 = 0
and so 𝑥 ∈ 𝑁.

Suppose that 𝑥 =
∑
𝑥𝑖𝑒𝑖 ∈ 𝑁 then by (4.3) and the preceding remark, writing

𝑏𝑖𝑗 = 𝑒𝑖 · 𝑒𝑗 , we have

0 = 𝑥 · 𝑥 ≤ (
∑︁

|𝑥𝑗 |𝑒𝑗) · (
∑︁

|𝑥𝑗 |𝑒𝑗) ≤ 0.

Hence
∑ |𝑥𝑗 |𝑒𝑗 is isotropic and belongs to 𝑁. But then

∑
𝑗 𝑏𝑖𝑗 |𝑥𝑗 | = (∑ |𝑥𝑗 |𝑒𝑗) ·𝑒𝑖 = 0.

Let 𝐽 be the set of indices 𝑗 with 𝑥𝑗 ≠ 0. Since 𝑏𝑖𝑗 = 0 or 1 if 𝑖 ≠ 𝑗 one has

𝑏𝑖𝑗 |𝑥𝑗 | =
{
0 if 𝑗 ∉ 𝐽

≥ 0 if 𝑖 ∉ 𝐽, 𝑗 ∈ 𝐽.

But since
∑

𝑗 𝑏𝑖𝑗 |𝑥𝑗 | = 0 we find 𝑏𝑖𝑗 = 0 if 𝑖 ∉ 𝐽 and 𝑗 ∈ 𝐽. This means that the
graph is not connected, unless 𝐽 = ∅ or 𝐽 = {1, . . . ,𝑛 + 1}. In other words: either
𝑁 = 0 or all coordinates of 𝑥 ∈ 𝑁 are non-zero and then dim𝑁 = 1 and since 𝑁
contains a vector with positive coordinates, it is spanned by such a vector.
2. We first want to find out when 𝑏 = 𝑏Γ ≤ 0. To do this, we compare 𝑏Γ and
𝑏′ = 𝑏Γ′ , where Γ′ is a proper connected subgraph of Γ. Our previous study of 𝑁
implies

𝑏 ≤ 0 =⇒ 𝑏′ < 0.

We use this first of all to consider graphs Γ with more than one triple point.

These contain a subgraph of type �𝐷𝑛 (−1) whose associated form is not strictly

definite and so the only possibility here are the graphs �𝐷𝑛 (−1). If the graph Γ
has exactly one triple point it must be a graph of type 𝑇𝑝,𝑞,𝑟 and we have seen
that the associated forms are strictly negative definite if 1/𝑝 + 1/𝑞 + 1/𝑟 > 1 and
semi-negative definite if 1/𝑝 + 1/𝑞 + 1/𝑟 = 1. It follows that here only the graphs
𝐷𝑛 (−1), 𝐸6 (−1),𝐸7 (−1),𝐸8 (−1) are possible. The remaining graphs can only be of

type �𝐴𝑛 (−1) or 𝐴𝑛 (−1). □
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4.1.C Root lattices contained in the Lorentz lattice. The Lorentz lattice
of signature (1,𝑛) is the lattice

ℤ1,𝑛 := ⟨1⟩ ⦹ ⟨−1⟩ ⦹ · · ·⦹ ⟨−1⟩︸                  ︷︷                  ︸
𝑛 summands

. (4.4)

We claim that the sublattice

𝐸𝑛 (−1) = (−3, 1, . . . , 1)⊥ ⊂ ℤ1,𝑛, 𝑛 ≥ 3, (4.5)

is a root lattice. Indeed, if {𝑒0, . . . , 𝑒𝑛} is the standard basis for ℝ𝑛+1, the roots

𝛼0 = (1,−1,−1,−1, 0, . . . , 0),
𝛼𝑗 = 𝑒𝑗 − 𝑒𝑗+1, 𝑗 = 1, . . . ,𝑛 − 1,

give a basis for the orthogonal complement of (−3, 1, . . . , 1) ⊂ ℤ1,𝑛. To see this,
first observe that they are linearly independent and all belong to 𝐸𝑛 (−1). Next,
since for (𝑥0,𝑥1,𝑥2,𝑥3, . . . ,𝑥𝑛) ∈ 𝐸𝑛 (−1) we have

(𝑥0,𝑥1,𝑥2,𝑥3, . . . ,𝑥𝑛) = 𝑥0𝛼0 + (𝑥0 + 𝑥1)𝛼1+
+ (2𝑥0 + 𝑥1 + 𝑥2)𝛼2 + (3𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)𝛼3

+ · · · + (3𝑥0 + 𝑥1 + · · · + 𝑥𝑛−1︸                     ︷︷                     ︸
−𝑥𝑛

)𝛼𝑛−1,

the subspace 𝐸𝑛 (−1) = (−3, 1, . . . , 1)⊥ is generated by these roots. For 𝑛 ≥ 4 it
coincides with the lattice 𝑇2,3,𝑛−3 as we can see from the graph that the basis
defines, while 𝐸3 (−1) ≃ 𝐴2 (−1) ⦹ 𝐴1 (−1). Also, note that 𝐸4 (−1) = 𝐴4 (−1),
𝐸5 = 𝐷5 (−1), while 𝐸6 (−1), 𝐸7 (−1) and 𝐸8 (−1) are the usual Dynkin diagrams.
The lattice 𝐸9 (−1) with rank 1 null-space coincides with 𝐸8 (−1). For 𝑛 ≥ 10 all
lattices have signature (1,𝑛) and there is the following result.

• • • • • • •

•

•
𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7

2 4 6 5 4 3 2

𝛼0
3

•
𝛼8 𝛼9

1 1

The lattice 𝐸10(−1)

Lemma 4.1.5. The hyperbolic unimodular lattice 𝑇2,3,7 = 𝐸10 (−1) is isometric to
the Enriques lattice 𝑈 ⦹ 𝐸8 (−1). More generally, for 𝑛 ≥ 8 one has

𝐸𝑛+3 (−1) ≃ 𝐸8 (−1) ⦹𝑈 ⦹ 𝐴𝑛−7 (−1).

Proof. First consider the lattice 𝐸10 (−1). A summand 𝐸8 (−1) is found back as the
left end side of the diagram; it is generated by the roots 𝛼0, . . . ,𝛼7. Since the radical
of 𝐸8 (−1) = 𝐸9 (−1) is generated by 𝑓 = 3𝛼0+2𝛼1+4𝛼2+6𝛼3+5𝛼4+4𝛼5+3𝛼6+2𝛼7+𝛼8
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we find that 𝑓 and 𝑔 = 𝑓 + 𝛼9 generate a hyperbolic plane orthogonal to the left
hand 𝐸8 (−1) and hence 𝐸10 (−1) ≃ 𝐸8 (−1) ⦹𝑈.

For 𝑛 = 8 the root 𝛽 = 𝛼10 − 𝑓 and for 𝑛 ≥ 9 the extra roots {𝛼11, . . . ,𝛼𝑛+2}
together with the root 𝛽 generate the lattice 𝐴𝑛−7 (−1). Indeed, 𝛽 is easily seen to
be a root, and perpendicular to 𝛼0, . . . ,𝛼9, that is 𝐸8 (−1)⦹𝑈. Now 𝛽 connects to
the right-hand 𝐴𝑛−8-chain to give a lattice of type 𝐴𝑛−7 (−1). □

Next, we prove a result on the root lattice 𝐸8 which gives an alternative treat-
ment of Example 1.7.5.2.

Lemma 4.1.6. The roots of 𝐸8 (−1) are the 240 vectors ±𝛼𝑖𝑗 ,±𝛼𝑖𝑗𝑘,±𝛽𝑖𝑗 ,±𝛾𝑖, 1 ≤
𝑖 < 𝑗 < 𝑘 ≤ 8, where

𝛼𝑖𝑗 = 𝑒𝑖 − 𝑒𝑗 ,

𝛼𝑖𝑗𝑘 = 𝑒0 − 𝑒𝑖 − 𝑒𝑗 − 𝑒𝑘,

𝛽𝑖𝑗 = 2𝑒0 − (𝑒1 + · · · + 𝑒8) + 𝑒𝑖 + 𝑒𝑗 ,
𝛾𝑖 = 3𝑒0 − (𝑒1 + · · · + 𝑒8) − 𝑒𝑖 .

All the roots of 𝐸8 (−1) are in the same orbit under the Weyl group of 𝐸8 (−1).
Moreover, the 8 roots 𝛼𝑖𝑗,𝛽𝑖𝑗, 𝑖𝑗 ∈ {12, 34, 56, 78} are mutually orthogonal and

hence span a sublattice isometric to ⦹8𝐴1 (−1).

Proof. A root is a vector 𝑥 = (𝑥0,𝑥1, . . . ,𝑥8) ∈ ℝ9 with 𝑥 · 𝑥 = −2 orthogonal to
(3,−1,−1, . . . ,−1). Hence 𝑥2

0 =
∑
𝑥2
𝑖 − 2 and 3𝑥0 =

∑8
𝑖=1 𝑥𝑖. Using(

𝑁∑︁
𝑖=1

𝑥𝑖

)2
+

∑︁
1≤𝑖,𝑗≤𝑁

(𝑥𝑖 − 𝑥𝑗)2 = 𝑁
𝑁∑︁
𝑖=1

𝑥2
𝑖 ,

comparison gives

9𝑥2
0 =

(
8∑︁
𝑖=1

𝑥𝑖

)2
≤ 8

8∑︁
𝑖=1

𝑥2
𝑖 = 8(𝑥2

0 + 2).

We see that |𝑥0 | ≤ 4. Equality only occurs if all coordinates 𝑥𝑖, 𝑖 ≥ 1, are equal
which is readily seen to give a contradiction. So one may assume 𝑥0 = 0, 1, 2, 3.
From this the possible roots are quickly found.

The reflection 𝜎𝛼𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 8, permutes the 𝑖-th and 𝑗-th coordinates and
so all permutations of indices can be realized. Hence we only have to see that a
root of any of the four types is conjugate to one of a different type. This follows
from

𝜎𝛼134
(𝛼234) = 𝛼12, 𝜎𝛼123

(𝛽78) = 𝛼456, 𝜎𝛼123
(𝛾3) = 𝛽12.

The last assertion follows upon inspection. □
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4.1.D Discriminant forms of the definite Dynkin diagrams. For a sum-
mary see Table 4.1.1. We treat these one by one as follows.
The root lattice 𝐴𝑛 (−1). We claim that 𝑏#

𝐴𝑛 (−1) = ⟨ −𝑛
𝑛+1 ⟩ (and hence 𝑞#

𝐴𝑛 (−1) =

[ −𝑛
2(𝑛+1) ]). To show this, we describe the dual lattice of 𝐴𝑛 (−1):

Lemma 4.1.7. The dual lattice of 𝐴𝑛 (−1) can be identified with the ℚ-valued
lattice 𝐴′

𝑛 := (ℤ𝑛,𝑄𝑛) where

𝑄𝑛 :=

©«

−1 + 𝑠 𝑠 · · · 𝑠

𝑠 −1 + 𝑠 𝑠
...

...
. . .

. . .
...

𝑠 · · · −1 + 𝑠 𝑠
𝑠 · · · 𝑠 −1 + 𝑠

ª®®®®®®®¬
𝑠 =

1

𝑛 + 1
.

The discriminant group is cyclic of order 𝑛 + 1 and generated by any basis vector
𝑒𝑖, 𝑖 = 1, . . . ,𝑛, of ℤ𝑛. In particular, 𝑏#

𝐴𝑛 (−1) (𝑒1, 𝑒1) =
−𝑛
𝑛+1 .

Proof. Let {𝑒1, . . . 𝑒𝑛} be the standard basis of ℤ𝑛. Set

𝑒𝑛+1 = −(𝑒1 + · · · + 𝑒𝑛).

To simplify the notation we shall write 𝑥 ·𝑦 for vectors 𝑥, 𝑦 ∈ 𝐴′
𝑛 instead of 𝑄𝑛 (𝑥, 𝑦).

Observing that

𝑒𝑛+1 · 𝑒𝑗 = 𝑠, 𝑗 ≠ 𝑛 + 1,

𝑒𝑛+1 · 𝑒𝑛+1 = −1 + 𝑠,

one sees that 𝑒𝑛+1 behaves with respect to 𝑄𝑛 just like a basis vector. Using this,
we observe that the lattice 𝐴𝑛 (−1) can be identified with the sublattice of 𝐴′

𝑛

spanned by the roots 𝛼1 = 𝑒1 − 𝑒2,𝛼2 = 𝑒2 − 𝑒3, . . . ,𝛼𝑛 = 𝑒𝑛 − 𝑒𝑛+1 since 𝛼𝑗 · 𝛼𝑗+1 =

(𝑒𝑗 − 𝑒𝑗+1) · (𝑒𝑗+1 − 𝑒𝑗+2) = 1 and since all other products 𝛼𝑗 · 𝛼𝑘, |𝑗 − 𝑘 | ≥ 2, vanish.
Now we can show that the dual of this sublattice is 𝐴′

𝑛. First note that since

𝛼𝑖 · 𝑒𝑗 = (𝑒𝑖 − 𝑒𝑖+1) · 𝑒𝑗 = −𝛿𝑖,𝑗 + 𝑠 + 𝛿𝑖+1,𝑗 − 𝑠 ∈ ℤ,

the lattice 𝐴′
𝑛 is contained in the dual of 𝐴𝑛 (−1). Next note that 𝑒1 can be expressed

as a linear combination of the 𝛼𝑖 as follows

𝑒1 =
1

𝑛 + 1
(𝑛𝛼1 + (𝑛 − 1)𝛼2 + · · · + 𝛼𝑛),

and that there exist similar expressions for 𝑒2, . . . , 𝑒𝑛. Hence 𝐴′
𝑛/𝐴𝑛 (−1) is gener-

ated by the class of any of the vectors 𝑒𝑘. Consequently, [𝐴′
𝑛 : 𝐴𝑛 (−1)] ≥ 𝑛 + 1.

But by (1.8) we also know that [𝐴∗
𝑛 (−1) : 𝐴𝑛 (−1)] = | disc(𝐴𝑛 (−1)) | = 𝑛 + 1 so

indeed 𝐴′
𝑛 = 𝐴∗

𝑛 (−1). Finally,

𝑒1 · 𝑒1 = −1 + 1

𝑛 + 1
=

−𝑛
𝑛 + 1

,

thereby completing the proof. □
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lattice 𝐿 disc(𝐿) discrim. discrim.

group 𝐿∗/𝐿 quadratic form 𝑞#𝐿
𝐴𝑛 (−1) (−1)𝑛 (𝑛 + 1) ℤ/(𝑛 + 1)ℤ [ −𝑛

2(𝑛+1) ]
𝐷8𝑘 (−1) 4 ℤ/2ℤ ⊕ ℤ/2ℤ 𝑢1
𝐷8𝑘+1 (−1) −4 ℤ/4ℤ [ −18 ]
𝐷8𝑘+2 (−1) 4 ℤ/2ℤ ⊕ ℤ/2ℤ [ −14 ] ⦹ [ −14 ]
𝐷8𝑘+3 (−1) −4 ℤ/4ℤ [ −38 ]
𝐷8𝑘+4 (−1) 4 ℤ/2ℤ ⊕ ℤ/2ℤ 𝑣1
𝐷8𝑘+5 (−1) −4 ℤ/4ℤ [ 38 ]
𝐷8𝑘+6 (−1) 4 ℤ/2ℤ ⊕ ℤ/2ℤ [ 14 ] ⦹ [ 14 ]
𝐷8𝑘+7 (−1) −4 ℤ/4ℤ [ 18 ]
𝐸6 (−1) 3 ℤ/3ℤ [ −46 ]⟩
𝐸7 (−1) −2 ℤ/2ℤ [ −34 ]

𝐸8 (−1),𝐸10(−1) 1 0 0
𝐸𝑛 (−1),𝑛 ≥ 11 (−1)𝑛 (𝑛 − 9) ℤ/(𝑛 − 9)ℤ [ 10−𝑛

2(𝑛−9) ]

Table 4.1.1: Discriminant and discriminant quadratic forms for basic root lattices

The root lattice 𝐷𝑛 (−1). We use the description of the lattice 𝐷𝑛 (−1) given in
Lemma 4.1.1 as a sublattice of ℤ𝑛 (−1) of integral vectors whose coordinate sums
are even. It follows that the dual lattice is

𝐷∗
𝑛 (−1) = ℤ𝑛 + 1

2ℤ(1, · · · , 1).

Let {𝑒1, . . . , 𝑒𝑛} be the standard basis of ℤ𝑛. The quotient 𝐷∗
𝑛 (−1)/𝐷𝑛 (−1) consists

of the classes mod 𝐷𝑛 (−1) of the vectors 0 and

𝑒 =
1

2
(𝑒1 + · · · + 𝑒𝑛), 2𝑒, 3𝑒 (𝑛 odd)

𝑓 = 𝑒1, 𝑔 =
1

2
(𝑒1 + · · · + 𝑒𝑛), ℎ =

1

2
(−𝑒1 + 𝑒2 + · · · + 𝑒𝑛) (𝑛 even).

We shall denote the classes of the above elements by putting a bar above the
vectors. The resulting group is cyclic of order 4 precisely if 𝑛 is odd, and isomorphic
to the Klein 4-group ℤ/2ℤ⊕ℤ/2ℤ in the even case. We write a dot for the standard
euclidean product on ℤ𝑛.
𝑛 is odd: a generator of the group is given by 𝑒 and 𝑞# (𝑒) ≡ − 1

8𝑛 mod ℤ, that is,
the discriminant bilinear and quadratic form is isometric to ⟨−𝑛

4 ⟩. The isometry

class of the discriminant quadratic form 𝑞#
𝐷𝑛 (−1) depends on the value of 𝑛 mod 8

and so there are 4 isometry types.
𝑛 is even: the two generators are 𝑓 and 𝑔 with 𝑞# (𝑓) ≡ 1

2 mod ℤ, 𝑞# (𝑔) ≡
𝑛
8 mod ℤ. So, if 𝑛 ≡ 0 mod 8 the discriminant form takes the values 1

2 , 0 modulo
integers on the generators which means that we have 𝑢1. If 𝑛 ≡ 4 mod 8 we
get 1

2 ,
1
2 modulo integers which gives 𝑣1. In the two other cases the form splits:

for 𝑛 ≡ ±2 mod 8 the four values are 0, 12 ,∓
1
4 ,∓

1
4 modulo integers and we get

⟨∓12 ⟩ ⦹ ⟨∓12 ⟩. The results are summarized in Table 4.1.1.



88 4 Forms Related to Graphs

The root lattice 𝐸𝑛 (−1). We use the representation as a sublattice of the Lorentz
lattice ℤ1,𝑛 (cf. (4.4)). A small calculation shows that for 𝑛 ≠ 9

𝑦 =
1

𝑛 − 9
(−3, 1, 1, . . . , 1,−𝑛 + 10) ∈ 𝐸𝑛 (−1) ⊗ ℚ

generates the discriminant group, a cyclic group isomorphic to ℤ/|𝑛 − 9|ℤ. We get

𝑞(𝑦) = 1

2
𝑦 · 𝑦 =

1

2
· 𝑛 − 10

9 − 𝑛
mod ℤ.

It follows that the discriminant quadratic form of 𝐸𝑛 (−1) is ⟨ 10−𝑛𝑛−9 ⟩. In particular,
𝐸8 (−1) and 𝐸10 (−1) are unimodular, as we already saw in Section 4.1.

4.2 Other Root Lattices

In this section we consider positive semi-definite lattices spanned by 𝑘-roots where 𝑘 is

not fixed.

To agree with the existing literature, in the present section the lattice will be pos-
itive definite. Of course a negative semi-definite lattice 𝐿 transforms in a positive
semi-definite one by replacing it by 𝐿(−1). Classically, in the positive definite case,
one also assumes that 𝑄𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗. To relate the two conventions, we use a
weighted graph Γ with 𝑛 vertices 𝑣1, . . . , 𝑣𝑛 representing the lattice 𝐿(−1). We put
negative integral weights −𝑄𝑗𝑗 on the vertices, 𝑗 = 1, . . . ,𝑛, and we draw an edge
between 𝑣𝑖 and 𝑣𝑗 if 𝑄𝑖𝑗 ≠ 0 and give it weight 𝑄𝑖𝑗 in case 𝑄𝑖𝑗 ≠ 1. This weight is
an integer but a priori it might be negative. Conversely, such a weighted graph Γ
yields an integral lattice 𝐿Γ, but not necessarily a root lattice.

To obtain a criterion for 𝐿Γ to be a root lattice, let us first consider the abstract
situation of a plane spanned by two roots 𝛼, 𝛽 ∈ 𝐿 to which the form restricts
positive definitely. Since the reflection

𝜎𝛼 (𝑥) = 𝑥 − 2𝑥 · 𝛼
𝛼 · 𝛼 𝛼

preserves the lattice 𝐿, for any root 𝛽, the integrality condition

2𝛽 · 𝛼
𝛼 · 𝛼 ∈ ℤ (4.6)

holds, and likewise if we interchange 𝛼 and 𝛽. The product of these numbers is
related to the angle 𝜃𝛼,𝛽 between the roots 𝛼 and 𝛽:

4
(𝛼 · 𝛽)2

(𝛼 · 𝛼) (𝛽 · 𝛽) = 4 cos2 (𝜃𝛼,𝛽) = 𝑠𝛼𝛽 ∈ ℤ. (4.7)

This inequality has far-reaching consequences:
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Lemma 4.2.1. Let 𝛼, 𝛽 be independent roots such that the form is positive definite
on the plane spanned by these roots. Assume also that 𝛼 · 𝛼 ≤ 𝛽 · 𝛽 and that the
angle between the two roots is obtuse. Then we have

𝜃𝛼,𝛽 = 𝜋 − 𝜋

𝑚𝛼,𝛽
,𝑚𝛼,𝛽 ≥ 2

and only the following possibilities occur:

𝑚𝛼𝛽 𝑠𝛼𝛽 = 4 cos2 (𝜃𝛼,𝛽) 𝛼 · 𝛽/𝛼 · 𝛼 𝛽 · 𝛽/𝛼 · 𝛼
2 0 0 1
3 1 −1/2 1
4 2 −1 2
6 3 −3/2 3

Proof. Condition (4.7) implies that 4 cos2 (𝜃𝛼,𝛽) ∈ {0, 1, 2, 3, 4}. We abbreviate

𝜆 = 𝛽 · 𝛽/𝛼 · 𝛼 and let 𝑠 = 𝑠𝛼𝛽 ∈ {0, 1, 2, 3, 4}. The product of the two integers 2
𝛼·𝛽
𝛼·𝛼 ,

2
𝛼·𝛽
𝛽·𝛽 belongs to {1, 2, 3, 4}. Analyzing the possibilities leads to the entries in the

table. □

• •𝛼 𝛽

∞
or � � if 𝛼 · 𝛼 = 𝛽 · 𝛽, 𝜃𝛼𝛽 = 𝜋

or 𝛼 · 𝛼 = 4𝛽 · 𝛽, 𝜃𝛼𝛽 = 𝜋.

• •𝛼 𝛽

3
or � � if 3𝛼 · 𝛼 = 𝛽 · 𝛽, 𝜃𝛼𝛽 = 5

6𝜋

• •𝛼 𝛽

2
or � � if 2𝛼 · 𝛼 = 𝛽 · 𝛽, 𝜃𝛼𝛽 = 3

4𝜋

• •𝛼 𝛽
if 𝛼 · 𝛼 = 𝛽 · 𝛽, 𝜃𝛼𝛽 = 2

3𝜋

Table 4.2.1: Edges in Dynkin diagrams

Remark 4.2.2. 1. The conditions of Lemma 4.2.1 are equivalent to the rotation
𝜏𝛼𝛽 = 𝜎𝛼◦𝜎𝛽 having finite order. To see this, one first observes that

Tr(𝜏𝛼𝛽) = −2 + 4
(𝛼 · 𝛽)2

(𝛼 · 𝛼) (𝛽 · 𝛽)

and so Tr(𝜏𝛼𝛽) < 2 is equivalent to (𝛼 · 𝛼) (𝛽 · 𝛽) > (𝛼 · 𝛽)2 which is a necessary
and sufficient condition for 𝑃 to be a definite sublattice. On the other hand, if
𝜏𝛼𝛽 ≠ id has finite order, the two complex conjugate eigenvalues are roots of unity,
say exp(2𝜋𝒊𝑐) and exp(−2𝜋𝒊𝑐), 𝑐 ∈ ℚ−ℤ, with sum 2 cos(2𝜋𝑐) < 2. So 𝑃 is definite
and we are in the situation of the lemma.

In the more general situation where we assume that 𝑏 |𝐿 takes real values, a
group generated by reflections 𝜎𝛼 is called a Coxeter group if each rotation
𝜏𝛼𝛽 = 𝜎𝛼◦𝜎𝛽 has finite order 2𝑠𝛼𝛽 = 𝑚𝛼𝛽, and the corresponding graph is called a
Coxeter graph.
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2. Allowing 𝑚𝛼,𝛽 = ∞ gives 𝑠𝛼,𝛽 = 4 (angle 𝜋) and 𝛽 · 𝛽 = 𝛼 · 𝛼 or 𝛽 · 𝛽 = 4𝛼 · 𝛼.
This is the last graph in Table 4.2.1. It occurs indeed for hyperbolic type lattices.
See Example 17.2.10.3.

Suppose now that 𝐿 is a root lattice with a basis of roots 𝑅 = {𝑣1, . . . , 𝑣𝑛}. Be-
sides the graph we just described, which represents the Gram matrix with respect
to 𝑅, there is another graph, the Dynkin diagram . It is the graph consisting of
𝑛 vertices 𝑣𝑖, 𝑖 = 1, . . . ,𝑛, and with 𝑟𝑖,𝑗 = (𝑣𝑖 · 𝑣𝑖)/(𝑣𝑗 · 𝑣𝑗) edges between 𝑣𝑖 and
𝑣𝑗 (note that if 𝑣𝑖 · 𝑣𝑖 ≥ 𝑣𝑗 · 𝑣𝑗 , Lemma 4.2.1 implies that the number 𝑟𝑖𝑗 is an
integer). If the angle between roots is 0 or 𝜋 one puts a thick edge between the
roots. Alternatively, one assigns the number 𝑠𝛼𝛽 to the edge in case 𝑠𝛼𝛽 > 1. See
Table 4.2.1.

Note that only the proportion between the squared lengths is determined. This
allows for adjusting to minimal integral lengths as illustrated for the following
classical examples of lattices with roots of varying length. Note that since in these
examples 𝜃𝛼𝛽 ≠ ∞, the scaling makes the numbers 𝑠𝛼𝛽 and −𝛼 · 𝛽 equal. Hence the
alternative way of giving the Dynkin diagram (the left-hand side of Table 4.2.1)
gives the graph for the corresponding negative definite root lattice.

Examples 4.2.3. 1. The lattice 𝐺2. This is the lattice ℤ𝑒1 ⊕ ℤ𝑒2 with sym-
metric form given by the Gram matrix(

2 −3
−3 6

)
.

This is a positive definite form and the two reflections 𝜎𝑒𝑖 , 𝑖 = 1, 2, which turn
out to generate the full isometry group also denoted 𝐺2. Observe that 𝑒1 is
the 2-root associated to 𝜎𝑒1 and 𝑒2 is the 6-root associated to 𝜎𝑒2 . The two
make an angle of 5𝜋/6 radians and 𝐺2 is the symmetry group of a regular
6-gon with its barycenter in the origin. The group is one of the classical
finite reflection groups, cf. [47, Table IV]. Here is the graph of 𝐺2 (−1) and
its Dynkin diagram:

•◦ •
−2 −6

3
� �

Graph 𝐺2 (−1) and Dynkin diagram 𝐺2

2. The lattice 𝐹4. This is the lattice ℤ𝑒1 ⊕ · · · ⊕ℤ𝑒4 with symmetric form given
by the Gram matrix ©«

2 −1 0 0
−1 2 −1 0
0 −1 1 −1
0 0 −1 1

ª®®®¬
It is positive definite and has 𝑘-roots for 𝑘 = 1, 2. Its isometry group turns out
to be generated by the reflections in roots 𝑒1, . . . , 𝑒4, the four basis vectors.

• •• •
−2 −2 −1 −1

� �• •
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Graph 𝐹4 (−1) and Dynkin diagram 𝐹4

The group is the classical reflection group of order 1152 which is the sym-
metry group of the so-called 24-cell in ℝ4. See for example [47, Table I (ii)
and Table IV].

3. Two other important classes are the two closely related odd lattices 𝐵𝑛 and
𝐶𝑛. To the first there corresponds a negative definite lattice 𝐵𝑛 (−1) described
by the following graph. The numbers above the vertices 𝑥 indicate whether
2𝑞(𝑥) = −2 or = −1. All edges indicate intersection 1 between corresponding
roots.

• • • •
−2 −2 −2 −1

• • � �

The graph 𝐵𝑛 (−1) and Dynkin diagram 𝐵𝑛

This is in accordance with the convention for the root system1 𝐵𝑛 which has
a basis of roots {𝛼1, . . . ,𝛼𝑛−1,𝛼𝑛} such that the length of the first 𝑛 − 1 roots
is the same, but 𝛼𝑛 has shorter length with ratio

√
2 between the two. If

we scale lengths so that 𝑏(𝛼1,𝛼1) = 2, then indeed 𝑏(𝛼𝑛,𝛼𝑛) = 1. This gives
the above Dynkin diagram for 𝐵𝑛. There is a variant, denoted 𝐶𝑛, where we
interchange the role of the (−1)-roots and the (−2)-roots. The graph is then
different but the Dynkin diagram is the same, although one sometimes draws
an arrow from the smaller to the larger root to distinguish the two.

The Weyl group is by definition generated by reflections in all roots and in all
three examples this group turns out to be the full orthogonal group. See [26,
Planches II, VIII, IX].

Besides the 𝐴-𝐷-𝐸 series, the preceding examples in fact are the only other
irreducible definite root lattices and they all have a semi-definite extension whose
graphs are as follows.

1. The extended Dynkin diagram 𝐵𝑛.

•
• • • � �

◦

𝛼1

𝛼0

𝛼2 𝛼3 𝛼𝑛−2 𝛼𝑛−1 𝛼𝑛
� ��

𝛼0 𝛼2 𝛼1

The left diagram is for 𝑛 ≥ 3, the right one for 𝑛 = 2. For 𝐵𝑛 all roots except
𝛼𝑛 are (−2)-roots and 𝛼𝑛 is a (−1)-root. The null-space of 𝐵𝑛 is spanned by
𝛼0 + 𝛼1 + 2

∑𝑛
𝑖=2 𝛼𝑛.

2. The extended Dynkin diagram 𝐶𝑛,𝑛 ≥ 2.

• • • � �◦
𝛼0 𝛼1 𝛼2 𝛼𝑛−2 𝛼𝑛−1 𝛼𝑛

For 𝐶𝑛 all roots except 𝛼0 and 𝛼𝑛 are (−1)-roots and 𝛼0, 𝛼𝑛 are (−1)-roots. Its
null-space is spanned by 𝛼0 + 𝛼𝑛 + 2

∑𝑛
𝑖=1 𝛼𝑛−1.

1For the background on root systems, see e.g. [26, 103].
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3. The extended Dynkin diagram 𝐹4.

� �• •◦ ◦
𝛼0 𝛼1 𝛼2 𝛼3 𝛼4

For 𝐹4 the roots 𝛼0,𝛼1 and 𝛼2 are (−1)-roots while 𝛼3 and 𝛼4 are (−2)-roots. Its
null-space is spanned by 𝛼0 + 2(𝛼1 + 𝛼4) + 3𝛼2 + 4𝛼3.

4. The extended Dynkin diagram 𝐺2.

� �◦
𝛼0 𝛼2 𝛼1

For 𝐺2 the root 𝛼1 is a (−2)-root, the other two are (−6)-roots. Its null-space is
spanned by 𝛼0 + 3𝛼1 + 2𝛼2.

Proposition 4.2.4. Let 𝐿 be a positive semi-definite irreducible root lattice of rank
𝑛 with Dynkin diagram Γ. There are two possibilities:

1. 𝑏Γ is positive definite and then Γ = 𝐴𝑛,𝐵𝑛,𝐶𝑛,𝐷𝑛 or 𝐸6,𝐸7,𝐸8, 𝐹2, 𝐺4;

2. 𝑏Γ is positive semi-definite and 𝑏Γ ⊗ ℚ has a one-dimensional null-space
spanned by a vector all of whose coordinates are positive. In that case Γ
is the corresponding extended Dynkin diagram.

The proofs are similar to that of Proposition 4.1.4. See for example [26, Ch.
VI, §4.2–4.3].

4.3 Lattices Obtained From the Euclidean Algorithm

4.3.A Weighted graphs and continued fractions. Up to now we have related
graphs and root lattices with labels −1 or −2 on the vertices. We shall now use
non-zero integer labels on the vertex to denote arbitrary self-intersections. Two
vertices 𝑣,𝑤 are connected if and only if 𝑣 · 𝑤 = 1. We mostly use the simplest
kind of such weighted graphs, namely the connected graphs Γ𝒂 consisting of one
branch as in the following figure where the weights 𝑎𝑗 are assembled in the weight
vector 𝒂 = (𝑎0, . . . , 𝑎𝑛) ∈ ℤ𝑛+1:

• • • •
𝑎0 𝑎1 𝑎𝑛−1 𝑎𝑛

Figure 4.3.1: The graph Γ𝒂

As before, this gives a rank 𝑛 + 1 lattice determined by the symmetric integral
matrix

𝐵Γ𝒂 =

©«

𝑎0 1 0 · · · · · · 0
1 𝑎1 1 0 · · · 0
0 1 𝑎2 1 · · · 0
...

. . .
. . . · · ·

...

0 · · · 1 𝑎𝑛−1 1
0 · · · · · · 0 1 𝑎𝑛

ª®®®®®®®®¬
∈ ℤ(𝑛+1)×(𝑛+1) .
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Using continued fractions, a unique rational number can be assigned to such a
matrix and conversely. The purpose of the section is to explain this.

First of all, the weights {𝑎𝑗} determine a continued fraction which in standard
notation2 reads

[𝑎0, 𝑎1, . . . , 𝑎𝑛] = 𝑎0 −
1

𝑎1 −
1

𝑎2 −
1

. . .
𝑎𝑛−1 −

1

𝑎𝑛
.

.

For example, 2/1 = 2, 2 −
1

2
= 3/2, 2 −

1

2 −
1

2

= 4/3 leading to

𝑛 + 1

𝑛
= [2, . . . , 2︸  ︷︷  ︸

𝑛 times

]. (4.8)

The converse is more involved. A non-zero rational number 𝑡/𝑠 with gcd(𝑠, 𝑡) =
1, 0 < 𝑠 < |𝑡 |, can be written as a continued fraction using (a slightly different
version of) the euclidean algorithm . It starts with the pair (𝑠, 𝑡) and after a
first euclidean division of 𝑡 by 𝑠 we obtain a remainder < 𝑠, subsequent euclidean
divisions are performed with smaller and smaller positive remainders until the
remainder is zero and the process stops:

𝑑0 = 𝑡, 𝑑1 = 𝑠,

𝑑0 = 𝑎0𝑑1 − 𝑑2, 0 < 𝑑2 < 𝑑1,

𝑑1 = 𝑎1𝑑2 − 𝑑3, 0 < 𝑑3 < 𝑑2,

...
...

𝑑𝑛−1 = 𝑎𝑛−1𝑑𝑛 − 𝑑𝑛+1,

𝑑𝑛 = 𝑎𝑛𝑑𝑛+1 𝑑𝑛+1 = gcd(𝑠, 𝑡) = 1.

(4.9)

This gives a continued fraction expansion 𝑡/𝑠 = [𝑎0, . . . , 𝑎𝑛] since, starting with
𝑑0/𝑑1 = 𝑎0 − 𝑑2/𝑑1, one successively finds

𝑑𝑘−1/𝑑𝑘 = 𝑎𝑘−1 −
1

𝑑𝑘/𝑑𝑘+1
.

For example, for the pair (3, 4) the algorithm gives

4 = 2 · 3 − 2, hence 𝑎0 = 𝑑2 = 2,

3 = 2 · 2 − 1, hence 𝑎1 = 2,𝑑3 = 1,

2 = 2 · 1, hence 𝑎2 = 2

2Another standard convention uses plus signs instead.
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and so 4/3 = [2, 2, 2].
Consequently, as asserted, given a fraction 𝑡/𝑠 with gcd(𝑠, 𝑡) = 1, 0 < 𝑠 < |𝑡 |,

the euclidean algorithm (4.9) produces a unique vector of integers 𝒂 = (𝑎0, . . . , 𝑎𝑛)
and hence a weighted graph Γ𝒂 of the type we are considering.

We also need a version of the euclidean algorithm that produces a weight vector
𝒂 with even coordinates since this leads to even forms 𝑏Γ𝒂 . To ensure this, a slight
modification of the above algorithm can be used: one chooses 𝑑𝑖 and 𝑎𝑖 successively
in such a way that 𝑎𝑖𝑑𝑖+1 is the even multiple of 𝑑𝑖+1 closest to 𝑑𝑖. Such a multiple
may be negative and so the last line of the algorithm has to be changed into
𝑑𝑛 = ±𝑎𝑛. Consequently, 𝑑𝑛 should be even which is only possible if 𝑠 and 𝑡 are
not both odd. Indeed, otherwise the proposed procedure forces all 𝑑𝑖 to be odd.

Let us now give the details. Since (𝑠, 𝑡) = 1, the integers 𝑠 and 𝑡 being not both
odd, must have different parity. This yields the following version of the algorithm
(with all 𝑎𝑖 ≠ 0).



𝑑0 = 𝑡, 𝑑1 = 𝑠 0 < 𝑠 < |𝑡 |
𝑑0 = 𝑎0𝑑1 − 𝑑2, 𝑎0 even, 0 < |𝑑2 | < |𝑑1 |,
𝑑1 = 𝑎1𝑑2 − 𝑑3, 𝑎1 even, 0 < |𝑑3 | < |𝑑2 |,
𝑑2 = 𝑎2𝑑3 − 𝑑4, 𝑎2 even, 0 < |𝑑4 | < |𝑑3 |,
...

...

𝑑𝑛−1 = 𝑎𝑛−1𝑑𝑛 − 𝑑𝑛+1, 𝑎𝑛−1 even, 𝑑𝑛+1 = ± gcd(𝑠, 𝑡) = ±1,
𝑑𝑛 = 𝑑𝑛+1𝑎𝑛 𝑎𝑛 even.

(4.10)

Note that in this algorithm the parity of the remainders alternate between even
and odd. Now 𝑑𝑛+1 is odd, so if 𝑡 = 𝑑0 is odd, then 𝑛 is odd; if 𝑡 is even, then 𝑛 is
even. As before this procedure leads to a continued fraction for 𝑡/𝑠.
Remark 4.3.1. Observe that the above procedure with 𝑡 odd and 𝑠 even leads to
odd 𝑛 and so this gives graphs Γ𝒂 with an even number of vertices. In case 𝑡 is even
and 𝑠 odd, one gets graphs with an odd number of vertices. In both situations, the
resulting even integers 𝑎𝑖 are unique and so the resulting even lattices are unique.

For later use we rephrase the two euclidean algorithms using matrices.

Proposition 4.3.2. Let 𝑠, 𝑡 be two co-prime integers with 1 < 𝑠 < |𝑡 |. Setting
𝑑0 = 𝑡,𝑑1 = 𝑠, the (first) euclidean algorithm inductively gives integers 𝑑𝑘, 𝑘 =

2, . . . ,𝑛 + 1, and matrices

𝐴𝑘 :=

(
𝑎𝑘 −1
1 0

)
, 𝑘 = 0, . . . ,𝑛, with 𝐴𝑘

(
𝑑𝑘+1
𝑑𝑘+2

)
=

(
𝑑𝑘
𝑑𝑘+1

)
for 𝑘 < 𝑛.

The integers 𝑎𝑘 are such that 𝑑𝑘 = 𝑎𝑘𝑑𝑘+1 −𝑑𝑘+2 with 0 < 𝑑𝑘+2 < 𝑑𝑘+1 and 𝑑𝑛+1 = 1.
Using the second algorithm one produces even 𝑎𝑘 starting with 𝑠 and 𝑡 that are

not both odd and choosing 𝑎𝑘 such that 𝑎𝑘𝑑𝑘+1 is the even multiple of 𝑑𝑘+1 closest
to 𝑑𝑘. In this case 0 < |𝑑𝑘+1 | < |𝑑𝑘 | and 𝑑𝑛+1 = ±1.

For practical purposes it is better to use instead the inverses 𝐴−1
𝑘

=

(
0 1
−1 𝑎𝑘

)
,

since then starting from (𝑡, 𝑠) we get the required numbers 𝑎0, . . . , 𝑎𝑛 directly.
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Example 4.3.3. Take (𝑠, 𝑡) = (2, 5). For the first algorithm one finds 𝐴−1
0 =(

0 1
−1 3

)
and then 𝐴−1

0

(
5
2

)
=

(
2
1

)
and thus 𝐴−1

1 =

(
0 1
−1 2

)
. So 𝑎0 = 3, 𝑎1 = 2 and so

5/2 = [3, 2].
To get even 𝑎𝑘, one uses instead 𝐴−1

0 =

(
0 1
−1 2

)
with 𝐴−1

0

(
5
2

)
=

(
2
−1

)
giving

𝑑2 = −1 and 𝑎0 = 2, 𝑎1 = −2 and so 5/2 = [2,−2].
The matrices 𝐴𝑘 are also useful to perform a reverse euclidean algorithm. In

order to proceed, we collect some properties of the products of these matrices.

Lemma 4.3.4. Multiplying successive 𝐴𝑘 gives the identity

𝐴𝑘 · · ·𝐴𝑛 = ±
(
𝑑𝑘 −𝑑∗

𝑛−𝑘+1
𝑑𝑘+1 −𝑑∗

𝑛−𝑘

)
, 𝑑∗𝑛−𝑘+1 = 𝑎𝑘𝑑

∗
𝑛−𝑘 − 𝑑∗𝑛−𝑘−1, (4.11)

with 𝑑∗0 = 0 and non-zero 𝑑∗1 = 𝑑𝑛+1,𝑑∗2, . . . ,𝑑
∗
𝑛+1 and where the sign is the sign of

𝑑𝑛+1 = ±1 (this can only be −1 for the second algorithm). Setting 𝑐𝑘 := 𝑑𝑘/𝑑𝑘+1 and
similarly 𝑐∗

𝑘
:= 𝑑∗

𝑘
/𝑑∗

𝑘−1, one has the equalities

𝑎𝑘 = 𝑐𝑘 +
1

𝑐𝑘+1
= 𝑐∗𝑛−𝑘+1 +

1

𝑐∗
𝑛−𝑘

.

For the second algorithm one also has the inequalities 0 < |𝑑∗1 | < · · · < |𝑑∗𝑛 | < |𝑑∗𝑛+1 |.
Proof. The equality (4.11) follows inductively. The inductive step of the euclidean
division (4.9) and the stated recursion formula for 𝑑∗

𝑘
directly give the two expres-

sions for 𝑎𝑘.
To show that 𝑑∗1, . . . ,𝑑

∗
𝑛+1 are non-zero, we consider the right-hand columns of

the matrix in (4.11) for 𝑘 < 𝑛. If 𝑑∗
𝑛−𝑘+1 = 0 or 𝑑∗

𝑛−𝑘 = 0 in such a column, then its
determinant, which equals det𝐴𝑘 · · · det𝐴𝑛 = 1, would be divisible by 𝑑𝑘 or 𝑑𝑘+1.
This can not happen since |𝑑𝑘 | > |𝑑𝑘+1 | > 1 for 𝑘 < 𝑛.

The inequalities follow by induction on 𝑘. For 𝑘 = 𝑛 − 1 relation (4.11) implies
𝑐∗2 = 𝑑∗2/𝑑∗1 = 𝑎𝑛−1. So |𝑑∗2/𝑑∗1 | = |𝑐∗2 | = |𝑎𝑛−1 | is an integer ≥ 2, which starts the
induction. Now |𝑐∗

𝑘+1 | = |𝑎𝑛−𝑘 − 1/𝑐∗
𝑘
| and since the |𝑎𝑘 | are at least 2 and by

induction we may assume that |𝑐∗
𝑘
| > 1, it follows that also |𝑐∗

𝑘+1 | > 1. □

As a consequence of this result, for the second algorithm the integers 𝑑∗
𝑘
follow

the euclidean algorithm for the pair (𝑑∗𝑛,𝑑∗𝑛+1), but in reverse order. Moreover, if
the 𝑎𝑘 are even, the 𝑑

∗
𝑘
alternate between odd and even since 𝑑∗2 = 𝑎𝑛−1 and 𝑑∗1 = ±1.

Finally, remark that the algorithm ends with 𝑎𝑛−1 since 𝑑∗1 = ±1. As an example,

consider 27
4 = [6,−2,−2,−2]. Then 𝐴0𝐴1𝐴2𝐴3 = −

(
27 20
4 3

)
and 20

3 = [6,−2,−2].
Summarizing the preceding discussion, we have shown:

Corollary 4.3.5. Assume we have performed the second algorithm for (𝑠, 𝑡), where
1 < 𝑠 < |𝑡 |, and where 𝑡, 𝑠 are not both odd, yielding a continued fraction 𝑡/𝑠 =

[𝑎0, . . . , 𝑎𝑛] with 𝑎𝑖 even. Suppose 𝑑𝑛+1 = ±1 and write

𝐴0 · · ·𝐴𝑛 = 𝑑𝑛+1

(
𝑡 −𝑠∗
𝑠 −𝑡∗

)
, 𝑠𝑠∗ − 𝑡𝑡∗ = 1. (4.12)
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Then (4.11) gives the (second variant of) the euclidean algorithm for (𝑡∗, 𝑠∗) in
reverse order and yields the continued fraction expansion 𝑠∗/𝑡∗ = [𝑎0, . . . , 𝑎𝑛−1].

4.3.B On the bilinear form associated to the graph 𝚪𝒂. We start with
(𝑠, 𝑡) as before (i.e., 1 < 𝑠 < |𝑡 |, gcd(𝑠, 𝑡) = 1), 𝑠 and 𝑡 not both odd in the case of
the second algorithm. We introduce the following vectors based on the euclidean
algorithm

𝒂 = (𝑎0, . . . 𝑎𝑛) ∈ ℤ𝑛+1,

𝒄 = (𝑐0, . . . , 𝑐𝑛) ∈ ℚ𝑛+1, 𝑐𝑘 = [𝑎𝑘, . . . , 𝑎𝑛]
𝒅 = (𝑑0, . . . ,𝑑𝑛) ∈ ℤ𝑛+1.

Recall that

𝐵Γ𝒂 =

©«

𝑎0 1 0 · · · · · · 0
1 𝑎1 1 0 · · · 0
0 1 𝑎2 1 · · · 0
...

. . .
. . . · · ·

...

0 · · · 1 𝑎𝑛−1 1
0 · · · · · · 0 1 𝑎𝑛

ª®®®®®®®®¬
∈ ℤ(𝑛+1)×(𝑛+1) .

We have:

Lemma 4.3.6. Let 𝐵𝑛+1−𝑘 be the matrix obtained from 𝐵𝑛+1 = 𝐵Γ𝒂 by deleting the
first 𝑘 rows and columns. Then

1. the coordinates of 𝒄 are 𝑐𝑘 = 𝑑𝑘/𝑑𝑘+1, 𝑘 = 0, . . . ,𝑛; and 𝑎𝑘 = 𝑐𝑘 + 1

𝑐𝑘+1
,

𝑘 = 0, . . . ,𝑛 − 1. Moreover, if the 𝑎𝑘 are even, 𝑎𝑘 and 𝑐𝑘 have the same sign;

2. the coordinates of 𝒅 are 𝑑𝑘 = ± det𝐵𝑛+1−𝑘, 𝑘 = 0, . . . ,𝑛, and the sign is the
sign of 𝑑𝑛+1. In particular, disc(𝑏Γ𝒂 ) = ±𝑑0;

3. over ℚ the form given by 𝐵𝑛+1−𝑚 is isometric to the diagonal form diag(𝑐𝑚, . . . , 𝑐𝑛),
𝑚 = 0, . . . ,𝑛.

Proof. We follow either the euclidean algorithm (4.9) (in that case 𝑑𝑛+1 = 1) or
(4.10) (then both signs are possible, i.e., 𝑑𝑛+1 = ±1).
1. The steps 𝑑ℓ = 𝑎ℓ𝑑ℓ+1 − 𝑑ℓ+2 of the euclidean algorithm can be rewritten as
𝑐ℓ = 𝑎ℓ − 1

𝑐ℓ+1
, where we provisionally write 𝑐ℓ = 𝑑ℓ/𝑑ℓ+1. Now 𝑐ℓ = [𝑎ℓ, . . . , 𝑎𝑛] =

𝑎ℓ− 1
[𝑎ℓ+1,...,𝑎𝑛] = 𝑎ℓ− 1

𝑐ℓ+1
. Combining the two recursions with 𝑐𝑛 = 𝑎𝑛 = 𝑑𝑛/𝑑𝑛+1 = 𝑐𝑛

we conclude 𝑐𝑘 = 𝑐𝑘 = 𝑑𝑘/𝑑𝑘+1 for 𝑘 = 0, . . . ,𝑛. Since 𝑐𝑘 = 𝑎𝑘 − 1/𝑐𝑘+1, | 1
𝑐𝑘+1

| < 1
and |𝑎𝑘 | ≥ 2 in case 𝑎𝑘 ≠ 0 is even, 𝑎𝑘 and 𝑐𝑘 have the same sign.
2. We prove this by reverse induction starting with 𝑑𝑛 = 𝑑𝑛+1𝑎𝑛 = ±𝑎𝑛. For the
induction step we expand the determinant of 𝐵𝑛+1−𝑘 along its first column. This
gives det𝐵𝑛+1−𝑘 = 𝑎𝑘 det𝐵𝑛−𝑘 −det𝐵𝑛−𝑘−1 = ±(𝑎𝑘𝑑𝑘+1 −𝑑𝑘+2) = ±𝑑𝑘 completing the
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induction.
3. Set 𝑦𝑚 = 𝑥𝑚 and 𝑦ℓ = 𝑥ℓ + 1

𝑐ℓ
𝑥ℓ−1, ℓ = 𝑚 + 1, . . . ,𝑛. Then one has

𝑛∑︁
𝑘=𝑚

𝑐𝑘𝑦
2
𝑘 = 𝑐𝑚𝑥

2
𝑚 +

∑︁
𝑘>𝑚

𝑐𝑘

(
𝑥𝑘 +

1

𝑐𝑘
𝑥𝑘−1

)2
= 𝑎𝑚𝑥

2
𝑚 − 1

𝑐𝑚+1
𝑥2
𝑚 +

∑︁
𝑘>𝑚

(
2𝑥𝑘𝑥𝑘−1 + 𝑐𝑘𝑥2

𝑘 +
1

𝑐𝑘
𝑥2
𝑘−1

)
= 𝑎𝑚𝑥

2
𝑚 − 1

𝑐𝑚+1
𝑥2
𝑚 +

∑︁
𝑘>𝑚

(
2𝑥𝑘𝑥𝑘−1 + 𝑎𝑘𝑥2

𝑘 −
1

𝑐𝑘+1
𝑥2
𝑘 +

1

𝑐𝑘
𝑥2
𝑘−1

)
=

𝑛∑︁
𝑘=𝑚

𝑎𝑘𝑥
2
𝑘 + 2

𝑛−1∑︁
𝑘=𝑚

𝑥𝑘𝑥𝑘+1. □

The signature of 𝐵Γ𝒂 is the same as that of the diagonal form diag(𝑐0, . . . , 𝑐𝑛)
and so the last assertion of item 1 of Lemma 4.3.6 implies

Corollary 4.3.7. Given two co-prime integers 𝑠, 𝑡 with 1 < 𝑠 < |𝑡 |, 𝑠 and 𝑡 not both
odd. The euclidean algorithm (4.10) yields a unique continued fraction expansion
𝑡/𝑠 = [𝑎0, . . . , 𝑎𝑛] with 𝑎𝑗 even. The associated graph Γ𝒂, 𝒂 = (𝑎0, . . . , 𝑎𝑛), defines
an even bilinear form 𝑏Γ𝒂 . Let 𝑛± be the number of positive, respectively negative
𝑎𝑖. Then the signature of 𝑏Γ𝒂 equals (𝑛+,𝑛−).

Example 4.3.8. Let us revisit Γ = 𝐴𝑚 (−1). We have seen (cf. Eqn. (4.1)) that
disc(Γ) = (−1)𝑚 (𝑚 + 1) and by Eqn. (4.8) we know that −(𝑚 + 1)/𝑚 = [−2, . . . ,−2]
(𝑚-fold repeated). Using this for 𝑚 = 1, . . . ,𝑛 + 1, this shows

𝒂 = (−2,−2, . . . ,−2) ∈ ℤ𝑛+1

𝒄 =

(
−𝑛 + 2

𝑛 + 1
,−𝑛 + 1

𝑛
, . . . ,−2

)
∈ ℚ𝑛+1

𝒅 = ((−1)𝑛+1 (𝑛 + 2), (−1)𝑛 (𝑛 + 1), . . . ,−2) ∈ ℤ𝑛+1.

One checks that these vectors all satisfy the relations of Lemma 4.3.6.

4.3.C Construction of even integral forms with discriminant form ⟨𝒔/𝒕⟩.
We assume, that 𝑠 and 𝑡 are co-prime integers with 0 < 𝑠 < |𝑡 | and that 𝑠 and 𝑡 are
not both odd, so we now allow for 𝑠 = 1. In that case the even bilinear form ⟨𝑡⟩
has discriminant bilinear form ⟨1/𝑡⟩. So we may assume 𝑠 > 1.

Proposition 4.3.9. Let (𝑠, 𝑡) be two co-prime integers satisfying 1 < 𝑠 < |𝑡 | ,
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which are not both odd and such that 𝑡/𝑠 = [𝑎0, . . . , 𝑎𝑛] with 𝑎𝑗 even. Let

𝑄−1 =

©«

𝑠/𝑡 1 0 · · · · · · · · · 0
1 𝑎0 1 0 · · · 0

0 1 𝑎1 1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1 0

0 · · · . . . 1 𝑎𝑛−2 1
0 · · · · · · 0 1 𝑎𝑛−1

ª®®®®®®®®®®®®®¬
.

Then 𝑄 is the Gram matrix of an even integral bilinear form with disc(𝑄) = ±𝑡,
and with discriminant bilinear form (ℤ/𝑡ℤ, ⟨𝑠/𝑡⟩).
Proof. We first prove that 𝑄 is integral. Recall that 𝑄 = (𝑄−1)−1 can be calculated
from det(𝑄) · 𝑄∗, where 𝑄∗ is the adjugate matrix of 𝑄−1. To calculate det

(
𝑄−1),

we expand along the first column. If we remove the first column and row from
𝑄−1, the resulting determinant equals ±𝑠∗ by Lemma 4.3.6 applied to 𝑠∗/𝑡∗. Upon
removing the first two columns and rows, the resulting determinant is ±𝑡∗ (with
the same sign as for the first determinant). Hence, det

(
𝑄−1) = ±(𝑠/𝑡 ·𝑠∗−𝑡∗) = ±1/𝑡,

where the last equality is derived from 𝑠𝑠∗ − 𝑡𝑡∗ = 1. So det(𝑄) = ±𝑡 which ensures
that 𝑄 is indeed integral.

We next show that the diagonal elements of 𝑄 are even by considering 𝑡𝑄∗ and
in particular the cofactors of the diagonal elements of 𝑄−1. Some observations
before we do so. First, by induction it follows that a square 𝑚 by 𝑚 integral
matrix with even diagonal entries and 1’s in positions 𝑖, 𝑗 with |𝑖 − 𝑗 | = 1 (and zero
entries elsewhere) has even determinant if and only if 𝑚 is odd. Secondly, 𝑡 is odd
if and only if 𝑠 is even if and only if 𝑛 is odd. We provisionally write 𝐵 [𝑖, 𝑗], where
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 − 1, for the matrix obtained from 𝑄−1 by deleting the first 𝑖 + 1 rows
and columns and the last 𝑛− 𝑗 rows and columns (so that a square 𝑗 − 𝑖 + 1 matrix
with 𝑎𝑖 , . . . , 𝑎𝑗 along the diagonal remains).

Now we turn to the various cofactors. By the first observation, the cofactor of
the element 𝑠/𝑡 in 𝑄∗ is even if 𝑛 is odd; if 𝑛 is even, 𝑡 is even. So 𝑡𝑄∗ has an even
entry in position (1, 1). The cofactor of 𝑎0 in position (2, 2) in 𝑄∗ multiplied by 𝑡
is the product of 𝑠 and det𝐵 [1,𝑛 − 1] which is even if 𝑛 is even; if 𝑛 is odd, then
𝑠 is even. So 𝑡𝑄∗ has an even entry in position 2, 2. The cases of the cofactors of
𝑎𝑗 , 𝑗 = 1, . . . ,𝑛 − 1, in position (𝑖 + 2, 𝑖 + 2) are all similar to the case 𝑗 = 𝑛 − 1. The
cofactor of 𝑎𝑛−1 multiplied by 𝑡 equals (expand along the first row and column)
𝑠 det𝐵 [0,𝑛 − 2] − 𝑡 det𝐵 [1,𝑛 − 2]. If 𝑛 is odd, then det𝐵 [1,𝑛 − 2] and 𝑠 are even;
if 𝑛 is even, then 𝑡 and det𝐵 [0,𝑛 − 2] are even.

Finally, we have to affirm that 𝑄 represents a form with discriminant bilinear
form ⟨𝑠/𝑡⟩. So, let 𝑏 be the integral bilinear form on ℤ𝑛 whose Gram matrix is 𝑄.
Lemma 1.6.3 tells us that 𝑄−1 is the Gram matrix of the form 𝑏ℚ with respect to
the dual basis of (ℤ𝑛, 𝑏) given by the columns of the matrix 𝑄−1. So 𝑄−1 represents
the discriminant form of 𝑄 and since all entries of 𝑄−1are integral except the top
left entry 𝑠/𝑡, this yields the discriminant form ⟨𝑠/𝑡⟩, as desired. □
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Remark 4.3.10. Since the lattice (ℤ𝑛, 𝑏) is even, the form 𝑏 is the polar form of a
quadratic form 𝑞. This 𝑞 induces the quadratic torsion form [(𝑡/2)/𝑠] if 𝑡 is even,
and [𝑡/(2𝑠)] is 𝑡 is odd.

Example 4.3.11. We continue with the algorithm of Example 4.3.3 for 5/2 =

[2,−2]. Here 𝐴0𝐴1 = −
(
5 2
2 1

)
and so 𝑠∗ = −2, 𝑡∗ = −1. Since 𝑎0 = 2 and 𝑎1 = −2

we find 𝑄−1 =

(
2
5 1
1 2

)
and 𝑄 = −

(
10 −5
−5 2

)
, an even matrix with discriminant −5

and signature (1, 1). By construction the corresponding even lattice has the right
discriminant form ⟨2 · 5−1⟩.

4.4 Lens Spaces

4.4.A Topological background. Given a pair (𝑡, 𝑠) of coprime positive integers,
a lens space 𝐿(𝑡, 𝑠) can be constructed as follows. Let 𝜁 be a primitive 𝑡-th root of
unity. The unit three-sphere can be realized as a submanifold of ℂ2:

𝑆3 = {(𝑧,𝑤) ∈ ℂ2 | 𝑧𝑧 + 𝑤�̄� = 1}.

The group of 𝑡-th roots of unity 𝜇𝑡 ⊂ ℂ× acts coordinate-wise as 𝜁 · (𝑧,𝑤) =

(𝜁 · 𝑧, 𝜁𝑠 · 𝑤), where 𝜁 = exp(2𝜋𝒊/𝑡). This action is without fixed points and hence
the quotient

𝐿(𝑡, 𝑠) = 𝑆3/𝜇𝑡
is an oriented differentiable 3-manifold for which 𝐻1 (𝐿(𝑡, 𝑠),ℤ) = ℤ/𝑡ℤ.

The classification of lens spaces has a long history. The homotopy classification
was first completed by J. H. C. Whitehead:

Theorem 4.4.1 ( [250]). Two lens spaces 𝐿(𝑡, 𝑠) and 𝐿(𝑡, 𝑠′) have the same oriented
homotopy type3 if and only if 𝑠𝑠′ is a quadratic residue modulo 𝑡.

The finer topological classification reads as follows:

Theorem 4.4.2. 𝐿(𝑡, 𝑠) and 𝐿(𝑡′, 𝑠′) are oriented homeomorphic (diffeomorphic)
if and only if 𝑡 = 𝑡′ and either 𝑠 ≡ 𝑠′ mod 𝑡, or 𝑠 ≡ (𝑠′)−1 mod 𝑡.

For the history of this result with references to proofs we refer the reader to the
historical notes at the end of this chapter. We only mention that the proof uses
the so-called Reidemeister torsion which turns out to be a complete topological
invariant. In this section, instead we shall consider a more easily computable
oriented homeomorphism invariant, the index modulo 16. Moreover, its calculation
fits well within the theme of this book since it uses the euclidean algorithm for
(𝑡, 𝑠) and hence is directly related to the quadratic form associated to a graph.

3Two varieties 𝑀 and 𝑀′ are homotopy equivalent or have the same homotopy type if there
are two continuous maps 𝑓 : 𝑀 → 𝑀′ and 𝑔 : 𝑀′ → 𝑀 such that 𝑓◦𝑔 and 𝑔◦𝑓 are homotopic to
the respective identity maps. If 𝑀,𝑀′ are oriented and 𝑓 (or 𝑔) preserve the orientations, one
speaks of oriented homotopy equivalence.
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4.4.B The linking pairing and the index mod 16. In this subsection we
consider three-manifolds 𝑋 which bound a 4-dimensional oriented manifold 𝑌,
that is 𝜕𝑌 = 𝑋. The cup product pairing in the middle cohomology gives

𝐻2 (𝑌, 𝜕𝑌;ℤ) ×𝐻2 (𝑌, 𝜕𝑌;ℤ) → 𝐻4 (𝑌, 𝜕𝑌;ℤ) ≃ ℤ

and via Lefschetz duality [86, Theorem 28.18], [94, Theorem 3.43] this translates
into a symmetric bilinear form, the intersection form

𝑆𝑌 : 𝐻2 (𝑌,ℤ)/(torsion) ×𝐻2 (𝑌,ℤ)/(torsion) → ℤ

as in the case of compact manifolds 𝑌 with 𝜕𝑌 = ∅, (see Eqn. (2.1)). But unlike
for manifolds without boundary, the intersection form need not be unimodular,
that is, it can have non-trivial discriminant form. It is this aspect that we can take
advantage of in case 𝑋 = 𝜕𝑌 is a ℚ-homology sphere.

Let us briefly explain this notion. A ℚ-homology 𝑑-sphere is a (differentiable)
manifold 𝑋 which has the same Betti numbers as the sphere 𝑆𝑑. In other words,
𝐻𝑗 (𝑋,ℚ) = 0 for 𝑗 ≠ 0,𝑑 and 𝐻0 (𝑋,ℚ) ≃ 𝐻𝑑 (𝑋,ℚ) ≃ ℚ. Observe that this allows for
torsion in the homology. Any free action of a finite group on 𝑆3 gives a ℚ-homology
three sphere; lens spaces are such examples.

A seemingly weaker notion is that of an 𝔽2-homology sphere: the definition is
the same, except that instead of Betti numbers we use the numbers dim𝔽2

𝐻𝑗 (𝑋,𝔽2).
It turns out (cf. [99, Lemma 7.3]) that if 𝑋 is an 𝔽2-homology sphere where
𝐻𝑗 (𝑋,ℤ) has at most odd torsion in the range 𝑗 = 1, . . . ,dim𝑋 − 1, then it is
also a ℚ-homology sphere. In particular, if 𝑡 is odd, a lens space 𝐿(𝑡, 𝑠) is an 𝔽2-
homology sphere. The merit of 𝔽2-homology three-spheres is that these are always
the boundary of a closed manifold 𝑌 with nice properties:

Lemma 4.4.3 ( [99, §7]). If 𝑋 is an 𝔽2-homology three-sphere, there exists a
four-manifold 𝑌 with boundary 𝑋 such that

1. 𝐻1 (𝑌,ℤ) has no 2-torsion;

2. 𝑆𝑌 is an even form.

For lens spaces we shall give a direct construction of a simply connected four-
manifold 𝑌 with boundary any given lens space 𝐿(𝑡, 𝑠) and with 𝑆𝑌 even (see
Proposition 4.4.5). From now on we assume that we are in this situation. We
use Lefschetz duality for homology [86, 28.18], [94, Theorem 3.43] to relate the
cohomology of 𝑌 and its boundary 𝑋. It states that the orientation induces an
isomorphism

𝐻2 (𝑌, 𝜕𝑌;ℤ) = 𝐻2 (𝑌,𝑋;ℤ) ≃−→ 𝐻2 (𝑌,ℤ).

By the universal coefficient theorem [94, p. 190], if 𝐻1 (𝑌,ℤ) has no torsion, there
is also an isomorphism

𝐻2 (𝑌,ℤ) ≃ Hom(𝐻2 (𝑌,ℤ),ℤ).
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Consequently, in our situation, the exact sequence for the pair (𝑋,𝑌) gives us a
commutative diagram

𝐻2 (𝑌,ℤ)

𝜙

$$

𝛼
// 𝐻2 (𝑌,𝑋;ℤ)

𝛿
//

≀

𝐻1 (𝑋,ℤ) // 0

𝐻2 (𝑌,ℤ)

≀

𝐻2 (𝑌,ℤ)∗ = Hom(𝐻2 (𝑌,ℤ),ℤ).

::

Tracing through the isomorphisms, one can show that 𝜙 is the correlation morphism
for the intersection product so that 𝐻1 (𝑋,ℤ) gets identified with the cokernel of
the correlation map, the discriminant group of 𝑆𝑌 . The discriminant bilinear form
𝑏#𝑆𝑌 on this torsion group therefore yields an induced pairing

L : 𝐻1 (𝑋,ℤ) ×𝐻1 (𝑋,ℤ) → ℚ/ℤ.

This turns out to be the linking pairing which is defined as follows. Take two
classes 𝑐 = [𝛾] and 𝑐′ = [𝛾′] in 𝐻1 (𝑋) = ℤ/𝑡ℤ where 𝛾, 𝛾′ are representative oriented
cycles. Then 𝑡𝑐 = 0 so there is an oriented 2-chain Σ which bounds 𝑡𝛾. Assume
that 𝛾′ is chosen general enough to meet Σ transversely. The intersection number
Σ · 𝛾′ leads to the rational number 𝑡−1 (Σ · 𝛾′) which modulo integers turns out to
depend only on the two torsion classes 𝑐, 𝑐′. See [203, §77]. It is called the linking
number

𝑡−1 (Σ · 𝛾′) = lnk(𝑐, 𝑐′) ∈ ℚ/ℤ.

That the linking numbers indeed give the discriminant pairing L on𝐻2 (𝑋,ℤ)∗/𝐻2 (𝑋,ℤ)
can be seen as follows (up to choices of representatives). By the definition of 𝛿, a
class 𝑐′ lying in the image of 𝛿 is the class of the boundary 𝜕Γ′ of a relative 2-cycle
Γ′ in 𝑌. So we have

𝑡 lnk(𝑐, 𝑐′) = Σ · Γ′ in 𝑌.

Similarly, 𝑐 = 𝛿( [Γ]), where Γ is a 2-chain in 𝑌 with boundary the 1-cycle 𝛾. Hence
Σ − 𝑡Γ is a 2-cycle in 𝑌 and so intersecting this with the relative cycle Γ′ gives

(Σ − 𝑡Γ) · Γ′ ≡ 𝑡 lnk(𝑐, 𝑐′) mod 𝑡ℤ,

since Γ · Γ′ is an integer. On the other hand, because 𝛿( [Σ]) = 0, there is some
𝜎 ∈ 𝐻2 (𝑌,ℤ) with 𝛼(𝜎) = [Σ]. The discriminant bilinear form 𝑏#𝑆𝑌 is given by the
intersection pairing on 𝐻2 (𝑌,ℤ) ⊗ ℚ, and in our identification the classes 𝑐, 𝑐′ ∈
𝐻1 (𝑌,ℤ) correspond to 𝑡−1𝜎 ∈ 𝐻2 (𝑌,ℚ), respectively [Γ′] ∈ 𝐻2 (𝑌,𝑋;ℤ). We
deduce that

𝑏#𝑆𝑌 (𝑡
−1𝜎,Γ′) = 𝑡−1 (Σ − 𝑡Γ) · Γ′ = lnk(𝑐, 𝑐′) ∈ ℚ/ℤ.

What happens if we choose another four-manifold 𝑌′ with 𝜕𝑌′ = 𝑋? We glue
𝑌 and −𝑌′ along the common boundary, the variety 𝑌′ taken with opposite orien-
tation, along the common boundary. Recall we have assumed that 𝑌 and 𝑌′ are
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𝛾′

Σ

𝑡 · 𝛾

Linking number lnk(𝛾, 𝛾′) of 𝛾 and 𝛾′ (here lnk(𝛾, 𝛾′)) = ±1/𝑡).

simply connected. Then the resulting compact oriented four-manifold 𝑌 ∪𝑋 𝑌′ is
simply connected (by van Kampen’s theorem [94, §1.2]) and the intersection form
of 𝑌 ∪𝑋 𝑌′ is the orthogonal direct sum 𝑆𝑌 ⦹ 𝑆𝑌′ (−1). It follows for the indices
that 𝜏(𝑌) − 𝜏(𝑌′) = 𝜏(𝑌 ∪𝑋 𝑌′).

Up to now we did not suppose that 𝑆𝑌 and 𝑆𝑌′ are even forms, but if this is
the case as for lens spaces 𝐿(𝑡, 𝑠) with 𝑡 odd, we can apply Rohlin’s theorem 2.5.7
and infer that the right-hand side 𝜏(𝑌 ∪𝑋 𝑌

′) is divisible by 16. It follows that the
index mod 16 is well defined:

Definition 4.4.4. The index mod 16 of 𝑋 is defined as the index mod 16 of the
intersection form of any bounding fourfold 𝑌 as in Lemma 4.4.3:

𝜏16 (𝑋) := 𝜏(𝑆𝑌) mod 16.

Its opposite, 𝜇(𝑋) := −𝜏16(𝑋) is also called the 𝜇-invariant .

4.4.C Lens spaces via graphs. In this section we shall show that a lens space
is directly related to a graph constructed from the two integers 𝑠 and 𝑡 similar to
the construction of Corollary 4.3.7. Since the associated form is the intersection
form of the four-manifold 𝑌 (𝑠, 𝑡) bounding the lens space 𝐿(𝑠, 𝑡), we can read off
the index modulo 16.

Start with the tautological line bundle 𝐿 on the complex projective line ℙ1 ≃ 𝑆2.
Endow ℙ1 with homogeneous coordinates 𝑧0, 𝑧1. By definition, the fiber of 𝐿 over
the point (𝑧0 : 𝑧1) is the line in ℂ2 spanned by the vector (𝑧0, 𝑧1). In algebraic
geometry language, this line bundle is the dual of the ample line bundle Oℙ1 (1).
The unit circles in the fibers of this bundle trace out an 𝑆1 bundle over 𝑆2. The
total space 𝑋 (−1) of the resulting bundle is the three sphere 𝑆3 as one easily sees.
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The resulting fibration 𝑆3 → 𝑆2 is the Hopf fibration (cf. [94, Example 4.45]).
Similarly, if 𝑋 (−𝑚) is the total space of the circle bundle associated to Oℙ1 (−𝑚),
one has the identification 𝐿(𝑚, 1) = 𝑋 (−𝑚).

There is another way to describe 𝐿(𝑚, 1) by glueing together 𝑆1×𝐷+ and 𝑆1×𝐷−

over the equator 𝐸 where 𝐷± is the slightly enlarged upper (lower) hemisphere. The

glueing 𝑆1×𝐸
𝛾
−→ 𝑆1×𝐸 is given by the matrix

(
−1 0
𝑚 1

)
where we identify the circle

with {exp{(2𝜋𝒊𝑡)} ∈ ℂ | 𝑡 ∈ ℝ}. In other words, we glue via

(exp(2𝜋𝒊𝑥), exp(2𝜋𝒊𝑦))
𝛾
−→ (exp(2𝜋𝒊(−𝑥 +𝑚𝑦)), exp(2𝜋𝒊𝑦)).

It is well known (see e.g. [203, §62, Satz II]) that the lens space 𝐿(𝑡, 𝑠) is obtained

in a similar fashion by glueing via

(
−𝑠 𝑡∗

𝑡 𝑠∗

)
where 𝑠 · 𝑠∗ − 𝑡 · 𝑡∗ = 1.

Any lens space is obtained by means of a procedure which is called plumbing
disc bundles along a tree which we now explain. The starting point are the lens
spaces 𝑋 (𝑎) = 𝐿(−𝑎 , 1) which correspond to a graph with one vertex weighted by 𝑎 .
A graph with two vertices with weights (𝑎1, 𝑎2) leads to plumbing of 𝑋1 = 𝑋 (𝑎1)
and 𝑋2 = 𝑋 (𝑎2) given by the following procedure. Let 𝑌𝑖 be the disc bundle
corresponding to 𝑋𝑖, 𝑖 = 1, 2. Pick a small disc 𝐷𝑖

base
in the base sphere 𝑆2 of 𝑌𝑖 so

that the disc bundle over it is homeomorphic to a product 𝐷𝑖
base

×𝐷𝑖
fiber

. Now glue
𝐷1
base × 𝐷1

fiber to 𝐷2
base × 𝐷2

fiber by flipping the two discs. The plumbing procedure
is available in all dimensions.
For instance in Figure 4.4.2 we show how 1-disc bundles over 𝑆1 are glued together
to give a chain of connected ribbons.

In the present situation, the resulting disc-bundle is described by the glueing
matrix (

−1 0
−𝑎2 1

) (
0 1
1 0

) (
−1 0
−𝑎1 1

)
=

(
−1 0
−𝑎2 1

) (
−𝑎1 1
−1 0

)
.

The boundary is a circle bundle over a one-point union of two copies of 𝑆2. Do-
ing this repeatedly with lens spaces 𝐿(𝑎𝑖 , 1) for 𝑖 = 0, . . . ,𝑛 gives a disc bundle
𝑌 (𝑎0, . . . , 𝑎𝑛) over a surface which is the iterated wedge

𝐸 (𝑛+1) = 𝑆2 ∨ · · · ∨ 𝑆2︸          ︷︷          ︸
𝑛+1 copies

,

of one-point unions of two-spheres. A result of Thom guarantees that the glue-
ing does not depend on choices. See the references in [99]. The boundary
𝑋 (𝑎0, . . . , 𝑎𝑛) = 𝜕𝑌 (𝑎0, . . . , 𝑎𝑛) is a circle bundle over this surface. One can show
that this bundle is also a circle bundle over 𝑆2 by proving that a small deformation
of the ”singular” zero-section, considered as the embedded base manifold 𝐸 (𝑛+1) ,
”smoothes” to a manifold homeomorphic to 𝑆2. We have illustrated this for the
ribbon case of Figure 4.4.2. Here the product of the 1-discs is a blue square with
sides 𝐴,𝐵,𝐴′,𝐵′ which is glued to the second blue square by glueing the sides as
exhibited. The common point of the two middle circles forms a double point of
their union. The part of this singular curve within the square deforms into two
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Figure 4.4.2: Plumbing in dimension 1

𝐴 𝐴′

𝐵′

𝐵

𝐵′

𝐵

𝐴′
𝐴

disjoint arcs. These glue to the remainder of the two circles to give a simple closed
curve. This shows also that we get a 1-disc bundle over 𝑆1.

In the present situation of lens spaces 𝐿(𝑚0, 1), . . . ,𝐿(𝑚𝑛, 1) the resulting glue-
ing matrix becomes(

−𝑠 ∗
𝑡 ∗

)
=

(
−1 0
−𝑚𝑛 1

)
·
(
−𝑚𝑛−1 1
−1 0

)
· · ·

(
−𝑚0 1
−1 0

)
. (4.13)

This shows that 𝑋 (𝑚0, . . . ,𝑚𝑛) is homeomorphic to the lens space 𝐿(𝑡, 𝑠). If we

multiply the preceding equation on the left with

(
0 1
1 0

)
and transpose the result,

we find that for certain integers 𝑠∗, 𝑡∗ with 𝑠𝑠∗ − 𝑡𝑡∗ = 1 we have(
𝑡 −𝑠
𝑠∗ −𝑡∗

)
=

(
−𝑚0 −1
1 0

)
·
(
−𝑚1 −1
1 0

)
· · ·

(
−𝑚𝑛 −1
1 0

)
. (4.14)

From relation (4.12) we see that equation (4.14) is related to the euclidean algo-
rithm for the pair (𝑡, 𝑠∗). It yields the graph Γ𝒂, 𝒂 = (𝑎0, . . . , 𝑎𝑛) = (−𝑚0, . . . ,−𝑚𝑛).
If we reverse the order of the plumbing in equation (4.13) we must reverse the
order of the 𝑚𝑗 and the modified equation (4.14) is associated to the euclidean
algorithm for (𝑡,−𝑠). Of course this procedure neither changes the non-oriented
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graph Γ𝒂 nor the oriented homeomorphism type of 𝐿(𝑡, 𝑠) and we say that 𝐿(𝑡, 𝑠) is
obtained by plumbing circle bundles over 𝑆2 along the graph Γ𝒂. The lens
space 𝐿(𝑡, 𝑠) is the boundary of a disc bundle, say 𝑌 (𝑠, 𝑡). It is simply connected
because, by construction, the base of the fibration, a connected string of 𝑛 + 1 two
spheres – a simply connected topological space – is a deformation retract of 𝑌 (𝑠, 𝑡).
The 2-homology of 𝑌 (𝑠, 𝑡) is a free group with generators 𝛾𝑖 the zero-sections of the
disc bundle over each copy 𝑆2 in the string of spheres. Two consecutive generators
meet in a point and one can show that 𝛾𝑖 · 𝛾𝑖 = −𝑚𝑖.

The usual euclidean algorithm does not always give a bounding fourfold 𝑌 (𝑠, 𝑡)
with an even intersection form. However, this will be the case if 𝑡 and 𝑠 are not
both odd and we use the modified euclidean algorithm (4.10). Summarizing:

Proposition 4.4.5. The lens space 𝐿(𝑡, 𝑠) is homeomorphic to the threefold ob-
tained by plumbing 𝑆1-bundles over 𝑆2 along the graph Γ(−𝑚0,...,−𝑚𝑛) where

−𝑡/𝑠 = [−𝑚𝑛, . . . ,−𝑚0].

The lens space 𝐿(𝑡, 𝑠) bounds an oriented simply connected 4-dimensional manifold
𝑌 (𝑡, 𝑠) which is a disc bundle over a string of 𝑛+1 one-point connected two-spheres.
Its homology classes give a basis of 𝐻2 (𝑌 (𝑡, 𝑠),ℤ). The Gram matrix of the inter-
section pairing with respect to this basis is the matrix 𝐵Γ, Γ = Γ(−𝑚0,...,−𝑚𝑛). If 𝑠 and
𝑡 have different parity, one may assume that the 𝑚𝑖 are even and then the index
mod 16 of the lens space 𝐿(𝑡, 𝑠) equals 𝜏(𝐵Γ) mod 16.

To deal with the case where 𝑠 and 𝑡 are both odd, we first introduce the orien-
tation reversing diffeomorphism 𝑐 : (𝑧1, 𝑧2) ↦→ (𝑧1, 𝑧2) of ℂ2. Note that

𝑐◦𝜁 · (𝑧1, 𝑧2) = 𝑐(𝜁𝑧1, 𝜁𝑠𝑧2)
= (𝜁𝑧1, 𝜁−𝑠𝑧2)
= 𝜁−𝑠◦𝑐(𝑧1, 𝑧2).

This shows that the lens spaces 𝐿(𝑡, 𝑠) and −𝐿(𝑡, 𝑡 − 𝑠) are oriented homeomorphic.
So, if 𝑠 and 𝑡 are both odd, 𝑡 − 𝑠 is even and we may instead consider −𝐿(𝑡, 𝑡 − 𝑠).

We now give some examples where we use the euclidean algorithm (4.10) to
calculate the index mod 16. If 𝑠 and 𝑡 are both odd, we instead apply it to 𝑡 and
𝑡 − 𝑠.

Example 4.4.6 (Non-diffeomeorphic lens spaces of the same homotopy type).
Let us consider 𝐿(7, 𝑠). As we just explained, 𝐿(7, 𝑠) = −𝐿(7, 7 − 𝑠) and so we need
only consider even 𝑠. It is easy to see (cf. also (4.8)) that the relevant continued
fractions are given by

7

2
= 4 − 1

2
= [4, 2]

7

4
= 2 − 1

4
= [2, 4]

7

6
= [2, . . . , 2︸  ︷︷  ︸

6 times

].
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By the above remarks, observing the change of sign in Proposition 4.4.5, this gives

𝜏16 (𝐿(7, 5)) = −𝜏16 (𝐿(7, 2)) = −2 mod 16

𝜏16 (𝐿(7, 3)) = −𝜏16 (𝐿(7, 4)) = −2 mod 16,

𝜏16 (𝐿(7, 1)) = −𝜏16 (𝐿(7, 6)) = −6 mod 16.

By Theorem 4.4.2 we have 𝐿(7, 2) ∼homeo 𝐿(7, 4) (since 4 · 2 ≡ 1 mod 7) and hence
also 𝐿(7, 5) ∼homeo 𝐿(7, 3). We see that in this case the signature mod 16 gives a
complete topological classification. However, by the homotopy classification The-
orem 4.4.1, the lens spaces 𝐿(7, 1),𝐿(7, 2) and 𝐿(7, 4) have the same oriented ho-
motopy type which differs from the collective homotopy type of 𝐿(7, 3),𝐿(7, 6)
and 𝐿(7, 5). The upshot is that there are two oriented homotopy types but three
oriented homeomorphism types.

Remark. The linking pairing on 𝐿(𝑠, 𝑡) gives the torsion quadratic form ⟨ 𝑠𝑡 ⟩. In fact
the isometry class of the torsion form classifies lens spaces up to homotopy. In this
example the two non-isometric torsion quadratic forms are ⟨ 17 ⟩ and for example
⟨ 67 ⟩, since 1 is a quadratic residue modulo 7, but 6 is not. The example exhibits
forms with different 𝜇-invariants but isometric linking forms such as the ones for
𝐿(7, 1) and 𝐿(7, 2).

Outlook. As we saw, the 𝜇-invariant of a lens space is computed from the
intersection form of a fourfold having the lens space as its boundary. In
Section 12.1 we define the index mod 8 for any torsion quadratic form.
In the preceding example we see that the linking pairings on 𝐿(7, 1) and
𝐿(7, 2) have the same index mod 8 since 6 ≡ −2 mod 8. The reason that the
construction in loc. cit. gives a mod 8 invariant is because even unimodular
forms have index divisible by 8. However, because of Rohlin’s theorem,
two even forms associated to the same lens space differ by even unimodular
forms which have index modulo 16. This geometric reason explains why
the 𝜇-invariant is a finer invariant.

4.5 Surface Singularities, Surface Fibrations and Mordell–
Weil Lattices

4.5.A Some special singularities. In the previous section we considered the
action of the cyclic group of 𝑡-th roots of unity 𝜇𝑡 ≃ ℤ/𝑡ℤ on the complex plane
with coordinates (𝑧,𝑤) given by

𝜌𝑡,𝑠 (𝜁) (𝑧,𝑤) = (𝜁 · 𝑧, 𝜁𝑠 · 𝑤). (4.15)

We restricted the action to the unit three sphere 𝑆3 in ℂ2 and investigated prop-
erties of the resulting lens space 𝐿(𝑡, 𝑠). The action is without fixed points on 𝑆3.
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In this section we consider the action on ℂ2 where it has a unique fixed point, the
origin. Hence

𝑊𝑡,𝑠 := ℂ2/𝜌𝑡,𝑠 (𝜇𝑡)

has a singularity at the origin. It is called the Hirzebruch–Jung singularity
𝐴𝑡,𝑠.

The disk bundle 𝑌 (𝑡, 𝑠) considered in Proposition 4.4.5 constructed using the
non-modified euclidean algorithm (4.9) has a natural complex structure, as shown
in [15, Ch. III.5]. Moreover, away from the zero section this structure is compati-
ble with the complex structure on [ℂ2 − {0}]/𝜌𝑡,𝑠 (𝜇𝑡). The zero section of the disc
bundle is a string of complex projective lines 𝐸 (𝑛+1) := 𝐸1 ∪ · · · ∪ 𝐸𝑛+1 whose inter-
section behaviour is given by the graph Γ(−𝑚0,...,−𝑚𝑛) where −𝑡/𝑠 = [−𝑚𝑛, . . . ,−𝑚0].
Hence 𝐸𝑗 · 𝐸𝑗 = −𝑚𝑗 , and consecutively numbered 𝐸𝑗 meet transversely in a point
and there are no other intersections between the curves 𝐸𝑗 . The graph Γ(−𝑚0,...,−𝑚𝑛)
is called the dual graph of the configuration consisting of the 𝐸𝑗 . Glueing

𝑌 (𝑡, 𝑠) and ℂ2 − {0} along 𝑌 (𝑡, 𝑠) −𝐸 (𝑛+1) results in a complex surface 𝑊𝑡,𝑠 together
with a holomorphic map 𝜋 : 𝑊𝑡,𝑠 −→ 𝑊𝑡,𝑠 which is biholomorphic outside 𝐸 (𝑛+1)

and contracts 𝐸 (𝑛+1) to the singularity at 0. The subvariety 𝐸 (𝑛+1) is called the
exceptional divisor . A holomorphic map such as 𝜋 from a smooth surface to a
surface with an isolated singularity 𝑝 and which is biholomorphic outside 𝜋−1𝑝 is
a resolution of the singularity 𝑝. The simplest example is the singularity 𝐴2,1,
an ordinary double point with local equation 𝑢𝑣 = 𝑤2. The exceptional subvariety
consists of a single ℙ1 with self-intersection −2. More generally, we may consider
𝐴𝑛+1,𝑛 with local equation 𝑢𝑣 = 𝑤𝑛+1. This is also a double point, usually denoted
𝐴𝑛. By Eqn. (4.8) one has 𝑛+1

𝑛 = [2, 2, . . . , 2] (𝑛 times), and so the exceptional set
consists of a string of 𝑛 curves with self-intersection −2. In other words, its dual
graph is 𝐴𝑛 (−1).

4.5.B On isolated surface singularities. Any isolated singularity can be desin-
gularised in several ways but there is a canonical way to do this such that the
exceptional divisor does not contain (−1)-curves. See e.g. [15, §III.6]. Moreover,
the intersection matrix for the components of the exceptional divisor is always
negative definite as we shall now demonstrate. We first recall that the group of
divisors on an algebraic surface 𝑋 modulo homological equivalence by definition
is the Néron–Severi group NS(𝑋) of 𝑋. It has finite rank 𝜌(𝑋), the Picard
number of 𝑋. We can now show our claim:

Proposition 4.5.1 (Mumford [163]). The intersection matrix for the components
of the exceptional divisor of an isolated singularity is negative definite.

Proof. Suppose 𝑝 is an isolated singular point in a complex projective variety
�̄� ⊂ ℙ𝑛 of dimension 2 and let

𝜋 : 𝑋 → �̄�

be a resolution of singularities. Pick a hyperplane 𝐻 in ℙ𝑛 not passing through 𝑝
and let 𝐷 = 𝜋−1 (𝐻∩�̄�). Two hyperplanes intersect in a codimension 2 linear space
which generically meets the surface �̄� in a finite (positive) number of points, the
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degree of �̄�. Hence we have 𝐷 · 𝐷 = 𝐻 ·𝐻 > 0. Any component of the exceptional
divisor 𝐸 is orthogonal to 𝐷. The algebraic index theorem (cf. Theorem B.2.6)
states that the intersection pairing on NS(𝑋) is non-degenerate and has signature
(1, 𝜌 − 1). So it is negative definite on the orthogonal complement of 𝐷. □

We shall now discuss some singularities which play a major role in this book.
The quotient singularities 𝐴𝑛 we discussed in the previous paragraph are special
cases of the so-called du Val singularities. For the remaining du Val singularities

Table 4.5.1: List of du Val singularities

Name equation dual graph
𝐴𝑛 𝑢𝑣 + 𝑡𝑛+1 = 0 𝐴𝑛 (−1)
𝐷𝑛 𝑢2 + 𝑡𝑣2 + 𝑡𝑛−1 = 0 𝐷𝑛 (−1)
𝐸6 𝑢2 + 𝑣3 + 𝑡4 = 0 = 0 𝐸6 (−1)
𝐸7 𝑢2 + 𝑣3 + 𝑣𝑡3 = 0 𝐸7 (−1)
𝐸8 𝑢2 + 𝑣3 + 𝑡5 = 0 𝐸8 (−1)

the dual graph is one of the graphs of type 𝐷 or 𝐸 which we have encountered in
Section 4.1. These are not cyclic quotient singularities since their dual graphs
have vertices where 3 or more edges come together. However, as we recall below in
Proposition 4.5.2, these are still quotient singularities, i.e. singularities obtained
by taking quotients by finite groups, but in this case these groups are not cyclic. A
list of local equations for these singularities is given in [15, Ch. III.7]. The reader
also finds an explicit procedure to resolve such a singularity and this process shows
that indeed the dual graph for the exceptional divisor is exactly the corresponding
graph we just listed.

The du Val singularities are precisely the so-called rational surface singu-
larities which have several equivalent characterizations collected in A. Durfee’s
survey paper [57]:

Proposition 4.5.2. Let 𝑥 ∈ �̄� be an isolated surface singularity and let 𝑋 be the
minimal resolution of singularities of �̄�. The singularity 𝑥 is rational if one of the
following equivalent conditions is true:

1. 𝐾𝑋 is trivial in the neighborhood of the exceptional locus;

2. 𝑥 is a Du Val singularity;

3. 𝑥 is an isolated quotient singularity, that is, there is a neighborhood of 𝑥 in
�̄� which is biholomorphic to 𝑈/𝐺 where 𝑈 is a neighborhood of the origin in
ℂ2 and 𝐺 is a finite subgroup of SU (2).
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4.5.C Surface fibrations give semi-definite lattices. By definition a sur-
face fibration is a holomorphic map 𝑓 : 𝑋 → 𝐶 from a surface 𝑋 to a smooth
curve 𝐶 with connected curves as fibers. Let 𝐹 be the generic (smooth) fiber.
Since two such fibers are clearly homologous as cycles and since different fibers
don’t meet, we have 𝐹 · 𝐹 = 0. Let

∑
𝑚𝑖𝐷𝑖 be a reducible fiber with irreducible

components 𝐷𝑖 and with dual graph Γ.

Lemma 4.5.3 (Zariski’s Lemma). Denote the span of the classes of the 𝐷𝑗 by
⟨Γ⟩ ⊂ NS(𝑋). Then the intersection form restricted to ⟨Γ⟩ is negative semi-definite.
Its null-space is one-dimensional and spanned by the class [𝐹] of a generic fiber.

Proof. The intersection form on ⟨Γ⟩ is negative semi-definite since it is the orthog-
onal complement of the isotropic vector [𝐹] in a lattice of signature (1, 𝜌(𝑋) − 1).
Since Γ is connected, Lemma 4.1.4 then implies that the null-space of ⟨Γ⟩ is one-
dimensional and spanned by [𝐹]. □

Remark. It is possible that 𝑓 admits multiple fibers with multiplicity > 1 (this
cannot occur if the fibration has a section). For a multiple fiber there are local
coordinates (𝑢, 𝑣) in 𝑋 such that the fibration is given by 𝑓(𝑢, 𝑣) = 𝑣𝑘. In that
case the fiber 𝐹0 over 𝑣 = 0 has multiplicity 𝑘 and thus [𝐹0] = 𝑘 · [𝐹].

Next, we investigate a special case, that of a fibration in genus 1 curves, also
called an elliptic fibration . A surface equipped with an elliptic fibration is called
an elliptic surface . We assume in addition that there is a section, and that 𝑓 is
relatively minimal , that is, 𝑋 does not contain (−1)-curves as component of a
fiber of 𝑓. The canonical divisor of 𝑋 is an integral multiple of the class of a fiber,
as expressed by the canonical bundle formula

[𝐾𝑋] = 𝑟 · [𝐹], 𝑟 = 2𝑔(𝐶) − 2 + 1

12
𝑒(𝑋). (4.16)

This formula follows from [15, Ch. V, Thm. (12.1), Prop. (12.2)], stating that
𝐾𝑋 = 𝑓∗𝐿 where 𝐿 is a line bundle on the curve 𝐶 of degree 2𝑔(𝐶)−2+𝜒(O𝑋), where
𝜒(O𝑋) = 1

12 (𝑐
2
1 (𝑋) + 𝑐2 (𝑋)). But since 𝑐21 (𝑋) = 𝐾𝑋 ·𝐾𝑋 = 𝑓∗𝐿 · 𝑓∗𝐿 = 0, the relation

(4.16) follows. Using the canonical bundle formula one arrives at a description of
the possible singular fibers:

Corollary 4.5.4. Suppose that 𝑓 : 𝑋 → 𝐶 is a fibration in elliptic curves with a
section. Then the dual graph of a reducible singular fiber is an extended Dynkin
diagram of type 𝐴-𝐷-𝐸.4

Proof. Suppose that 𝐹 is a reducible singular fiber. An irreducible component 𝐶𝑖
of 𝐹 is necessarily a smooth ℙ1 and two components 𝐶𝑖 ,𝐶𝑗 can only meet in at
most one point. To see this, by (4.16), one has 𝐾𝑋 · 𝐶𝑖 = 𝑟𝐹 · 𝐶𝑖 = 0 in this case.
Hence, by the adjunction formula (B.7),

−2 ≤ 2𝑝𝑎 (𝐶𝑖) − 2 = 𝐶𝑖 · 𝐶𝑖 .
4If 𝑓 has no sections there are multiple fibers. For this case see Remark 4.5.5.
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On the other hand, Zariski’s lemma implies that 𝐶𝑖 · 𝐶𝑖 < 0. Since by the above
formula it is even, we must have 𝐶𝑖 ·𝐶𝑖 = −2 and it follows that 𝑝𝑎 (𝐶𝑖) = 0. Hence,
by (B.7) the curve 𝐶𝑖 is a smooth rational curve. Zariski’s Lemma applied to 𝐶𝑖+𝐶𝑗
then implies that

0 ≥ (𝐶𝑖 + 𝐶𝑗) · (𝐶𝑖 + 𝐶𝑗) = −4 + 2𝐶𝑖 · 𝐶𝑗

and so 𝐶𝑖 ·𝐶𝑗 ∈ {0, 1, 2}. In the last case 𝐶𝑖 +𝐶𝑗 spans the kernel and so Γ = �𝐴1 (−1).
In the other cases we apply Proposition 4.1.4 to see that Γ is one of the extended
Dynkin diagrams of type 𝐴-𝐷-𝐸. □

Remark 4.5.5. In Table 4.5.2 below we give Kodaira’s list of singular fibers (cf.
[15, Ch. V.7]). The multiple fibers are either multiple non-singular elliptic curves
or multiple 𝐴𝑛-fibers. The irreducible singular fibers are either nodal (𝐴0) or
cuspidal (type 𝐼𝐼). There are two 𝐴1-fibers: the two components meet in two
points transversally or are tangent in one point. There are also two type 𝐴2-fibers:
the three components either meet transversally and form a cycle or they meet
transversally in one point. The different types have specific Kodaira symbols. We
collect these as well as the values of the Euler numbers of the singular fibers in a
table. Here 𝑇 is an irreducible Dynkin diagram and 𝑇 the corresponding extended
Dynkin diagram.

Kodaira symbol extended Dynkin diagram 𝑇 disc(𝑇 ) Euler number

𝐼𝑏, 𝑏 ≥ 1 𝐴𝑏−1 𝑏 𝑏
𝐼𝐼 cuspidal - 2

𝐼𝐼𝐼 𝐴1 (tangential) 2 3

𝐼𝑉 𝐴2 (concurrent) 3 4

𝐼∗
𝑏
, 𝑏 ≥ 0 𝐷4+𝑏 4 𝑏 + 6

𝐼𝐼∗ 𝐸8 1 10

𝐼𝐼𝐼∗ 𝐸7 2 9

𝐼𝑉∗ 𝐸6 3 8

Table 4.5.2: Singular non-multiple fibers of an elliptic fibration.

We list a few further properties of elliptic fibrations that we shall make use of:

Proposition 4.5.6. Let 𝑓 : 𝑋 → 𝐶 be a (relatively minimal) elliptic fibration with
a section 𝑠 and singular fibers over Σ ⊂ 𝐶. Then

1. 𝑒(𝑋) = ∑
𝑐∈Σ 𝑒(𝐹𝑐) ≥ 0 and > 0 as soon as there is at least one singular fiber.

2. [𝑠] · [𝑠] = − 1
12𝑒(𝑋).

3. 𝜏(𝑋) = − 2
3𝑒(𝑋).
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Proof. 1. The first equality follows from the additive nature of the Euler number
and the fact that a smooth elliptic curve has zero Euler number. Since 𝑓 has a
section, there are no multiple singular fibers. Table 4.5.2 shows that the singular
fibers all have positive Euler number.
2. The adjunction formula (B.7), item 1 and the fact that 𝑠 is isomorphic to the
base curve 𝐶 show that

2𝑔(𝐶) − 2 =[𝑠] · [𝑠] + [𝑠] · 𝐾𝑋

=[𝑠] · [𝑠] + 2𝑔(𝐶) − 2 + 1

12
𝑒(𝑋)

and hence [𝑠] · [𝑠] = − 1
12𝑒(𝑋).

3. Since 𝑐21 = 0 and 𝑐2 (𝑋) = 𝑒(𝑋), this follows from the Index Theorem B.2.1. □

4.5.D Picard lattices of elliptic surfaces. We investigate the Picard lattice
of an elliptic surface 𝑋. Let 𝜋 : 𝑋 → 𝐶 be a relatively minimal elliptic fibration
with a section. The Picard lattice NS(𝑋) contains some obvious divisor classes:
the class 𝑠 of the (zero) section, the class 𝑓 of a smooth fiber 𝜋−1𝑐, 𝑐 ∈ 𝐶, and
the components of the reducible fibers. These span the so-called trivial lattice
NS(𝑆)triv. A basis for this lattice is given by 𝑠,𝑓 together with the components
of the reducible fibers not meeting the zero section. So NS(𝑆)triv is isometric to
𝑈 ⦹ 𝑅, where 𝑅 is a direct sum of irreducible negative definite root-lattices.

There might be many more sections. It is known that these form a finitely
generated abelian group, the Mordell–Weil group MWL(𝑋) which is the subject
of the next subsection. In particular, we shall see that the Picard number of 𝑋 is
given by

rank(NS(𝑋)) = rank(NS(𝑆)triv) + rank(MWL(𝑋)).
Torsion sections meet the singular fibers also in torsion points of a group structure
on the fiber which can be described as follows. Delete the singularities of the
singular fiber (the multiple components, the crossings and self-crossings of the
components). The resulting smooth curve 𝐹 has a natural group structure with
identity component 𝐹0, torsion 𝐹/𝐹0 = 𝑇 (𝐹) as collected in the following table.

Type of 𝐹 𝐹0 𝑇 (𝐹)
𝐼𝑏, 𝑏 ≥ 1 ℂ∗ ℤ/𝑏ℤ

𝐼𝐼 ℂ 0
𝐼𝐼𝐼 ℂ ℤ/2ℤ
𝐼𝑉 ℂ ℤ/3ℤ

𝐼∗
𝑏
, 𝑏 > 0 odd ℂ ℤ/2ℤ

𝐼∗
𝑏
, 𝑏 > 0 even ℂ ℤ/2ℤ × ℤ/2ℤ

𝐼𝐼∗ ℂ 0
𝐼𝐼𝐼∗ ℂ ℤ/2ℤ
𝐼𝑉∗ ℂ ℤ/3ℤ

In case the Mordell–Weil group is a torsion group, the fact that NS(𝑋)/NS(𝑋)triv =

MWL(𝑋) implies that

disc(NS(𝑋)triv) = disc(NS(𝑋)) · [NS(𝑋) : NS(𝑋)triv]2. (4.17)
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So in this situation square-freeness of the trivial lattice prevents torsion. Even
if the Mordell–Weil group has positive rank it follows from [202, Prop. 6.31])
that in case disc(NS(𝑋)triv) is square free, there is no torsion in the Mordell–Weil
group. Since the discriminant of the trivial lattice can be found immediately from
Table 4.5.2, this gives restrictions on the size of the torsion group. For instance
there is no torsion if there are no reducible fibers, only one reducible fiber of type
𝐼𝐼∗ or of type 𝐼𝑚, 𝑚 square free, or two reducible fibers, one of type 𝐼𝑉 and one of
type 𝐼𝐼𝐼.

We finish this subsection with an example showing how lattice theory is used
to find the Picard lattice of a given elliptic K3 surface.

Example 4.5.7. Let 𝜋 : 𝑋 → ℙ1 be an elliptic fibration with 𝑠 the class of a
section, and 𝑓 the class of a smooth fiber. Suppose that 𝜋 has the following singular
fibers: 7 type 𝐼1-fibres, 7 type 𝐼2-fibers and one type 𝐼𝐼𝐼-fiber. From Table 4.5.2
one sees that 𝑒(𝑋) = 7×1+7×2+3 = 24 so that the canonical bundle formula (4.16)
tells us that 𝐾𝑋 is trivial. It then follows from the Classification Theorem B.5.4
that 𝑋 is a K3 surface. The lattice NS(𝑋)triv is isometric to 𝑈 ⦹⦹8𝐴1 (−1) and
so has discriminant −28.

From now on we suppose that the Mordell–Weil group is torsion. It then embeds
in the direct sum of the torsion groups of the reducible fibers. In view of the above
table this means that MWL(𝑋) ⊂ ⊕8ℤ/2ℤ. In particular, a section representing a
torsion element in the Mordell–Weil group is 2-torsion. Suppose that there exists
a non-zero 2-torsion section 𝑠′. Because of the assumption on the Mordell–Weil
group 𝑠′ is a ℚ-linear combination of 𝑠,𝑓 and 𝛼1, . . . ,𝛼8, the standard root basis
of ⦹8𝐴1 (−1) represented by nodal classes that do not intersect the section 𝑠. So
𝑠 · 𝛼𝑖 = 0, 𝑖 = 1, . . . , 8. Also 𝑠 · 𝑠′ = 0, 𝑠 · 𝑓 = 𝑠′ · 𝑓 = 1 and 𝑠 · 𝑠 = 𝑠′ · 𝑠′ = −2. Since
every section meets exactly one of the 2 components of the 8 reducible fibers, this
shows that in this case 𝑠′ = 2𝑓+𝑠− 1

2

∑8
𝑖=1 𝛼𝑖. In particular, there cannot be another

2-torsion section since it must be numerically equivalent to 𝑠′, but since 𝑠′ · 𝑠′ = −2
it must coincide with 𝑠′. So this implies that a non-trivial torsion group is the
cyclic group ℤ/2ℤ.

If this is the case, 𝐿 = NS(𝑋) has basis 𝑠,𝑓,𝛼1, . . . ,𝛼7, 𝛽 := − 1
2

∑8
𝑖=1 𝛼𝑖. The

discriminant of the lattice equals −26. Using results of later chapters one can show
that𝑀 = 𝑈 (2)⦹⦹2𝐷4 (−1) and 𝐿 are in the same genus. In view of Theorem 1.13.2
they are then isometric as well.

Surfaces with a Picard lattice isometric to 𝑀 do exist. We shall outline how to
show that the minimal smooth model of a general surface of degree 14 in weighted
projective space 5 ℙ(2, 2, 3, 7) with coordinates 𝑥, 𝑦, 𝑧,𝑤 indeed has such a Picard
lattice. Note that hypersurfaces in weighted projective space in general have sin-
gularities. In the present situation a general enough surface has the following
singularities:

• a singular point at (0 : 0 : 1 : 0) ∈ ℙ(2, 2, 3, 7) which can be resolved by an
𝐴2-configuration;

5 [107] is a general reference for properties of surfaces in weighted projective space.
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• 7 ordinary double points where the line {𝑧 = 𝑤 = 0} ⊂ ℙ(2, 2, 3, 7) meets the
surface.

Such a surface is in fact number 22 in Reid’s list of K3 surfaces reproduced in
[107, §13.1]. The minimal resolution of singularities has 7 nodal curves and one
𝐴2-configuration and so the Picard rank is at least 9 + 1 = 10. By [21, Lemma
3.1] this is the Picard number of a general such surface. In fact, one can take the
minimal resolution 𝑋 of the hypersurface whose equation in weighted homogeneous
coordinates is given by 𝑤2 − (𝑥7 + 𝑦7 + 𝑦𝑧4 + 𝑥2𝑦2𝑧2) = 0. The latter has an elliptic
pencil given by (𝑥 : 𝑦 : 𝑤 : 𝑧) ↦→ (𝑥 : 𝑦), i.e., it is cut out by the pencil of planes
through the line 𝑥 = 𝑦 = 0 containing the singular point (0 : 0 : 1 : 1). On 𝑋 this
point is resolved by an 𝐴2-configuration and one of the nodal curves is a section
for the pencil. Now pass to the double cover inside ℙ(1, 2, 3, 7) which in weighted
homogeneous coordinates 𝜉, 𝑦, 𝑧,𝑤 is given by

𝑤2 − (𝜉14 + 𝑦7 + 𝑦𝑧4 + 𝜉4𝑦2𝑧2) = 0.

The elliptic pencil on 𝑋 comes from the pencil (𝜉 : 𝑦 : 𝑤 : 𝑧) ↦→ (𝜉2 : 𝑦) which
admits the involution 𝜉 ↦→ −𝜉. One can show (see [181, Prop.3.3.1]) that the
minimal resolution 𝑌 of the double cover is a properly elliptic surface with 𝑒(𝑌) =
24 and using this, that the set of reduced singular fibers consists of 7 fibers of
type 𝐼2 (at the double roots of (4𝑡7 − 𝑡3 + 4)2 = 0), one of type 𝐼𝐼𝐼 (at 𝑡 = 0) and
7 fibers of type 𝐼1 (at the roots of 1 + 𝑡7 = 0). Moreover, the fiber at 𝑡 = ∞ is a
double fiber whose reduction is a smooth elliptic curve. The involution preserves
the elliptic fibration fiberwise and induces a translation 𝑗 of order 2 in each smooth
fiber. By [181, Prop.3.1.1]) the unique singular point (0 : 0 : 1 : 0) of the cover
is resolved by a rational curve of self-intersection −3 which on 𝑌 becomes a bi-
section of the fibration. It intersects every elliptic curve in two points which are
interchanged under 𝑗. Its quotient under 𝑗 is a section of the elliptic fibration on
𝑋. Moreover, the quotients under 𝑗 of the 7 type 𝐼2 fibers become of type 𝐼1 in 𝑋,
while the quotients of the 7 type 𝐴1 singularities become 𝐼2-fibers on 𝑋. The fiber
at 𝑡 = 0 remains of type 𝐼𝐼𝐼. The fiber structure of 𝑋 is the same as for a general
quasi-smooth surface of degree 14 in ℙ(2, 2, 3, 7). So the trivial Picard lattice is
isometric to 𝑈 ⦹ ⦹8𝐴1 (−1) as claimed. On 𝑌 one has a further bi-section given
by 𝑡 ↦→ (1, 𝑡, 0,±

√
1 + 𝑡7). After taking the quotient by 𝑗 this becomes a second

section for the pencil on 𝑋 which is disjoint from the one coming from the singular
point. By the preceding arguments this is a non-trivial 2-torsion section and the
Picard lattice of the K3 surface 𝑋 is isometric to 𝑀 = 𝑈 (2) ⦹ ⦹2𝐷4 (−1). This
turns out to be the case for all sufficiently general members of the family to which
𝑋 belongs.6 This confirms [20, §3.32] in the thesis of Belcastro.

4.5.E Mordell–Weil lattices. In this section we describe Elkies–Shioda’s con-
struction [69, 210] of the Mordell–Weil lattice following the monograph [202] by

6Using [181, Prop.2.2.1(a)] each member of the family is projectively equivalent to a surface
whose equation has the form 𝑦𝑧4+𝐺4 (𝜉2, 𝑦)𝑧2+𝐺7 (𝜉2, 𝑦) = 0 where 𝐺𝑗 is an ordinary homogeneous

polynomial of degree 𝑗 = 4, 7 (so that the bisection is given by 𝑡 ↦→ (1, 𝑡, 0,±
√︁
𝐺7 (1, 𝑡))).
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M. Schütt and T. Shioda. We only give a minimal introduction to this fascinating
subject and present some instructive examples.

If 𝐾 is the function field of the base curve 𝐶 of an elliptic fibration 𝜋 : 𝑋 → 𝐶
with a section, one can view 𝑋 as an elliptic curve 𝐸 over 𝐾. The section gives a
𝐾-rational point, say 𝑜𝐾 . If we view 𝑋 in this way we shall write 𝐸𝐾 . The point
𝑜𝐾 serves as the origin of an additive group on 𝐸𝐾 , the Mordell-Weil group of
𝐸𝐾 , written MWL(𝐸𝐾). In geometric language MWL(𝐸𝐾) is the group of sections
for the fibration 𝑓. In the previous subsection we wrote MWL(()𝑋) to stress the
surface. In particular, there is a natural map MWL(𝐸𝐾) → NS(𝑋) sending a
section 𝑠 to its class [𝑠] in NS(𝑋). However, this map is in general not injective
and of course never surjective since it misses the class of a fiber. Surprisingly, by
[210] one does obtain an isomorphism of groups

𝜓 : MWL(𝐸𝐾)
∼−→ NS(𝑋)/NS(𝑋)triv

𝑠 ↦→ [𝑠] mod NS(𝑆)triv.

The next step is to put a lattice structure on the Mordell–Weil group. To do this,
one shows ( [202, Lemma 6.16]):

Lemma 4.5.8. The homomorphism 𝜓 lifts to a group homomorphism

𝜙 : MWL(𝐸𝐾) −−→ NS(𝑋)ℚ,

which is uniquely defined by the properties that

• [𝑠] = 𝜙(𝑠) mod NS(𝑋)triv;

• 𝜙(𝑠) ∈ NS(𝑋)⊥triv.

One has ker𝜙 = MWL(𝐸𝐾)torsion and the induced injection

MWL(𝑓) := MWL(𝐸𝐾)/MWL(𝐸𝐾)torsion ↩→ NS(𝑋)⊥triv,ℚ

induces an isomorphism over ℚ.

We now pass to the intersection pairing. We have seen that it restricts to a non-
degenerate bilinear pairing on NS(𝑋) of signature (1, 𝜌−1). Since the image of 𝜙 is
orthogonal to the trivial lattice, it contains the classes of a fiber and a section which
together generate a sublattice isometric to the hyperbolic plane 𝑈 with signature
(1,−1). It follows that the induced pairing on the orthogonal complement of the
trivial lattice is negative definite. Consequently, the pairing

MWL(𝑓) ×MWL(𝑓)
⟨ , ⟩

−−−−−−−→ ℚ

(𝑠, 𝑠′) ↦−→ ⟨𝑠, 𝑠′⟩ = −𝜙(𝑠) · 𝜙(𝑠′)

is positive definite. It is called the height pairing . Although it is in general
not integer valued, the pair (MWL(𝑓), ⟨ , ⟩) thus obtained is usually called the
Mordell–Weil lattice . Its rank is called the Mordell–Weil rank of the elliptic
surface.
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Examples 4.5.9. 1. The Hesse pencil. See [202, Example 3.13, 6.36]. This is
the pencil of plane cubics given by

𝑥3 + 𝑦3 + 𝑧3 + 𝑡𝑥𝑦𝑧 = 0.

The curve is singular exactly for 𝑡 = 3, 3𝜌, 3𝜌2, where 𝜌 is a primitive cube root of
unity. Also for 𝑡 = ∞ one has a singular fiber. Each singular fiber is a union of
three distinct lines, and so is of type 𝐴2.

The base points of the pencil are the nine points (1,−1, 0), (1,−𝜌, 0), (1,−𝜌2, 0)
and their cyclic permutations. These are the 9 inflection points for each of the
smooth members of the pencil and so the addition law of the elliptic curve shows
that they correspond to 3-torsion.

Replacing 𝑡 with 𝑡1/𝑡0 gives a surface 𝑋 ⊂ ℙ1×ℙ2 which is smooth as one easily
verifies. The projection of ℙ1 ×ℙ2 onto the first factor induces an elliptic fibration
𝜋 : 𝑋 → ℙ1. Since ∞ corresponds to (1, 0) ∈ ℙ1 the fiber at infinity corresponds
to the curve 𝑥𝑦𝑧 = 0, a union of three lines. The base points of the pencil become
9 sections, e.g. (1,−1, 0) becomes 𝑡 ↦→ 𝑡 × (1,−1, 0). We may take the latter as the
zero section. The 9 sections give a full 3-torsion group of the Mordell–Weil group.

Adding the Euler numbers of the singular fibers, Proposition 4.5.6.1 gives
𝑒(𝑋) = 4 · 3 = 12, in accordance with the rationality of 𝑋. Indeed, 𝑋 is the projec-
tive plane blown up at the 9 base points of the pencil and so 𝑒(𝑋) = 3+9 = 12. The
Néron–Severi lattice is the full intersection lattice 𝐻2 (𝑋,ℤ) and hence is unimod-
ular. Indeed, it is easy to see that NS(𝑋) ≃ ⟨1⟩ ⦹⦹9⟨−1⟩ with basis given by the
class of a line and the classes of the 9 disjoint exceptional curves coming from blow-
ing up the base points of the pencil. The trivial lattice has rank 2 + 4 · 2 = 10 since
it is isometric to 𝑈 ⦹ ⦹4𝐴2 (−1) and so the Mordell–Weil group is torsion, more
precisely MWL(𝜋) ≃ ⊕2ℤ/3ℤ. This shows that the class map MWL(𝜋) → NS(𝑋)
need not be injective, since as in the present example, NS(𝑋) can be torsion free
while MWL(𝜋) contains torsion. For this example the Mordell-Weil lattice is the
trivial lattice 0.
2. We consider in detail the hexagonal lattice which is the leading example in
the book [202]. See in particular [202, Example 5.9, 6.26, 6.41]. One starts with
an elliptic pencil in the plane given in inhomogeneous coordinates 𝑥, 𝑦 by

𝑦2 + 𝑡𝑦 = (𝑥 − 𝑎1) (𝑥 − 𝑎2) (𝑥 − 𝑎3), 𝑎𝑖 ∈ ℂ,

where the 𝑎𝑖 are pairwise distinct. Making this homogeneous by setting 𝑥 =

𝑧1/𝑧0, 𝑦 = 𝑧2/𝑧0 and 𝑡 = 𝑡1/𝑡0, one obtains

𝑡0𝑧0𝑧
2
2 + 𝑡1𝑧20𝑧2 = 𝑡0 (𝑧1 − 𝑎1𝑧0) (𝑧1 − 𝑎2𝑧0) (𝑧1 − 𝑎3𝑧0),

a surface in ℙ2×ℙ1 which has a single singularity at ∞×(0, 0, 1), where ∞ = (0, 1) ∈
ℙ1. A local calculation shows it to be a double point of type 𝐴5. Let 𝑋 be its
minimal desingularisation. The projection of ℙ1 × ℙ2 onto the first factor induces
an elliptic fibration

𝑓 : 𝑋 → ℙ1
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which has 4 singular fibers of type 𝐼∗1 (irreducible with one node) and a single re-

ducible fiber over ∞ which is of type 𝐸6 (matching the 𝐴5-singularity). We repro-
duce the corresponding Dynkin diagram with multiplicities which now correspond
to multiplicities of the fiber components.

• • • ••

•

◦

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5

1 2 3 2 1

𝛼6

𝛼0

2

1

The zero section is given by 𝑡 ↦→ (1, 𝑡) × (0, 1, 0). We consider three more sections
𝑃𝑖 given by 𝑡 ↦→ (1, 𝑡) × (1, 𝑎𝑖 , 0), 𝑖 = 1, 2, 3. The addition law on the cubic curve
shows that 𝑃1 + 𝑃2 + 𝑃3 = 0. All sections meet the 𝐸6-fiber at ∞ in components
with multiplicity 1, i.e., the components corresponding to either one of the three
extremal edges. We assume that the zero section meets the 𝛼0-component. We
claim that the four sections 0,𝑃1,𝑃2,𝑃3 are mutually disjoint and meet the same
fiber component of the 𝐸6-fiber, which we may assume to correspond to 𝛼1. This
is easy to see away from the fiber at ∞ and requires a careful local computation
at the point ∞× (0, 0, 1).

Let us compute the Mordell–Weil rank. Adding the Euler numbers of the
singular fibers gives 4 + 8 = 12 in accordance with the rationality of 𝑋. In-
deed, 𝑝𝑔 (𝑋) = 0 = 𝑞(𝑋) and so 𝑏2 (𝑋) = 10. The Néron–Severi lattice is the
full intersection lattice 𝐻2 (𝑋,ℤ) and hence is unimodular. It is odd, since by
Lemma 4.5.6, sub 2, three sections 𝑃𝑖 as well as the zero section all have self-
intersection − 1

12𝑒(𝑋) = −1. As in the case of the Hesse pencil, we find that NS(𝑋)
is isometric to ⟨1⟩ ⦹⦹9⟨−1⟩, but this time we use Lemma 4.5.6, sub 3 to see that
the index equals − 2

3𝑒(𝑋) = −8. The trivial lattice is isometric to 𝑈⦹⦹𝐸6 (−1) and
so the Mordell–Weil rank is 2. One can show that there is no torsion (cf. [202,
Example 6.32]) and that 𝑃1,𝑃2 give a basis for MWL(𝑓). Then an easy calculation
using Lemma 4.5.8 shows:

𝜙(𝑃𝑖) = [𝑃𝑖] − [0] − 𝐹 − 𝑅, 𝑅 =

6∑︁
𝑗=1

𝑚𝑗𝛼𝑗 ,

where the 𝑚𝑖 are given in the diagram below, just underneath the roots. Indeed
the equations 0 = 𝜙(𝑃𝑖) · [0] = 𝜙(𝑃𝑖) · 𝐹 = 𝜙(𝑃𝑖) · 𝛼𝑗 , 𝑗 = 1, . . . , 6, together with
𝜙(𝑃𝑖) ≡ [𝑃𝑖] mod NS(𝑆)triv give the (unique) solution we just described.

• • • ••

•

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5

−4/3 −5/3 −6/3 −4/3 −2/3

𝛼6 −3/3

Finally, let us compute the height pairing. We give a direct computation,
although there is a general recipe for which we refer to [202, Theorem 6.24].
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Observe first that 𝑅 · 𝑅 = 𝑅 · 𝑃𝑖 = − 4
3 and ( [0] +𝐹 +𝑅)2 = ( [0] +𝐹 +𝑅) · 𝑃𝑖 = − 1

3 and
hence

−⟨𝑃𝑖 ,𝑃𝑗⟩ = 𝜙(𝑃𝑖) · 𝜙(𝑃𝑗) = [𝑃𝑖] · [𝑃𝑗] − 2( [0] + 𝐹 + 𝑅) · [𝑃𝑖] + ([0] + 𝐹 + 𝑅)2

= [𝑃𝑖] · [𝑃𝑗] +
2

3
− 1

3

= −𝛿𝑖𝑗 +
1

3
.

Taking 𝑃1,𝑃2 for the generators of MWL(𝑓), we conclude that the Gram matrix for

the height pairing is

(
2
3 − 1

3
− 1

3
2
3

)
. This is the inverse of the Gram matrix for 𝐴2 with

respect to the basic roots 𝛼1,𝛼2 of 𝐴2 (cf. Section 4.1.A), and so MWL(𝑓) ≃ 𝐴∗
2.

This lattice is the hexagonal lattice in the euclidean plane as pictured as [202,
Fig. 1.3].
3. Large Mordell–Weil rank. In [202] many examples are given. Let us
describe just one example due to Shioda [202, Theorem 13.26]. Consider the
complex surface

𝑋𝑚 : 𝑦2 = 𝑥3 + 𝑡𝑚 + 1, 𝑚 ∈ ℕ.

The map (𝑥, 𝑦, 𝑡) ↦→ 𝑡 gives it the structure of an elliptic fibration. When 𝑚 = 6𝑑
all singular fibers are irreducible of type 𝐼𝐼 at the zeroes of 𝑡𝑚 + 1. By Table 4.5.2
this implies that 𝑒(𝑋𝑚) = 2𝑚 = 12𝑑 and thus 𝑏2 (𝑋𝑚) = 2𝑚 − 2. The Hodge
decomposition shows that the rank of the Néron–Severi group is potentially as
large as 10𝑑 − 4 which implies that the Mordell-Weil rank of 𝑋𝑚 can be at most
10𝑑−6. It turns out that, however, it is much smaller: it has rank at most 68 with
equality if and only if 𝑚 is divisible by 360.

Historical and Bibliographical Notes. The classical reference for the Dynkin
diagrams of types A-D-E-F-G and their extended cousins is the Bourbaki volume [26].
The role of the Lorentz lattice has been pointed out in Chapter 8 of I. Dolgachev’s
book [52]. Both references inspired our presentation in Sections 4.1 and 4.2.

The idea to use the euclidean algorithm to construct lattices with given torsion
quadratic groups is due to C. T. C. Wall [245]. The use of the algorithm as a tool
to calculate invariants for certain types of lattices stems from the book [99]. These two
references form the source and the main inspiration for Sections 4.3 and 4.4.

Lens spaces constitute a classical subject and date back to the 1908 article by H.
Tietze [225, §20]. At that time they were considered in the combinatorial category,
that is, as polyhedra. In the famous 1934 book [203] by H. Seifert and W. Threlfall
the homeomorphism problem for lens spaces is stated as still open (loc. cit. page 210),
but already in the 1935 article [191] K. Reidemeister established the classification in
the combinatorial category. He used a complete combinatorial invariant which since
then is called the Reidemeister torsion. The homeomorphism classification had to wait
until 1952 when E. Moise in [157] proved the three dimensional ”Hauptvermutung”.
For a proof not using this result, see [30]. For further background on this history and
also for a detailed ”modern” explanation of the concept of Reidemeister torsion, see the
introductory course notes [147] by G. Massuyeau. We finally remark that in contrast to
what happens in higher dimension, a topological threefold admits an essentially unique
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differentiable structure (see [224, §3.10]) and so threefolds that are homeomorphic are
also diffeomorphic. There is an obvious variant of this statement which holds for oriented
threefolds. In particula,r the Reidemeister torsion is an oriented diffeomorphism invariant.
Our treatment of the lens spaces closely follows the book [99, §7–8] by F. Hirzebruch,
W. Neumann, and S. Koh.

The A-D-E singularities or du Val singularities date from 1934, see P. du Val’s original
articles [229, 230, 231]. The cyclic quotient singularities or Hirzebruch–Jung singularities
are named after F. Hirzebruch and H. Jung. The latter described the singularities in his
1908 article [114]. The method of resolving such a singularity using continued fractions
is due to F. Hirzebruch [97].

The general properties of surface fibrations as presented here is based on the mono-
graph [15]. As indicated in loc. cit., the results in the special case of elliptic fibrations go
back to K. Kodaira [124, 125]. The canonical lattice structure on the Mordell–Weil group
of an elliptic fibration has been proposed in 1990 by N. Elkies and T. Shioda [69, 210].
We have followed the treatment in the monograph [202] by M. Schütt and T. Shioda.



5

Forms Related to Coding Theory and Number
Theory

Introduction

A linear code is a subspace of a finite dimensional vector space over a finite field 𝔽𝑝𝑟 ,
𝑝 prime. In this chapter we restrict ourselves to the case 𝑟 = 1. There is a canonical
way to associate a lattice to a so-called isotropic code. These lattices turn out to
be 𝑝-elementary as shown in Lemma 5.1.2.3. This procedure also has a direct
relation to overlattices as expressed by Corollary 5.1.3. It turns out that several
classical codes yield remarkable lattices, especially the extended binary Golay code
and the Reed–Muller codes. The first code is, as we show in Section 5.1, related
to the Leech lattice and the second to configurations of ordinary double points on
complex surfaces (cf. Section 5.2). Kummer surfaces have a specific configuration
of such double points which leads to the Kummer lattice. Codes are also essential
to determine the maximal number of double points for quintic hypersurfaces, a
further topic of Section 5.2.

Using prime ideals in number fields and codes in vector spaces over 𝔽𝑝, the
residue field of the prime ideal gives alternative constructions of lattices. In par-
ticular, as we shall see at the end of Section 5.3, the cyclotomic fields lead us to the
Niemeier lattices that also occur in the context of K3 surfaces (cf. Section 20.2).

The final Section 5.4 reviews some known constructions of ℚ-valued and ℤ-
valued symmetric forms of rank three (”ternary forms”) that are directly related
to quaternion algebras. These play a role when we construct supersingular K3
surfaces in Section 19.5.

5.1 Codes and Lattices

For background on codes we refer to [140, 64].

5.1.A Lattices obtained from codes. A linear code is a linear subspace of
𝔽𝑛𝑞 where 𝑞 = 𝑝𝑠, a power of a prime number 𝑝. If 𝑝 = 2 the code is called a binary
code . A vector 𝑥 of a code 𝐶 is also called a word . It has weight

𝑤(𝑥) = number of non-zero coordinates of 𝑥, 𝑥 = (𝑥1, . . . ,𝑥𝑛) ∈ 𝐶 ⊂ 𝔽𝑛𝑞 .

The dot-product 𝑥 · 𝑦 =
∑
𝑥𝑗𝑦𝑗 ∈ 𝔽𝑞 of two vectors 𝑥 = (𝑥1, . . . ,𝑥𝑛) and 𝑦 =

(𝑦1, . . . , 𝑦𝑛) in 𝔽𝑛𝑞 defines a non-degenerate symmetric bilinear form and a code is
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called isotropic if 𝐶 is an isotropic subspace of 𝔽𝑛𝑞 with respect to the dot-product,
i.e., if 𝐶 ⊂ 𝐶⊥, and self-dual if 𝐶 = 𝐶⊥.

Remark 5.1.1. In Chapter 8 we answer the obvious question: how to place the dot-
product on vector spaces over 𝔽2 in the isometry classification? It turns out that
Corollary 8.3.4 implies that in odd characteristic 𝑏 is isometric to the dot-product
if and only if disc(𝑏) = 1 As a consequence of Proposition 8.2.1 if 𝑝 = 2 the odd
form 𝑏 is isometric to the dot-product if and only if disc(𝑏) = 1 and 𝑏 is totally
anisotropic, i.e., there are no isotropic vectors.

From now on we assume 𝑠 = 1, that is, we consider codes 𝐶 ⊂ 𝔽𝑛𝑝. Then, using
the reduction modulo 𝑝 map

𝜌 : ℤ𝑛 −→ 𝔽𝑛𝑝, (𝑥1, . . . ,𝑥𝑛) ↦→ (𝑥1 mod 𝑝, . . . ,𝑥𝑛 mod 𝑝),

a code 𝐶 lifts to a submodule 𝜌−1𝐶 of ℤ𝑛 which contains the submodule 𝑝 · ℤ𝑛 =

𝜌−1 (0) and hence is of finite index in ℤ𝑛. It inherits the structure of a lattice from
ℤ𝑛 equipped with its dot-product. However, it turns out to be more convenient to
use a different lattice structure, namely ℤ𝑛 equipped with the standard euclidean
form scaled by 𝑝−1 which we denote

ℤ𝑛 (𝑝−1) = ⦹𝑛⟨𝑝−1⟩. (5.1)

Hence we have
Γ𝐶 = 𝜌−1𝐶 ⊂ ℤ𝑛 (𝑝−1),

a not necessarily integral lattice of rank 𝑛. It is also positive definite.
We view the submodule 𝑝ℤ𝑛 as a sublattice of Γ𝐶 .

Lemma 5.1.2. 1. The sublattice 𝑝ℤ𝑛 of Γ𝐶 is isometric to ⦹𝑛⟨𝑝⟩. In particu-
lar, if 𝑝 = 2, the root lattice ⦹𝑛𝐴1 is contained in Γ𝐶.

2. Γ𝐶 is an integral lattice if and only if 𝐶 is isotropic.

3. Γ∗
𝐶 ⊂ ℤ𝑛 (𝑝−1). Moreover, if 𝐶 is isotropic, the integral lattice Γ𝐶 is a 𝑝-

elementary lattice, that is, we recall (cf. Subsection 1.7.B)

𝑝 · Γ∗
𝐶 ⊂ Γ𝐶 .

Proof. 1. As we have observed Γ𝐶 contains the submodule 𝑝ℤ𝑛 = 𝜌−1 (0). If
{𝑒1, . . . , 𝑒𝑛} is the standard basis of ℤ𝑛, we have 𝑝−1 · (𝑝𝑒𝑖 · 𝑝𝑒𝑗) = 𝑝𝛿𝑖𝑗 and so 𝑝ℤ𝑛

equipped with 𝑝−1 times the standard product is isometric to ℤ𝑛 (𝑝) = ⦹𝑛⟨𝑝⟩.
2. Let 𝑥 = (𝑥1, . . . ,𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ Γ𝐶 and denote their images in 𝐶 by 𝑥, 𝑦.
We have

𝑝−1 (𝑥 · 𝑦) = 1

𝑝

∑︁
𝑥𝑖𝑦𝑖 ∈ ℤ ⇐⇒

∑︁
𝑥𝑖𝑦𝑖 ∈ 𝑝ℤ ⇐⇒ 𝑥 · 𝑦 = 0 in 𝔽𝑝.

3. Since Γ𝐶 contains 𝑝ℤ𝑛, its dual Γ∗
𝐶 is contained in the dual of 𝑝ℤ𝑛 which is

ℤ𝑛 (𝑝−1), and so 𝑝Γ∗
𝐶 ⊂ 𝑝ℤ𝑛 ⊂ Γ𝐶 . □



5.1 Codes and Lattices 121

Corollary 5.1.3. Isotropic codes in 𝔽𝑛𝑝 are in a natural way in one-to-one corre-

spondence with (integral) overlattices of ⦹𝑛⟨𝑝⟩ contained in ℤ𝑛 (𝑝−1).

Proof. By Proposition 1.7.4, it suffices to establish a (natural) bijective correspon-
dence between isotropic codes in 𝔽𝑛𝑝 and isotropic subgroups of (⦹𝑛⟨𝑝⟩)∗/⦹𝑛⟨𝑝⟩.
Let Γ := ℤ𝑛 (𝑝−1). Now identify ⦹𝑛⟨𝑝⟩ with 𝑝Γ as in Lemma 5.1.2-1. Since
(𝑝Γ)∗ = Γ (an easy verification), we see that (⦹𝑛⟨𝑝⟩)∗/⦹𝑛⟨𝑝⟩ and Γ/𝑝Γ are iso-
metric. We continue with Γ/𝑝Γ.

The identity map Γ = ℤ𝑛 (𝑝−1) → ℤ𝑛 is an isometry up to a factor 𝑝. Hence the
induced map Γ/𝑝Γ → 𝔽𝑛𝑝 identifies the 𝑝−1ℤ/ℤ-valued discriminant bilinear form
on Γ/𝑝Γ with the ℤ/𝑝ℤ = 𝔽𝑝-valued bilinear form on 𝔽𝑛𝑝 through multiplication
by 𝑝. Consequently, isotropic codes in 𝔽𝑛𝑝 correspond to isotropic subgroups in
Γ/𝑝Γ. □

Proposition 5.1.4. Let 𝐶 ⊂ 𝔽𝑛𝑝 be an isotropic code and Γ𝐶 ⊂ ℤ𝑛 (𝑝−1) the corre-
sponding integral lattice. Then Γ𝐶 has the following properties:

1. disc(Γ𝐶) = 𝑝𝑛−2𝑚, 𝑚 = dim𝐶.

2. The lattice Γ𝐶 is unimodular if and only if 𝐶 is self-dual.

3. Γ∗
𝐶 = 𝜌−1𝐶⊥.

4. If 𝑝 = 2, the lattice Γ𝐶 is even if and only if all of the weights of 𝐶 are
divisible by 4.

Proof. Observe that some of the lattices we consider are ℚ-valued and so we must
interpret the discriminant appropriately as in Remark 1.2.1.
1. The index of Γ𝐶 in ℤ𝑛 (𝑝−1) equals the index [𝔽𝑛𝑝 : 𝐶] = 𝑝𝑛−𝑚 and hence by
Lemma 1.2.2 we find

disc(Γ𝐶) = [ℤ𝑛 (𝑝−1) : Γ𝐶]2 · disc(ℤ𝑛 (𝑝−1)) = 𝑝𝑛−2𝑚.

2. This follows from 1, using dim𝐶⊥ = 𝑛 − dim𝐶 and dim𝐶 ≤ dim𝐶⊥.
3. To show that Γ∗

𝐶 ⊃ 𝜌−1𝐶⊥ = Γ𝐶⊥ , let 𝑦 ∈ Γ𝐶⊥ . Now let 𝑥 ∈ Γ𝐶 be arbitrary.
Then 𝜌(𝑥) · 𝜌(𝑦) = 0 in 𝔽𝑛𝑝 and so 𝑝−1 (𝑥 · 𝑦) ∈ ℤ. This implies that 𝑦 ∈ Γ∗

𝐶 and

hence Γ𝐶⊥ ⊂ Γ∗
𝐶 . We show equality by comparing their indices in ℤ𝑛 (𝑝−1). A similar

computation as in the proof of 1 shows that disc(Γ𝐶⊥ ) = 𝑝2𝑚−𝑛 = disc(Γ𝐶)−1. Using
Lemma 1.6.3 we find that disc(Γ∗

𝐶) = disc(Γ𝐶⊥ ). But then Γ∗
𝐶 has the same index

in ℤ𝑛 (𝑝−1) as Γ𝐶⊥ .
4. For 𝑥 = (𝑥1, . . . ,𝑥𝑛) ∈ Γ𝐶 , write 𝑥𝑖 = 2𝑦𝑖 + 𝑧𝑖, 𝑖 = 1, . . . ,𝑛, with 𝑧𝑖 = 0 or 1. For
the prime 𝑝 = 2, the weight of the corresponding words in 𝐶 is

∑
𝑖 𝑧𝑖. Then one has

1

2
𝑥 · 𝑥 ≡ 1

2

∑︁
𝑖

𝑧2𝑖 ≡ 0 mod 2ℤ ⇐⇒
∑︁
𝑖

𝑧𝑖 ≡ 0 mod 4 ⇐⇒ 𝑤(𝜌(𝑥)) ≡ 0 mod 4.

We conclude that Γ𝐶 is even precisely if all weights of the code words are divisible
by 4. □
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In view of the assertion 4 we introduce an appropriate terminology for codes
giving even lattices: we say that a binary code is doubly even if all its code words
have weights divisible by 4.

We next investigate the discriminant groups and forms.

Proposition 5.1.5. Let 𝐶 ⊂ 𝔽𝑛𝑝 be an isotropic code of dimension 𝑚. The dis-

criminant group of the lattice Γ𝐶 is isomorphic to (ℤ/𝑝ℤ)𝑛−2𝑚. If 𝑝 = 2 and 𝐶 is
doubly even, the discriminant quadratic form takes values in 1

4ℤ. If, moreover, all
words in 𝐶⊥ have even weights, the values are taken in 1

2ℤ. In that case Γ𝐶 is a
2-elementary lattice of type II.

Proof. The first assertion follows since Γ𝐶 is 𝑝-elementary and the order of the
discriminant group equals disc(Γ𝐶) = 𝑝𝑛−2𝑚. For 𝑝 = 2, the code 𝐶 being doubly
even ensures that the form on Γ𝐶 is even and hence the polar form of a quadratic
form, say 𝑞. In other words, if 𝑥 ∈ Γ𝐶 , then 𝑞(𝑥) = 1

2 · 1
2 (𝑥 · 𝑥) ∈ ℤ. Now use that

Γ∗
𝐶 ⊂ 1

2Γ𝐶 to conclude that the discriminant quadratic form takes values in 1
4ℤ.

If, moreover, the image of 𝑥 in 𝐶 has even weight, 𝑥 · 𝑥 is even and then
𝑞(𝑥) ∈ 1

2ℤ. □

5.1.B Lattices constructed from binary codes. We discuss a few codes over
𝔽2 related to geometry.

The Hamming code 𝐻 ⊂ 𝔽7
2. This is the linear code of dimension 4 defined in

so-called standard form as

𝐻 = ker𝐴, 𝐴 =
©«
1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

ª®¬ .
It is not isotropic, but the extended version �̃� ⊂ 𝔽8

2 given (in standard form) as

�̃� = ker𝐴, 𝐴 =

©«
0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

ª®®®¬
can be shown to be self-dual and doubly even. Hence Γ�̃� is a unimodular positive
definite even lattice of rank 8. This lattice must be isometric to 𝐸8 since, as we
have mentioned in Section 1.12, Kneser [119] has shown that there is only one
isometry class.

Root lattices from codes. It can be shown [64, §1.4] that the only irreducible
root lattices that arise from codes are 𝐴1,𝐸7,𝐸8 and 𝐷2𝑛 for 𝑛 ≥ 2. The proof
uses that all lattices Γ𝐶 from binary codes 𝐶 ⊂ 𝔽𝑛2 contain the root lattice 𝐴⦹𝑛

1 , as
claimed in Lemma 5.1.2.
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The Golay code and the Leech lattice. The extended binary Golay code
𝐶Gol ⊂ 𝔽24

2 is a code of dimension 12. It is constructed as follows. The icosahedron
considered as a graph with all weights equal to 1 defines, as we have seen in
Chapter 4, a quadratic form on ℤ12. It is given by the matrix 𝐴 = (𝐴𝑖𝑗) with
𝐴𝑖𝑗 = 1 if the vertices 𝑖 and 𝑗 are an edge of the icosahedron and 𝐴𝑖𝑗 = 0 otherwise.
Let 𝐽12 be the square matrix of size 12 with all ones and put

𝐵 =
(
𝐼12 𝐽12 − 𝐴

)
.

The (extended) Golay code is spanned by the rows of the matrix 𝐵. In [64, §2.8]
the following properties are shown:

• 𝐶Gol has dimension 12 (which is clear since rank(𝐵) = 12);

• 𝐶Gol is doubly even and self-dual.

Rephrasing Lemma 5.1.2 in this situation, the lattice Γ = Γ𝐶Gol
is the unimodular

sublattice of ℤ24 ( 12 ) such that 𝐶Gol = Γ/𝑅 ⊂ 𝑅∗/𝑅 ≃ 𝔽24
2 , where 𝑅 = 𝜌−1 (0) = 𝐴⦹24

1

turns out to be the root lattice of Γ.
We mention the appearance of one of the sporadic groups in this context. The

symmetric group 𝔖24 acts on 𝔽24
2 by permuting the coordinates. The Mathieu

group is the stabilizer of the Golay code:

𝑀24 = {𝜎 ∈ 𝔖24 | 𝜎(𝐶Gol) = 𝐶Gol}.

The Leech lattice Γ24 is an even neighbour lattice of the even lattice Γ = Γ𝐶Gol
.

Since the latter is unimodular and positive definite, the same holds for the Leech
lattice (use Lemma 1.7.1). We describe how it can be constructed as an index two
overlattice of

Γ0 = {𝑥 = (𝑥1, . . . ,𝑥24) ∈ Γ |
∑︁

𝑥𝑖 ≡ 0 mod 16}.

Note that the sum of the coordinates of each row of 𝐵 equals 8 = 1 + (12 − 5) and
so the sum of the coordinates of each vector in the lattice Γ is divisible by 8. It
follows that Γ is the disjoint union of Γ0 and

Γ1 = {𝑥 = (𝑥1, . . . ,𝑥24) ∈ Γ |
∑︁

𝑥𝑖 ≡ 8 mod 16}.

This set contains 𝑒 = (1, . . . , 1) since taking the sum of the rows of 𝐵 shows that
𝜌(𝑒) belongs to the Golay code. One easily verifies that

Γ24 := Γ0 ∪
[1
2
𝑒 + Γ1

]
, 𝑒 = (1, . . . , 1),

is an even integral lattice. For instance, the evenness follows since for all 𝑥 ∈ Γ1

one has

1

2
( 1
2
𝑒 + 𝑥) · ( 1

2
𝑒 + 𝑥) =

1

2
(6 + 𝑒 · 𝑥 + 𝑥 · 𝑥)

≡ 1 + 1 + 0 mod 2.
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So the lattice Γ24 is an even index two overlattice of Γ0 and this is the searched for
Leech lattice. From this description one can deduce that the Leech lattice contains
no roots. The latter is the unique Niemeier lattice1 without roots. For proofs see
[64, §2.8] and [44, Ch. 16].

Reed-Muller codes. The definition of this class of codes runs as follows. Let 𝐼
be a finite set of size 𝑁. Then the functions 𝐼 → 𝔽2 form the 𝔽2-vector space 𝔽𝐼2.
Suppose that 𝐼 itself consists of the points of an 𝔽2-vector space 𝑊 of dimension 𝑚
so that 𝑁 = 2𝑚. We order these points as follows. Let {𝑒0, . . . , 𝑒𝑚−1} be a basis for
𝑊 and identify a point 𝑥 =

∑𝑚−1
𝑗=0 𝑥𝑗𝑒𝑗 with the binary expansion 𝑛𝑥 =

∑𝑚−1
𝑗=0 𝑥𝑗2

𝑗 of
an integer between 0 and 2𝑚 − 1. The natural order gives an ordering of the points
of 𝑊. An 𝔽2-valued function 𝑓 on 𝑊 determines a vector (𝑓0, . . . ,𝑓𝑁−1) ∈ 𝔽𝑁2 as
follows. First note that a point 𝑥 ∈ 𝑊 determines the unique integer 𝑗 = 𝑛𝑥 ∈
[0, . . . ,𝑁 − 1] and then we set 𝑓𝑗 = 𝑓(𝑥). This way, the polynomial functions of
degree 𝑘 on 𝑊 together with the zero function define a subspace of 𝔽𝑁2 and this
is also the case for polynomial functions of degree ≤ 𝑘. For 0 ≤ 𝑘 < 𝑚, the latter
define the 𝑘-th order Reed–Muller code 𝑆≤𝑘 (𝑊) ⊂ 𝔽𝑁2 , 𝑁 = 2𝑚. For an extensive
treatment of these codes we refer to [140, Sect. 4.5.].

Example 5.1.6. Take 𝑚 = 4 and 𝑘 = 1. Then 𝑁 = 24 = 16 and 𝑆≤1 (𝔽4
2) ⊂ 𝔽16

2

is generated by the 4 code words given as the rows of the following 4 × 16 matrix
together with the vector with all coordinates equal to 1 arising from the constant
function 1. The columns correspond to the binary expansions of the numbers
0, ..., 15 and the rows correspond to the coordinate functions 𝑥0,𝑥1,𝑥2,𝑥3:

©«
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ª®®®¬ .
Proposition 5.1.7. Let 𝑊 be an 𝔽2-vector space of dimension 𝑚. The Reed–
Muller codes 𝑆≤𝑘 (𝑊) ⊂ 𝔽𝑊2 ≃ 𝔽𝑁2 , 𝑁 = 2𝑚 = |𝑊 |, have the following properties.

1. 𝑆≤𝑘 (𝑊) has even weights.

2. Suppose 0 ≤ 𝑘 ≤ 𝑚 − 1. With respect to the standard dot-product on 𝔽𝑁2 , the
code orthogonal to 𝑆≤𝑘 (𝑊) is 𝑆≤𝑚−𝑘−1 (𝑊).

3. The code 𝑆≤𝑘 (𝑊) is isotropic if 2𝑘 ≤ 𝑚−1 and self-dual if and only if equality
holds.

Proof. First some preliminary remarks. Note that a linear function 𝑓 and its square
𝑓2 define the same polynomial function on 𝑊 since we are in characteristic 2. This
implies for instance that the space 𝑆≤𝑘 (𝑊) of polynomial functions of degree ≤ 𝑘

1Recall that a Niemeier lattice is a positive definite unimodular rank 24 lattice.
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on 𝑊 has dimension 𝑒𝑘 = 1 +𝑚 +
(𝑚
2

)
+ · · · +

(𝑚
𝑘

)
from which we deduce a relation

between the dimensions of certain ”opposite” Reed–Muller codes:

dim 𝑆≤𝑘 (𝑊) + dim 𝑆≤𝑚−𝑘−1 (𝑊) = 𝑒𝑘 + 𝑒𝑚−𝑘−1 = (1 + 1)𝑚 = 2𝑚. (5.2)

The above remark also implies that, starting with two monomials 𝑥𝑖1 · · · 𝑥𝑖𝑟 (all
indices distinct) and 𝑥𝑗1 · · · 𝑥𝑗𝑠 (all indices distinct), the product 𝑥𝑖1 · · · 𝑥𝑖𝑟𝑥𝑗1 · · · 𝑥𝑗𝑠 ,
viewed as function, coincides with the function corresponding to a square-free
monomial of degree at most 𝑟 + 𝑠.

To show 1 we first remark that 𝑆≤𝑘 (𝑊) is spanned by the words corresponding
to the monomials 𝑥𝑖1 · · · 𝑥𝑖ℓ with ℓ ≤ 𝑘 and all indices distinct. Viewed as functions,
these are the characteristic functions of the positive dimensional affine subspaces
given by the equations 𝑥𝑖1 = · · · = 𝑥𝑖ℓ = 1. Since these contain an even number
of elements, 𝑥𝑖1 · · · 𝑥𝑖ℓ assumes the value 1 an even number of times. Hence the
resulting code words have even weights. Consequently, sums of such words also
have even weights.

In view of (5.2), to establish 2, it suffices to show the inclusion 𝑆≤𝑚−𝑘−1 (𝑊) ⊂
𝑆≤𝑘 (𝑊)⊥. It also suffices to verify this for words generating the two codes. To
do so, we take two words corresponding to monomials 𝑥𝑖1 · · · 𝑥𝑖𝑟 with 𝑟 ≤ 𝑘 and
𝑥𝑗1 · · · 𝑥𝑗𝑠 with 𝑠 ≤ 𝑚 − 𝑘 − 1 as above. Viewed as functions, the product of the
monomials produces the same function as a monomial of degree at most 𝑚 − 1,
and so its corresponding word has even weight. This word is obtained from the
two words we started with by coordinate-wise multiplication. Hence, the 𝔽2-dot-
product of the two words is 0.

Finally, to show 3, note that if 𝑘 ≤ 𝑚 − 𝑘 − 1 we have an inclusion

𝑆≤𝑘 (𝑊) ⊂ 𝑆≤𝑚−𝑘−1 (𝑊) = 𝑆≤𝑘 (𝑊)⊥

with equality if and only if 𝑘 = 𝑚 − 𝑘 − 1. □

We specifically consider the two codes

D𝑚+1 : = 𝑆≤1 (𝑊), (5.3)

C𝑚 : = 𝑆1𝑊. (5.4)

The former is a code of dimension 𝑚 + 1 given by the affine linear functions on 𝑊
and is generated by the linear functions on 𝑊, forming the code C𝑚, together with
the constant function 1. This last word has weight 2𝑚 while the non-zero weights
of C𝑚 are all 2𝑚−1 since the characteristic function of a hyperplane interpreted as
a code word has this weight. So the non-zero weights of D𝑚 itself (lowering the
index by one) are 2𝑚−2 and 2𝑚−1. In particular, if 𝑚 ≥ 4 the codes are doubly even
and then the corresponding lattices ΓC𝑚 ⊂ ℤ𝑁 ( 12 ), 𝑁 = 2𝑚 − 1, and ΓD𝑚 ⊂ ℤ𝑀 ( 12 ),
𝑀 = 2𝑚−1, are even. As a consequence the discriminant groups and forms of the
corresponding lattices have the following properties (using Proposition 5.1.4):

Corollary 5.1.8. Assume 𝑚 ≥ 4. The lattices ΓC𝑚 and ΓD𝑚 have discriminant

group ⊕2𝑚−2𝑚−1ℤ/2ℤ, respectively ⊕2𝑚−1−2𝑚ℤ/2ℤ. The discriminant quadratic form
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in both cases is 1
2ℤ-valued, that is, ΓC𝑚 and ΓD𝑚 are 2-elementary lattices of type

II.2

The two codes C𝑚 and D𝑚 can be characterized as follows:

Lemma 5.1.9 ([17, §4]). 1. Let 𝐶 ⊂ 𝔽𝑛2 be a code of dimension 𝑚 and with
non-zero weights > 1

2𝑛. Then 𝑛 ≥ 2𝑚 − 1 and, if equality holds, 𝐶 ≃ C𝑚.

2. Let 𝐶 ⊂ 𝔽𝑛2 be a code of dimension 𝑚 and with non-zero weights ≥ 1
2𝑛. Then

𝑛 ≥ 2𝑚−1 and equality holds if and only if 𝐶 ≃ D𝑚, in which case it only has
non-zero weights 1

2𝑛 = 2𝑚−2 and 𝑛 = 2𝑚−1.

5.2 Application to Nodes, K3 Surfaces and Nodal Quintics

5.2.A Even sets of nodes. Let 𝑌 be a (connected compact and smooth) com-
plex surface which is the minimal resolution of a singular surface 𝑌′ having a finite
set of ordinary double points (and no other singularities). The example to have in
mind is the (singular) Kummer surface (see Appendix B.3). As in that example,
each double point is resolved by a nodal curve , by definition a smooth rational
curve with self-intersection −2. Conversely, such a curve can be contracted to give
a surface with an ordinary double point. A special role is played by subsets {𝐸𝑗}𝑗∈𝐽
of disjoint nodal curves for which 𝐵𝐽 =

∑
𝑗∈𝐽 𝐸𝑗 ∈ 2NS(𝑌). Such a set is called an

even set of nodal curves.3 Its role is highlighted by the following geometric
construction. Evenness implies that there is a double covering4 of 𝑌, exactly ram-
ified over 𝐵𝐽 . The resulting surface 𝑋𝐽 is not minimal since the curves 𝐸𝑗 , 𝑗 ∈ 𝐽,
lift to exceptional curves which can be blown down to points 𝑝𝑗 , yielding a smooth
surface, say 𝑋′

𝐽 . The situation can be summarized in the following commutative
diagram

(𝑋𝐽 , 𝑞
−1𝐵𝐽) //

𝑞

��

(𝑋′
𝐽 ,

⋃
𝑗∈𝐽 𝑝𝑗)

𝑞′

��
(𝑌,𝐵𝐽) // (𝑌′,

⋃
𝑗∈𝐽 𝑞

′(𝑝𝑗))

(5.5)

Since 𝑋𝐽 − 𝑞−1𝐵𝐽 = 𝑋′
𝐽 −

⋃
𝑗∈𝐽 𝑝𝑗 and 𝑞−1𝐵𝐽 = 𝐵𝐽 as sets, the Euler numbers of 𝑌

and 𝑋′
𝐽 are related in a simple fashion:

𝑒(𝑋′
𝐽) − |𝐽 | = 2[𝑒(𝑌) − 𝑒(𝐵𝐽)] = 2𝑒(𝑌) − 4 · |𝐽 | =⇒ 𝑒(𝑋′

𝐽) = 2𝑒(𝑌) − 3 · |𝐽 |. (5.6)

The relation with codes stems from the following considerations. Let E =

{𝐸1, . . . ,𝐸𝑛} be a set of disjoint nodal curves on 𝑌. So, if 𝑁 = ℤ𝐸1 ⦹ · · ·⦹ ℤ𝐸𝑛 is

2See Definition 1.7.2 and Proposition 5.1.5.
3This is accepted terminology first introduced by F. Catanese in [37]; it does not mean that

the set consists of an even number of curves.
4For background on ramified double covers, see e.g. [15, Ch. V.22].
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the abstract lattice with basis the nodal classes, recalling the notation (5.1), we
find for the dual

𝑁∗ =
1

2
𝑁 ≃ ℤ𝑛 (−1

2
).

The quotient map 𝑁∗ → 𝑁∗/𝑁 = 1
2𝑁/𝑁 ≃ 𝔽𝑛2 is just the modulo 2 map 𝜌 : ℤ𝑛 → 𝔽𝑛2

used to construct lattices from codes. In what follows we assume for simplicity that
𝐻2 (𝑌,ℤ) has no torsion so that it becomes an integral lattice under the intersection
pairing; then the Néron–Severi group NS(𝑌) is known to be a primitive sublattice.
We do the reverse and start with the lattice:

𝑁E := primitive closure of 𝑁 in NS(𝑌).

Since we have inclusions 𝑁 ⊂ 𝑁E ⊂ 𝑁∗
E
⊂ 𝑁∗ ≃ ℤ𝑛 (− 1

2 ), we see that, setting

𝐶E = 𝑁E/𝑁 ⊂ 𝑁∗/𝑁 ≃ 𝔽𝑛2 , (5.7)

the lattice 𝑁E is precisely the inverse image of the code 𝐶E under the reduction
mod 2 map. In other words, we have

𝑁E = Γ𝐶E
(−1). (5.8)

Using that 𝑁E is primitive in the lattice NS(𝑌) and identifying 1
2𝑁/𝑁 with 𝑁/2𝑁,

we arrive at an equivalent description of the code 𝐶E, namely

𝐶E ≃ ker
(
𝔽𝑛2 = ⊕𝑗𝔽2𝐸𝑗 ≃ 𝑁/2𝑁

𝜑
−→ 𝑁/2𝑁E ⊂ 𝑁E/2𝑁E ⊂ NS(𝑌)/2NS(𝑌)

)
. (5.9)

Here primitivity is used to establish the rightmost inclusion. This description
shows the relation between properties of the code and geometry:

Proposition 5.2.1. Suppose 𝑌 is a complex surface such that 𝐻2 (𝑌,ℤ) has no
torsion and let E be a set of disjoint nodal curves on 𝑌. Non-zero code words in 𝐶E

correspond to even subsets of nodal curves, and conversely. More precisely, with
𝑒1, . . . , 𝑒𝑛 the standard basis of 𝔽𝑛2, the sum

∑
𝑖∈𝐽 𝑒𝑖, where 𝐽 ⊂ {1, . . . ,𝑛}, belongs to

the code 𝐶E if and only if
∑

𝑖∈𝐽 𝐸𝑖 is even in NS(𝑌). The weight of a word in 𝐶E is
the cardinality of the corresponding set.

Description (5.9) gives a bound for dim𝐶E: since NS(𝑌) is primitive in𝐻2 (𝑌,ℤ),
the quotient NS(𝑌)/2NS(𝑌) injects into 𝐻2 (𝑌,ℤ)/2𝐻2 (𝑌,ℤ) = 𝐻2 (𝑌,𝔽2), a sym-
plectic inner product space in which the image of 𝜑 is isotropic, and so has dimen-
sion ≤ 1

2𝑏2 (𝑌). It follows that

dim𝐶E ≥ 𝑛 − 1

2
𝑏2 (𝑌). (5.10)

5.2.B Even sets of nodes and K3 surfaces. There are severe restrictions on
even sets of disjoint nodal curves on a complex K3 surface:

Lemma 5.2.2. Let 𝑌 be a complex K3 surface containing an even set of 𝑘 > 0
disjoint nodal curves. Then 𝑘 = 8 or 16. If 𝑘 = 8 the associated double cover is a
K3 surface and if 𝑘 = 16 it is a complex torus.
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Proof. Consider the minimal surface 𝑋′
𝐽 constructed above from an even set of

nodal curves with |𝐽 | = 𝑘. Since 𝑒(𝑌) = 24 we find from (5.6) that 𝑒(𝑋′
𝐽) = 48− 3𝑘.

On the other hand, we claim that 𝐾𝑋′
𝐽
is trivial so that 𝑝𝑔 (𝑋′

𝐽) = 1 and 𝑐21 (𝑋′
𝐽) = 0.

Indeed, the canonical bundle is trivialized on 𝑌 by a non-zero holomorphic 2 form,
say 𝜔, which lifts to a 2-form, non-zero outside the branch locus and which descends
to a holomorphic two-form 𝜔′ on 𝑋′

𝐽 nowhere zero except maybe in the points 𝑝𝑗 .
But 𝜔′ can only vanish along a divisor and so 𝜔′ trivializes 𝐾𝑋′

𝐽
.

The classification theorem B.5.4 then gives two possibilities: 𝑋′
𝐽 is either a

torus or a K3-surface. Since 𝑒(𝑋′
𝐽) = 48 − 3𝑘, either 𝑒(𝑋′

𝐽) = 0 and then 𝑘 = 16, or
𝑒(𝑋′

𝐽) = 24 and then 𝑘 = 8. □

Proposition 5.2.1 then implies:

Corollary 5.2.3. For a set of disjoint nodal curves on a complex K3 surface the
weights of the associated code are 0, 8 or 16.

Let us investigate the codes associated to a set E of 16 or 8 disjoint nodal
curves on a complex K3 surface and the geometry behind them.
Case 1. #E = 16. We will show that E is always even and leads to a Kummer
surface.

First, assuming that E is an even set, we have seen that the corresponding
𝑋′
𝐽 is a torus, say 𝑋′

𝐽 = 𝐴. Recall (cf. Appendix B.5) that Km(𝐴) is the minimal
resolution of the quotient 𝐴/⟨𝜄⟩ of a complex 2-torus 𝐴 by its canonical involution
𝜄. The 16 fixed points of the involution give 16 nodes on 𝐴/⟨𝜄⟩ which resolve into
a set E𝐴 of 16 disjoint nodal curves on Km(𝐴). The Kummer lattice of Km(𝐴)
is then defined as

ΛKum = 𝑁E𝐴 , the primitive closure of the lattice spanned by the 16 nodal classes.

We next show that in this situation E must be an even set of nodal curves as a
consequence of the following lemma:

Lemma 5.2.4. For any set E of 16 nodal curves on a complex K3 surface, the
associated code 𝐶E is isomorphic to D5, the Reed–Muller code (5.3).

Proof. We invoke Lemma 5.1.9, using first of all the estimate (5.10) for the code
𝐶E ⊂ 𝔽16

2 which states 𝑚 = dim𝐶E ≥ 16 − 1
2 · 22 = 5. Secondly, we apply Corol-

lary 5.2.3, stating that its non-zero weights are ≥ 8. Thus the lemma implies
16 ≥ 2𝑚−1 ≥ 24, and since we then must have equality, 𝐶E = D5. □

This shows that the Kummer lattice of any Kummer surface is isometric to the
same abstract lattice, which motivates the following nomenclature.

Definition 5.2.5. The lattice ΛKum = ΓD5
(−1) is the abstract Kummer lattice .

Let us collect its properties, using Corollary 5.1.8:

Lemma 5.2.6. The abstract Kummer lattice is an even lattice of rank 16 and
discriminant 26. It is a 2-elementary lattice of type II with discriminant group
isomorphic to ⊕6ℤ/2ℤ.
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Since 16 disjoint nodal curves on a K3 surface have the same intersection pat-
tern as in the abstract Kummer lattice we deduce:

Proposition 5.2.7. Let 𝑌 be a complex K3 surface containing a set E of 16
disjoint nodal curves. Then E is an even set, 𝑌 is a Kummer surface with E the
canonical set of 16 nodal curves. The primitive closure 𝑁E of its span is isometric
to the abstract Kummer lattice ΛKum.

Proof. Since the code D5 contains the word (1, . . . , 1), the sum of all the nodal
curves is even and, as we just saw in the proof of Lemma 5.2.2, the resulting
double cover gives a torus 𝐴 with an involution having 16 fixed points. It thus
is the standard involution and 𝑌 = Km(𝐴). The set E is then the canonical set
of nodal curves. By (5.8) the Kummer lattice ΛE is isometric to the (abstract)
Kummer lattice ΛKum. □

Corollary 5.2.8. Every Kummer surface admits a doubly covering K3 surface
blown up in 8 points.

Proof. The code D5 contains words of length 8 and the corresponding double cover
gives a K3 surface with 8 exceptional curves. □

Case 2. #E= 8. This is only of interest if E is an even set in which case 𝑋′ = 𝑋′
𝐽

is a K3 surface. We characterize the code and the involution in this situation.
Let us start by considering the diagram (5.5) for this situation:

𝑋 //

��

𝑋′

��

𝑗ff

𝑌 // 𝑌′,

(5.11)

where 𝑗 is the covering involution. The latter is an example of a Nikulin involu-
tion , by definition an involution of a K3 surface which preserves the holomorphic
2-form on the K3 surface. Such involutions always have 8 isolated fixed points as
we shall show later (cf. Lemma 20.5.2).

We next turn to the associated code 𝐶E in 𝔽8
2. We have 𝐶E = 𝔽2·(1, 1, 1, 1, 1, 1, 1, 1)

since by Lemma 5.2.2 the only even subset of E is E itself. It follows that the prim-
itive closure 𝑁E in 𝐻2 (𝑌,ℤ) of the span of the 8 nodal classes is the lattice Γ𝐶E

(−1).
Diagram (5.11) motivates the following definition.

Definition 5.2.9. The Nikulin lattice is the rank 8 even negative definite lattice

ΛNik = ΓE(−1) ⊂
1

2
ℤ8 (−2)

spanned by the standard basis vectors 𝑒𝑗 of ℤ8 (−2) together with 1
2

∑8
𝑗=1 𝑒𝑗 .

We have:

Proposition 5.2.10. Let 𝑌 be a K3 surface with an even set E of 8 nodal curves.
Then the lattice Γ𝐶E

(−1) is the Nikulin lattice, a 2-elementary type II quadratic
lattice with discriminant group ⊕6ℤ/2ℤ.
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Proof. We already showed all but the last assertion. Note that 𝐶⊥
E
is the hyperplane∑

𝑥𝑖 = 0 in 𝔽8
2 with non-zero even weights 2, 4, 6 and 8. Since the code 𝐶E is

obviously doubly even, the statement follows from Proposition 5.1.5. □

Figure 5.2.1: Togliatti’s surface with 31 double points

5.2.C Codes and double points on quintics. Another application of the
above strategy yields an upper bound for the number of double points on degree 5
surfaces in projective 3-space as we now explain. Let 𝑋 be the minimal resolution
of a surface 𝑋 which has at most double points. The Betti numbers of a degree 𝑑
smooth surface in ℙ3 are well known. See e.g. Appendix B.3. Degree 𝑑 surfaces
form a family which has members with ordinary double points. It is well known
(see [29]) that their minimal resolutions have the same topological type as that of
the smooth members. In our case 𝑑 = 5 and hence 𝑏2 (𝑋) = 53−4 ·52 +6 ·5−2 = 53,
and so the lattice 𝐻𝑋 has rank 53. Let 𝐶E ⊂ 𝔽53

2 ≃ 𝐻𝑋 ⊗ 𝔽2 be the code defined by
the nodal curves coming from the double points. The crucial geometric input is as
follows.

Lemma 5.2.11 ([17]). The code 𝐶E ⊂ 𝔽𝑛2, 𝑛 = #E, has non-zero weights 16 and
20.
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The proof, which we don’t reproduce here, is subtler than the corresponding
assertion for Kummer surfaces.

To continue, note that it is well known (loc. cit.) that 𝑋 can have up to 31 nodes
as we shall prove in a moment. This bound is sharp as shown by E. Togliatti [227].
See Figure 5.2.1.5 Lemma 5.2.11 together with the characterization of Lemma 5.1.9
for the code C5 given in (5.4), indeed yields the estimate, and even more:

Corollary 5.2.12. If #E = 31, we have 𝐶E = C5, and so in this case NS(𝑋)
contains the lattice ΓC5

(−1). The surface 𝑋 has ≤ 31 double points.

Proof. Let 𝑛 be the number of double points. Suppose first that 𝑛 = 31 = 25 − 1.
Then 𝑛/2 = 15 1

2 and so Lemmas 5.2.11,5.1.9 and formula (5.10) imply that 𝐶E ≃ C5.
To show that 𝑛 ≤ 31, assume that, on the contrary, 𝑛 ≥ 32. Selecting a set E

of 32 nodes we shall arrive at a contradiction. Since 1
2𝑏2 (𝑌) = 26 1

2 , (5.10) implies
that 𝑚 = dim𝐶E ≥ 6 so that the conditions of Lemma 5.1.9.2 are satisfied. On the
other hand, since 𝐶E has weights ≥ 16, the conclusion of the lemma gives us the
inequality 𝑛 = 32 ≥ 2𝑚−1 ≥ 25, and so we have equality and 𝐶E ≃ D5, a code whose
weights are 16 and 32 contradicting Lemma 5.2.11. □

5.3 Lattices, Number Fields and Codes

5.3.A Some basic algebraic number theory. For details on number fields we
refer to [111]. A number field 𝐾 is an algebraic extension field of ℚ of finite
degree

𝑑 = 𝑑𝐾 = [𝐾 : ℚ].

The field 𝐾 is a ℚ-vector space of dimension 𝑑 and multiplication with 𝑥 ∈ 𝐾
defines a ℚ-linear map 𝑚𝑥 : 𝐾 → 𝐾 in this vector space. Its trace is the trace
Tr𝐾/ℚ(𝑥) of 𝑥 and its determinant is the norm N𝐾/ℚ(𝑥) of 𝑥. Using the 𝑑 = [𝐾 : ℚ]
different embeddings

𝜎1 = id, 𝜎2, . . . ,𝜎𝑑 : 𝐾 ↩→ ℂ,

the trace and norm can then also be given as
∑𝑑

𝑗=1 𝜎𝑗 (𝑥), respectively
∏𝑑

𝑗=1 𝜎𝑗 (𝑥).
Using the trace, one gets the trace form

(𝑥, 𝑦) ↦→ 𝑥 · 𝑦 = Tr𝐾/ℚ(𝑥𝑦). (5.12)

which is a symmetric bilinear form on 𝐾 with values in ℚ. To determine the
discriminant, suppose that {𝜔1, . . . ,𝜔𝑑} is a basis for the ℚ-vector space 𝐾. Then
one can show (cf. [111, §3.3])

disc(Tr𝐾/ℚ) = det
(
Tr𝐾/ℚ 𝑎𝑖𝑗

)
≠ 0, 𝑎𝑖𝑗 = 𝜔𝑖 · 𝜔𝑗 ,

from which we deduce:

5This picture is constructed with the SURFER software. See https://imaginary.org/

program/surfer.

https://imaginary.org/program/surfer
https://imaginary.org/program/surfer
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Lemma 5.3.1. The trace form is non-degenerate and so (𝐾,Tr𝐾/ℚ) is a ℚ-inner
product space.

Example 5.3.2 (Quadratic number fields). Any quadratic extension of ℚ can

be written as 𝐾 = ℚ(
√
𝑑) where 𝑑 ∈ ℤ is square free. If 𝑥 = 𝑥1 + 𝑥2 ·

√
𝑑 and

𝑦 = 𝑦1 + 𝑦2 ·
√
𝑑, we have Tr𝐾/ℚ(𝑥𝑦) = 2(𝑥1𝑦1 + 𝑑𝑥2𝑦2). The discriminant of the

trace form is (up to squares) 𝑑 ∈ D(ℚ) . Note also that the index of the trace form
is 2 if 𝑑 > 0 and 0 if 𝑑 < 0. The relation with the norm is as follows. 𝑁 (𝑥) = 𝑥2

1−𝑑𝑥2
2

whose polarization equals Tr𝐾/ℚ(𝑥𝑦′) where 𝑦′ = 𝑦1 − 𝑦2 ·
√
𝑑 is the conjugate of

𝑦. So the trace form is not the polarization of the quadratic form defined by the
norm. The norm form plays a role later on. See § 6.3.B, example 5 and 8.3.1.

As in the preceding example, the signature of the trace form is determined by
the nature of the embeddings 𝜎𝑗 : 𝐾 ↩→ ℂ, 𝑗 = 1, . . . ,𝑑. These can be divided
into two sets: a set of, say, 𝑟 real embeddings and a set of, say, 𝑠 pairs of complex
conjugate embeddings 𝜎, �̄� : 𝐾 ↩→ ℂ. The trace form has signature (𝑟 + 𝑠, 𝑠) (see
e.g. [222]). For 𝑠 > 0 the hermitian trace always gives a positive definite form:

Lemma 5.3.3. Fix a non-real embedding 𝐾 ↩→ ℂ and let 𝑥 ↦→ 𝑥 be the ensuing
complex conjugation. The hermitian trace

(𝑥, 𝑦) ↦→ 𝑥 · 𝑦 := Tr𝐾/ℚ(𝑥𝑦)

is a positive definite ℚ-inner product on 𝐾. It is independent of the chosen non-real
embedding.

Proof. Let 𝛼 ∈ 𝐾 be a primitive element so that 𝐾 = ℚ(𝛼). Suppose the roots of the
minimal polynomial of 𝛼 are 𝛼1 = 𝛼,𝛼2, . . . ,𝛼𝑑, then 𝜎𝑗 (𝛼) = 𝛼𝑗 and �̄�𝑗 (𝛼) = �̄�𝑗 .
Any 𝑥 ∈ 𝐾 can be written as a polynomial in 𝛼 with rational coefficients, say
𝑥 = 𝑝(𝛼). Hence 𝜎𝑗 (𝑥) = 𝑝(𝛼𝑗) and 𝜎𝑗 (𝑥) = 𝑝(�̄�𝑗) = 𝑝(𝛼𝑗) = 𝜎𝑗 (𝑥). Hence

Tr𝐾/ℚ(𝑥𝑥) =
∑

𝑗 𝜎𝑗 (𝑥)𝜎𝑗 (𝑥) ≥ 0 with equality if and only if 𝑥 = 0. Clearly, a
different choice of embedding just permutes the 𝜎𝑗 (𝑥) and so the sum does not
depend on the chosen embedding 𝐾 ↩→ ℂ. □

Let us next consider what this gives when we restrict these forms to the ring
of integers of 𝐾. Let us recall the definition.

Definition 5.3.4. The ring of integers of 𝐾 is defined as

𝔒𝐾 = {𝑥 ∈ 𝐾 | 𝑝𝑥 (𝑋) ∈ ℤ[𝑋]}, where 𝑝𝑥 (𝑋) is the monic minimal polynomial of 𝑥.

This is a free ℤ-module of rank 𝑑 = 𝑑𝐾 on which the trace is integer valued and
hence the pairing (𝑥, 𝑦) ↦→ Tr𝐾/ℚ(𝑥𝑦), 𝑥, 𝑦 ∈ 𝔒𝐾 , is integer valued. In other words,
(𝔒𝐾 ,Tr𝐾/ℚ) is an integral ℤ-lattice and so its discriminant, discriminant of 𝔒𝐾

– denoted 𝔡𝐾 – is an integer.

Example 5.3.5. For the quadratic extension 𝐾 = ℚ(
√
𝑑) we find

𝔒𝐾 =

{
ℤ ⊕

√
𝑑ℤ if 𝑑 ≡ 2, 3 mod 4

ℤ ⊕ 1
2 (1 +

√
𝑑)ℤ if 𝑑 ≡ 1 mod 4.
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For 𝑑 ≡ 2, 3 mod 4, the trace form is even and its Gram matrix with respect to the
given basis is the diagonal form diag(2, 2𝑑). In contrast, if 𝑑 ≡ 1 mod 4, the trace

form is odd since the Gram matrix in this case is

(
2 1
1 1

2 (𝑑 + 1)

)
. In both cases

𝔡𝐾 = 𝑑.

5.3.B More lattices from codes. To make the link with codes, we consider
the quotient of 𝔒𝐾 by a prime ideal 𝔭. This is a finite field, say 𝔽𝑞, 𝑞 = 𝑝𝑓, with
𝑝 prime, and where 𝑓 is called the inertia index of 𝔭. To simplify matters we
assume

1. 𝑓 = 1, and so 𝑞 = 𝑝;

2. 𝑝 and 𝑑𝐾 are relatively prime;

3. Tr𝐾/ℚ(𝔭) ⊂ (𝑝) (this is in general not the case).

Under these assumptions, composing Tr𝐾/ℚ with the reduction ℤ → ℤ/𝑝ℤ is a
non-trivial group homomorphism (since it sends 1 to the class of 𝑑𝐾 in ℤ/𝑝ℤ). Its
kernel contains 𝔭 and since 𝔒𝐾/𝔭 and ℤ/𝑝ℤ both have 𝑝 elements, this gives a
bijection 𝔒𝐾/𝔭

∼−→ 𝔽𝑝. Therefore coordinate-wise reduction mod 𝔭 induces a map

𝜌𝑝 : 𝔒𝑛
𝐾 −−−−−→ 𝔽𝑛𝑝. (5.13)

As in the case 𝐾 = ℚ, the inverse image 𝜌−1𝑝 𝐶 of a code 𝐶 ⊂ 𝔽𝑛𝑝 gives a sublattice
of finite index, but this time an 𝔒𝐾-sublattice.

The standard dot-product on 𝔒𝑛
𝐾 has values in 𝔒𝐾 . To pass to integral lattices

we first observe 𝔒𝐾 is a free ℤ-module of rank 𝑑𝐾 and that (𝑥, 𝑦) ↦→ Tr𝐾/ℚ(𝑥𝑦)
provides it with an integral symmetric bilinear form. Secondly, since we assumed
Tr𝐾/ℚ(𝔭) ⊂ (𝑝), the trace restricted to 𝜌−1𝑝 𝐶 takes values in (𝑝). This motivates

to scale the trace form by 𝑝−1, as before. This yields

Γ𝐶 = 𝜌−1𝑝 𝐶 ⊂ 𝔒𝑛
𝐾 (𝑝−1)

with the form

(𝑥, 𝑦) ↦→ 1

𝑝
Tr𝐾/ℚ(𝑥 · 𝑦), 𝑥, 𝑦 ∈ 𝔒𝑛

𝐾 .

Lemma 5.3.6. 1. Γ𝐶 is an integral lattice if and only if 𝐶 ⊂ 𝔽𝑛𝑝 is isotropic
with respect to the standard dot product.

2. The discriminant of the lattice Γ𝐶 is given by

disc(Γ𝐶) = 𝑝2𝑛−2𝑚 ·
(
𝔡𝐾/𝑝𝑑𝐾

)𝑛
= 𝔡𝑛𝐾 · 𝑝𝑛(2−𝑑𝐾 )−2𝑚, 𝑚 = dim𝐶. (5.14)

Proof. 1. From the remarks preceding the statement of the lemma the dot product
of 𝑥, 𝑦 ∈ 𝔒𝑛

𝐾 lands in the ideal 𝔭 if and only if 𝑝−1 ·Tr𝐾/ℚ(𝑥 ·𝑦) ∈ ℤ. Since 𝑥 ·𝑦 ∈ 𝔭 if
and only (𝑥 mod 𝔭) · (𝑦 mod 𝔭) = 0 in 𝔒/𝔭 = ℤ/𝑝ℤ if and only if 𝜌𝑝 (𝑥) · 𝜌𝑝 (𝑦) = 0.
The latter is the case if and only if 𝐶 is an isotropic subspace of 𝔽𝑛𝑝.
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2. If dim𝐶 = 𝑚, then Γ𝐶 is a submodule of index 𝑝𝑛−𝑚 of 𝔒𝑛
𝐾 (𝑝−1) ≃ ℤ𝑛𝑑𝐾 (𝑝−1).

Then by Lemma 1.2.2 disc(Γ𝐶) = disc(𝔒𝐾 (𝑝−1))𝑛 · (𝑝𝑛−𝑚)2 =
(
𝔡𝑛𝐾/𝑝𝑑𝐾

)𝑛 · (𝑝𝑛−𝑚)2.
□

To obtain positive definite forms we switch to the hermitian trace form, which,
by Lemma 5.3.3, is positive definite. However, it need not be integral. To ensure
this we make the assumption (see § 5.3.C for an example)

𝑢 − 𝑢 ∈ 𝔭 for all 𝑢 ∈ 𝔒𝐾 , (5.15)

where the complex conjugate is with respect to a fixed non-real embedding 𝐾 ↩→ ℂ.
Under this assumption 𝑥 · 𝑦 ≡ 𝑥 · 𝑦 mod 𝔭 and so belongs to 𝔭 if 𝑥, 𝑦 ∈ Γ𝐶 . This
implies that 𝐶 then is an isotropic code, and the positive definite hermitian trace
form

(𝑥, 𝑦) ↦→ 𝑥 • 𝑦 := 𝑝−1 Tr𝐾/ℚ(𝑥 · 𝑦), 𝑥, 𝑦 ∈ Γ𝐶 , (5.16)

is indeed an integral form on Γ𝐶 . As to the formula (5.14), we need to see what
changes if we use the hermitian trace when computing the discriminant of 𝔒𝐾 .
Since conjugation on the ℚ-vector space 𝐾 is a linear map with determinant (−1)𝑠,
we see that only the sign may change. Since the form is positive definite we thus
find for the new form (5.16)

disc(Γ𝐶) = 𝑝2𝑛−2𝑚 ·
(
|𝔡𝐾 |/𝑝𝑑𝐾

)𝑛
= |𝔡𝐾 |𝑛 · 𝑝𝑛(2−𝑑𝐾 )−2𝑚, where 𝑚 = dim𝐶. (5.17)

5.3.C Codes from cyclotomic fields. Let 𝐾 be the cyclotomic field ℚ(𝜁), 𝜁 =

e2𝜋𝒊/𝑝, where 𝑝 is an odd prime. We recall some facts (cf. for example [111, §9.2]).

• The degree of the field extension 𝐾/ℚ is 𝑝 − 1.

• For a primitive 𝑝-th root of unity 𝑧 we have Tr𝐾/ℚ(𝑧) = 𝑧+𝑧2+· · ·+𝑧𝑝−1 = −1.

• 𝔒𝐾 = ℤ[𝜁] = ℤ + ℤ𝜁 + · · · + ℤ𝜁𝑝−2 and 𝔡𝐾 = (−1)
𝑝−1
2 𝑝𝑝−2.

• The ideal 𝔭 ⊂ 𝔒𝐾 generated by 1 − 𝜁 is prime and its inertia index is 1.

Assumption (5.15) is satisfied in this case with respect to the given embedding.
To see this, note that if 𝑧 is any 𝑝-th root of unity, we have 𝑧 − 𝑧 = 𝑧𝑝−1 − 𝑧 =

𝑧(𝑧𝑝−2 − 1) = 𝑧(𝑧 − 1) (𝑧𝑝−3 + 𝑧𝑝−4 + · · · + 1) which belongs to 𝔭 since 𝑧 − 1 = 𝜁𝑘 − 1
is divisible by 𝜁 − 1, the generator of 𝔭.

Let us now investigate the lattices Γ𝐶 .

Example 5.3.7. Take 𝑛 = 1. The code 0 ⊂ 𝔽𝑝 gives a lattice of rank 𝑝 − 1 and
discriminant 𝑝. It is isometric to the root lattice 𝐴𝑝−1. To see this, we use the
ℤ-basis for 𝔭 = 𝜌−1𝑝 0 given by {𝑏1 = 1− 𝜁, 𝑏2 = 𝜁(1− 𝜁), · · · , 𝑏𝑝−1 = 𝜁𝑝−2 (1− 𝜁)} and
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we calculate the products 𝑏𝑖 ·𝑏𝑗 with respect to the form (5.16) as follows. We first
compute the traces of the expressions 𝑧𝑘 (1− 𝑧) (1− 𝑧) = 2𝑧𝑘 − 𝑧𝑘+1 − 𝑧𝑘−1. We have

Tr𝐾/ℚ(2𝑧𝑘 − 𝑧𝑘+1 − 𝑧𝑘−1) =

2(𝑝 − 1) + 2 = 2𝑝 if 𝑘 ≡ 0 mod 𝑝,

−2 + 1 − (𝑝 − 1) = −𝑝 if 𝑘 ≡ ±1 mod 𝑝,

0 otherwise.

It follows that the scaled dot product of 𝑧𝑎 (1 − 𝑧) and 𝑧𝑏 (1 − 𝑧) equals 𝑝−1 ·
Tr𝐾/ℚ 𝑧

𝑎−𝑏 (1 − 𝑧) (1 − 𝑧) = 2, respectively −1 if 𝑎 = 𝑏, |𝑎 − 𝑏 | = 1, respectively, and
0 otherwise. Hence the Gram matrix with respect to the 𝑏𝑖 is that of 𝐴𝑝−1. We
deduce that therefore all isotropic codes 𝐶 ⊂ 𝔽𝑛𝑝 give integral lattices that contain

𝐴⦹𝑛
𝑝−1.

Lemma 5.3.8. Let 𝐾 = ℚ(𝜁), 𝔒𝐾 and 𝜌𝑝 : 𝔒𝑛
𝐾 → 𝔽𝑛𝑝 be as above. An 𝑚-

dimensional isotropic code 𝐶 ⊂ 𝔽𝑛𝑝 gives a positive definite even lattice Γ𝐶 = 𝜌−1𝑝 𝐶

of rank 𝑛(𝑝 − 1) and discriminant 𝑝𝑛−2𝑚. It is unimodular if and only if 𝑛 = 2𝑚,
that is, if 𝐶 is self-dual.

It contains 𝐴⦹𝑛
𝑝−1 and if the minimal weight of 𝐶 is > 𝑝, then 𝐴⦹𝑛

𝑝−1 is the root
sublattice of Γ𝐶.

Proof. We have seen that 𝑑𝐾 = 𝑝 − 1 and that |𝔡𝐾 | = 𝑝𝑝−2. Then (5.17) gives the
discriminant 𝑝𝑛−2𝑚 from which also the statement about unimodularity follows.
The lattice Γ𝐶 is even since the maximally totally real subfield 𝑘 of 𝐾 is generated
by 𝜁 + 𝜁 and thus is of index 2 in 𝐾 so that for all 𝑥 ∈ 𝔒𝐾 the real number 𝑥𝑥
belongs to 𝑘 ∩𝔒𝐾 and Tr𝐾/ℚ(𝑥𝑥) = 2Tr𝑘/ℚ(𝑥𝑥) is even.

Example 5.3.7 shows that Γ𝐶 contains 𝐴⦹𝑛
𝑝−1 and that 𝐴⦹𝑛

𝑝−1 maps to zero in 𝐶.
For a root 𝑥 ∈ Γ𝐶 one has

2 = 𝑥 • 𝑥 = (1/𝑝)
∑︁
𝑗

Tr𝐾/ℚ(𝑥𝑗𝑥𝑗) = (2/𝑝)
∑︁
𝑗

Tr𝑘/ℚ(𝑥𝑗𝑥𝑗), 𝑥 = (𝑥1, . . . ,𝑥𝑛).

Hence, Tr𝑘/ℚ(𝑥𝑗𝑥𝑗), a non-negative integer, can be positive for at most 𝑝 coor-
dinates 𝑥𝑗 . So, if the minimal weight of 𝐶 is > 𝑝, such a root cannot map to a

non-zero code word. In this case 𝐴⦹𝑛
𝑝−1 is the root sublattice of Γ𝐶 . □

Examples 5.3.9. 1. Take 𝑝 = 3 and 𝐶 = 𝔽3 · (1, 1, 1) ⊂ 𝔽3
3. Then Γ𝐶 has rank

3 · (3 − 1) = 6, discriminant 33−2 = 3, and turns out to be the root lattice 𝐸6.
This can be seen by direct calculation. A more theoretical argument is given
in [64, §5.2].

2. Take 𝑝 = 5 and 𝐶 the line in the plane over 𝔽5 spanned by (1, 2). Then 𝐶 is
self-dual and so the positive definite lattice it gives is unimodular, even and
of rank 2 · 4 = 8. By classification again it must be 𝐸8.

3. Niemeier lattices. Recall (cf. Section 1.12) that by definition these are the
positive definite unimodular even lattices of rank 24. In the present setting
these occur if rank(Γ𝐶) = 𝑛(𝑝 − 1) = 24 and 𝐶 is self-dual. In other words, if
(𝑝,𝑛) = (3, 12), (5, 6), (7, 4), (13, 2). We follow the exposition of [64, Section
5.2] where further details can be found. Here is the list:
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• 𝑝 = 3. Here one uses the so-called extended ternary Golay code, a self-
dual code in 𝔽12

3 of dimension 6 whose definition can be found on p. 137
of [64]. It has minimum weight 6. By Lemma 5.3.8 the corresponding
lattice contains 𝐴⦹12

2 and no other roots. There is another self-dual
ternary code in 𝔽12

3 such that the corresponding Niemeier lattice con-

tains 𝐸⦹4
6 .

• 𝑝 = 5. The code in 𝔽6
5 spanned by the rows of

©«
0 0 1 1 2 −2
2 −2 0 0 1 1
1 1 2 −2 0 0

ª®¬
gives a Niemeier lattice containing 𝐴⦹6

4 . Without considering weights
of words, we can conclude by Theorem 1.12.1 that this must be its root
sublattice.

• 𝑝 = 7. The code in 𝔽4
7 spanned by the rows of(

1 2 3 0
0 3 −2 1

)
gives a Niemeier lattice containing 𝐴⦹4

6 which again by Theorem 1.12.1
is its root sublattice.

• 𝑝 = 13. The Niemeier lattice corresponding to the code generated by
(1, 5) ⊂ 𝔽2

13 has 𝐴⦹2
12 as its root sublattice.

5.4 Lattices and Quaternions

5.4.A Quaternion algebras over fields. The classical algebra of quaternions
ℍ is the associative ℝ-algebra with unit 1, generators 1, 𝒊, 𝒋,𝒌, in which the product
is determined by 𝒊2 = 𝒋2 = 𝒌2 = −1, 𝒊𝒋 = −𝒋𝒊 = 𝒌. It has an anti-involution given
by

𝑥 = 𝑥0 + 𝑥1𝒊 + 𝑥2𝒋 + 𝑥3𝒌 ↦−→ 𝑥∗ = 𝑥0 − 𝑥1𝒊 − 𝑥2𝒋 − 𝑥3𝒌. (5.18)

The anti-involutive property means that 𝑥 ↦→ 𝑥∗ is an anti-isomorphism, i.e.
(𝑥𝑦)∗ = 𝑦∗𝑥∗ and that it is an involution, that is (𝑥∗)∗ = 𝑥.

The algebra ℍ was invented by Hamilton who called its elements quaternions.
This construction has a variant over any field of characteristic different from 2:

Definition 5.4.1. A quaternion algebra over 𝑘 is a 𝑘-algebra 𝐷 with the
following properties:

• 𝐷 is central, i.e., its center is 𝑘;

• 𝐷 = 𝐾 + 𝐾𝒋, a skew field of dimension 2 over a quadratic extension algebra
𝐾 = 𝑘[𝒊] of 𝑘, where 𝒊2 ∈ 𝑘×;
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• for all 𝑧 = 𝑥 + 𝒊𝑦 ∈ 𝐾, one has 𝒋𝑧 = 𝑧∗𝒋, where 𝑧∗ = 𝑥 − 𝒊𝑦.

From this it follows that in particular, 𝒊𝒋 = −𝒋𝒊. Moreover, if 𝒊2 := 𝑎 ∈ 𝑘×,
𝒋2 := 𝑏 ∈ 𝑘×, setting 𝒌 = 𝒊𝒋, then 𝒌2 = −𝑎𝑏. We denote such a quaternion algebra
by

𝐷 =

(
𝑎 , 𝑏

𝑘

)
.

Two quaternion algebras 𝐷,𝐷′ over the same field 𝑘 built from the quadratic
extension agebras 𝐾/𝑘,𝐾′/𝑘, respectively, are said to be isomorphic if a 𝑘-algebra
isomorphism 𝑓 : 𝐷 → 𝐷′ exists with 𝑓(𝐾) = 𝐾′. For instance, we may take 𝐾 = 𝐾′

but choose a different generator for the extension 𝐷/𝐾, or we may exchange 𝒊 and
𝒋 so that 𝐾′ = 𝑘(𝒋) and 𝐷′ = 𝐾′(𝒊). This leads to the isomorphisms(

𝑎 , 𝑏

𝑘

)
≃

(
𝑏, 𝑎

𝑘

)
, (𝒊, 𝒋) ↦→ (𝒋, 𝒊), (5.19)(

𝑎𝑡2, 𝑏

𝑘

)
≃

(
𝑎 , 𝑏

𝑘

)
, (𝒊, 𝒋) ↦→ (𝑡−1𝒊, 𝒋), 𝑡 ∈ 𝑘×. (5.20)

Note that the algebra 𝑀2 (𝑘) of 2 × 2 matrices is a quaternion algebra, the
so-called split quaternion algebra , as shown by the assignment(

1, 𝑏

𝑘

)
≃ 𝑀2 (𝑘), 𝒊 ↦→

(
1 0
0 −1

)
, 𝒋 ↦→

(
0 𝑏
1 0

)
. (5.21)

Over a perfect field every element is a square. In view of (5.20) and (5.21) this im-
plies that over such fields a quaternion algebra is split. This happens in particular
if we pass to an algebraic closure 𝑘 of 𝑘:(

𝑎 , 𝑏

𝑘

)
≃ 𝑀2 (𝑘).

As in the case of the Hamilton quaternions, the involution 𝑧 ↦→ 𝑧∗ on 𝐾 extends

uniquely to an anti-involution on
(
𝑎 ,𝑏
𝑘

)
and is given by (5.18). Using this anti-

involution, one defines

𝑁 (𝑥) = 𝑥 · 𝑥∗ ∈ 𝑘 (norm of 𝑥) (5.22)

𝑇 (𝑥) = 𝑥 + 𝑥∗ ∈ 𝑘 (reduced trace of 𝑥). (5.23)

Explicitly, if 𝑥 = 𝑥0 + 𝑥1𝒊 + 𝑥2𝒋 + 𝑥3𝒌, then 𝑁 (𝑥) = 𝑥2
0 − 𝑎𝑥2

1 − 𝑏𝑥2
2 + 𝑎𝑏𝑥2

3 and
𝑇 (𝑥) = 2𝑥0. The norm 𝑁 (𝑥) is a quadratic form over 𝑘 whose polar form is

𝑇 (𝑥𝑦∗) = 𝑁 (𝑥 + 𝑦) −𝑁 (𝑥) −𝑁 (𝑦).

Note that 1, 𝒊, 𝒋,𝒌 form an orthogonal basis. The discriminant of the polar form
is a non-zero square 𝑎2𝑏2 and hence disc(𝑁) = 1 ∈ 𝐷(𝑘).
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Example 5.4.2. Consider
(
1,1
𝑘

)
. An explicit isomorphism

(
1,1
𝑘

)
≃ 𝑀2 (𝑘) is given

by

𝑥 = 𝑥0 + 𝑥1𝒊 + 𝑥2𝒋 + 𝑥3𝒌 = (𝑥0 + 𝑥1𝒊) + (𝑥2 + 𝑥3𝒊) · 𝒋 ↦→
(
𝑥0 + 𝑥1 𝑥2 + 𝑥3
𝑥2 − 𝑥3 𝑥0 − 𝑥1

)
.

Then the anti-involution is given by(
𝛼 𝛽
𝛾 𝛿

)
↦→

(
𝛿 −𝛽
−𝛾 𝛼

)
.

The reduced trace is the usual trace and the norm is the determinant.

The quaternions ℍ form a division algebra or skew field: every element 𝑥 ≠ 0
has an inverse. Indeed, 𝑁 (𝑥) ≠ 0 if and only if 𝑥 ≠ 0 and hence 𝑥−1 = 𝑥∗/𝑁 (𝑥).
In general, for a quaternion algebra

(
𝑎 ,𝑏
𝑘

)
this might or might not be the case

depending on 𝑎 and 𝑏. For instance 𝑀2 (𝑘) is not a division algebra: the matrices
with zero determinant are not invertible.

Using the multiplicativity of the norm

𝑁 (𝑥 · 𝑦) = 𝑁 (𝑥) · 𝑁 (𝑦),

one sees that if 𝑥−1 exists, then 𝑁 (𝑥)𝑁 (𝑥−1) = 1 and conversely, if 𝑁 (𝑥) ≠ 0, then
𝑥−1 = 𝑥∗/𝑁 (𝑥). A quaternion algebra is not a division algebra if and only if 𝑁
admits isotropic vectors. Such algebras turn out to be always isomorphic to matrix
algebras. In fact, we have:

Proposition 5.4.3. A quaternion algebra is split, i.e. isomorphic to 𝑀2 (𝑘), if
and only if the norm admits an isotropic vector.

One half of this statement follows from what we just said, but the proof of the
implication ” non-split =⇒ skew field” is non-trivial. For a proof we refer to [234,
Ch. I, §2].

5.4.B Ternary forms and quaternion algebras. Let 𝐷 =

(
𝑎 ,𝑏
𝑘

)
be a quater-

nion algebra. Clearly 𝑘 · 1 ⊂ 𝐷 is the fixed point set of the involution ∗ and the
trace is non-degenerate on it. We next show that we get in fact an orthogonal
decomposition

𝐷 = 𝑘 · 1⦹ 𝐷0, 𝐷0 = {𝑥 ∈ 𝐷 | 𝑥 = −𝑥∗} = {𝑥 ∈ 𝐷 | 𝑇 (𝑥) = 0}.

It suffices to check that the traceless quaternions are orthogonal to the constants.
This is based on writing 2𝑥 = (𝑥+𝑥∗)+ (𝑥−𝑥∗), where we use that the characteristic
≠ 2. To see this, let 𝜆 ∈ 𝑘 and 𝑦 ∈ 𝐷0. Then

𝑇 (𝜆𝑦∗) = 𝑁 (𝜆 · 1 + 𝑦) −𝑁 (𝜆 · 1) −𝑁 (𝑦)
= 𝜆2 + 𝜆(𝑦 + 𝑦∗) + 𝑦𝑦∗ − 𝜆2 − 𝑦𝑦∗

= 𝜆(𝑦 + 𝑦∗) = 0.
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If 𝐷 =

(
𝑎 ,𝑏
𝑘

)
, the norm form on 𝐷0 is given by

(𝑥1,𝑥2,𝑥3) ↦→ −𝑎𝑥2
1 − 𝑏𝑥2

2 + 𝑎𝑏𝑥2
3 , (5.24)

a ternary 𝑘-valued form.

Proposition 5.4.4. Let 𝐷,𝐷′ be quaternion algebras. The following statements
are equivalent:

1. The quaternion algebras 𝐷 and 𝐷′ are isomorphic;

2. The associated norm forms on the 𝑘-vector spaces 𝐷 and 𝐷′ are isometric;

3. The associated norm forms on the 𝑘-vector spaces 𝐷0 and (𝐷′)0 are isometric.

The quaternion algebra 𝑀2 (𝑘) corresponds to the up to isometry unique isotropic
ternary form −𝑥2

1 − 𝑥2
2 + 𝑥2

3.

Proof. 1 implies 2 since an isomorphism of quaternion algebras preserves the norm
forms.

2 implies 3 because of Witt’s cancelation theorem 7.2.7 which we prove in a
later chapter.

Proof that 3 implies 1: First of all, 𝐷0 has an orthogonal basis, say {𝒊, 𝒋,𝒌},
and since an isometry 𝑓 : 𝐷0 → (𝐷′)0 preserves orthogonality, the images 𝑓(𝒊) = 𝒊′,
𝑓(𝒋) = 𝒋′ and 𝑓(𝒌) = 𝒌′ are orthogonal. Let 𝑁 be the quadratic form on 𝐷0 and
𝑁′ the one on (𝐷′)0. Write 𝑁 (𝒊) = −𝑎 ,𝑁 (𝒋) = −𝑏,𝑁 (𝒌) = 𝑎𝑏, 𝑎 , 𝑏 ∈ 𝑘×. We use
the accented symbols for (𝐷′)0. Since 𝑓 is an isometry,

0 = 𝒊 · −𝒋 + (𝒋 · −𝒊) = 𝑇 (𝒊 · −𝒋) = 𝑇 ′(𝒊′ · −𝒋′)
=

[
𝑁′(𝒊′ + 𝒋′) −𝑁′(𝒊′) −𝑁′(𝒋′)

]
= (𝒊′ + 𝒋′)2 − (𝒊′)2 − (𝒋′)2

= 𝒊′𝒋′ + 𝒋′𝒊′.

So 𝒊′𝒋′ = −𝒋′𝒊′. By assumption, 𝐷′ = 𝑘 · 1 ⊕ (𝐷′)0 as 𝑘-vector spaces and the

argument so far shows that 𝐷′ =
(
𝑎′,𝑏′

𝑘

)
. Hence, setting 𝑓(1) = 1, the isometry 𝑓

extends as a quaternion algebra isomorphism between 𝐷 and 𝐷′.
Finally we prove the last assertion. By Proposition 5.4.3, up to isometry the

algebra 𝑀2 (𝑘) is the unique quaternion algebra for which isotropic vectors for
the norm exist. Under the isomorphism (5.21) the algebra 𝑀2 (𝑘) corresponds to(
1,𝑏
𝑘

)
and the corresponding ternary form is diag(−1,−𝑏, 𝑏) with isotropic vector

(0, 1, 1). This form is indeed isometric to diag(−1,−1, 1) since the basis change

matrix
©«
1 0 0
0 1

2 (𝑏 + 1) 1
2 (𝑏 − 1)

0 1
2 (𝑏 − 1) 1

2 (𝑏 + 1)
ª®¬ transforms diag(−1,−1, 1) into diag(−1,−𝑏, 𝑏). □

Corollary 5.4.5. The map which sends 𝐷 to the quadratic form on 𝐷0 induced by
the norm defines a bijection between the set of isomorphism classes of quaternion
𝑘-algebras and the equivalence classes of 𝑘-valued ternary forms with discriminant
1.
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Proof. First recall (cf. Proposition 1.1.4) that a quadratic form over 𝑘 is diagonal-
izable and such a form is non-degenerate if and only if its discriminant is non-zero.
Also recall that discriminants are well defined up to squares in 𝑘×. Hence a ternary
form with discriminant 1 can be taken to be diag(−𝑎 ,−𝑏, 𝑐) with 𝑎𝑏𝑐 a square in
𝑘×, say 𝑎2𝑏2. This gives a form of the shape (5.24), that is, a ternary form associ-
ated to a quaternion algebra. In other words, norm forms on 𝐷0 are isometric to
ternary forms with discriminant 1 and conversely. The statement is then a direct
consequence of Proposition 5.4.4. □

As a consequence we may write 𝐷(𝑞) for the quaternion algebra 𝐷 associated
to a given ternary form 𝑞 with discriminant 1.

5.4.C Quaternion algebras over the field ℚ. As explained in Chapter 3,
the classification of quadratic forms over ℚ is determined by the discriminant, the
Hasse invariants at finite places and the index. The local behaviour of a quaternion
algebra is governed by places over which it is non-split. This is captured in the
following definition.

Definition 5.4.6. A ℚ-quaternion algebra 𝐷 is non-split or ramified at the
place 𝑣 ∈ P if its localization 𝐷𝑣 at 𝑣 is a skew field.

The goal is to classify quaternion algebras 𝐷(𝑞) over ℚ given by quadratic forms
𝑞 = diag(−𝑎 ,−𝑏, 𝑎𝑏). Since disc(𝑞) = 1 (modulo squares), the index can be 3 or
−1 depending on the signs of 𝑎 and 𝑏. Only the second possibility can give rise
to isotropic vectors. Then 𝐷(𝑞) ⊗ ℝ ≃ 𝑀2 (ℝ). Otherwise, if 𝑎 , 𝑏 < 0, we get the
quaternions. The classification is as follows.

Proposition 5.4.7. A quaternion algebra over ℚ is ramified at an even number
of places. Given an even number of places, there is a quaternion algebra rami-
fied at exactly those places. In particular there is a unique isomorphism class of
quaternion algebras split everywhere except at a given prime and at ∞.

Proof. Suppose that the algebra is 𝐷(𝑞) with 𝑞 = −𝑎𝑥2
1 − 𝑏𝑥2

2 + 𝑎𝑏𝑥2
3. One verifies

that 𝜖𝑝 (𝑞) = (𝑎 , 𝑏)𝑝. By definition of the Hilbert symbol, (𝑎 , 𝑏)𝑝 = 1 is equivalent to

𝑞 having an isotropic vector which is equivalent to
(
𝑎 ,𝑏
ℚ𝑝

)
≃ 𝑀2 (ℚ𝑝). So (𝑎 , 𝑏)𝑝 = −1

precisely means that the corresponding quaternion algebra is ramified. A repre-
senting local form with this property is diag(−𝑢,−𝑝,𝑢𝑝) where 𝑢 is a non-square
modulo 𝑝. We already saw that at the place ∞ we have ramification if and only
if 𝑎 , 𝑏 < 0. By Remark 3.3.6, the only restriction for the existence of a quadratic
form over ℚ is the Hilbert product formula,

∏
𝑣∈P(𝑎 , 𝑏)𝑣 = 1. This implies that a

quaternion algebra is ramified at an even number of places and, conversely, that
there exists a quaternion algebra ramified at a given even set of places. □

Finiteness of the ramification locus leads to the concept of discriminant
disc(𝐷) of 𝐷 as the product of all finite places at which 𝐷 is ramified.
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5.4.D Ternary integral quadratic forms. To construct lattices in quaternion
algebras 𝐷 = 𝐷(𝑞) over ℚ, one uses orders, i.e., subrings of 𝐷 that are integral
ℤ-modules of rank 4. These exist: simply take ℤ + ℤ𝒊 + ℤ𝒋 + ℤ𝒌. By definition,
the discriminant of an order 𝐿 ⊂ 𝐷 is the discriminant of 𝑞 |𝐿. Every order of 𝐷 is
contained in a maximal order. These need not be unique, but we have:

Proposition 5.4.8. The maximal orders of 𝐷 = 𝐷(𝑞) are the orders with discrim-
inant 𝑑2 where 𝑑 = disc(𝐷), the discriminant of 𝐷. Any maximal order in 𝐷 gives
a positive definite rank 4 quadratic lattice with discriminant 𝑑2. Such maximal
orders exist.

For a proof see e.g. Cor. 2.5 in the lecture notes [38] where the reader also finds
a short introduction to maximal orders.

Example 5.4.9. Consider the (unique) quaternion algebra 𝐷 ramified at the prime
𝑝 and the place at ∞. This is a positive definite form with disc(𝐷) = 𝑝. We claim

that for 𝑝 ≡ 3 mod 4 this quaternion algebra is 𝐷 =

(
−1,−𝑝
ℚ

)
. In that case the

ternary quadratic form is 𝑞 = 𝑥2 + 𝑝𝑦2 + 𝑝𝑧2, which is positive definite and hence
ramified at infinity. The form has discriminant 𝑝2 and so is unimodular when
localized at primes 𝑝′ ≠ 𝑝. Unimodular forms in ℚ𝑝′ have isotropic vectors (see
e.g. Example A.4.2) and so 𝐷 = 𝐷(𝑞) is not ramified at the prime 𝑝′. Since 𝐷(𝑞)
must be ramified at an even number of finite places, it must be ramified at 𝑝. This
shows our claim. A maximal order in 𝐷 gives a positive definite lattice of rank 4
with discriminant 𝑝2. Since 𝑁 (1 + 𝒋) = 1 + 𝑝 ≡ 0 mod 4, a maximal order is for
instance given by

ℤ + 𝒊ℤ + 1

2
(1 + 𝒋)ℤ + 1

2
(𝒊 + 𝒌)ℤ.

The trace form splits into two binary forms each given by the matrix(
2 1
1 1

2 (𝑝 + 1)

)
which indeed represents an even form with discriminant 𝑝. For 𝑝 ≡ 1 mod 4 it
is a little more involved to describe maximal orders in 𝐷. See for instance [38,
Example 1.9], from which it follows that the corresponding integral ternary forms
are isometric to 𝑎𝑥2 + 𝑝𝑦2 + 𝑎𝑝𝑧2 for a suitable integer 𝑎 prime to 𝑝 (the integer
depends on 𝑝 mod 8).

Historical and Bibliographical Notes. Mathematical coding theory arguably be-
gan with the invention of the Golay code [85]. A year later, at Bell Labs, R. Hamming
found the famous code named after him (cf. [91]). A few years later the Reed–Muller
codes [190, 162] were constructed which are named after their inventors I. Reed and D.
Muller. For the relation with lattices and the construction of codes from lattices in num-
ber fields we have followed the book [64] by W. Ebeling. In Chapter 2 of [64] also theta
functions as introduced in § 1.12.B play a central role.

Classically, Kummer surfaces were the quartic surfaces in ℙ3 with 16 nodes. Their
configuration has been very much studied. See e.g. the exposition [102] by R. Hudson
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which has a foreword by W. Barth explaining its topics in modern language. That a K3
surface with 16 disjoint curves is an (abstract) Kummer surface was first observed by V.
Nikulin in [168]. His proof is based on affine geometry over the field 𝔽2 as is the proof
of Prop. VIII.6.1 in the monograph [15] where, however, the superfluous assumption
of the evenness of the 16 double points was made (and used). The first proof which
systematically uses coding theory is due to A. Kalker in his thesis [115] where several
other geometric applications can be found. V. Nikulin [168] showed that a K3 surface
cannot acquire more than 16 double points. The proof uses lattice theory. For a proof
using coding theory, see [185]. The application of coding theory to estimate numbers of
double points on quintic surfaces in ℙ3 is due to A. Beauville [17]. For double points
on sextics and their related codes see J. Wahl’s note [243] as well as [108] by D. Jaffe
and D. Ruberman. For characteristic 𝑝-phenomena involving codes and double points for
𝑝 > 0, see I. Shimada’s articles [207, 208]. The term ”Nikulin involution” probably has
been coined for the first time by D. Morrison [158] where he cites Section 5 of Nikulin’s
article [169].

Quaternions were invented by W. R. Hamilton as can be seen from his letter [90].
The relation with ternary forms dates back to the articles by C. Latimer [136, Thm.3],
G. Pall [180, Thm.4 and 5] and H. Brandt [28]. It is quite classical that isomorphism
classes of quaternion algebras correspond bijectively to isometry classes of ternary forms
and, if the field is ℚ, that this correspondence is governed by the Hilbert symbols. For
this and the relation with integral ternary forms, one may consult for instance Section
57 in T. O’Meara’s book [177].

For more information and background on quaternions see the classical book [234] by
M.-F. Vigneras, or the voluminous opus [241] by J. Voight.



6

Symmetric and Quadratic Forms Revisited

In this chapter 𝑅 is a commutative ring with 1, and 𝐹 is an 𝑅-module. 𝑄(𝑅) is the

fraction field of an integral domain 𝑅.

Introduction

In Chapter 1 it became already clear that in order to study integral lattices, one
has to widen one’s perspective to include the 𝑝-adic situation and torsion forms.
This motivates the study of finitely generated 𝑅-modules, free or not, over any
commutative ring 𝑅 (with 1) and equipped with symmetric forms that take values
in any 𝑅-module 𝐹. In this chapter we investigate which of the constructions of
Chapter 1 remain valid in this more general setting.

More specifically, in Section 6.1 we give the basic definitions, discuss orthog-
onality, non-degeneracy and isometry. Several examples are exhibited in § 6.1.B,
and in § 6.1.D we present a list of the non-degenerate symmetric and quadratic
torsion forms on the cyclic groups. We shall see in Section 6.2 that the notion
of correlation morphism makes sense in this general context and hence also the
notion of unimodularity.

We then turn to finite rank free 𝑅-modules and show that unimodular submod-
ules split off orthogonally (Proposition 6.3.10). This important splitting principle
plays a major role in classification theory as illustrated later on in Chapters 9
and 10 where we establish local normal forms for symmetric and quadratic torsion
groups and 𝑝-adic lattices.

If we also assume that 𝑅 is an integral domain, an 𝑅-valued form on a finite rank
free 𝑅-module 𝐿 induces a 𝑄(𝑅)-valued form on the torsion 𝑅-module 𝐿∗/𝐿 which
is the discriminant form in this more general setting as we shall see in Section 6.4.
The final Section 6.5 is devoted to isometry groups.

6.1 Bilinear Forms on 𝑹-Modules

6.1.A Basic definitions. For any 𝑅-module 𝑉 we consider the associated dual
𝑅-modules

𝑉∗ := Hom𝑅 (𝑉,𝑅), 𝑉∗
𝐹 = Hom𝑅 (𝑉,𝐹). (6.1)



144 6 Symmetric and Quadratic Forms Revisited

Definition 6.1.1. An 𝐹-valued form 𝑏 on an 𝑅 module 𝑉 is a bilinear form
𝑏 : 𝑉 × 𝑉 → 𝐹. In other words, 𝑏 has the following properties:

𝑏(𝑟𝑥 + 𝑠𝑦, 𝑧) = 𝑟𝑏(𝑥, 𝑧) + 𝑠𝑏(𝑦, 𝑧), 𝑟, 𝑠 ∈ 𝑅, 𝑥, 𝑦, 𝑧 ∈ 𝑉 (left-linearity),

𝑏(𝑥, 𝑟𝑦 + 𝑠𝑧) = 𝑟𝑏(𝑥, 𝑦) + 𝑠𝑏(𝑥, 𝑧), 𝑟, 𝑠 ∈ 𝑅, 𝑥, 𝑦, 𝑧 ∈ 𝑉 (right-linearity).

An 𝐹-valued form 𝑏 is called symmetric, if 𝑏(𝑥, 𝑦) = 𝑏(𝑦,𝑥) for 𝑥, 𝑦 ∈ 𝑉, skew-
symmetric, if 𝑏(𝑥, 𝑦) = −𝑏(𝑦,𝑥) for 𝑥, 𝑦 ∈ 𝑉, and alternating or symplectic, if
𝑏(𝑥,𝑥) = 0 for all 𝑥 ∈ 𝑉.

In this book we mainly restrict ourselves to the symmetric forms.1 An 𝐹-
valued symmetric 𝑅-module consists of a pair (𝑉, 𝑏) of an 𝑅-module 𝑉 and an
𝐹-valued symmetric form 𝑏. If 𝐹 = 𝑅 we speak of a symmetric 𝑅-module .

As we have seen in the special context of Chapter 1, symmetric forms and
quadratic forms are intimately related. This remains so in this wider setting.

Definition 6.1.2. An 𝐹-valued quadratic 𝑅-module consists of an 𝑅-module
𝑉 equipped with an 𝑅-quadratic function 𝑞 : 𝑉 → 𝐹, i.e., 𝑞(𝑟𝑥) = 𝑟2𝑞(𝑥) for all
𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑉, and such that the form 𝑏𝑞 (𝑥, 𝑦) = 𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦) is a
symmetric 𝐹-valued bilinear form on 𝑉, the polar form of 𝑞.

If 𝐹 = 𝑅 we speak of a quadratic 𝑅-module .

It follows from the above definitions that 𝑏𝑞 (𝑥,𝑥) = 𝑞(2𝑥)−2𝑞(𝑥) = 2𝑞(𝑥) ∈ 2𝐹.
In contrast to the integral situation, 2 can be a unit in 𝑅 and then the bilinear
form 𝑏 = 2−1𝑏𝑞 gives back 𝑞. If this is not the case, we distinguish two cases, just
as in the integral situation:

Definition 6.1.3. Suppose 2 ≠ 0 is not a unit in 𝑅. Then an 𝐹-valued symmetric
form 𝑏 on 𝑉 is called even if 𝑏(𝑥,𝑥) ∈ 2𝐹 for all 𝑥 ∈ 𝑉. A form which is not even
is called odd .

By what we have just said, a quadratic form gives rise to an even form. The
converse, every even form comes from a quadratic form, is true provided 2 is not
a zero-divisor, that is, if multiplication by 2 on 𝐹 is injective.

The preceding notions of symmetric and quadratic forms cover several impor-
tant special cases:
1. 𝐹 = 𝑅 an integral domain. In particular we have:

• 𝐹 = 𝑅 = 𝑘 a field and 𝑉 a finite dimensional 𝑘-vector space. This covers the
familiar objects from linear algebra as reviewed in § 1.1.

• An 𝑅-lattice is a free 𝑅-module of finite rank equipped with a symmetric
𝑅-valued form.

For 𝑅 = 𝐹 = ℤ we recover integral lattices. Also the notion of parity (odd or
even) is as before.

For 𝑅 = 𝐹 = ℤ𝑝 we recover the notion of a 𝑝-adic lattice. Note that only for
𝑝 = 2 it makes sense to speak of even forms.

1For symplectic forms see Appendix A.5
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2. 𝑅 an integral domain and 𝐹 = 𝑄(𝑅), its field of fractions. A symmetric
(respectively quadratic) torsion form over 𝑅 is a 𝑄(𝑅)/𝑅-valued symmetric
bilinear (respectively quadratic) form on a finitely generated torsion 𝑅-module.
Observe that multiplication by 𝑟 ≠ 0 in 𝑄(𝑅)/𝑅 annihilates 1/𝑟 and so is never
injective. But worse: all forms are even in the previous sense since a fraction
𝑝/𝑞 ∈ 𝑄(𝑅) can be rewritten as 𝑝/𝑞 = 2 · 𝑝/2𝑞 and so the terminology does not
make sense in this situation.

Special cases of torsion forms arise when 𝑅 = ℤ. These are forms on finite
abelian groups with values in ℚ/ℤ and in this case we simply speak of symmetric,
respectively quadratic torsion forms.

One of our goals is to classify symmetric and quadratic forms up to suitable
equivalence. We already encountered the notion of isometry in Section 1.5. This
can be extended to the present setting and provides the equivalence relation we
employ:

Definition 6.1.4. Let (𝑉𝑗 , 𝑏𝑗), 𝑗 = 1, 2, be two symmetric 𝐹-valued 𝑅-bilinear
modules. A homomorphism of 𝑅-modules 𝜑 : 𝑉1 → 𝑉2 such that 𝑏2 (𝜑(𝑥),𝜑(𝑦)) =
𝑏1 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑉1 is called a morphism of 𝐹-valued symmetric 𝑅-
modules. If such a morphism is injective, it is called an isometric embedding
and if it is bijective it is called an isometry .

Two symmetric 𝐹-valued 𝑅-bilinear modules (𝑉1, 𝑏1) and (𝑉2, 𝑏2) are called
isometric, written 𝑉1 ≃ 𝑉2 or 𝑏1 ≃ 𝑏2, if there exists an isometry 𝑉1 → 𝑉2. The
forms 𝑏1 and 𝑏2 are then said to be equivalent over 𝑅. For quadratic 𝐹-valued
𝑅-modules the definitions are similar.

If 𝑉1 = 𝑉2 and 𝑏1 = 𝑏2 we speak of self-isometries. These form a group, the
orthogonal group O (𝑉1, 𝑏1) of (𝑉1, 𝑏1).

We shall give a more detailed discussion of isometries in Sections 6.5 and 7.1.

6.1.B Examples. 1. Rank one forms. A choice of 𝑟 ∈ 𝑅 defines the symmetric
form ⟨𝑟⟩ on the rank one 𝑅-module 𝑅 · 𝑒 by setting 𝑒 · 𝑒 = 𝑟. This is in accordance
with the notation we previously used for lattices and vector spaces. Isomorphisms
of 𝑅 · 𝑒 are given by multiplying with a unit 𝑢 of 𝑅. It transforms ⟨𝑟⟩ into ⟨𝑢2𝑟⟩.
So ⟨𝑟⟩𝑅 ≃ ⟨𝑠⟩𝑅 if and only if 𝑟 = 𝑢2𝑠 for a unit 𝑢 ∈ 𝑅× and isometry classes of non-
degenerate (see § 6.1.C below) rank one symmetric 𝑅-modules are in one-to-one
correspondence with the set of equivalence classes 𝑟 · (𝑅×)2, 𝑟 ∈ 𝑅 − {0}.

The quadratic form [𝑟′], 𝑟′ ∈ 𝑅, given by 𝑥 ↦→ 𝑟′𝑥2 has the symmetric form
⟨2𝑟′⟩ as its polar form. Isometry classes of non-degenerate rank one quadratic 𝑅-
modules are in one-to-one correspondence with (2𝑅 − {0}) · (𝑅×)2.
2. 𝑝-Adic forms. We apply the preceding classification principle to rank one
𝑝-adic forms. Recall that for odd primes 𝑝 the group D(ℤ𝑝) is cyclic, generated
by a non-square modulo 𝑝. The group D(ℤ2) plays a role in the dyadic situation.
This group can be viewed as a subset of the multiplicative group (ℤ/23ℤ)×. We
represent the elements by the integers ±1,±3. Applying the preceding classification
principle in this setting, one obtains:



146 6 Symmetric and Quadratic Forms Revisited

Lattice isometry classes of quadratic
of symmetric ℤ𝑝-modules ℤ𝑝-modules

⟨𝑢 · 𝑝𝑘⟩ℤ𝑝 , 𝑝 an odd prime 𝑢 square mod 𝑝 𝑢 even square mod 𝑝
𝑘 ≥ 0 𝑘 ≥ 0

𝑢 non-square mod 𝑝 𝑢 even non-square mod 𝑝
𝑘 ≥ 0 𝑘 ≥ 0

⟨𝑢 · 2𝑘⟩ℤ2
𝑢 ∈ {±1,±3} 𝑢 ∈ {±1,±3}

𝑘 ≥ 0 𝑘 ≥ 1

3. Scaling a form. In the same way as for integral lattices, if 𝑏 is an 𝐹-
valued symmetric form over 𝑅 and 𝑟 ∈ 𝑅, we let 𝑏(𝑟) be the form defined by
(𝑥, 𝑦) ↦→ 𝑟 · 𝑏(𝑥, 𝑦). It is called the form 𝑏 scaled by 𝑟.
We frequently write 𝑉 (𝑟) or 𝑏(𝑟) instead of (𝑉, 𝑏(𝑟)). In particular, for 𝑘 = −1 we
obtain the form 𝑏(−1), the opposite of 𝑏.

6.1.C Orthogonality and non-degeneracy. Our first task is to extend the
notion of orthogonality from Section 1.3 to the present setting. Let (𝑉, 𝑏) be a
symmetric 𝑅-module. We say that 𝑋 ⊂ 𝑉 is orthogonal to 𝑌 ⊂ 𝑉 if 𝑏(𝑥, 𝑦) = 0 for
all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. For a submodule 𝑊 of 𝑉, the set of elements in 𝑉 orthogonal
to 𝑊 is again a submodule of 𝑉 which we write 𝑊⊥. Similar definitions hold for
quadratic modules using the corresponding polar forms.

Definition 6.1.5. 1. A submodule 𝑊 ⊂ 𝑉 is called isotropic if 𝑏(𝑥, 𝑦) = 0 for
all 𝑥, 𝑦 ∈ 𝑊. In other words 𝑊 ⊂ 𝑊⊥. It is called totally isotropic if 𝑊 = 𝑊⊥.
A generator of a rank one isotropic submodule is called an isotropic vector . In
other words 𝑥 ≠ 0 is isotropic if 𝑏(𝑥,𝑥) = 0. A submodule 𝑊 without isotropic
vectors is called totally anisotropic. In other words, 𝑊 is totally anisotropic
if the quadratic equation 𝑏(𝑥,𝑥) = 0 has only the trivial solution in 𝑊. In the
quadratic module setting, one uses the polar form to define these notions.
2. The radical or null-space of a symmetric (quadratic) 𝑅-module (𝑉, 𝑏) (re-
spectively (𝑉, 𝑞)) is given by

rad(𝑏) = 𝑉⊥ = {𝑥 ∈ 𝑉 | 𝑏(𝑥, 𝑦) = 0 for all 𝑦 ∈ 𝑉}
rad(𝑞) = {𝑥 ∈ rad(𝑏𝑞) | 𝑞(𝑥) = 0}, respectively.

3. The form 𝑏 on 𝑉 is non-degenerate if 𝑉⊥ = 0, i.e. if 𝑏(𝑥,𝑉) = 0 implies 𝑥 = 0.
A quadratic form 𝑞 is non-degenerate if rad(𝑏𝑞) = 0.
4. If 𝑉 is a direct sum 𝑉 = 𝑊1 ⊕ · · · ⊕ 𝑊𝑚 of 𝑅-submodules such that the 𝑊𝑗 are
mutually orthogonal, we say that 𝑉 is the (internal) orthogonal direct sum of
the 𝑊𝑗 , written as 𝑉 = 𝑊1 ⦹ · · ·⦹𝑊𝑚.

If (𝑉1, 𝑏1), . . . , (𝑉𝑚, 𝑏𝑚) are 𝐹-valued symmetric 𝑅-modules their (external) or-
thogonal sum is 𝑉1 ⦹ · · ·⦹ 𝑉𝑚 = (𝑉1 ⊕ · · · ⊕ 𝑉𝑚, 𝑏1 ⊕ · · · ⊕ 𝑏𝑚).

We point out that the radical of a quadratic form might be different from the
radical of its polar form:
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Lemma 6.1.6. Let (𝑉, 𝑞) be a quadratic 𝑅-module with polar form 𝑏𝑞. Then
1. rad(𝑞) is a submodule of 𝑉.
2. rad(𝑞) ⊂ rad(𝑏𝑞) with equality if 2 is invertible in 𝑅.

Proof. 1. By definition 𝑞(𝑥 + 𝑦) = 𝑏𝑞 (𝑥, 𝑦) + 𝑞(𝑥) + 𝑞(𝑦) and hence, if 𝑥, 𝑦 ∈ rad(𝑞),
so is 𝑥 + 𝑦.
2. The inclusion rad(𝑞) ⊂ rad(𝑏𝑞) follows from the definitions. If 2 ∈ 𝑅 is invertible,
𝑞(𝑥) = 2−1𝑏𝑞 (𝑥,𝑥), which implies that, conversely, rad(𝑏𝑞) ⊂ rad(𝑞). □

The condition that 2 be a unit is really necessary: consider the quadratic form
𝑞 = 𝑥2 + 𝑦2 on 𝑉 = 𝔽⊕2

2 . The associated bilinear form is the zero form and so
rad(𝑏𝑞) = 𝑉 while rad(𝑞) = 𝔽2 (1, 1).
Remark 6.1.7. Suppose that 𝑅 is an integral domain. If (𝑉, 𝑏) is non-degenerate
and has values in 𝑅, then 𝑉 is free of torsion. Indeed, if 𝑥 ∈ 𝑉 would be torsion,
say 𝑚𝑥 = 0, then 𝑚𝑏(𝑥,𝑉) = 0 and since 𝑅 has no torsion, 𝑥 belongs to 𝑉⊥ = {0}.

On the other hand, if (𝑉, 𝑏) is a finitely generated non-degenerate 𝑄(𝑅)/𝑅-
valued symmetric bilinear 𝑅-module, then all elements of 𝑉 are torsion. Indeed,
𝑏(𝑥, 𝑦) ∈ 𝑄(𝑅)/𝑅 implies that there is some 𝑟 = 𝑟(𝑥, 𝑦) ∈ 𝑅−{0} such that 𝑟𝑏(𝑥, 𝑦) =
0. If {𝑦1, . . . , 𝑦𝑚} is a set of generators of 𝑉, the non-zero product 𝑟(𝑥) = 𝑟(𝑥, 𝑦1) · · ·
𝑟(𝑥, 𝑦𝑚) is such that 𝑟(𝑥)𝑏(𝑥, 𝑦) = 0 for all 𝑦 ∈ 𝑉. Hence 𝑟(𝑥)𝑥 ∈ 𝑉⊥ = {0} and so
𝑥 is torsion.

6.1.D Non-degenerate cyclic torsion forms. The finite cyclic group 𝐶𝑚 of
order 𝑚 can be identified with ℤ/𝑚ℤ. This unambiguously shows the ℤ-module
structure.

Proposition 6.1.8. 1. Any non-degenerate ℚ/ℤ-valued cyclic symmetric tor-
sion form on 𝐶𝑚 is given by (𝑥, 𝑦) ↦→ 𝑎 ·𝑚−1 · 𝑥𝑦 ∈ ℚ/ℤ for some integer 𝑎
with (𝑎 ,𝑚) = 1. In other words, it is isometric to ⟨𝑎 ·𝑚−1⟩.

2. Isometry classes of non-degenerate bilinear cyclic torsion forms on 𝐶𝑚 are
classified by D(ℤ/𝑚ℤ).

3. Any quadratic torsion form on 𝐶𝑚 is of the form [ 12𝑎𝑚
−1], i.e., 𝑥 ↦→ 𝑎 (2𝑚)−1𝑥2,

with 𝑎𝑚 even. Its polar form is ⟨𝑎𝑚−1⟩. The quadratic form is non-degenerate
if and only if (𝑎 ,𝑚) = 1.

4. The non-degenerate quadratic forms on 𝐶𝑚 are classified by elements in
D(ℤ/2𝑚ℤ).

Proof. 1. Any non-zero form on 𝐶𝑚 is of the shape (𝑥, 𝑦) ↦→ 𝑎

ℓ
· 𝑥𝑦 with (𝑎 , ℓ) = 1

and ℓ|𝑚. Writing 𝑚 = 𝜇ℓ, we see that the form takes the value 0 on the pair (1, ℓ)
and so, unless 𝜇 = 1, the form is degenerate.
2. Since two integers differing by a multiple of 𝑚 give the same form on 𝐶𝑚, the
form is specified by giving a residue class modulo 𝑚. Two non-zero residue classes
𝑎 , 𝑎 ′ mod 𝑚 give isometric forms if and only if 𝑎 ′ ≡ 𝑎𝑢2 with 𝑢 invertible in ℤ/𝑚ℤ.

3. For 𝑞(𝑥) =
𝑎

𝑏
𝑥2 with (𝑎 , 𝑏) = 1 to be well defined on Z/𝑚Z, first substitute
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𝑥 = 𝑚 to conclude 𝑏 | 𝑚2, and then substitute 𝑥 = 1 and 𝑥 = 𝑚 to conclude that

𝑏 | 2𝑚. So the quadratic form can be written in the form 𝑞(𝑥) = 𝑟

2𝑚
𝑥2 for some

integer 𝑟. Substituting 𝑥 = 𝑚 again, we find that 𝑟𝑚 should be even. The last part
follows from the first item of the proposition.
4. If 𝑚 is even, the previous part shows that [ 12𝑎𝑚

−1] gives a well-defined non-
degenerate quadratic torsion form precisely for those integers 𝑎 with (𝑎 ,𝑚) = 1. As
𝑚 is even, these are also the integers relatively prime with 2𝑚. Two such integers
differing by a multiple of 2𝑚 determine the same form. Note that automorphisms
of 𝐶𝑚 are induced by multiplication with integers 𝑢 with (𝑢, 2𝑚) = 1. Using these,
two such torsion forms determined by the integers 𝑎 and 𝑎 ′ are easily seen to
be isometric if and only if there exists an integer 𝑢 with (𝑢, 2𝑚) = 1 such that
2𝑚 | 𝑎 ′ − 𝑎𝑢2. So the two forms are equivalent if and only if their classes in
𝐷(Z/2𝑚Z) are equal.
For 𝑚 odd, the integer 𝑎 with (𝑎 ,𝑚) = 1 in [ 12𝑎𝑚

−1] is even, since 𝑎𝑚 is even.
In a similar way as in the case 𝑚 even we see that such forms are classified by
elements of D(ℤ/𝑚ℤ), but since 𝑚 is odd, D(ℤ/𝑚ℤ) ≃ D(ℤ/2𝑚ℤ), as one easily
sees. In practice, we may assign to the form [ 12𝑎𝑚

−1] with 𝑎 even and 0 < 𝑎 < 2𝑚,
the class of 𝑎 +𝑚 or 𝑎 −𝑚 in D(ℤ/2𝑚ℤ). □

Observe also that in case 𝑚 is even (𝑎 +𝑚)𝑚−1 · 𝑥𝑦 ≡ 𝑎𝑚−1 · 𝑥𝑦 mod ℤ and so
the two torsion quadratic forms [ 12𝑎 · 𝑚−1] and [ 12 (𝑎 +𝑚) · 𝑚−1] on 𝐶𝑚 have the
same polar form ⟨𝑎 ·𝑚−1⟩ but they may or may not be isometric:

Examples 6.1.9. 1. 𝐶9. Units in this group are {1, 2, 4, 5, 7, 8} and these form
a cyclic group generated by 2. The non-zero squares are 1, 4, 7 and 2, 8, 5 are the
non-squares. Therefore, there are two non-degenerate non-isometric symmetric
forms: ⟨ 19 ⟩ and ⟨ 29 ⟩. Next we turn to quadratic forms. The group D(ℤ/18ℤ) is the
cyclic group generated by 5, the class of 5 mod 18. The squares are {1, 7, 13} and
the non-squares {5, 11, 17}. We find the two non-isometric quadratic forms [ 19 ] and
[ 29 ].
2. 𝐶6. Consider the set {1, 5} of numbers coprime to 6, one a square and one a non-
square. So there are two symmetric forms ⟨ 16 ⟩ and ⟨ 56 ⟩. For the quadratic forms
we consider the set {1, 5, 7, 11} of numbers coprime to 12. Since 52 = 72 = 112 = 1
and 5 · 7 = 11 the group (ℤ/12ℤ)× modulo squares is isomorphic to the product of
two cyclic groups of order 2 and hence there are four non-degenerate non-isometric
quadratic forms [ 𝑎

12 ], 𝑎 ∈ {1, 5, 7, 11}, while the polar forms for 𝑎 = 1, 7 as well as
for 𝑎 = 5, 11 are the same and give the two non-isometric symmetric torsion forms
on 𝐶6.

We now pass to non-degenerate torsion forms on the groups 𝐶𝑚, 𝑚 = 𝑝𝑘 a
prime power. These have been enumerated in Example 1.9.5. Here we discuss the
isometry problem. We have just seen that the symmetric forms on 𝐶𝑝𝑘 are classified

by D(ℤ/𝑝𝑘ℤ) and the quadratic forms by D(ℤ/2𝑝𝑘ℤ). Recall (Lemma A.1.5) that
for odd primes 𝑝 the group D(ℤ/2𝑝𝑘ℤ) ≃ D(ℤ𝑝𝑘 ) ≃ D(ℤ𝑝) is cyclic, generated by

a non-square modulo 𝑝. The groups D(ℤ/2𝑘ℤ) which enter the classification for
𝑝 = 2 can be viewed as subgroups of the multiplicative group (ℤ/23ℤ)×: for 𝑘 = 1
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Group isometry classes of isometry classes of
symmetric torsion forms quadratic torsion forms

𝐶𝑝𝑘 𝑝 odd ⟨𝑝−𝑘⟩, ⟨𝑢 · 𝑝−𝑘⟩ [ 12𝑢 · 𝑝−𝑘],
𝑢 a non-square unit 𝑢 an even square unit

[ 12𝑢 · 𝑝−𝑘],
𝑢 an even non-square unit

𝐶2 ⟨2−1⟩ [2−2], [3 · 2−2]
𝐶4 ⟨2−2⟩ [2−3], [−3 · 2−3]

⟨3 · 2−2⟩ [3 · 2−3], [−1 · 2−3]
𝐶2𝑘 , 𝑘 ≥ 3 ⟨𝑢 · 2−𝑘⟩, 𝑢 ≡ ±1,±3 mod 8 [𝑢 · 2−𝑘−1], 𝑢 ≡ ±1,±3 mod 8

Table 6.1.1: Cyclic torsion forms of prime power order

the group consists of the class of 1, for 𝑘 = 2 one has the cyclic group {1̄, 3̄}, and
for 𝑘 ≥ 2 one has the full multiplicative group of ℤ/23ℤ. Since D(ℤ/2𝑘ℤ) and
D(ℤ/2𝑘+1ℤ) differ for 𝑘 = 1, 2, some non-isometric quadratic forms have isometric
polar forms as indicated in Table 6.1.1 by putting them in the same row.

6.2 The Correlation Morphism

An 𝐹-valued symmetric 𝑅-module (𝑉, 𝑏) comes with a canonically associated mor-
phism, the correlation morphism or adjoint map

𝑉
𝑏𝑉−−→ 𝑉∗

𝐹 , 𝑥 ↦→ 𝑏𝑉 (𝑥) = 𝑏(𝑥,−). (6.2)

The kernel of the adjoint map equals 𝑉⊥ and so, by definition, 𝑏 is non-degenerate if
and only if 𝑏𝑉 is injective. If, moreover, 𝑏𝑉 is an isomorphism, we say that (𝑉, 𝑏) is
unimodular . For a quadratic 𝑅-module (𝑉, 𝑞) the correlation map 𝑏𝑉 : 𝑉 → 𝑉∗

𝐹 is
the one associated to the polar form of 𝑞 and if it is injective, respectively bijective
we speak of a non-degenerate, respectively unimodular quadratic 𝑅-module. 2

Remark. 1. Observe also that unimodularity imposes a rather severe restriction
on the possible 𝑅-modules 𝐹 in which 𝑏 takes values.
2. Starting from an 𝐹-valued symmetric 𝑅-module (𝑉, 𝑏), there is a canonical
way to transport the structure to rings 𝑆 that are 𝑅-algebras. Take for example
𝑅 = ℤ and 𝑆 = ℝ. The correlation morphism for (𝑉, 𝑏)𝑆 = (𝑉 ⊗𝑅 𝑆, 𝑏 ⊗ 1) is the
composition

𝑉 ⊗𝑅 𝑆
𝑏𝑉⊗id−−−−−→ 𝑉∗

𝐹 ⊗ 𝑆 = Hom𝑅 (𝑉,𝐹) ⊗𝑅 𝑆
𝛼−→ Hom𝑆 (𝑉𝑆 ,𝐹𝑆),

where the rightmost map is the natural map. In many cases, if 𝑏𝑉 is an isomor-
phism, then so is 𝑏𝑉𝑆 = 𝛼◦(𝑏𝑉 ⊗ id), e.g. if 𝐹 = 𝑅 and 𝑉 is a finitely generated free
𝑅-module. In particular, if 𝑉 is a finitely generated free 𝑅-module and (𝑉, 𝑏) is
unimodular, then so is (𝑉, 𝑏)𝑆 .

2Several authors use a different terminology and speak of regular symmetric or quadratic
forms instead of unimodular ones.
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To investigate 𝑅-submodules 𝑊 ⊂ 𝑉, we use a variant of the correlation mor-
phism

𝛽𝑊 : 𝑉 → 𝑊∗
𝐹 , 𝑥 ↦→ 𝑏(𝑥,−)|𝑊 . (6.3)

Note that the correlation morphism 𝑏𝑊 : 𝑊 → 𝑊∗
𝐹 is just the restriction of 𝛽𝑊 to

𝑊 itself. It has the following properties.

Lemma 6.2.1. Let 𝑉 be an 𝐹-valued symmetric 𝑅-module of finite rank and 𝑊 ⊂
𝑉 a submodule. Then

1. 𝛽𝑊 is injective on 𝑊 if and only if 𝑏 restricts to a non-degenerate form on
𝑊.

2. If 𝛽𝑊 |𝑊 is an isomorphism, that is, (𝑊, 𝑏 |𝑊) is a unimodular submodule,
then 𝑉 = 𝑊 ⦹𝑊⊥. In other words, unimodular submodules split off.

Proof. 1. The kernel of 𝛽𝑊 is precisely 𝑊⊥ and so 𝑏𝑊 , its restriction to 𝑊, is
injective if and only if𝑊∩𝑊⊥ = {0}, which means that 𝑏 restricts non-degenerately
to 𝑊.
2. Since 𝛽𝑊 |𝑊 is surjective, for 𝑦 ∈ 𝑉, the element 𝛽𝑊 (𝑦) ∈ 𝑊∗

𝐹 equals 𝑏𝑊 (𝑧)
for some 𝑧 ∈ 𝑊. But then 𝑏(𝑦 − 𝑧,𝑥) = 0 for all 𝑥 ∈ 𝑊 by the definition of
𝛽𝑊 . This means that 𝑦 − 𝑧 ∈ 𝑊⊥ and, writing 𝑦 = 𝑧 + (𝑦 − 𝑧), gives the required
decomposition. Uniqueness follows from the injectivity of 𝛽𝑊 |𝑊 □

6.3 Forms on Free 𝑹-Modules

In this section 𝐿 is a free 𝑅-module of finite rank.

6.3.A General structure. Recall that a free finite rank 𝑅-module equipped with
a symmetric 𝑅-valued form is called an 𝑅-lattice. The special case 𝑅 = ℤ has been
extensively considered in Section 1.2. Several results from that section, suitably
modified, hold also over general rings. For instance, the choice of an ordered basis
𝑬 = {𝑒1, . . . , 𝑒𝑛} for 𝐿 ≃ 𝑅𝑛 leads to the Gram matrix

𝐵𝑬 =
(
𝑏(𝑒𝑖 , 𝑒𝑗)

)
∈ 𝑅𝑛×𝑛.

As we saw in Section 1.2, a change of basis multiplies the determinant of 𝐵𝑬 by
the square of a unit and hence we have the following invariant.

Definition 6.3.1. The discriminant disc(𝑏) of 𝑏 is the value of det(𝐵𝑬) up to
squares of units.

As an immediate consequence of the definitions we have:

Proposition 6.3.2. Let (𝐿, 𝑏) be an 𝑅-lattice. Then:
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1. 𝑏 is non-degenerate if disc(𝑏) is not a zero-divisor. It is unimodular if
disc(𝑏) ∈ D(𝑅) = 𝑅×/(𝑅×)2.

2. For 𝑅 = 𝑘 a field, 𝑏 is non-degenerate if and only if 𝑏 is unimodular.

Note that rings 𝑅 in which 2 is not invertible play a special role in relation to
quadratic forms. For instance rank one lattices 𝑅 · 𝑥 are never unimodular since
𝑏𝑞 (𝑥,𝑥) = 2𝑞(𝑥) is not a unit. This is true for all odd rank quadratic 𝑅-lattices
(𝐿, 𝑞). We see this as follows. Let, as before, 𝑬 = {𝑒1, . . . , 𝑒𝑛} be an ordered basis
of 𝐿 and write 𝑞(𝑥) = ∑

𝑖≤𝑗 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 , 𝑥 =
∑
𝑥𝑖𝑒𝑖. Using the upper triangular matrix

𝑄 = (𝑎𝑖𝑗), the Gram matrix of 𝑏𝑞 in this basis is 𝐵 := 𝑄T + 𝑄. Develop det𝐵 as
sum of 𝑛! terms of products of the entries of 𝐵. If such a term is invariant under
reflection in the diagonal of 𝐵, it is a product containing at least one diagonal
element, since 𝑛 is odd. If such a term is not invariant under the reflection, it
occurs twice. It follows that det𝐵 = 2𝑃, where 𝑃 is a polynomial in the 𝑎𝑖𝑗 with
integer coefficients and so det𝐵 is never invertible. Instead,

sdisc(𝑞) := 𝑃(𝑎𝑖𝑗) = 𝑃(𝑞(𝑒1), 𝑏𝑞 (𝑒1, 𝑒2), · · · , 𝑏𝑞 (𝑒𝑛−1, 𝑒𝑛), 𝑞(𝑒𝑛)))

is well defined up to squares of units in 𝑅 and might be invertible as we shall see.
This leads to the following notion.

Definition 6.3.3. For a quadratic 𝑅-module (𝑉, 𝑞) of odd rank over a ring 𝑅 the
semi-discriminant is the invariant sdisc(𝑞) ∈ 𝑅/(𝑅×)2. The module (𝑉, 𝑞) (or
the form 𝑞) is called semi-unimodular if the semi-discriminant is invertible, that
is sdisc(𝑞) ∈ D(𝑅). If 2 is invertible, then 𝑞 is semi-unimodular if and only if it is
unimodular.

Examples 6.3.4. Here we assume that 2 ∈ 𝑅 is not invertible.

1. 𝑛 = 1. Here the bilinear form is never unimodular, but since sdisc(𝑞) = 𝑎11 =

𝑞(𝑒1, 𝑒1), the form is semi-unimodular if and only if 𝑎11 is a unit.

2. 𝑛 = 3. Expanding the determinant we find sdisc(𝑞) = 4𝑎11𝑎22𝑎23+𝑎12𝑎23𝑎13−
𝑎2
13𝑎12 − 𝑎2

23𝑎11 − 𝑎2
12𝑎23. In particular, if 𝐵 is diagonal sdisc(𝑞) is not invert-

ible. This is evidently true for all odd 𝑛 ≥ 3, and so diagonal forms of odd
rank ≥ 3 are not semi-unimodular.

Remark 6.3.5. An 𝑅-valued symmetric 𝑅-module (𝐿, 𝑏) such that 𝑏 is unimodular is
also called an inner product space over 𝑅. Similarly, one speaks of a quadratic
inner product space over 𝑅. In Chapter 1 we used this terminology for a field
𝑅, but in the literature it is often used when working over integral domains.

As before, we can speak of primitive sublattices. Observe however that for free
modules over general commutative rings 𝑅 the characterizations of Definition 1.2.4
valid for 𝑅 = ℤ do not all make sense, since 𝑅 and hence 𝐿 can have non-trivial
zero-divisors. However, they remain valid for rings without zero-divisors. The
following definition makes sense in general.
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Definition 6.3.6. A sublattice 𝑆 of 𝐿 is called primitive if it is a direct summand
of 𝐿. Equivalently: any basis of 𝑆 can be extended to a basis of 𝐿. A vector 𝑥 ∈ 𝐿
is called primitive if 𝑅𝑥 is a primitive sublattice of 𝐿.

Primitivity plays a crucial role in the next result.

Lemma 6.3.7. Let (𝐿, 𝑏) be a unimodular 𝑅-lattice.

1. For any basis {𝑒1, . . . , 𝑒𝑛} of 𝐿 there exists a (unique) 𝑏-dual basis {𝑒#1 , . . . , 𝑒#𝑛 }
for 𝐿, that is, a basis for which 𝑏(𝑒𝑖 , 𝑒#𝑗 ) = 𝛿𝑖𝑗.

2. If 𝑆 is a primitive submodule of 𝐿 and {𝑒1, . . . , 𝑒𝑛} a basis of 𝐿 such that the
first 𝑚 vectors {𝑒1, . . . , 𝑒𝑚} form a basis of 𝑆, then {𝑒#𝑚+1, . . . , 𝑒

#
𝑛 } is a basis

of 𝑆⊥. In particular, (𝑆⊥)⊥ = 𝑆.

3. Let 𝑅𝑥 ⊂ 𝐿 be primitive. Then there exists a vector 𝑦 ∈ 𝐿 for which 𝑏(𝑥, 𝑦) =
1.

Proof. 1. Write 𝑥 ∈ 𝐿 as 𝑥 =
∑𝑛

𝑖=1 𝑥𝑖𝑒𝑖. Since the correlation morphism is an

isomorphism, the coordinate function 𝑥 ↦→ 𝑥𝑗 can be written as 𝑥 ↦→ 𝑏(𝑥, 𝑒#𝑗 )
for some vector 𝑒#𝑗 ∈ 𝐿, and hence 𝑏(𝑒𝑖 , 𝑒#𝑗 ) = 𝛿𝑖𝑗 . Now write 𝑒#𝑗 =

∑
𝑘 𝑎𝑗𝑘𝑒𝑘 and

𝑏(𝑒𝑘, 𝑒ℓ) = 𝑏𝑘ℓ. Then 𝛿𝑗ℓ = 𝑏(𝑒#𝑗 , 𝑒ℓ) =
∑

𝑘 𝑎𝑗𝑘𝑏𝑘ℓ which implies that the matrix

(𝑎𝑗𝑘) is the inverse of the matrix (𝑏𝑘ℓ). Since 𝑒𝑗 =
∑
𝑏𝑗ℓ𝑒

#
ℓ , the set {𝑒#1 , . . . , 𝑒#𝑛 } is

a basis.
2. This is evidently the case.
3. Just augment 𝑥 = 𝑒1 to a basis {𝑒1, . . . , 𝑒𝑛} for 𝐿 and take for 𝑦 the vector 𝑒#1 . □

We use the last property of Lemma 6.3.7 to show a remarkable characterization
of the hyperbolic plane 𝑈𝑅, that is, the rank two lattice with basis {𝑒,𝑓} and with
𝑒 · 𝑒 = 𝑓 · 𝑓 = 0 and 𝑒 · 𝑓 = 1.

Lemma 6.3.8. Let 𝑅 be a ring in which 2 is invertible. The hyperbolic plane
𝑈𝑅 over 𝑅 represents all elements of 𝑅. A unimodular quadratic 𝑅-module (𝐿, 𝑞)
represents 0 if and only if 𝐿 splits off a hyperbolic plane.

Proof. For any 𝑎 ∈ 𝑅 we have 𝑒+ 1
2𝑎𝑓 ·𝑒+

1
2𝑎𝑓 = 𝑎 . Here we use that 2 is invertible.

To show the second assertion, observe that if 𝑥 ∈ 𝐿 is primitive, by Lemma 6.3.7
there exists a vector 𝑦 ∈ 𝐿 with 𝑏𝑞 (𝑥, 𝑦) = 1. Then, if moreover 𝑥 is isotropic,
𝑧 = 𝑦 − 𝑞(𝑦)𝑥 is isotropic and 𝑏𝑞 (𝑥, 𝑧) = 1 so that {𝑥, 𝑧} spans a hyperbolic plane.
By Lemma 6.2.1 we may split off 𝑈𝑅. Conversely, if 𝑈𝑅 is an 𝑅-submodule of 𝐿
(necessarily an orthogonal direct summand), it represents 0 and so 𝐿 represents
0. □

6.3.B Examples.

1. Proposition 6.3.2 implies that for symmetric ℤ-lattices the notions of non-
degeneracy and unimodularity agree with those from Section 1.2.
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2. A rank 1 integral or dyadic quadratic lattice is never unimodular since the
corresponding bilinear form is even and so has even discriminant.

3. A canonical incarnation of the hyperbolic plane 𝑈𝑅 is the module 𝑅 ⊕ 𝑅∗

equipped with the symmetric form given by ((𝑥,𝑓), (𝑦, 𝑔)) ↦→ 𝑓(𝑦) + 𝑔(𝑥).

4. Consider the lattices 𝑉𝑘 from Examples 1.9.5. The dyadic lattice 𝑉0 is uni-
modular since it has discriminant 3 which is a unit in ℤ2. However, for 𝑘 ≥ 1
the lattice 𝑉𝑘 is non-degenerate but not unimodular.

5. Binary forms. Let 𝑅 be an integral domain, 𝑘 = 𝑄(𝑅) its quotient field
and 𝑆 = 𝑅[𝜉] a degree 2 separable extension of 𝑅 with minimal polynomial
𝑋2 + 𝑢𝑋 + 𝑣, 𝑢, 𝑣 ∈ 𝑅, for 𝜉,ı.e. 𝜉 is integral over 𝑅. The quotient field of 𝑆 is
the field 𝐾 = 𝑘(𝜉). Now 𝜉′ = −𝑢 − 𝜉 is the conjugate of 𝜉 and the norm map
N𝐾/𝑘 : 𝐾 → 𝑘 given by N𝐾/𝑘 (𝑥 + 𝑦𝜉) = (𝑥 + 𝑦𝜉) (𝑥 + 𝑦𝜉′) induces a quadratic
form N𝑆/𝑅 on 𝑅 ⊕ 𝑅, the norm form . Explicitly, in the basis {1, 𝜉} of 𝑆/𝑅
we have

N𝑆/𝑅 (𝑥 + 𝑦𝜉) = 𝑥2 − 𝑢𝑥𝑦 + 𝑣𝑦2 ∈ 𝑅.

The associated bilinear form is the trace form

Tr𝑆/𝑅 ( [𝑥 + 𝑦𝜉] · [𝑥′ + 𝑦′𝜉′]) = 2𝑥𝑥′ − 𝑢[𝑦𝑥′ + 𝑥𝑦′] + 2𝑦𝑦′𝑣

with Gram matrix

(
2 −𝑢
−𝑢 2𝑣

)
. Its determinant 4𝑣 − 𝑢2 is a non-square since

the extension 𝐾/𝑘 is a separable degree 2 extension and, hence, the trace
form is non-degenerate. Note that all unital binary quadratic forms over 𝑅
with non-square discriminant are isometric to a norm form for some quadratic
extension 𝑆 = 𝑅[𝜉] with quotient field 𝐾. Indeed, 𝑞(𝑥, 𝑦) = 𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2

is isometric to N𝐾/𝑘 (𝑥 + 𝑦𝜉) with 𝜉2 − 𝑏𝜉 + 𝑐 = 0. More generally, a form
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 with non-square discriminant is isometric to a norm form up
to scale. Otherwise, if the discriminant is a non-zero square, say 𝑏2−4𝑎𝑐 = 𝛿2,
then 𝑎 (𝑥 − 𝛿𝑦) (𝑥 + 𝛿𝑦) shows that the form is isometric to the hyperbolic
𝑅-plane up to scaling.

The binary forms 𝑉𝑘 over ℤ2 are examples of scaled norm forms; the quadratic
forms are given by 2𝑘 (𝑥2+𝑥𝑦+𝑦2) associated to the quadratic extension ℤ2 [𝜉]
of ℤ2 with minimal polynomial 𝑋2 −𝑋 + 1. We show (cf. Proposition 10.2.2)
that 𝑉𝑘 and 𝑈𝑘 are the only binary dyadic lattices.

Let us tie this in with the discussion of quadratic forms over fields 𝑘. We have
seen (cf. Proposition 1.1.4) that if char(𝑘) ≠ 2 a quadratic form diagonalizes
and so a non-degenerate binary form has the shape 𝑎𝑥2 + 𝑐𝑦2 with 𝑎𝑐 ≠ 0.
Such a form has an isotropic vector if and only if −𝑐/𝑎 is a square in 𝑘. Then
the form is isometric to 𝑈. If not, the polynomial 𝑥2 + 𝑐/𝑎 · 𝑦2 is irreducible
and defines a quadratic extension and so, up to isometry, the form 𝑎𝑥2 + 𝑐𝑦2
equals 𝑎 · N𝐾/𝑘 (𝑥 +

√︁
−𝑐/𝑎 · 𝑦). We set this apart:

Lemma 6.3.9. A quadratic binary form 𝑞(𝑥, 𝑦) = 𝑎𝑥2 + 𝑐𝑦2 over a field of
characteristic different from 2 is a norm form if and only if −𝑐/𝑎 is not a
square. If −𝑐/𝑎 is a square, then 𝑞 is isometric to the hyperbolic plane.
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There is a variant of this argument which is also valid for perfect fields 𝑘 of
characteristic 2. Consider the form 𝑞(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2. If 𝑎 = 𝑐 = 0
then, since 𝑏 is a square (𝑘 is perfect!) we have 𝑈 (𝑏) ≃ 𝑈 and otherwise we
may assume that 𝑎 ≠ 0 and then we decompose the form in the algebraic
closure as 𝑎 (𝑥 − 𝑢𝑦) (𝑥 − 𝑢′𝑦). In case 𝑢,𝑢′ ∈ 𝑘, changing variables we get
𝑎𝑥(𝑥 − 𝑢′′𝑦) for some 𝑢′′ ∈ 𝑘, and since 𝑢′′ ≠ 0 (we assume that the form is
non-degenerate), making another change of variables we see that the form is
isometric to 𝑈 (𝑎) ≃ 𝑈. Otherwise 𝑢,𝑢′ are conjugate in a quadratic extension
𝐾/𝑘 and 𝑞 is isometric to the norm form of the extension.

6. Lattices over local rings and their residue fields Let (𝑅,𝔪) be a local
ring with residue field 𝑘 = 𝑅/𝔪 and (𝐿, 𝑏) be an 𝑅-valued symmetric 𝑅-
module. The form 𝑏 induces a 𝑘-valued symmetric form 𝑏𝑘 on the 𝑘 vector
space 𝐿/𝔪𝐿 = 𝐿 ⊗𝑅 𝑘 upon setting 𝑏𝑘 (𝑥 mod 𝔪, 𝑦 mod 𝔪) = 𝑏(𝑥, 𝑦) mod 𝔪.
Note that disc(𝑏𝑘) = disc(𝑏) mod 𝔪, and so 𝑏 is non-degenerate if 𝑏𝑘 is. The
converse need not be true as exemplified by the forms ⟨𝑝𝑘⟩, 𝑘 ≥ 2, on ℤ𝑝.
However, since 𝑅× = 𝑅 −𝔪, 𝑏 is unimodular if and only if this is the case for
𝑏𝑘.

6.3.C Splitting off units. Let us now make use of the concept of discriminant
to draw some conclusions from Lemma 6.2.1 in the present situation where 𝑏 is
assumed to be an 𝑅-valued form. Suppose that 𝑊 ⊂ 𝐿 is generated by a single
element 𝑣, that is, 𝑊 is free of rank 1. Note that for 𝑥 ∈ 𝑅× the 𝑅-homomorphism
which sends 𝑦 to 𝑥𝑦 establishes isomorphisms 𝑅 ≃ 𝑅∗ and 𝑊 ≃ 𝑊∗. Using this,
𝑏𝐿 |𝑊 : 𝑊 → 𝑊∗ ≃ 𝑊 becomes multiplication with 𝑏(𝑣, 𝑣). So, if 𝑏(𝑣, 𝑣) is a
unit, this morphism is an isomorphism. Then Lemma 6.2.1.2 implies the following
splitting phenomenon.

Proposition 6.3.10 (Splitting off units). Let (𝐿, 𝑏) be an 𝑅-valued symmetric
form, 𝑣 ∈ 𝐿, such that 𝑏(𝑣, 𝑣) = 𝑢, a unit in 𝑅. Then 𝐿 = 𝑅𝑣⦹ (𝑅𝑣)⊥ ≃ ⟨𝑢⟩⦹ (𝑅𝑣)⊥.
Consequently, there exists an orthogonal splitting

𝐿 ≃ ⟨𝑢1⟩ ⦹ · · ·⦹ ⟨𝑢𝑠⟩ ⦹𝑁,

where 𝑢1, . . . ,𝑢𝑠 are units in 𝑅, and 𝑏(𝑥,𝑥) is a non-unit for every 𝑥 ∈ 𝑁.

The following consequence concerns diagonalizable forms over local rings.

Proposition 6.3.11 (Splitting over local rings). Let 𝑅 be a local ring in which
2 is a unit and let (𝐿, 𝑏) be a unimodular form on a free 𝑅-module of finite rank.
Then 𝑏 is diagonalizable.

Proof. Proposition 6.3.10 states that, if the bilinear form 𝑏 is not diagonalizable,
there is an orthogonal summand 𝑁 on which the values 𝑏(𝑥,𝑥), 𝑥 ∈ 𝑁, are non-
units. We want to show that this summand is zero. If 𝑅 is local with maximal
ideal 𝔪, the set of non-units is 𝔪. So 𝑏(𝑥,𝑥) ∈ 𝔪 for 𝑥 ∈ 𝑁. Since 2𝑏(𝑥, 𝑦) =

𝑏(𝑥 + 𝑦,𝑥 + 𝑦) − 𝑏(𝑥,𝑥) − 𝑏(𝑦, 𝑦), the assumption 2 ∈ 𝑅× implies then that the
restriction of 𝑏 to 𝑁 takes values in 𝔪 and so does the discriminant disc(𝑏 |𝑁). But
𝑏 and hence 𝑏 |𝑁 is unimodular, that is, disc(𝑏 |𝑁) ∈ 𝑅× = 𝑅 −𝔪 if 𝑁 ≠ 0. It follows
that 𝑁 = 0. □
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6.3.D Hyperbolic modules. Hyperbolic planes form a special case of a more
general structure, that of a hyperbolic 𝑅-module 𝑈𝐿 associated to any free 𝑅-
module 𝐿 of finite rank:

𝑈𝐿 = (𝐿 ⊕ 𝐿∗,𝑢𝐿), 𝑢𝐿 : (𝐿 ⊕ 𝐿∗) × (𝐿 ⊕ 𝐿∗) −→ 𝑅 (6.4)

((𝑥,𝑓), (𝑦, 𝑔)) ↦→ 𝑓(𝑦) + 𝑔(𝑥).

The hyperbolic form 𝑢𝐿 equips 𝐿 ⊕ 𝐿∗ with a natural structure of a unimodular
symmetric 𝑅-lattice without assuming the presence of a bilinear form on 𝐿. To see
that the symmetric form 𝑢𝐿 is unimodular, let {𝑒1, . . . , 𝑒𝑚} be a basis for 𝐿 and let
{𝑒∗1, . . . , 𝑒∗𝑚} be the dual basis for 𝐿∗. Then the matrix for 𝑢𝐿 with respect to the
ordered basis {𝑒1, . . . , 𝑒𝑚, 𝑒∗1, . . . , 𝑒∗𝑚} is the matrix

𝐽 :=

(
0 𝐼
𝐼 0

)
and so has determinant ±1. The form 𝑢𝐿 is the polar form of the quadratic form 𝑞𝐿
given by 𝑞𝐿 (𝑥,𝑓) = 𝑓(𝑥). Consequently, (𝑈𝐿, 𝑞𝐿) stands for this quadratic lattice.

There is a variant of the above construction which presumes the existence of a
quadratic form 𝑞 on 𝐿, namely the quadratic hyperbolic 𝑅-module 𝑈𝐿,𝑞, given
by 𝐿 ⊕ 𝐿∗ equipped with th quadratic form

(𝑥,𝑓) ∈ 𝐿 ⊕ 𝐿∗ ↦→ 𝑢𝑞 (𝑥,𝑓) = 𝑞(𝑥) + 𝑓(𝑥). (6.5)

The form 𝑢𝑞 is indeed unimodular since the Gram matrix for 𝑏𝑢𝑞 = 𝑏𝑞 + 𝑢𝐿 with
respect to the ordered basis {𝑒1, . . . , 𝑒𝑚, 𝑒∗1, . . . , 𝑒∗𝑚} is the matrix

𝐵 =

(
𝐴 𝐼
𝐼 0

)
,

where 𝐴 is the Gram matrix of 𝑏𝑞 with respect to {𝑒1, . . . , 𝑒𝑚}, and we have det𝐵 =

±1. The 𝑅-module 𝑈𝐿,𝑞 splits non-orthogonally into two summands 𝐿 and 𝐿∗ and
𝐿∗ is isotropic, but this need not be the case for 𝐿.

Note that in case 2 is a unit in 𝑅, the quadratic lattices (𝑈𝐿, 𝑞𝐿) and 𝑈𝐿,𝑞 are
isometric under the linear isomorphism (𝑥,𝑓) ↦→ (𝑥,𝑓− 1

2𝑏𝑞 (𝑥,−)) since
1
2𝑏𝑞 (𝑥,𝑥) =

𝑞(𝑥). In terms of standard bases, this isomorphism is given by the matrix 𝐶 :=(
𝐼 0

− 1
2𝐴 𝐼

)
and that it is an isometry follows from 𝐶T 𝐵 𝐶 = 𝐽. Hyperbolic modules

give certain natural lattice embeddings (cf. Section 1.8):

Proposition 6.3.12 (Embedding in hyperbolic modules). Let 𝐿 be a free 𝑅-module
of finite rank 𝑚 endowed with a non-degenerate 𝑅-valued quadratic form 𝑞.

1. The embedding 𝑗 : 𝐿 → 𝐿 ⊕ 𝐿∗, 𝑗 (𝑥) = (𝑥, 0) induces an isometric embedding
from (𝐿, 𝑞) into 𝑈𝐿,𝑞 such that 𝑗 (𝐿)⊥ ≃ 𝐿(−1).

2. If 𝐿 is unimodular, then 𝑈𝐿,𝑞 = 𝑗 (𝐿) ⦹ 𝑗 (𝐿)⊥ ≃ 𝐿⦹ 𝐿(−1).
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Proof. 1. The embedding 𝑗 is an isometric embedding since 𝑢𝑞 (𝑥, 0) = 𝑞(𝑥). We
next show that the orthogonal complement is isometric to 𝐿(−1). By definition, for
(𝑦, 𝑔) to be orthogonal to 𝐿 ⊕ 0 is equivalent to 𝑔(𝑥) +𝑏𝑞 (𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝐿 and
conversely, which means 𝑔 = −𝑏𝐿 (𝑦) and then 𝑦 ↦→ (𝑦,−𝑏𝐿 (𝑦)) is an isomorphism
of modules from 𝐿 to 𝑗 (𝐿)⊥. For the forms we have

𝑢𝑞 (𝑦,−𝑏𝐿 (𝑦)) = 𝑞(𝑦) − 𝑏𝐿 (𝑦)𝑦 = 𝑞(𝑦) − 𝑏(𝑦, 𝑦) = −𝑞(𝑦)

proving that 𝑗 (𝐿)⊥ ≃ 𝐿(−1).
2. This follows since unimodular summands split off by Lemma 6.2.1. □

6.4 Discriminant Forms

In this section 𝐹 = 𝑅 is an integral domain, 𝑄(𝑅) its field of fractions, (𝐿, 𝑏) is an

𝑅-lattice and (𝐿, 𝑞) a quadratic lattice. .

Recall that the correlation morphism (6.2) for a non-degenerate symmetric 𝑅-
lattice (𝐿, 𝑏) is the injective homomorphism

𝑏𝐿 : 𝐿 → 𝐿∗, 𝑥 ↦→ 𝑏𝐿 (𝑥) (=the function sending 𝑦 to 𝑏(𝑥, 𝑦)).

In general it is not surjective and the quotient, dg𝐿 := 𝐿∗/𝐿, is by Remark 6.1.7
a torsion 𝑅-module, the discriminant torsion module . Since 𝑅 ⊂ 𝑄(𝑅) we
may extend scalars to 𝑄(𝑅) and then the correlation morphism becomes a 𝑄(𝑅)-
isomorphism 𝐿𝑄(𝑅)

∼−→ 𝐿∗
𝑄(𝑅) . The bilinear extension 𝑏𝑄(𝑅) can be transported to

𝐿∗
𝑄(𝑅) via this isomorphism. Hence every element of 𝐿∗

𝑄(𝑅) is of the form 𝑥 ↦→
𝑏𝑄(𝑅) (𝑦,𝑥) for some 𝑦 ∈ 𝐿𝑄(𝑅) . This gives an explicit identification of 𝐿𝑄(𝑅) with
its dual. The same proof as the one for Lemma 1.6.3 can be used to show:

Lemma 6.4.1. 1. Under the above identification of 𝐿𝑄(𝑅) with 𝐿∗
𝑄(𝑅) we have

𝐿∗ = {𝑦 ∈ 𝐿𝑄(𝑅) | 𝑏𝑄(𝑅) (𝑦,𝑥) ∈ 𝑅 for all 𝑥 ∈ 𝐿}.

2. If 𝐴 = 𝐵𝑬 is the Gram matrix of 𝑏 with respect to the basis 𝑬 = {𝑒1, . . . , 𝑒𝑛},
then 𝐴−1 is the Gram matrix of 𝑏𝑄(𝑅) with respect to the dual basis 𝑬∗. This
is also the matrix expressing the basis 𝑬∗ of 𝐿∗

𝑄(𝑅) = 𝐿𝑄(𝑅) in the basis 𝑬.

3. There is a canonical identification 𝐿 = (𝐿∗)∗ induced by 𝑏∗
𝑄(𝑅) ◦𝑏𝑄(𝑅).

The form 𝑏𝑄(𝑅) induces a bilinear form on dg𝐿, the discriminant bilinear
form . Explicitly, with the notation 𝑥 = 𝑥 mod 𝐿 ∈ 𝐿∗/𝐿, we set

𝑏#𝐿 : dg𝐿 × dg𝐿 −→ 𝑄(𝑅)/𝑅,
(𝑥, 𝑦) ↦−→ 𝑏𝑄(𝑅) (𝑥, 𝑦) mod 𝑅.
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For a non-degenerate quadratic 𝑅-lattice (𝐿, 𝑞) we use the associated bilinear form
𝑏𝑞 to embed 𝐿∗ in 𝐿𝑄(𝑅) . The discriminant quadratic form is the torsion
quadratic form

𝑞#𝐿 : dg𝐿 −→ 𝑄(𝑅)/𝑅
𝑥 ↦−→ 𝑞𝑄(𝑅) (𝑥) mod 𝑅.

As for integral forms, the discriminant bilinear form of a non-degenerate form is
also non-degenerate. Indeed, if 𝑏𝑄(𝑅) (𝑥,𝐿∗) ∈ 𝑅 for some 𝑥 ∈ 𝐿∗, then 𝑥 ∈ 𝐿∗∗ = 𝐿
and so 𝑥 = 0.

6.5 Isometry Groups

In this section we continue to assume that 𝐹 = 𝑅 is an integral domain, 𝑄(𝑅) its field

of fractions, (𝐿, 𝑏) a symmetric 𝑅-lattice and (𝐿, 𝑞) a quadratic lattice.

Recalling the notions of Definition 6.1.4, in this situation the orthogonal group of
(𝐿, 𝑏) is given by

O (𝐿) = O (𝑏) := {𝜑 : 𝐿 → 𝐿 an 𝑅-linear bijection | 𝑏(𝜑(𝑥),𝜑(𝑦)) = 𝑏(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝐿}.

If (𝐿, 𝑞) is a quadratic lattice, by O (𝐿) we shall mean O (𝑏𝑞). Occasionally we shall
also use

O (𝑞) := {𝜑 : 𝐿 → 𝐿 an 𝑅-linear bijection | 𝑞(𝜑(𝑥)) = 𝑞(𝑥), ∀𝑥 ∈ 𝐿}.

Clearly, if 𝜑 preserves 𝑞, then it preserves 𝑏𝑞. In other words, O (𝑞) ⊂ O (𝑏𝑞). We
have seen (cf. the discussion just below Definition 6.1.2) that, in case 2 is not a
zero-divisor, an even bilinear form 𝑏 determines a unique quadratic form 𝑞 of which
it is the polar form. Since 𝑅 is an integral domain, if 2 ≠ 0, then O (𝑞) = O (𝑏𝑞).
However, if 2 = 0, this need not be the case.

Example 6.5.1. Consider a non-degenerate quadratic form 𝑞 on a vector space
𝑉 over a field of characteristic 2 such that 𝑞 has an isotropic vector, e.g. if 𝑞 is an
orthogonal direct sum of hyperbolic planes. The so-called symplectic transvection
𝑡(𝑥) = 𝑥 + 𝑏𝑞 (𝑢,𝑥)𝑢, 𝑢 ∈ 𝑉 isotropic, preserves 𝑏𝑞 as one directly checks. However,
since we are in characteristic two, 𝑞(𝑡(𝑥)) = 𝑞(𝑥) + 𝑏𝑞 (𝑢,𝑥)2 and so 𝑡 ∉ O (𝑞). The
simplest such example is the hyperbolic plane 𝑈𝔽2

over 𝔽2. Then O (𝑈𝔽2
) consists

of the six transformations id, 𝑡 :=

(
0 1
1 0

)
, 𝑠 :=

(
1 1
1 0

)
, 𝑠2, 𝑠𝑡 = 𝑡𝑠2 and 𝑠𝑡2 = 𝑡𝑠, while

O (𝑞) = {id, 𝑡}.

There is a criterion for an 𝑅-module isomorphism 𝜑 of (the non-degenerate) 𝐿
to be an isometry which is similar to the one we gave in Section 1.5 for integral
lattices. Explicitly, if 𝑬 = {𝑒1, · · · , 𝑒𝑛} is a basis for 𝐿, 𝐹, and 𝐵𝑬 = (𝑏(𝑒𝑖 , 𝑒𝑗)) the
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matrix of 𝜑, respectively the Gram matrix of 𝑏 with respect to 𝑬, then 𝜑 is an
isometry if and only if 𝐹T𝐵𝑬𝐹 = 𝐵𝑬 . In the case of an isometry det2 (𝐹) = 1 and
so det(𝐹) = ±1. Since det(𝜑) = det(𝐹) does not depend on the choice of basis we
deduce that det(𝜑) = ±1. If 2 = 0 in the ring 𝑅, all isometries have determinant 1.
Otherwise, those isometries 𝜑 for which det(𝜑) = 1 are called rotations and these
form a normal subgroup:

Definition 6.5.2. Suppose 2 ≠ 0 in 𝑅. The special orthogonal group (or the
group of rotations of 𝐿) is the group SO (𝐿) = {𝑔 ∈ O (𝐿) | det(𝜑) = 1}, a normal
subgroup of O (𝐿) of index at most 2. An isometry 𝜑 with det𝜑 = −1 will be called
a reflection.

Example 6.5.3. As in (1.4), a non-isotropic vector 𝑥 in an 𝑅-lattice 𝐿 for which

2𝑏(𝑥,𝐿) ⊂ 𝑏(𝑥,𝑥)𝑅, (6.6)

determines an isometry

𝜎𝑥 (𝑦) = 𝑦 − 2
𝑏(𝑥, 𝑦)
𝑏(𝑥,𝑥) · 𝑥

with det(𝜎𝑥) = −1, the hyperplane reflection defined by 𝑥. It is the identity
on the hyperplane orthogonal to 𝑥 and sends 𝑥 to −𝑥

If we have a quadratic lattice (𝐿, 𝑞) and an element 𝑥 ∈ 𝐿 satisfying the above
condition with respect to 𝑏𝑞, we find that the reflection in 𝑥 is given by

𝜎𝑥 (𝑦) = 𝑦 −
𝑏𝑞 (𝑥, 𝑦)
𝑞(𝑥) 𝑥. (6.7)

Observe that for all non-zero 𝑟 ∈ 𝑅 we have 𝜎𝑥 = 𝜎𝑟𝑥 and so we may assume that 𝑥
is primitive. In this situation we have a hyperplane reflection if for instance 𝑞(𝑥)
is a unit.

Primitivity of 𝑥 also ensures that there is a basis 𝑒1 = 𝑥, 𝑒2, . . . , 𝑒𝑛 of 𝐿. Then
the matrix of 𝜎𝑥 in this basis is

©«
−1 ∗ · · · ∗
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

ª®®®®¬
and so det(𝜎𝑥) = −1 as claimed.

Remark 6.5.4. 1. One can define the determinant for an isometry with values
in any commutative ring 𝐴. However, if 𝐴 has zero-divisors, this is a less useful
concept, especially if all elements are zero-divisors since then 1 = 0. This applies
for example to the ring 𝑄(𝑅)/𝑅 and hence to 𝑅-torsion modules.
2. There are lattices (𝐿, 𝑏) that do not admit reflections, i.e., for which O (𝐿) =

SO (𝐿). See Example 6.5.5.4 below.
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An isometry 𝜑 of 𝐿 induces an isometry 𝜑𝑄(𝑅) of 𝐿𝑄(𝑅) preserving 𝐿∗ ⊂ 𝐿𝑄(𝑅) .
Hence there is an induced isomorphism 𝜑 of the discriminant group 𝐿∗/𝐿 which pre-
serves the discriminant form. Isomorphisms of 𝐿∗/𝐿 preserving 𝑏#𝐿 form the group

O (𝑏#𝐿 ). The assignment 𝜑 ↦→ 𝜑 defines the so called reduction homomorphisms

𝑟𝑏𝐿 : O (𝐿, 𝑏) −−→ O (𝑏#𝐿 ), (𝑟𝑏𝐿)′ = 𝑟𝐿 | SO (𝐿, 𝑏). (6.8)

If 𝑏 = 𝑏𝑞 is an even non-degenerate polar form of the quadratic form 𝑞, 𝜑 also

preserves the discriminant quadratic form 𝑞#𝐿 on 𝐿∗/𝐿 and the reduction morphism
factors as

𝑟𝑏𝐿 : O (𝐿, 𝑏𝑞)
𝑟
𝑞
𝐿−→ O (𝑞#𝐿 ) ↩→ O (𝑏#𝐿 ). (6.9)

The reduction homomorphisms are in general injective nor surjective. Note that
the group O (𝑞#𝐿 ) might be a proper subgroup of O (𝑏#𝐿 ) and if this is the case 𝑟𝑏𝐿
is not surjective, but 𝑟

𝑞
𝐿 might be surjective.

As in the case of integral lattices (cf. Lemma 1.5.4), an 𝑅-lattice 𝐿 has the
same isometry group as 𝐿(𝑟), 𝑟 ∈ 𝑅 − {0}. This is a useful remark for calculating
isometry groups in examples as illustrated below.

Examples 6.5.5. 1. Rank one lattices. The isometry group of ⟨𝑎⟩, 𝑎 ∈ 𝑅−{0},
is the kernel 𝑅×

[2] of the squaring map on 𝑅×. If (𝑅,𝔪) is a local ring with 2 a unit,

this group only consists of ±1, as we shall see in Remark 7.2.2.
The isometry group of the discriminant bilinear form ⟨𝑎−1⟩ is the kernel (𝑅/𝑎𝑅)×[2]

of the squaring map on (𝑅/𝑎𝑅)×. Indeed, in the latter case an isometry is given
by an invertible element 𝜉 ∈ 𝑎−1𝑅/𝑅 such that 𝑎−1𝜉2𝑥𝑦 − 𝑎−1𝑥𝑦 = 0 in 𝑎−1𝑅/𝑅
for all 𝑥, 𝑦 ∈ 𝑎−1𝑅, which is equivalent to 𝜉2 − 1 = 0 in 𝑅/𝑎𝑅. The reduction
homomorphism is the quotient morphism 𝑅×

[2] → (𝑅/𝑎𝑅)×[2] .
We turn now to the quadratic form [ 12𝑎], 𝑎 ∈ 2𝑅, which, we recall, is given

by 𝑥 ↦→ 1
2𝑎𝑥

2 and has ⟨𝑎⟩ as its polar form. One has O ( [ 12𝑎]) = O (⟨𝑎⟩) = 𝑅×
[2] .

The isometry group of its discriminant quadratic form [ 12𝑎
−1] is the same as for

its polar form. Indeed, 1
2𝑎

−1𝜉2𝑥2 − 1
2𝑎

−1𝑥2 = 0 in 𝑎−1𝑅/𝑅 for all 𝑥 ∈ 𝑎−1𝑅/𝑅 is
equivalent to 𝜉2 − 1 = 0 in 2𝑎−1𝑅/2𝑅 ≃ 𝑅/𝑎𝑅.

Consider for example 𝑅 = ℤ and 𝑎 = 2𝑘, 𝑘 ≥ 1. Then O (⟨2−𝑘⟩) is the identity
for 𝑘 = 1, the cyclic group generated by −id for 𝑘 = 2, and the Klein 4-group 𝐶2×𝐶2

generated by −id and multiplication by −1 + 2𝑘−1 mod 2𝑘 for all 𝑘 ≥ 3 (since its
square is 1 in ℤ/2𝑘ℤ). Since the isometry group of rank one integral lattices consists
of ±id, we see that the reduction homomorphism (for the symmetric as well as the
quadratic form) is not surjective if 𝑘 ≥ 3.

If instead 𝑅 = ℤ2, the group 𝑅×
[2] is isomorphic to 𝐶2 ×𝐶2, since the units up to

squares are represented by ±1,±3, each with square 1. The preceding calculation
for the isometry groups of the discriminant forms for 𝑅 = ℤ is also valid for 𝑅 = ℤ2.
So in this case the reduction morphisms are surjective.

2. Binary forms.
(a) We first consider the hyperbolic plane 𝑈𝑅 = 𝑅𝑒 ⊕𝑅𝑓, 𝑒 · 𝑒 = 𝑓 ·𝑓 = 0, 𝑒 ·𝑓 = 1.
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Assume 2 ≠ 0. Up to units 𝑒 and 𝑓 are the only primitive isotropic vectors.
Since these are preserved under isometries, the only isometries are the rotations

𝑖𝑎 :=

(
𝑎 0
0 𝑎−1

)
, 𝑎 ∈ 𝑅×, and the reflections 𝑗𝑏 :=

(
0 𝑏−1

𝑏 0

)
, 𝑏 ∈ 𝑅×. Observe that

𝑗𝑏 is the hyperplane reflection in 𝑒 − 𝑏𝑓. Since 𝑗1◦𝑗𝑎 = 𝑖𝑎 , all isometries of 𝑈𝑅 are
products of at most two hyperplane reflections. Note that these isometries are also
the isometries for the corresponding quadratic form.

In case 2 = 0, also the vector 𝑒+𝑓 is a primitive isotropic vector and as we saw in
Example 6.5.1, this gives an isometry of the bilinear form but not of the quadratic

form. Indeed, if

(
𝑎11 𝑎12
𝑎21 𝑎22

)
represents an isometry with respect to the quadratic

form, then (𝑎11𝑥 + 𝑎12𝑦) (𝑎21𝑥 + 𝑎22𝑦) = 𝑥𝑦. This implies 𝑎11𝑎21 = 𝑎12𝑎22 = 0 and
𝑎11𝑎22 + 𝑎12𝑎21 = 1 so that the only isometries preserving the quadratic form are
just the 𝑗𝑎 and the 𝑖𝑏 for suitable units 𝑎 , 𝑏.

For a non-zero 𝑠 which is not a unit, the lattice 𝑈𝑅 (𝑠) is not unimodular and its
discriminant torsion module [𝑠−1𝑅/𝑅]⊕2 inherits the hyperbolic form. Its isometry
group consists of the isometries 𝑖𝑎 and 𝑗𝑏 where now 𝑎 , 𝑏 ∈ (𝑅/𝑠𝑅)×. Hence the
reduction homomorphism 𝑟

𝑞
𝑈𝑅 (𝑠) is surjective.

(b) Next, we return to the situation (see Section 6.3.B) where 𝑘 = 𝑄(𝑅), 𝐾 = 𝑄(𝑆),
𝑆 = 𝑅[𝜉], a quadratic extension with 𝜉2 +𝑢𝜉 +𝑣 = 0, and associated quadratic form
N𝐾/𝑘 (𝑥 + 𝑦𝜉) = 𝑥2 − 𝑢𝑥𝑦 + 𝑣𝑦2 on 𝐾 (i.e., 𝑥2 − 𝑢𝑥𝑦 + 𝑣𝑦2 on ⊕2𝑘, where (𝑥, 𝑦) is
identified with 𝑥 + 𝑦𝜉).
(b1) Determining the rotations in case 2 ≠ 0. Multiplication with any 𝑈 ∈ 𝑆
with 𝑁𝐾/𝑘 (𝑈) = 1 induces a 𝑘-linear map from 𝐾 to 𝐾 that preserves the quadratic
form since 𝑁𝐾/𝑘 is multiplicative. The matrix of multiplication by 𝑈 = 𝑎 + 𝑏𝜉,
𝑎 , 𝑏, ∈ 𝑅, in the basis {1, 𝜉} is given by

𝑀𝑎 ,𝑏 =

(
𝑎 −𝑏𝑣
𝑏 𝑎 − 𝑢𝑏

)
.

Since det
(
𝑀𝑎 ,𝑏

)
= 𝑎2 − 𝑢𝑎𝑏 + 𝑣𝑏2 = 𝑁𝐾/𝑘 (𝑈) = 1, this is a rotation. We claim that

all rotations occur this way. Let 𝜌 be any rotation and let 𝜌(1) = 𝑎 · 1 + 𝑏𝜉. Then
𝑁𝐾/𝑘 (𝑎 + 𝑏𝜉) = 1 and 𝜌−1 · 𝑀𝑎 ,𝑏 (1) = 1. A small matrix computation shows that
the only rotation which fixes 1 is the identity. It follows that 𝜌 = 𝑀𝑎 ,𝑏.
(b2) On reflections in case 2 ≠ 0. The reflection in 𝑎 −1+𝑏𝜉 with 𝑁𝐾/𝑘 (𝑎 +𝑏𝜉) =
𝑎2 − 𝑢𝑎𝑏 + 𝑣𝑏2 = 1 has matrix

𝑀′
𝑎 ,𝑏 =

(
𝑎 −𝑢𝑎 + 𝑣𝑏
𝑏 −𝑎

)
.

As in the case of rotations, any orthogonal transformation with determinant −1
is of this shape. Observe also that 𝑀′

𝑎 ,𝑏
◦𝑀′

1,0 = 𝑀𝑎 ,𝑏, and so all isometries are
products of at most two reflections.
(b3) The case 2 = 0. We still have the preceding wo types of orthogonal trans-
formations despite both having determinant 1. The first type 𝑀𝑎 ,𝑏 comes from
multiplication with norm 1 elements. However, a matrix for a reflection cannot
come from multiplication with norm 1 vectors, since if this were the case, we would
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have 𝑢𝑏 = 0 = 𝑢𝑎 and so 𝑢 = 0 but then the extension 𝑅(𝜉)/𝑅 would not be sepa-
rable. We shall see later (cf. Example 16.2.5.3) that in this case the two types of
orthogonal transformations are distinguished by their Dickson invariants.

3. The form 𝑉 over ℤ2, that is, the norm form for the extension ℤ2 [𝜉] with
𝜉2 + 𝜉 + 1 = 0 . Hence we can apply the calculation in § 6.3.B, example 4: The

rotation group of 𝑉 (and so of 𝑉𝑘) consists of matrices of the form

(
𝑎 −𝑏
𝑏 𝑎 − 𝑏

)
and

those with determinant equal to −1 are given by

(
𝑎 −𝑎 + 𝑏
𝑏 −𝑎

)
. Since 𝑎2−𝑎𝑏+𝑏2 = 1

either 𝑎 or 𝑏 must be a dyadic unit. As in the previous example O (𝑞#
𝑉𝑘)) is of

similar shape where one replaces 𝑎 , 𝑏 by residue classes of integers modulo 2𝑘

with 𝑎2 − 𝑎𝑏 + 𝑏2 ≡ 1 mod 2𝑘. In particular, the reduction homomorphism 𝑟
𝑞
𝑉𝑘

is
surjective.
4. Consider the quadratic form 𝑞(𝑥, 𝑦) = 𝑎𝑥2 + 2𝑥𝑦 + 𝑐𝑦2 on ℤ2 with 𝑎 , 𝑐 ∈ ℤ and
𝑎 ≥ 2 and 𝑐 > 𝑎 . The only integral solution for 𝑞(𝑥, 𝑦) = 𝑎 is (𝑥, 𝑦) = (±1, 0).
Indeed, writing

𝑞(𝑥, 𝑦) = 𝑎
(
𝑥 + 𝑎−1𝑦

)2 + (
𝑐 − 𝑎−1

)
𝑦2,

and observing that 𝑐 − 𝑎−1 > 𝑎 , one sees that if |𝑦 | ≥ 1, there is no solution,
and if 𝑦 = 0, then 𝑥 = ±1. Hence, an isometry of 𝑞(𝑥, 𝑦) must preserve the first
basis vector up to sign. Then the matrix representing the isometry is of the shape(
±1 ∗
0 ±1

)
and a small calculation shows that if 𝑎 > 2 such an isometry can only be

±id and 𝑞 does not admit reflections. However, for 𝑎 = 2 there are two reflections,

±
(
1 1
0 −1

)
.

Historical and Bibliographical Notes. Our formulation of the ”splitting princi-
ple” is motivated by [122, Satz (1.6)] in M. Kneser’s book. The material in Sections 6.1
and 6.3 is based on M. Kneser’s approach (loc. cit.) as well as on §I.3 in the book [151]
by J. Milnor and D. Husemoller. Note that they use the terminology ”of type I, II” for
odd, respectively even forms.

The properties of torsion bilinear and quadratic forms over general rings as given in
Section 6.4 follows the treatment in A. Durfee’s thesis [56]. Observe that instead of the
term ”discriminant form” he uses ”induced form” .

The notion of a split inner product space goes back to M. Knebusch [116] under the

name of ”metabolic inner product space”. The terminology ”split inner product space”

has been coined by J. Milnor and D. Husemoller in [151, §I.6].
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Reflections and the Witt Decomposition

Introduction

In this chapter we investigate the existence of hyperplane reflections in 𝑅-lattices.
Over a field such reflections exist, but these may or may not preserve a lattice.
Over the ring 𝑅 = ℤ𝑝 these also exist. See Section 7.1. Moreover, as shown in
Section 7.2 we show that isometries are always products of hyperplane reflections
provided 𝑅 is a local ring in which 2 is a unit. This is crucial for the definition of
the spinor norm later on in Chapter 13.

An application of a different nature is discussed in this section as well: Witt’s
theorems give a particular splitting of inner product spaces over local rings to
which we come back in Chapter 8. This decomposition can also be used to classify
𝑅-inner product spaces ”up to split inner product spaces” leading to an invariant
for the ring 𝑅, the Witt ring of 𝑅. This is briefly explained in Section 7.3.

7.1 Reflections

In this section 𝑅 is an integral domain.

Suppose for the moment that 2 ≠ 0 so that quadratic forms can be identified
with even bilinear forms. Recall that the group O (𝐿) of isometries of an 𝑅-lattice
(𝐿, 𝑏) contains the subgroup SO (𝐿) of rotations as a subgroup of index at most 2.
Rotations 𝑔 ∈ SO (𝐿) are characterized by det 𝑔 = 1. Reflections are the isometries
𝑔 of 𝐿 with det 𝑔 = −1.

Some examples are obtained as follows. If 𝑆 is a sublattice of 𝐿 such that
𝐿 = 𝑆 ⦹ 𝑆⊥, then the map (𝑠, 𝑡) ↦→ (𝑠,−𝑡) is an isometry; it is a reflection precisely
if the rank of 𝑆⊥ is odd. A special case occurs if 𝑆 = 𝑥⊥ with 𝑏(𝑥,𝑥) a unit. In this
case 𝐿 = 𝑥⊥ ⦹ ⟨𝑏(𝑥,𝑥)⟩ by Proposition 6.3.10 and the isometry is the hyperplane
reflection 𝜎𝑥 in the hyperplane 𝑥⊥, which, we recall, is given by

𝜎𝑥 (𝑦) = 𝑦 − 2𝑏(𝑥, 𝑦)
𝑏(𝑥,𝑥) · 𝑥, 𝑦 ∈ 𝐿.

Note that the hyperplane reflection is also defined if 2/𝑏(𝑥,𝑥) ∈ 𝑅 (but 𝐿 need not
decompose in this case: take for instance 𝐿 = 𝐸8 and an 𝑥 with 𝑏(𝑥,𝑥) = 2).

As to the effect of hyperplane isometries on the discriminant group, we have:
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Lemma 7.1.1. Let (𝐿, 𝑞) be a quadratic lattice. Suppose 𝑥 ∈ 𝐿 is primitive, non-
isotropic such that 𝑏𝑞 (𝑥,𝐿∗) ⊂ 𝑞(𝑥) · 𝑅 (in particular this is the case if 𝑞(𝑥) is a

unit). Then the hyperplane reflection 𝑦
𝜎𝑥↦−−→ 𝑦 − (𝑏𝑞 (𝑥, 𝑦)/𝑞(𝑥)) · 𝑥, 𝑦 ∈ 𝐿, induces

the identity on the discriminant group.

Proof. Since for all 𝑢 ∈ 𝐿∗, 𝑏𝑞 (𝑥,𝑢) · 𝑞(𝑥)−1 ∈ 𝑅, it follows that 𝜎𝑥𝑢 ≡ 𝑢 mod 𝐿.
This precisely means that 𝜎𝑥 induces the identity on dg𝐿. □

Examples 7.1.2. 1. Let 𝑅 = ℤ𝑝 where 𝑝 is any prime. Quadratic modules over
this ring are the quadratic 𝑝-adic lattices. We claim that every (non-degenerate)
quadratic 𝑝-adic lattice (𝐿, 𝑞) admits reflections and so here also SO (𝐿) is of index
2 in O (𝐿). We see this as follows. Since the valuation 𝑣𝑝 is non-archimedean
and since for all 𝑧, 𝑦 ∈ 𝐿, 𝑏𝑞 (𝑧, 𝑦) = 𝑞(𝑧 + 𝑦) − 𝑞(𝑧) − 𝑞(𝑦), equation (A.4) implies
𝑣𝑝 (𝑏𝑞 (𝑧, 𝑦)) ≥ inf𝑢∈𝐿,𝑞(𝑢)≠0 𝑣𝑝 (𝑞(𝑢)). That the (non-zero) infimum is attained, say
at 𝑥, is clear since the valuation is discrete. It follows that 𝑣𝑝

(
𝑏𝑞 (𝑥, 𝑦)/𝑞(𝑥)

)
≥ 0,

which translates as 𝑏𝑞 (𝑥, 𝑦) ∈ 𝑞(𝑥) · ℤ𝑝 and so (6.6) holds. Hence the reflection 𝜎𝑥
in 𝑥 is a well-defined isometry. We set this result apart since it will be used later:

inf
𝑧∈𝐿,𝑞(𝑧)≠0

𝑣𝑝 (𝑞(𝑧)) = 𝑣𝑝 (𝑞(𝑥)) =⇒ 𝜎𝑥 is a hyperplane reflection of 𝐿. (7.1)

2. In Example 6.5.5.2 we saw that the isometry group of the hyperbolic plane

𝑈 over 𝑅 consists of the rotations 𝑖𝑎 :=

(
𝑎 0
0 𝑎−1

)
, 𝑎 ∈ 𝑅×, and the reflections

𝑗𝑏 =

(
0 𝑏−1

𝑏 0

)
, 𝑏 ∈ 𝑅×. The condition (6.6) implies that a reflection is of the form

𝜎𝑐 with 𝑐 = 𝑢𝑒+𝑣𝑓 for some units 𝑢, 𝑣. Then 𝜎𝑐 (𝑒) = −𝑣𝑢−1 ·𝑓 and 𝜎𝑐 (𝑓) = −𝑣−1𝑢 ·𝑒,
i.e., 𝜎𝑐 = 𝑗𝑏 with 𝑏 = −𝑣𝑢−1. It follows that products of an even number of
reflections form a proper subgroup of O (𝑈) regardless whether 2 = 0 in 𝑅 or not.

3. Consider the unimodular dyadic lattice 𝑉0, i.e., ℤ
⊕2
2 with quadratic form 𝑥 =

(𝑥1,𝑥2) ↦→ 𝑞(𝑥) = 𝑥2
1 +𝑥1𝑥2 +𝑥2

2. It contains no isotropic vectors (such an isotropic
vector would lead to a solution of the equation 𝑥2 = −3 in ℚ2 which is impossible by
Theorem A.2.1-2) and all reflections are of the form 𝜎𝑥, 𝑞(𝑥) ∈ ℤ∗

2. This concerns
every primitive vector since then, as we readily see, 𝑞(𝑥) is a unit due to the special
shape of the quadratic form.

We end this sections with a few words about the case 2 = 0. Here the situation
is quite different. For example, if 𝑉 = 𝑊 ⦹ 𝑘𝑒 is a quadratic space over a field
of characteristic 2 such that 𝑞(𝑒) = 1, then 𝜎𝑒 is the identity. More generally, if
(𝑉, 𝑞) is quadratic 𝑘-space and 𝑥 satisfies 𝑞(𝑥) ≠ 0 and 𝑥 ∈ rad(𝑏𝑞), then 𝜎𝑥 is
the identity on 𝑉. If 𝑞(𝑥) ≠ 0, then the corresponding map 𝜎𝑥 is an example of a
so-called transvection w.r.t. the bilinear form 𝑏𝑞, see Appendix A.5.



164 7 Reflections and the Witt Decomposition

7.2 The Theorems of Cartan–Dieudonné and Witt

In this section 𝑅 is a local ring in which 2 is a unit.

The main goal of this section is to demonstrate the Cartan–Dieudonné theo-
rem 7.2.4 which makes the assertion precise that reflections are ubiquitous. The
proof uses the following result.

Lemma 7.2.1. Let (𝑉, 𝑏) be an inner product space over 𝑅. If 𝑥, 𝑦 ∈ 𝑉, 𝑥 ≠ 𝑦, are
such that 𝑏(𝑥,𝑥) = 𝑏(𝑦, 𝑦) ∈ 𝑅×, there exists an isometry 𝜎 sending 𝑥 to 𝑦 which
is a product of at most two hyperplane reflections.

Proof. The two vectors 𝑣 = 1
2 (𝑥+𝑦) and 𝑤 = 1

2 (𝑥−𝑦) are mutually orthogonal and
have sum 𝑥. Consequently,

𝑏(𝑥,𝑥) = 𝑏(𝑣, 𝑣) + 𝑏(𝑤,𝑤). (7.2)

Since 𝑅 is local, the unit 𝑏(𝑥,𝑥) cannot be the sum of two non-units. If 𝑏(𝑣, 𝑣)
is a unit, then by Proposition 6.3.10 we have 𝐿 = 𝑅𝑣 ⦹ 𝑅𝑣⊥ and 𝜎𝑦◦𝜎𝑣 (𝑥) = 𝑦. If
𝑏(𝑤,𝑤) is a unit, the reflection 𝜎𝑤 sends 𝑥 to 𝑦. □

Remark 7.2.2. If (𝑉, 𝑏) has rank 1, say 𝑉 = 𝑅𝑥, the above proof can easily be
adapted to show that the only reflection is −id = 𝜎𝑥.

There is a more specific version of Lemma 7.2.1 in the 𝑝-adic setting which we
are going to use later. Its statement involves the 𝑝-adic invariant 𝑚𝑞 associated to
the non-degenerate quadratic form 𝑞 defined by

𝑚𝑞 = inf
𝑧∈𝑉

𝑣𝑝 (𝑞(𝑧)), (7.3)

and reads as follows.

Lemma 7.2.3. Let 𝑅 = ℤ𝑝 (𝑝 ≠ 2) and let (𝑉, 𝑞) be a non-degenerate quadratic
ℤ𝑝-module. If 𝑥, 𝑦 ∈ 𝑉 are such that 𝑞(𝑥) = 𝑞(𝑦) have 𝑝-adic valuation 𝑚𝑞, then
there is an isometry which is the product of at most two hyperplane reflections 𝜎𝑧
and carries 𝑥 to 𝑦. Moreover, we can choose 𝑧 such that 𝑣𝑝 (𝑧) = 𝑚𝑞.

Proof. As before we let 𝑣 = 1
2 (𝑥 + 𝑦), 𝑤 = 1

2 (𝑥 − 𝑦). Since 𝑏𝑞 (𝑥,𝑥) = 2𝑞(𝑥) for
all 𝑥 ∈ 𝑉 and since 2 is invertible, (7.2) can be rewritten as 𝑞(𝑥) = 𝑞(𝑣) + 𝑞(𝑤).
Because of the non-archimedean nature of the 𝑝-adic valuation at least one of 𝑞(𝑣)
and 𝑞(𝑤) must have 𝑝-adic valuation equal to 𝑚𝑞. In case 𝑣𝑝 (𝑞(𝑣)) = 𝑚𝑞, then
by (7.1) 𝜎𝑣 is a reflection belonging to O (𝑉) and 𝜎𝑦◦𝜎𝑣 sends 𝑥 to 𝑦 as before.
Otherwise, 𝜎𝑤 ∈ O (𝑉) and we may use 𝜎𝑤. □

Theorem 7.2.4 (Cartan–Dieudonné). Every isometry of an inner product space
(𝑉, 𝑏) of rank 𝑛 over a local ring 𝑅 in which 2 is a unit, is a product of at most 2𝑛
hyperplane reflections.
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Proof. If 𝑛 = 1 this follows from Remark 7.2.2.

Assume now that 𝑛 > 1 and let 𝑥 ∈ 𝑉 be a vector with 𝑏(𝑥,𝑥) a unit, e.g.,
a vector from an orthogonal basis (cf. Proposition 6.3.11). Let 𝜏 ∈ O (𝑉). By
Lemma 7.2.1 there is an isometry 𝜎 which is a product of at most two hyperplane
reflections sending 𝜏(𝑥) to 𝑥. Then 𝜎◦𝜏(𝑥) = 𝑥 and 𝜎◦𝜏 preserves 𝑅𝑥⊥. Since the
restriction of 𝑏 to 𝑅𝑥⊥ is unimodular, by induction we may write the restriction
of 𝜎◦𝜏 to 𝑅𝑥⊥ as a product of at most 2𝑛 − 2 hyperplane reflections in 𝑅𝑥⊥. Such
a product 𝜏′ can be extended to 𝑉 by letting it act as the identity on 𝑥. Then
𝜏 = 𝜎−1◦𝜏′ is a product of at most 2𝑛 isometries. □

Using Lemma 7.2.3, we observe that in the special case of 𝑅 = ℤ𝑝, the proof
shows:

Corollary 7.2.5. If 𝑅 = ℤ𝑝, 𝑝 odd, we can write an isometry of a quadratic inner
product space (𝑉, 𝑞) over 𝑅 as a product of hyperplane reflections in vectors 𝑧 for
which 𝑣𝑝 (𝑧) = 𝑚𝑞 (cf. Eqn. (7.3)).

Remark 7.2.6. 1. The Cartan–Dieudonné theorem1 is true more generally for
quadratic inner product spaces 𝑉 over any local ring 𝑅 – with one exception, the
case where the residue field of 𝑅 is 𝑘 = 𝔽2 and rank(𝑉) = 4. We have placed a proof
in Appendix C.1. This proof is based on [122, Sect. 4]. Over 𝔽2 the quadratic
form 𝑞 = 𝑥2 +𝑥𝑦+𝑦2 +𝑢2 +𝑢𝑣+𝑣2 over 𝔽2 gives an exception. Indeed, the isometry
(𝑥, 𝑦,𝑢, 𝑣) ↦→ (𝑢, 𝑣,𝑥, 𝑦) is not a product of two reflections. To see this, remark
that any non-isotropic vector belongs either to the (𝑥, 𝑦)-plane or to the (𝑢, 𝑣)-
plane, and so the corresponding reflection preserves both planes. However, then
the isometry 𝜏(𝑥, 𝑦,𝑢, 𝑣) = (𝑢, 𝑣,𝑥, 𝑦) cannot be a product of reflections. This also
happens for the same quadratic form now considered over ℤ2. Indeed, this form
is isometric to 𝐿 = 𝑉 ⦹ 𝑉 and non-isotropic vectors 𝑥 ∈ 𝐿 and the corresponding
reflections 𝜎𝑥 after passing to the residue field give non-isotropic vectors with their
corresponding reflections. The same is true for products of reflections. Hence these
preserve the two summands 𝑉 up to vectors in 2𝐿. However the isometry 𝜏 which
exchanges these two summands does not satisfy this condition and so cannot be a
product of reflections.
2. Over a field of characteristic different from 2, a more elaborate proof shows that
the upperbound 2𝑛 can be replaced by 𝑛. See [8, pp. 129–130] or [177, pp. 102–
103]. The number 𝑛 = dim𝑉 for the number of reflections is actually attained for
−id. This follows from a general fact which is left as an exercise: every isometry
𝑓 of 𝑉 is the product of at most codim(Fix(𝑓)) hyperplane reflections, where
Fix(𝑓) = {𝑣 ∈ 𝑉 | 𝑓(𝑣) = 𝑣}. We apply this to 𝑓 = −id, an isometry whose fixed
point locus has dimension 0. Now since every hyperplane reflection has an 𝑛 − 1
dimensional fixed point space, the product of 𝑟 reflections is fixed on at least the
intersection of the 𝑟 hyperplanes. This intersection has dimension ≥ 𝑛 − 𝑟. So we
need at least 𝑛 reflections to deal with −id.

Reflections are used to prove a central result:

1in the sense that every isometry is the product of an unspecified number of reflections.



166 7 Reflections and the Witt Decomposition

Theorem 7.2.7 (Witt’s cancellation theorem). Let 𝑉,𝑊1,𝑊2 be inner product
spaces over 𝑅. If 𝑉 ⦹𝑊1 ≃ 𝑉 ⦹𝑊2, then 𝑊1 ≃ 𝑊2.2

Proof. Since by Proposition 6.3.11 the inner product space 𝑉 is an orthogonal
direct sum of rank 1 inner product spaces over 𝑅, we may by induction assume
that 𝑉 = 𝑅 · 𝑒. Suppose now that 𝑓 : 𝑅 · 𝑒 ⦹𝑊1 → 𝑅 · 𝑒 ⦹𝑊2 is an isometry. The
two elements 𝑓(𝑒, 0) and (𝑒, 0) in 𝑅 · 𝑒⦹𝑊2 satisfy the hypothesis of Lemma 7.2.1
(since 𝑅 · 𝑒 is a rank 1 inner product space) and so there is a product 𝜎 of at most
two reflections of the target space sending 𝑓(𝑒, 0) to (𝑒, 0). The isometry 𝜎◦𝑓 then
maps (𝑒, 0) ∈ 𝑅 · 𝑒 ⦹ 𝑊1 to (𝑒, 0) ∈ 𝑅 · 𝑒 ⦹ 𝑊2 and hence carries the orthogonal
complement, that is, the summand 𝑊1, to the summand 𝑊2. □

Next, we investigate extendability of isometries between subspaces 𝑊,𝑊′ of 𝑉.
We say that two embeddings 𝑖 : 𝑊 ↩→ 𝑉 and 𝑖′ : 𝑊′ ↩→ 𝑉 are equivalent if there
exists an isometry 𝜑 : 𝑉 → 𝑉 making the following diagram commutative:

𝑊
� �

𝑖
//

𝜑|𝑊 ≃
��

𝑉

𝜑 ≃
��

𝑊′ � �

𝑖′
// 𝑉.

(7.4)

Corollary 7.2.8 (Witt’s extension theorem). Let (𝑉, 𝑏) be an inner product space
over 𝑅 and 𝑊1,𝑊2 ⊂ 𝑉 two 𝑅-submodules such that 𝑏 |𝑊1

, 𝑏 |𝑊2
are unimodular.

Any isometry 𝑊1
≃−→ 𝑊2 can be extended to an isometry of 𝑉. In particular, any

two primitive embeddings 𝑊 ↩→ 𝑉, 𝑊 unimodular, are equivalent. In other words,
O (𝑉) acts transitively on such primitive embeddings.

Proof. Using Lemma 6.2.1 we see that 𝑉 = 𝑊𝑗⦹𝑊⊥
𝑗 , 𝑗 = 1, 2, since 𝑏 and 𝑏 |𝑊𝑗 are

unimodular. Also 𝑊1 ⦹𝑊⊥
1 = 𝑊2 ⦹𝑊⊥

2 ≃ 𝑊1 ⦹𝑊⊥
2 and the cancellation theorem

gives an isomorphism 𝑠 : 𝑊⊥
1 ≃ 𝑊⊥

2 . Hence any isometry 𝑡 : 𝑊1
≃−→ 𝑊2 can be

extended as 𝑡⦹ 𝑠 ∈ O (𝑉). □

Remark 7.2.9. 1. Witt’s extension theorem is actually equivalent to Witt’s cancel-
lation theorem 7.2.7. This can be seen by starting with an isometry 𝑓 : 𝑉⦹𝑊1 →
𝑉⦹𝑊2 and applying Witt’s extension theorem to the first summand 𝑉 of 𝑉 ⊕𝑊2

and the image 𝑓(𝑉).
2. Witt’s theorems are in fact true for (finite rank) quadratic inner product spaces
𝑉 over any local ring 𝑅 (so 2 need not be a unit) and for unimodular free sub-
modules 𝑊1,𝑊2. Actually, it suffices to assume that the correlation map 𝛽𝑊 given
by (6.3) is surjective. See Corollary C.1.3 in Appendix C.1 which elaborates [122,
Folgerung 4.4].
3. Over local rings in which 2 is not a unit, there are symmetric inner prod-
uct spaces that are not quadratic. Witt’s theorem is false for those. Here is a
counterexample. We claim the existence of an isometry

⟨−1⟩ ⦹ ⟨−1⟩ ⦹ ⟨1⟩ ≃ ⟨−1⟩ ⦹𝑈

2Recall that the symbol ”≃” stands for isometry and not isomorphism.
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of symmetric lattices over ℤ2. To show this, let {𝑒1, 𝑒2, 𝑒3} be an orthogonal basis
realizing the left-hand form. In the basis 𝑬 = {𝑒1 + 𝑒2 + 𝑒3, 𝑒1 + 𝑒3, 𝑒2 + 𝑒3} the Gram
matrix reads as follows: ©«

−1 0 0
0 0 1
0 1 0

ª®¬ .
This is indeed the matrix for ⟨−1⟩ ⦹ 𝑈, establishing the claim. Clearly 𝑈 is not
isometric to ⟨−1⟩ ⦹ ⟨1⟩ since the first one is an even form while the second is
odd. Observe that this also gives counterexamples over any ring in which 2 is not
invertible, like the ring of integers.

Proposition 7.2.10. Let (𝑉, 𝑞) be a quadratic inner product space over 𝑅. Up to
isometry 𝑉 has a unique orthogonal decomposition

𝑉 = 𝑈 ⦹ 𝑉′, 𝑈 ≃ 𝑈 ⦹ · · ·⦹𝑈︸          ︷︷          ︸
𝑚 copies

, 𝑉′ totally anisotropic, (7.5)

the Witt decomposition. The subspace 𝑈 contains a maximal totally isotropic
sublattice of rank 𝑚. Moreover, all maximal isotropic sublattices of 𝑉 have rank
𝑚.

Proof. By Lemma 6.3.8, 𝑞 represents 0 if and only if 𝑞 splits off a hyperbolic plane.
Continuing in this way we may write 𝑉 = 𝑈 ⦹ 𝑉′, 𝑈 ≃ ⦹𝑚𝑈 and where 𝑞 |𝑉′ does
not represent zero. Suppose 𝑉 = ⦹𝑚𝑈 ⦹ 𝑉′ and 𝑉 = ⦹𝑚′

𝑈 ⦹ 𝑉′′ are two such
splittings, say with 𝑚 < 𝑚′. Then ⦹𝑚𝑈 ⦹ 𝑉′ ≃ ⦹𝑚𝑈 ⦹ (⦹𝑚′−𝑚𝑈 ⦹ 𝑉′′). By
Witt’s theorem 7.2.7 we conclude 𝑉′ ≃ ⦹𝑚′−𝑚𝑈 ⦹ 𝑉′′ so that 𝑉′ represents zero,
a contradiction. So 𝑚 = 𝑚′. Likewise, a splitting 𝑉 = ⦹𝑚𝑈 ⦹ 𝑉′′ leads to an
isometry between 𝑉′ and 𝑉′′. This shows uniqueness of the Witt decomposition
up to isometry.

Taking the standard basis for each copy of 𝑈 gives a basis {𝑒1,𝑓1, . . . , 𝑒𝑚,𝑓𝑚} of
𝑈. Then {𝑒1, . . . , 𝑒𝑚} spans an isotropic sublattice 𝑊 of 𝑈. Any isotropic 𝑦 ∈ 𝑊⊥

is of the form 𝑧 + 𝑡 with 𝑧 ∈ 𝑊 and 𝑡 ∈ 𝑉′. But then 𝑞(𝑡) = 0 which implies 𝑡 = 0.
Hence 𝑊 is a maximal isotropic sublattice.

To show the last assertion, let 𝑊 be a primitive maximal isotropic submodule
of 𝑉 with basis {𝑒1, . . . , 𝑒𝑘}. As in the proof of Lemma 6.3.8 one can then find
inductively vectors 𝑓1, . . . ,𝑓𝑘 such that 𝑅𝑒𝑗 + 𝑅𝑓𝑗 is an 𝑅-hyperbolic plane 𝑈𝑗 and
𝑈1⦹· · ·⦹𝑈𝑘 splits off. Its orthogonal complement cannot contain isotropic vectors,
otherwise 𝑊 would not have been maximal. By uniqueness of the splitting (7.5),
the number of copies of the hyperbolic plane in the resulting splitting must be 𝑚
and so rank(𝑊) = 𝑘 = 𝑚. □

We encountered the number 𝑚 already in Chapter 1 as the Witt index (cf.
page 27). This makes sense for all local rings, even if 2 is not invertible:

Definition 7.2.11. Let (𝑉, 𝑞) be an inner-product space over a local ring. The
Witt index W𝜏 (𝑉, 𝑞) of (𝑉, 𝑞) is the dimension of a maximal isotropic submodule
of 𝑉.
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By Proposition 7.2.10 this is well defined over local rings in which 2 is invertible.
We need another argument if this is not the case using Remark 7.2.9.2 which
tells us that in this situation the theorems of Witt remain valid for primitive
submodules. Applying this we can show that the Witt index is well defined. Indeed,
Let 𝑊,𝑊′ ⊂ 𝑉 be two primitive isotropic submodules. If dim𝑊′ ≤ dim𝑊, choose
𝑊′′ ⊂ 𝑊 with dim𝑊′′ = dim𝑊′. Then 𝑊′′ and 𝑊′ are isomorphic submodules

and any isomorphism 𝑊′′ ≃ 𝑊′ can be extended to an isometry 𝑓 : 𝑉
≃−→ 𝑉. It

follows that 𝑓(𝑊) ⊃ 𝑓(𝑊′′) = 𝑊′ is a primitive isotropic submodule of 𝑉 and by
maximality 𝑓(𝑊) = 𝑊′.

The Witt decomposition 7.2.10 still holds in this general framework, but in-
stead 𝑈 has to be replaced by a suitable split 𝑅-inner product space as defined by
equation (6.5).

Remark 7.2.12. The Witt index is not stable under ring extension since a form
which does not represents zero over 𝑅 may very well do so over a larger ring.
However, if 𝑅 is an integral domain with quotient field 𝑄(𝑅), the Witt indices over
𝑅 and 𝑄(𝑅) are the same. This applies to integral lattices 𝐿 and shows that for
those the Witt index is an invariant of 𝐿ℚ and W𝜏 (𝐿ℚ) ≤ W𝜏 (𝐿ℝ). The equality
may be strict. We have seen this already in Example 1.10.6 where we showed that
𝑥2 + 𝑦2 − 3𝑧2 has no isotropic vector over ℚ and so has Witt index 0 while over the
reals it has Witt index 1. Note that the latter is directly related to the signature.
Indeed, if 𝐿 is non-degenerate with signature (𝑠, 𝑡) one has W𝜏 (𝐿ℝ) = min(𝑠, 𝑡).

7.3 Excursion: The Witt Ring

In this section 𝑅 is a commutative ring with unit 1.

Since in this book the Witt ring will not not play a role, we only sketch the construction

and discuss its properties without proofs. For further details we refer to [36, 151].

The construction of the Witt ring is inspired by the Witt decomposition (7.5) of

a quadratic space 𝑉 over local rings where 2 is a unit (cf. (7.5)). If 𝑉 = 𝑉′ ⦹ 𝑈
is the Witt decomposition, the idea is to declare 𝑉 and 𝑉′ to be equivalent. Over
rings in which 2 is not a unit, instead of 𝑈 the more general “split inner product
spaces” 𝑈𝐿,𝑞 (cf. (6.5)) should be used. This leads to the following definition.

Definition 7.3.1. Two quadratic spaces 𝑉,𝑉′ are in the same Witt class [𝑉] =
[𝑉′] if there exist split inner product spaces 𝑈′,𝑈′′ such that

𝑉 ⦹𝑈′ ≃ 𝑉′ ⦹𝑈′′.

This then indeed turns out to be an equivalence relation. The set of equivalence
classes is denoted 𝑊 (𝑅). Since the orthogonal sum of split spaces is split, we also
see that this equivalence relation is compatible with orthogonal direct sums. One
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can show that this gives a commutative group structure to 𝑊 (𝑅). The resulting
group is the Witt group.

One can also define a product structure, using tensor products. For this to
make sense we put a quadratic form on the tensor product 𝑉 ⊗𝑉′ of two quadratic
𝑅-spaces (𝑉, 𝑞), (𝑉′, 𝑞′) by setting

𝑞 ⊗ 𝑞′(𝑥 ⊗ 𝑥′) = 𝑞(𝑥) · 𝑞′(𝑥′).

This tensor product turns out to be compatible with Witt equivalence and, more-
over, the Witt group 𝑊 (𝑅) equipped with this product structure becomes a ring,
the Witt ring .

Examples 7.3.2. 1. Since the rank of a split inner product space is even (cf.
(6.5)), the parity of the rank is a well-defined ring homomorphism 𝑊 (𝑅) →
ℤ/2ℤ. For any algebraically closed field 𝑅 of characteristic not equal to 2 this
gives an isomorphism. This follows since according to Proposition 6.3.11 all
forms can be diagonalized so that the Witt ring is generated by the class of
a form of odd rank.

2. The index of a split inner product space over ℝ is zero and induces an iso-

morphism 𝑊 (ℝ) ∼−→ ℤ. This is a direct consequence of Sylvester’s theorem
(cf. Corollary 8.1.3) and the uniqueness of the Witt splitting.

3. The Witt groups for the basic finite fields 𝔽𝑝, 𝑝 prime, are as follows.

𝑊 (𝔽𝑝) ≃

ℤ/2ℤ for 𝑝 = 2

ℤ/4ℤ 𝑝 odd , 𝑝 ≡ 3 mod 4

ℤ/2ℤ × ℤ/2ℤ 𝑝 odd , 𝑝 ≡ 1 mod 4.

The Witt ring of ℚ can be described by a split exact sequence

0 → ℤ
𝑖−→ 𝑊 (ℚ) 𝜕−→

⊕
𝑝 prime

𝑊 (𝔽𝑝) → 0.

Here 𝑖 is defined by sending 1 to [⟨1⟩] and 𝜕 sends a class of a form ⟨𝑎⟩ to
the class of its localizations (obviously, Witt equivalence is compatible with
localization). See [151, IV.2].

Historical and Bibliographical Notes. The Cartan–Dieudonné theorem dates
back to the 1938 book of É. Cartan on spinors (see the reprint [34]) and the 1955 mono-
graph by J. Dieudonné reprinted as [49]. E. Witt’s classic 1937 article [251] is the origin
of the results that we now know as ”Witt’s theorems”. In the same article E. Witt in-
troduces the Witt group. For more on the Witt group we refer to [36, § 4.3, § 6.11] and
[122, § 9]. Several people observed that the tensor product induces a ring structure, e.g.
W. Scharlau [201], F. Lorenz [145] and M. Knebusch [116]. For calculations of the Witt
ring for ℤ,ℚ,ℝ and for finite fields one may consult [151].
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Inner Product Spaces Over Fields

Introduction

An inner product space over a field 𝑘 is a 𝑘-vector space equipped with a non-
degenerate symmetric bilinear form. A quadratic inner product space is equipped
with a non-degenerate quadratic form. Of course, only in characteristic 2 there is a
difference between the two and the classification in this case is much more involved.
It is based on the Arf invariant for which we present an elementary treatment. We
treat the two cases in Sections 8.1 and 8.2 respectively. Over finite fields the
classification can be given in greater detail. This is explained in Section 8.3.

8.1 Characteristic Different from Two

In characteristics different from two, we have already observed (cf. Proposition 1.1.4)
that all forms are diagonalizable:

Theorem 8.1.1 (Diagonalization; char(𝑘) ≠ 2). Every non-degenerate symmetric
bilinear form over a field 𝑘 of characteristic different from 2 is isometric to a
diagonal form

⟨𝑎1⟩ ⦹ · · ·⦹ ⟨𝑎𝑛⟩, with 𝑎𝑗 ∈ 𝑘×, 𝑗 = 1, . . . ,𝑛.

Remark 8.1.2. 1. For the field ℝ we may further simplify this: since every positive
number is a square, we may assume that 𝑎𝑗 ∈ {1,−1}. The number of times 1 or
−1 appears is unique as stated by Sylvester’s theorem. Its proof is recalled below
(see Corollary 8.1.3).
2. For an algebraically closed field such as the field ℂ we may assume that the 𝑎𝑗
are all equal to 1, i.e., every form is equivalent to a sum of squares.

What about uniqueness of the above representations? The Witt decomposition
𝑉 = 𝑈⦹𝑚 ⦹ 𝑉′, where 𝑉′ is totally anisotropic, has the merit of being unique.
Over ℝ and ℂ the diagonal decomposition of 𝑉′ is also unique. It is instructive to
compare this with what we said about the Witt ring of ℂ and ℝ in Example 7.3.2.
In Section 8.3 we show uniqueness over finite fields. However, in general we have
no uniqueness, as explained in Chapter 3 where we investigated this for the field
ℚ.
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Corollary 8.1.3 (Sylvester’s Law). Let (𝑉, 𝑏) be a real inner product space. There
is a subspace 𝑉+ (respectively 𝑉−) of maximal dimension 𝑑+ (respectively 𝑑−) on
which 𝑏 is positive (negative) such that

𝑉 = 𝑉+ ⦹ 𝑉−. (8.1)

Moreover, all such spaces 𝑉± have the same dimension 𝑑±.

Proof. By Theorem 8.1.1, there is a 𝑏-orthogonal basis {𝑒1, . . . , 𝑒𝑛} for 𝑉 such that
𝑉 = 𝑉+ ⦹ 𝑉− with 𝑉+ ≃ ⦹𝑝⟨1⟩ and 𝑉− ≃ ⦹𝑛−𝑝⟨−1⟩. If 𝑊 is a subspace with
𝑏 |𝑊 > 0, then 𝑊 ∩ 𝑉− = {0} and the dimension formula gives

dim(𝑊) = dim(𝑊 + 𝑉−) − dim(𝑉−)
≤ dim𝑉 − dim(𝑉−)
= dim𝑉+.

So 𝑉+ is a subspace of maximal dimension on which 𝑏 is positive. Similarly for
𝑉−. Moreover, the proof shows that if 𝑉 = 𝑊+ ⦹ 𝑊− is another such splitting,
then dim(𝑊±) ≤ 𝑑± and so one must have equality. □

We already saw in Sections 1.2 and 1.3, that this leads to the following invari-
ants.

Definition 8.1.4. Referring to (8.1), the pair (dim𝑉+,dim𝑉−) is called the sig-
nature of the inner product space 𝑉 over ℝ. The difference 𝜏(𝑉) = dim𝑉+−dim𝑉−

is called the index . If 𝑉 = 𝑉+, the inner product space is called positive definite ,
if 𝑉 = 𝑉− we say that 𝑉 is negative definite .

Summarizing, we have shown that the signature is a complete invariant for
inner product spaces over ℝ. Equivalently this can be stated as follows.

Theorem 8.1.5 (Classification of real forms). Two real inner product spaces (𝑉, 𝑏)
and (𝑉′, 𝑏′) are isometric if and only if dim𝑉 = dim𝑉′ and 𝜏(𝑉) = 𝜏(𝑉′).

8.2 Characteristic Two

8.2.A The non-degenerate case. Since we are in characteristic 2 we need to
make a distinction between the classification of quadratic and that of symmetric
inner product spaces. Symmetric inner product spaces are easy to classify:

Proposition 8.2.1. Let (𝑉, 𝑏) be a symmetric inner product space over a field
𝑘 of characteristic 2. Then 𝑉 is isometric to an orthogonal direct sum 𝑉1 ⦹ 𝑉2,
where 𝑉1 is a diagonal form and 𝑉2 is a direct sum of hyperbolic planes.

Proof. This can be seen by induction as follows. If 𝑏(𝑥,𝑥) ≠ 0 for some 𝑥 ∈ 𝑉,
by Lemma 6.2.1 we may split off 𝑘 · 𝑥. We continue splitting off such lines until
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𝑏(𝑥,𝑥) = 0 for all 𝑥 in the orthogonal complement 𝑉2 of the split off lines. Then
𝑉 = 𝑉1 ⦹ 𝑉2. Pick a non-zero vector 𝑣 ∈ 𝑉2. Since 𝑏 |𝑉2

is non-degenerate, there
exists a 𝑢 ∈ 𝑉2 with 𝑏(𝑢, 𝑣) ≠ 0. Replacing 𝑣 with a suitable multiple, we may
assume that 𝑏(𝑢, 𝑣) = 1 and then the plane spanned by 𝑢 and 𝑣 is a hyperbolic
plane. Again by Lemma 6.2.1 we may split off this plane and apply induction. □

Next, consider the quadratic case. Hyperbolic planes and their direct sums
give examples, but these do not exhaust the possibilities. To see this, let (𝑉, 𝑞)
be a quadratic inner product space and observe that first of all its polar form 𝑏𝑞
is a symplectic form since 𝑏𝑞 (𝑥,𝑥) = 2𝑞(𝑥,𝑥) = 0. Secondly, by assumption 𝑏𝑞
is non-degenerate and so by Appendix A.5, 𝑉 has even dimension and there is a
symplectic basis 𝑬 = {𝑒1, . . . , 𝑒2𝑛}, that is, a basis in which the Gram matrix is

𝐽𝑛 =

(
0𝑛 𝐼𝑛
𝐼𝑛 0𝑛

)
giving the standard symplectic form

(𝑥, 𝑦) ↦→
𝑛∑︁
𝑗=1

𝑥𝑗𝑦𝑛+𝑗 + 𝑦𝑗𝑥𝑛+𝑗 , 𝑥 =

2𝑛∑︁
𝑗=1

𝑥𝑗𝑒𝑗 , 𝑦 =

2𝑛∑︁
𝑗=1

𝑦𝑗𝑒𝑗 .

The collection of quadratic forms 𝑞 for which this is the polar form is as follows:

𝑞 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑛+𝑖 +
2𝑛∑︁
𝑗=1

𝑎𝑗𝑥
2
𝑗 , 𝑎𝑗 ∈ 𝑘, (8.2)

which in the basis 𝑬 is given by the upper triangular matrix 𝑄 =

(
𝒂 𝐼𝑛
0𝑛 𝒂′

)
with 𝒂,

𝒂′, the diagonal matrices with diagonal entries 𝑎1, . . . , 𝑎𝑛, respectively 𝑎𝑛+1, . . . , 𝑎2𝑛.
Since the polar form is non-degenerate these quadratic forms are non-degenerate

themselves. It turns out that the quantity
∑𝑛

𝑖=1 𝑎𝑖𝑎𝑛+𝑖 =
∑𝑛

𝑖=1 𝑞(𝑒𝑖)𝑞(𝑒𝑖+𝑛) serves to
distinguish non-isometric quadratic forms. A priori this sum depends on the choice
of a symplectic basis, but we shall see shortly that the ambiguity is captured by
the image of the additive homomorphism ℘ : 𝑘 → 𝑘 given by 𝑎 ↦→ 𝑎 + 𝑎2, the
Artin–Schreier map in characteristic two. In other words, the class

arf (𝑞) ≡
𝑛∑︁
𝑖=1

𝑎𝑖𝑎𝑛+𝑖 mod ℘(𝑘)

no longer depends on the particular symplectic basis. It is called the Arf invari-
ant of 𝑞:

Theorem 8.2.2. A non-degenerate quadratic form on 𝑉 in characteristic 2 is
equivalent to a form 𝑞 =

∑𝑛
𝑖=1 𝑥𝑖𝑥𝑛+𝑖 +

∑2𝑛
𝑗=1 𝑎𝑗𝑥

2
𝑗 , for some 𝑎𝑗 ∈ 𝑘.

1. The Arf invariant of such a form is well defined.

2. Isometric non-degenerate quadratic forms have the same Arf invariant.

3. If 𝑘 is a perfect field of characteristic 2, then two non-degenerate quadratic
forms of the same rank and the same Arf invariant are isometric.
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Proof. 1. Two symplectic bases are related by a symplectic transformation. By
Proposition A.5.4 any symplectic transformation is a product of symplectic transvec-
tions. These are all of the form

𝜏𝑢,𝑎 (𝑥) = 𝑥 + 𝑎 · 𝑏(𝑥,𝑢) · 𝑢, 𝑎 ∈ 𝑘, 𝑢 ∈ 𝑉,

where we write 𝑏 in place of 𝑏𝑞. So it suffices to show that the Arf invariant of 𝑞 in
a given symplectic basis 𝑬 = {𝑒1, . . . , 𝑒2𝑛} differs from the Arf invariant in the basis
𝜏(𝑬) = {𝜏(𝑒1), . . . , 𝜏(𝑒2𝑛)}, 𝜏 = 𝜏𝑢,𝑎 , by an element in ℘(𝑘). To show this, write

𝑞(𝑥) := 𝑞(𝜏(𝑥))

and note that
𝑞(𝑥) = 𝑞(𝑥 + 𝑎 ′ · 𝑢), 𝑎 ′ = 𝑎 · 𝑏(𝑥,𝑢)

= 𝑞(𝑥) + 𝑎 ′2𝑞(𝑢) + 𝑎 ′ · 𝑏(𝑥,𝑢)
= 𝑞(𝑥) + (𝑎2𝑞(𝑢) + 𝑎︸       ︷︷       ︸

𝑐

) · 𝑏(𝑥,𝑢)2
(8.3)

and so with 𝑢 =
∑2𝑛

𝑗=1 𝑢𝑗𝑒𝑗 , using the expression (8.2), one finds

𝑞(𝑥) =
𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑛+𝑖 +
2𝑛∑︁
𝑗=1

𝑎𝑗𝑥
2
𝑗 + 𝑐

𝑛∑︁
𝑖=1

(𝑥2
𝑖 𝑢

2
𝑖+𝑛 + 𝑥2

𝑖+𝑛𝑢
2
𝑖 )

=

𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑛+𝑖 +
𝑛∑︁
𝑖=1

(𝑎𝑖 + 𝑐𝑢2
𝑖+𝑛)𝑥2

𝑖 +
𝑛∑︁
𝑖=1

(𝑎𝑖+𝑛 + 𝑐𝑢2
𝑖 )𝑥2

𝑖+𝑛.

Computing arf (𝑞) with respect to 𝑬 is the same as computing arf (𝑞) with respect
to 𝜏(𝑬). So

arf (𝑞) =
𝑛∑︁
𝑖=1

(𝑎𝑖 + 𝑐𝑢2
𝑛+𝑖) · (𝑎𝑛+𝑖 + 𝑐𝑢2

𝑖 )

= arf (𝑞) + 𝑐
(

𝑛∑︁
𝑖=1

𝑢2
𝑖 𝑎𝑖 + 𝑢2

𝑛+𝑖𝑎𝑛+𝑖

)
+ 𝑐2

𝑛∑︁
𝑖=1

𝑢2
𝑖 𝑢

2
𝑛+𝑖

= arf (𝑞) + 𝑐
(
2𝑛∑︁
𝑖=1

𝑎𝑖𝑢
2
𝑖 +

𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛

)
︸                        ︷︷                        ︸

𝑞(𝑢)

+𝑐
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛 + [𝑐
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛]2

= arf (𝑞) + 𝑐𝑞(𝑢) + 𝑐
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛 + [𝑐
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛]2

and hence

arf (𝑞) − arf (𝑞) ≡ 𝑐𝑞(𝑢) + ℘(𝑐
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛), (8.4)
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so that it suffices to show that 𝑐𝑞(𝑢) ∈ ℘(𝑘). But now we recall that 𝑐 = 𝑎2𝑞(𝑢) +𝑎
and so

𝑐𝑞(𝑢) = 𝑎2𝑞(𝑢)2 + 𝑎𝑞(𝑢) = ℘(𝑎𝑞(𝑢))

and the result follows. For later use we set apart the result of the previous calcu-
lations:

arf (𝑞) − arf (𝑞) = ℘(𝑐
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛 + 𝑎𝑞(𝑢))

= ℘((𝑎2𝑞(𝑢) + 𝑎) ·
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛 + 𝑎𝑞(𝑢))

= ℘(𝐷(𝜏)), 𝐷(𝜏) = 𝑎 [𝑞(𝑢) + (𝑎𝑞(𝑢) + 1) ·
𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛].

(8.5)

2. If 𝑞′ and 𝑞 are isometric (as quadratic forms), there is some invertible map
𝐴 with 𝑞(𝐴𝑥) = 𝑞′(𝑥). For the associated polar forms 𝑏, 𝑏′ we have 𝑏′(𝑥, 𝑦) =

𝑏(𝐴𝑥,𝐴𝑦) and 𝐴−1𝑬 is a symplectic basis for 𝑏′. The Arf invariant of 𝑞′ with
respect to this basis is

arf (𝑞′) =
𝑛∑︁
𝑖=1

𝑞′(𝐴−1𝑒𝑖)𝑞′(𝐴−1𝑒𝑖+𝑛)

=

𝑛∑︁
𝑖=1

𝑞(𝑒𝑖)𝑞(𝑒𝑛+𝑖)

= arf (𝑞).

3. Let 𝑞, 𝑞′ be two non-degenerate quadratic forms of rank 2𝑛 with the same Arf
invariant. Since both polar forms are in standard form, we may assume that 𝑞
and 𝑞′ are described with respect to a single symplectic basis. So we can write the
difference as 𝑞(𝑥) − 𝑞′(𝑥) = ∑𝑛

𝑖=1 𝑐𝑖𝑥
2
𝑖 + ∑𝑛

𝑖=1 𝑐𝑖+𝑛𝑥
2
𝑛+𝑖 for some 𝑐𝑖 ∈ 𝑘, 𝑖 = 1, . . . , 2𝑛.

Since 𝑘 is perfect, we may write 𝑐𝑖 = 𝑢2
𝑖+𝑛, 𝑐𝑖+𝑛 = 𝑢2

𝑖 , 𝑖 = 1, . . . ,𝑛, and so

𝑞(𝑥) − 𝑞′(𝑥) =
𝑛∑︁
𝑖=1

(𝑢𝑖+𝑛𝑥𝑖 + 𝑢𝑖𝑥𝑛+𝑖)2

= 𝑏(𝑥,𝑢)2, 𝑢 =

2𝑛∑︁
𝑖=1

𝑢𝑖𝑒𝑖 .

This means that we are in the situation of (8.3) with 𝑐 = 1. Since arf (𝑞) = arf (𝑞′),
equation (8.4) then shows we have 𝑞(𝑢) ∈ ℘(𝑘) and so, for some 𝑎 ∈ 𝑘,

𝑞(𝑢) = 𝑎2 + 𝑎 = 𝑎 (𝑎 + 1) = (𝑎 + 1)2 + (𝑎 + 1).

Now at least one of 𝑎 , 𝑎 + 1 is non-zero and so we may assume that 𝑎 ≠ 0 and we
put 𝑏 = 𝑎−1. Then 𝑏2𝑞(𝑢) + 𝑏 = 𝑎−2 (𝑎2 + 𝑎) + 𝑎−1 = 1. Using the transvection
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𝜏 = 𝜏𝑢,𝑏, by the calculation (8.3) we thus have

𝑞(𝜏(𝑥)) = 𝑞(𝑥) + (𝑏2𝑞(𝑢) + 𝑏)𝑏(𝑥,𝑢)2

= 𝑞(𝑥) + 𝑏(𝑥,𝑢)2

= 𝑞′(𝑥)

and so 𝑞′ and 𝑞 are isometric. □

If in formula (8.2) we take 𝑎𝑖 = 𝑎𝑛+𝑖 = 0 for 𝑖 = 1, . . . ,𝑛− 1 and 𝑎𝑛 = 𝑎2𝑛 = 𝑐, the
Arf invariant equals 𝑐2 ≡ 𝑐 mod ℘(𝑘) and so we have:

Corollary 8.2.3. Let (𝑉, 𝑞) be a quadratic inner product space of rank 2𝑛 over
a perfect field of characteristic 2. Then coordinates may be chosen so that 𝑞 is
equivalent to a form with Arf invariant 𝑐2 ≡ 𝑐 mod ℘(𝑘) given by

𝑞(𝑐) (𝑥) :=
𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑛+𝑖 + 𝑐(𝑥2
𝑛 + 𝑥2

2𝑛) =

𝑛−1∑︁
𝑖=1

𝑥𝑖𝑥𝑛+𝑖 + 𝑥𝑛𝑥2𝑛 + 𝑐(𝑥2
𝑛 + 𝑥2

2𝑛), 𝑐 ∈ 𝑘.

This form is isometric to ⦹𝑛−1𝑈 ⦹ 𝑃 (𝑐) where the binary form on 𝑃 (𝑐) is given by
𝑥𝑦 + 𝑐(𝑥2 + 𝑦2).

Example 8.2.4. The cyclic group ℤ/2ℤ can also be viewed as the field 𝔽2 and the
1
2ℤ/ℤ-valued torsion forms 𝑢1 and 𝑣1 from Examples 1.9.5 give 𝔽2-valued forms
𝑈 and 𝑉 with Arf invariants 0, 1, respectively. So for 𝑘 = 𝔽2 the only two types
of rank 2𝑛 non-degenerate quadratic forms are 𝑈⦹𝑛 and 𝑈⦹(𝑛−1) ⦹ 𝑉. Below, in
Section 8.3, we generalize this for all finite fields.

8.2.B The general case. The main result is as follows:

Proposition 8.2.5. Let 𝑘 be a field of characteristic 2.

1. A 𝑘-vector space 𝑉 with a symmetric bilinear form 𝑏 is isometric to ⦹𝑠
𝑖=1⟨𝑎𝑖⟩⦹

𝑈⦹𝑡 ⦹ rad(𝑏), 𝑎𝑖 ∈ 𝑘×, 𝑖 = 1, . . . , 𝑠.

2. A 𝑘-vector space 𝑉 with a quadratic form 𝑞 is isometric to 𝑞′⦹rad(𝑏𝑞) where

(a) 𝑞′ is a non-degenerate quadratic form equivalent to a form
∑𝑚

𝑖=1 𝑥𝑖𝑥𝑚+𝑖 +∑2𝑚
𝑗=1 𝑎𝑗𝑥

2
𝑗 , for some 𝑎𝑗 ∈ 𝑘.

(b) rad(𝑏𝑞) = 𝑉𝑞 ⦹ rad(𝑞), with 𝑞 |𝑉𝑞 diagonal of rank equal to dim𝑉𝑞 = 𝑠,
𝑠 ≤ [𝑘 : 𝑘2].

If 𝑘 is a perfect field (e.g. if 𝑘 = 𝔽2𝑟 , a finite field, or 𝑘 is algebraically
closed), then

(a) 𝑞′ ≃ 𝑈⦹(𝑚−1) ⦹ 𝑃 (𝑐).

(b) 𝑠 = 0 or 𝑠 = 1. Hence rad(𝑏𝑞) = rad(𝑞) or rad(𝑏𝑞) = ⟨𝑎⟩ ⦹ rad(𝑞),
𝑎 ∈ 𝑘×. In the last case, if rad(𝑞) = 0, 𝑞 is semi-unimodular.
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Proof. 1. Any symmetric form is an orthogonal direct sum of a non-degenerate
form and its radical. Then apply Proposition 8.2.1.
2. For a quadratic space (𝑉, 𝑞) we have 𝑞′ ⦹ rad(𝑏𝑞) where 𝑞′ is a non-degenerate
quadratic form. By Theorem 8.2.2 and Corollary 8.2.3 it suffices to show 2(b) (both
items) and so we may assume that 𝑉 = rad(𝑏𝑞). In other words, 𝑉 is a maximally
degenerate quadratic space. Then the quadratic form is necessarily diagonal with
respect to any basis. Our aim is to find an explicit description of such forms. To
do this we recall (Lemma 6.1.6) that rad(𝑞) = {𝑥 ∈ 𝑉 | 𝑞(𝑥) = 0} is a 𝑘-linear
subspace contained in the radical of 𝑏𝑞. Consider the tautological map

𝑞 : 𝑉 = rad(𝑏𝑞) → 𝑘.

For 𝑥, 𝑦 ∈ rad(𝑏𝑞) we have 𝑞(𝑥) +𝑞(𝑦) = 𝑞(𝑥+𝑦). We also have 𝑎2𝑞(𝑥) = 𝑞(𝑎 ·𝑥) for
all scalars 𝑎 ∈ 𝑘. So 𝑞(𝑉) ⊂ 𝑘 is a 𝑘2-vector space, where 𝑘2 denotes the subfield
of squares in 𝑘. Let 𝑒1, . . . , 𝑒𝑠 ∈ 𝑉 be a set of vectors such that their classes 𝑒𝑖
modulo rad(𝑞) form a basis for the 𝑘-vector space 𝑉/rad(𝑞). Because 𝑞(𝑥) = 0 if
and only if 𝑥 ∈ rad(𝑞), we see that

𝑠∑︁
𝑖=1

𝑥2
𝑖 𝑞(𝑒𝑖) = 𝑞(

𝑠∑︁
𝑖=1

𝑥𝑖𝑒𝑖) = 0 ∈ 𝑘 ⇐⇒
𝑠∑︁
𝑖=1

𝑥𝑖𝑒𝑖 = 0 ⇐⇒ 𝑥𝑖 = 0, 𝑖 = 1, . . . , 𝑠.

Hence the 𝑞(𝑒𝑖) span a 𝑘2-subspace of 𝑘 of dimension 𝑠. Consequently, 𝑠 ≤ dim𝑘2 𝑘.
If 𝑘 is perfect, 𝑘2 = 𝑘 and then 𝑠 ≤ 1. □

Remark 8.2.6. Note that if rad(𝑞) = 0 and dim𝑉 = 𝑠 is odd, the semi-discriminant
sdisc(𝑞) (see Definition 6.3.3) is non-zero precisely if 𝑠 = 1. Hence if 𝑘 is perfect and
𝑏𝑞 = 0, but 𝑞 is non-degenerate, necessarily 𝑠 = 1 and the form is semi-unimodular.

Example 8.2.7. Let us specialize the above results to the case 𝑘 = 𝔽2. In this case
the Artin–Schreier homomorphism is trivial and so the Arf-invariant only takes the
values 0 or 1. If the 𝑘-vector space 𝑉 has even dimension 2𝑚 and the quadratic
form 𝑞 is non-degenerate, 𝑞 is equivalent to

∑𝑚
𝑖=1 𝑥𝑖𝑥𝑖+𝑛 and has Arf invariant 0

(and is isometric to ⦹𝑛𝑈) or to
∑𝑚

𝑖=1 𝑥𝑖𝑥𝑖+𝑚 + 𝑥2
1 + 𝑥2

2 with Arf invariant 1.
If the 𝑘-vector space 𝑉 has odd dimension 2𝑚 + 1 and 𝑞 is semi-unimodular,

then 𝑞 is equivalent to
∑𝑚

𝑖=1 𝑥𝑖𝑥𝑖+𝑚 + 𝑥2
𝑚+1. Otherwise, assuming that rad(𝑞) has

dimension 1, 𝑞 is equivalent to
∑𝑘

𝑖=1 𝑥𝑖𝑥𝑖+𝑚 or to
∑𝑚

𝑖=1 𝑥𝑖𝑥𝑖+𝑚 + 𝑥2
1 + 𝑥2

2.

8.3 Classification of Quadratic Inner Product Spaces over Fi-
nite Fields

We recall a few facts about finite fields and their extensions. First of all, the
multiplicative group of any finite field 𝔽𝑞 is cyclic of order 𝑞 − 1. Secondly, a finite
field extension 𝐾/𝑘 gives 𝐾 a 𝑘-vector space structure 𝐾 ≃ 𝑘𝑚 for some positive
integer 𝑚, and so if 𝑘 = 𝔽𝑞 such an extension has 𝑞𝑚 elements and 𝐾 = 𝔽𝑞𝑚 .
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This field extension is Galois with cyclic Galois group of order 𝑚 generated by the
Frobenius automorphism which sends 𝑥 ∈ 𝐾 to 𝑥𝑞. The norm thus equals

N𝐾/𝑘 (𝑥) =
𝑚−1∏
𝑘=0

𝑥𝑞
𝑘
= 𝑥

∑𝑚−1
𝑘=0 𝑞𝑘 = 𝑥(𝑞𝑚−1)/(𝑞−1)

and sends 𝐾× onto the subgroup of 𝐾× of elements having order dividing 𝑞 − 1,
which is precisely 𝑘×. In particular, the norm map is surjective. For the trace we
find

Tr𝐾/𝑘 (𝑥) = 𝑥 + 𝑥𝑞 + 𝑥𝑞2 + · · · + 𝑥𝑞𝑚−1
. (8.6)

We now come back to norm forms treated in § 6.3.B example 5.

Example 8.3.1 (Binary norm forms III). A finite field 𝑘 = 𝔽𝑞, 𝑞 = 𝑝𝑟, has a
unique (separable) quadratic extension 𝐾 = 𝔽𝑞2 = 𝔽𝑞 (𝜉). We shall explain how the
norm N𝐾/𝑘 defines a unique isometry class of quadratic forms on the 2-dimensional
𝑘-vector space 𝐾. Any element of 𝐾 is of the form 𝑥+𝑦𝜉 with 𝑥, 𝑦 ∈ 𝑘 and if 𝜉′ ∈ 𝐾
is the conjugate root, then

N𝐾/𝑘 (𝑥 + 𝑦𝜉) = (𝑥 + 𝑦𝜉) (𝑥 + 𝑦𝜉′).

Every quadratic form 𝑞 on 𝑘2 can be written as 𝑞(𝑥, 𝑦) = 𝑎𝑥2 − 𝑏𝑥𝑦 + 𝑐𝑦2 and it is
totally anisotropic precisely if it decomposes in some quadratic extension 𝐾 = 𝑘(𝜉)
of 𝑘 as 𝑎 (𝑥 + 𝑦𝜉) (𝑥 + 𝑦𝜉′) = 𝑎 N𝐾/𝑘 (𝑧) with 𝑧 = 𝑥 + 𝑦𝜉, and where 𝜉 and 𝜉′ are the
roots of 𝑎𝑥2 − 𝑏𝑥 + 𝑐 = 0 in 𝐾 − 𝑘. We proceed with this case. Since the norm map
is surjective, there exists an element 𝛼 + 𝛽𝜉 ∈ 𝑘(𝜉) such that 𝑁 (𝛼 + 𝛽𝜉) = 𝑎 ∈ 𝑘.
Define the 𝑘-linear isomorphism 𝐹 : 𝑘2 → 𝑘(𝜉) by 𝐹 (𝑥, 𝑦) = (𝛼+𝛽𝜉) (𝑥+𝑦𝜉). Then

𝑞(𝑥, 𝑦) = 𝑎𝑥2 − 𝑏𝑥𝑦 + 𝑐𝑦2 = 𝑎 (𝑥 + 𝑦𝜉) (𝑥 + 𝑦𝜉′) = 𝑁 [(𝛼 + 𝛽𝜉) (𝑥 + 𝑦𝜉)]

shows that 𝐹 is an isometry. So totally anisotropic binary forms are isometric to
norm forms.

Note that we have also seen that in characteristic 𝑝 ≠ 2 all forms are diag-
onalizable. To make the connection, recall Lemma 6.3.9 which gives a criterion
for 𝑎𝑥2 + 𝑐𝑦2 to be a norm form: it must be isometric to 𝑥2 − 𝜀𝑦2 where 𝜀 is a
non-square.

We consider the case 𝑝 = 2 in more detail. First a remark about the Artin–
Schreier map ℘ : 𝑘 → 𝑘 given by 𝑥 ↦→ 𝑥 + 𝑥2. This is linear over the prime field
𝔽2, ker(℘) = 𝔽2, and 𝑐 = ℘(𝑥) precisely if 𝑥 ∈ 𝑘 is a root of the Artin–Schreier
polynomial 𝑋2 +𝑋 + 𝑐. The other solution then is 𝑥 + 1 so that the polynomial is
separable. After a suitable change of variables, any separable degree 2 polynomial
becomes Artin–Schreier up to a scalar multiple and any quadratic extension 𝐾/𝑘
can thus be given as 𝐾 = 𝑘(𝜉), where 𝜉 satisfies an equation 𝑃(𝑋) = 0 with
𝑃(𝑋) = 𝑋2+𝑋 +𝑐, 𝑐 ∈ 𝑘, irreducible in 𝑘[𝑋]. We claim that Tr𝑘/𝔽2

𝑐 = 1 if and only
if we are in this situation, i.e. if and only if 𝑃(𝑋) is irreducible in 𝑘[𝑋]. Indeed, if
𝑋2 +𝑋 + 𝑐 has a root 𝑢 in 𝑘, then 𝑐 = 𝑢 + 𝑢2 and Tr𝑘/𝔽2

𝑐 = Tr𝑘/𝔽2
𝑢 +Tr𝑘/𝔽2

𝑢2 = 0.
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If 𝑃(𝑋) is irreducible, it has a root 𝑑 not in 𝑘. Then, using formula (8.6) for the
trace, we get

𝑐 + 𝑐2 + 𝑐22 + · · · + 𝑐2𝑟−1 = (𝑑2 + 𝑑) + (𝑑2 + 𝑑)2 + · · · + (𝑑2 + 𝑑)2𝑟−1

= (𝑑2 + 𝑑) + (𝑑22 + 𝑑2) + (𝑑23 + 𝑑22 ) + · · · + (𝑑2𝑟 + 𝑑2𝑟−1 )
= 𝑑 + 𝑑2𝑟 = 1,

since if 𝑑2𝑟 = 𝑑, then 𝑑 ∈ 𝑘. Note that if 𝑟 is odd, Tr𝑘/𝔽2
(1) = deg(𝑘/𝔽2) mod 2 =

𝑟 mod 2 = 1 and then 𝑋2 +𝑋 + 1 is an irreducible Artin–Schreier polynomial giving
the quadratic extension. For 𝑟 even we get Tr𝑘/𝔽2

1 = 0 and in this case it is more
complicated to find 𝑐 with Tr𝑘/𝔽2

𝑐 = 1. See Remark 8.3.2 below. Once 𝑐 has been
determined, the corresponding binary quadratic form over 𝑘 is 𝑥2 + 𝑥𝑦 + 𝑐𝑦2 with
Arf invariant 𝑐 which thus is isometric to the binary form 𝑃 (𝑐) (see Corollary 8.2.3).

Remark 8.3.2. We just explained that to classify quadratic spaces over a finite
field of characteristic 2, one needs to specify an element with absolute trace equal
to 1 and that for 𝑘 = 𝔽2𝑟 with 𝑟 odd, one can take 𝑐 = 1. To see what happens
for 𝑟 even, let us first consider the case of 𝑘 iterated quadratic extensions, say
𝑘0 = 𝔽2 ⊂ 𝑘1 = 𝔽2 (𝑠1) ⊂ · · · ⊂ 𝑘𝑚 = 𝑘𝑚−1 (𝑠𝑚), where 𝑠𝑗 is a root of an Artin–
Schreier polynomial 𝑋2 + 𝑋 + 𝑐𝑗 . We claim that the product 𝑐1 · · · 𝑐𝑚 has absolute
trace 1. To show this, note that Tr𝑘𝑗/𝑘𝑗−1 (𝑐𝑗) = 1 by the choice of 𝑐𝑗 so that
recursively

Tr𝑘𝑚/𝑘0 (𝑐1 · · · 𝑐𝑚) = Tr𝑘𝑚/𝑘𝑚−1 (𝑐𝑚) · Tr𝑘𝑚−1/𝑘0 (𝑐1 · · · 𝑐𝑚−1)
= Tr𝑘𝑚−1/𝑘0 (𝑐1 · · · 𝑐𝑚−1) = 1.

For the general case 𝑟 = 2𝑚𝑠 with 𝑠 odd, we simply write 𝑘 as an extension of 𝔽2𝑚 .
Since deg(𝑘/𝔽2𝑚 ) = 𝑠 is odd, Tr𝑘/𝔽2

(𝑐) = 𝑠Tr𝔽2𝑚 /𝔽2
(𝑐) = 1 as well.

Theorem 8.3.3 (Classification of quadratic inner product spaces over finite fields).
Let 𝑘 be a finite field of characteristic 𝑝, 𝐾 the unique quadratic extension field of
𝑘 and let 𝑉 be a quadratic inner product space over 𝑘.

𝑝 ≠ 2 • dim𝑉 even. Then 𝑉 ≃ 𝑈⦹𝑚 or 𝑉 ≃ 𝑈⦹𝑚 ⦹ N𝐾/𝑘. The form N𝐾/𝑘 is
isometric to a diagonal form ⟨1⟩ ⦹ ⟨−𝜀⟩ with 𝜀 a non-square.

• dim𝑉 odd. Then 𝑉 ≃ 𝑈⦹𝑚 ⦹ ⟨𝑐⟩ and there are two isometry classes
according to whether 𝑐 ≠ 0 is a square or not. In both cases, the given
decomposition is the Witt decomposition and so the Witt index takes
only the values 1

2 dim𝑉, 12 (dim𝑉 − 1) or 1
2 (dim𝑉 − 2).

𝑝 = 2 Then dim𝑉 is even, and either 𝑉 ≃ 𝑈⦹𝑚 with zero Arf invariant, or 𝑉 ≃
𝑈⦹𝑚 ⦹ N𝐾/𝑘 with non-zero Arf invariant. More precisely, if 𝐾 = 𝑘(𝜉) with
𝜉2 + 𝜉 + 𝑐 = 0, then N𝐾/𝑘 is isometric to the binary form 𝑐𝑥2 + 𝑥𝑦 + 𝑐𝑦2 with
Arf invariant 𝑐2 ≡ 𝑐 mod ℘(𝑘).
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Proof. For odd characteristics this follows from the Witt decomposition (Propo-
sition 7.2.10) and Example 8.3.1, provided we show that a totally anisotropic
space 𝑉′ has dimension ≤ 2. This can be seen as follows. Let 𝑞 be the restric-
tion of the quadratic form to a totally anisotropic subspace 𝑉′ and suppose that
dim𝑉′ ≥ 3. Then by Theorem 8.1.1, we can write 𝑉′ = 𝑊1 ⦹𝑊2 with dim 𝑊1 = 2
and dim𝑊2 ≥ 1. Pick any vector 𝑦 ∈ 𝑊2 with 𝑞(𝑦) = 𝑏 ≠ 0. The binary form 𝑞 |𝑊1

being totally anisotropic implies that it is a norm form. As we showed in the just
mentioned Example 8.3.1, the norm map N𝐾/𝑘 is surjective, and so we can find
𝑧 ∈ 𝑊1 such that 𝑞(𝑧) = −𝑏. Then 𝑧 + 𝑦 is an isotropic vector, contradicting the
assumption 𝑉′ is totally anisotropic.

For characteristic 2 the statement follows from Corollary 8.2.3 and the previous
example, since a finite field of characteristic 2 is perfect. □

There is an alternative normal form which turns out to be useful for later
purposes (cf., e.g., Section 9.4):

Corollary 8.3.4. If 𝑝 ≠ 2 every quadratic inner product space (𝑉, 𝑞) over 𝔽𝑝𝑟 of
rank 𝑚 is isometric to ⟨1⟩⦹𝑚 if disc(𝑞) = 1 and to ⟨1⟩⦹𝑚−1 ⦹ ⟨𝜖⟩ if disc(𝑞) = 𝜖, a
non-square modulo 𝔽𝑝𝑟 .

Proof. By Theorem 8.1.1, quadratic forms are all diagonalizable in this situation
and hence isometric to ⟨1⟩⦹𝑠 ⦹ ⟨𝜖⟩⦹𝑡, where 𝜖 is a non-square in 𝔽𝑝𝑟 . This can be
further reduced since the plane ⟨𝜖⟩⦹ ⟨𝜖⟩ is isometric to the plane ⟨1⟩⦹ ⟨1⟩. To see
this, note that the equation 𝜖(𝑥2 + 𝑦2) = 1 has a solution (𝑎 , 𝑏) in the finite field
𝔽𝑝𝑟 as one sees by using the shoebox principle (cf., e.g., Example A.4.2). But then
𝜖
[
(𝑎𝑥′ + 𝑏𝑦′)2 + (𝑏𝑥′ − 𝑎𝑦′)2

]
= (𝑥′)2 + (𝑦′)2. The result then follows. □

Remark 8.3.5. Recall that in characteristic 2 several non-isometric quadratic forms
have isometric polar forms and so the classification of symmetric inner product
spaces is simpler than that of quadratic inner product spaces: Proposition 8.2.1
implies that inner product spaces over 𝔽2𝑟 are isometric to ⟨𝑢(1)⟩⦹· · ·⦹⟨𝑢(𝑎)⟩⦹𝑈⦹𝑏,
where 𝑢(𝑗) ∈ 𝔽×

2𝑟 , 𝑗 = 1, . . . , 𝑎 .

Historical and Bibliographical Notes. For J. Sylvester’s proof of the theorem
named after him see [221].

The proofs in this chapter have been inspired by Chapter IV in M. Kneser’s lecture

notes [122]. Our treatment of the Arf invariant closely follows the exposition [58] of R.

Dye. For the original work by C. Arf, see [3].
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Symmetric and Quadratic Torsion Groups

Introduction

Recall that a torsion group splits canonically as a direct sum of 𝑝-primary groups
yielding the Sylow decomposition. A 𝑝-primary group decomposes (non-canonically)
as a direct sum of homogeneous forms, which is called a Jordan decomposition.
All of this is recalled in Appendix A.1.

Torsion forms equipped with ℚ/ℤ-valued forms have been introduced before,
in Section 1.9. Especially the torsion forms on 𝑝-primary cyclic groups have been
enumerated before. See the summary in Table 6.1.1.

The aim of this chapter is to reduce the general classification to 𝑝-primary forms
and subsequently to homogeneous ones. To this end, in Section 9.1 we first consider
symmetric and quadratic torsion modules over general principal ideal domains and
introduce an invariant, the reduced discriminant, which plays a central role in the
classification.

Returning to symmetric and quadratic torsion groups, in Section 9.2 we first
prove the orthogonal nature of the Sylow decomposition. This implies that the
classification can be done prime by prime. The main result for 𝑝-primary torsion
forms, established in Section 9.3, is the existence of a Jordan splitting, which, as op-
posed to a mere Jordan decomposition, is an orthogonal direct sum decomposition
into indecomposable homogeneous forms. The latter are described in Section 9.4.
Although this results in a splitting of torsion symmetric and quadratic forms into
simple building blocks, different splittings may lead to isometric forms.

9.1 Generalities on Symmetric and Quadratic Torsion Mod-
ules

In this section 𝑅 is a principal ideal domain with fraction field 𝑄(𝑅) and 𝐺 a finitely

generated torsion 𝑅-module with elementary divisors {𝑑1, . . . ,𝑑𝑟}.

9.1.A Gram matrices. Since 𝑅 is a principal ideal domain, 𝐺 is a direct sum
of cyclic 𝑅-modules, that is, 𝑅-modules of the form 𝑅/𝑎𝑅 for some non-zero 𝑎 ∈ 𝑅.
The dual of 𝐺 is the 𝑅-module 𝐺∗

𝑄(𝑅)/𝑅 = Hom𝑅 (𝐺,𝑄(𝑅)/𝑅) (see formula (6.1)). We

claim that cyclic 𝑅-modules are isomorphic to their duals by considering the map
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from 𝑅/𝑎𝑅 to its dual given by

[𝑥] ↦→ 𝑓[𝑥] , 𝑓[𝑥] ( [𝑦]) = 𝑎−1 · 𝑥𝑦 mod 𝑅,

where 𝑥, 𝑦 ∈ 𝑅 and [𝑥], [𝑦] are their classes in 𝑅/𝑎𝑅. One checks that this is well
defined and gives an 𝑅-morphism. The claim then follows if we show that 𝑓[𝑥] is
injective and surjective. Injectivity is clear: if 𝑓[𝑥] (1) = 𝑎−1𝑥 = 0 in 𝑄(𝑅)/𝑅, then
𝑥 = 0 in 𝑅/𝑎𝑅. Surjectivity is slightly more involved. Pick 𝑓 ∈ Hom(𝑅/𝑎𝑅,𝑄(𝑅)/𝑅)
and write 𝑓( [1]) = 𝑝/𝑞 mod 𝑅. Since

0 = 𝑓(0) = 𝑓( [𝑎]) = 𝑎𝑓( [1]) = 𝑎𝑝/𝑞 mod 𝑅,

𝑞 must divide 𝑎𝑝 in 𝑅, that is, 𝑎𝑝 = 𝑏𝑞 for some 𝑏 ∈ 𝑅. Hence in the quotient field
𝑄(𝑅) one has 𝑝/𝑞 = 𝑏/𝑎 so that 𝑓( [1]) = 𝑏/𝑎 mod 𝑅. This means precisely that
𝑓 = 𝑓[𝑏] .

We apply these considerations to the invariant factor decomposition of 𝐺:

Lemma 9.1.1. The torsion module 𝐺 is isomorphic to its dual 𝐺∗
𝑄(𝑅)/𝑅. Let

𝐺 ≃ ⊕𝑟
𝑗=1𝑅/𝑑𝑗𝑅, 𝑑1 |𝑑2 | · · · |𝑑𝑟

be the invariant factor decomposition with corresponding generators 𝑒1, . . . , 𝑒𝑟. Then

the isomorphism 𝐺
≃−→ 𝐺∗

𝑄(𝑅)/𝑅 can be chosen such that 𝑒𝑗 maps to the function

𝑢∗𝑗 ∈ 𝐺∗
𝑄(𝑅)/𝑅 for which 𝑢∗𝑗 (𝑒𝑖) = 𝑑−1𝑗 𝛿𝑖𝑗 ∈ 𝑄(𝑅)/𝑅.

The invariant factor decomposition for 𝐺 leads to a useful concept:

Definition 9.1.2. An ordered basis of 𝐺 is a system of generators 𝑒1, . . . , 𝑒𝑟
of 𝐺 adapted to the elementary divisors {𝑑1, . . . ,𝑑𝑟} ordered in such a way that
𝑑1 |𝑑2 | · · · |𝑑𝑟 as in the above lemma.

Using an ordered basis 𝑬 = {𝑒1, . . . , 𝑒𝑟} for 𝐺, a symmetric bilinear form 𝑏 :
𝐺 × 𝐺 → 𝑄(𝑅)/𝑅 can be described by the Gram matrix with respect to 𝑬 which,
we recall, has entries 𝑏(𝑒𝑖 , 𝑒𝑗) in 𝑄(𝑅)/𝑅. Generalizing the observation leading to
(1.14) in Chapter 1, the following result is evident:

Lemma 9.1.3. Let 𝐵′ = (𝐵𝑖𝑗) be a symmetric 𝑟 × 𝑟 matrix with entries in the field
𝑄(𝑅), Then 𝐵 = 𝐵′ mod 𝑅 is the Gram matrix of a symmetric torsion form on 𝐺
relative to an ordered basis for 𝐺 adapted to the elementary divisors {𝑑1, . . . ,𝑑𝑟} if
and only if 𝑑𝑖𝐵𝑖𝑗 ∈ 𝑅 and 𝑑𝑗𝐵𝑖𝑗 ∈ 𝑅 for 𝑖, 𝑗 = 1, . . . , 𝑟. In other words, using that
𝑑1 |𝑑2 | · · · |𝑑𝑟, this is the case if and only if 𝐵′ has the form

𝐵′ = (𝐵𝑖𝑗) =

©«

𝐴11

𝑑1

𝐴12

𝑑1
· · · 𝐴1𝑟

𝑑1
𝐴21

𝑑1

𝐴22

𝑑2
· · · 𝐴2𝑟

𝑑2
...

. . .
...

...
𝐴𝑟1

𝑑1

𝐴𝑟2

𝑑2
· · · 𝐴𝑟𝑟

𝑑𝑟

ª®®®®®®®®®¬
with 𝐴𝑖𝑗 = 𝐴𝑗𝑖 ∈ 𝑅. (9.1)
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Corollary 9.1.4. Let 𝐵′ = (𝐵𝑖𝑗) represent a Gram matrix of a symmetric 𝑅-torsion
form 𝑏 on 𝐺 relative to an ordered basis corresponding to the elementary divisors
𝑑1, . . . ,𝑑𝑟 of 𝐺 as in Lemma 9.1.3. Then

1. 𝑑1 · · · 𝑑𝑟 · det𝐵 ∈ 𝑅;

2. if 𝑏 is non-degenerate, then 𝑑1 · · · 𝑑𝑟 · det𝐵 is relatively prime to 𝑑1.

Proof. 1. The entries of the matrix 𝐶 = (𝑑𝑖𝐵𝑖𝑗) (obtained by multiplying the 𝑖-
th row of 𝐵 with 𝑑𝑖 for all 𝑖 = 1, . . . , 𝑟) belong to 𝑅 and hence 𝑑1 · · · 𝑑𝑟 det𝐵 =

det
(
𝑑𝑖𝐵𝑖𝑗

)
= det𝐶 ∈ 𝑅.

2. This can be seen as follows. Let 𝑝 be an irreducible divisor of 𝑑1 so that 𝑝
divides all 𝑑𝑖. Assume that 𝑝 divides det𝐶 as well. Then there exists an element
𝑥 = (𝑥1, . . . ,𝑥𝑟) ∈ 𝑅𝑟 such that 𝑥𝐶 = 0 in (𝑅/𝑝𝑅)𝑟 and there exists an index 𝑗 for
which 𝑥𝑗 is not divisible by 𝑝. In particular, 𝑑𝑗/𝑝 · 𝑥𝑗 ∉ 𝑑𝑗𝑅 so that the element
𝑒 =

∑
𝑖 𝑑𝑖𝑝

−1𝑥𝑖𝑒𝑖 ∈ 𝐺 is not the zero-element, while for all 𝑘 = 1, . . . , 𝑟,

𝑏(𝑒, 𝑒𝑘) = 𝑏(
∑︁
𝑖

𝑑𝑖𝑝
−1𝑥𝑖𝑒𝑖 , 𝑒𝑘) = 𝑝−1

∑︁
𝑖

𝑥𝑖𝑑𝑖𝐵𝑘 = 0 (mod 𝑅)

since by assumption 𝑥𝐶 ∈ (𝑝𝑅)𝑟, and so 𝑒 ∈ ker 𝑏, contradicting the assumption
that 𝑏 is non-degenerate. □

9.1.B The reduced discriminant. We next introduce discriminant-like invari-
ants for non-degenerate symmetric 𝑅-torsion modules. We use the same notation
as above. Because 𝑏 is non-degenerate, 𝑑1 · · · 𝑑𝑟 ·det𝐵 ∈ 𝑅 is relatively prime to 𝑑1,
but depends on the choice of an ordered basis. Since 𝑑1 divides all 𝑑𝑗 , the entries
of 𝐵 are in any case well determined up to a multiple of 𝑑1 and so we consider
𝑑1 · · · 𝑑𝑟 · det𝐵 in D(𝑅/𝑑1𝑅). We shall now show that the result does not depend
on choices. Write 𝐺 as quotient of a free 𝑅-module 𝐿 on the ordered basis 𝑬 of
𝐺. It suffices to investigate what happens under changes of basis of 𝐿 that in-
duce changes of generators of 𝐺. Such a change corresponds to an 𝑅-isomorphism
𝑓 : 𝐺 → 𝐺 and an 𝑅-isomorphism 𝑓 : 𝐿 → 𝐿 inducing 𝑓. For a given irreducible
element 𝑝 |𝑑1 the isomorphism 𝑓 sends 𝑝𝐺 isomorphically to itself and so it in-
duces an 𝑅/𝑝𝑅-homomorphism 𝑓𝑝 of the quotient 𝑅/𝑝𝑅-module 𝐺/𝑝𝐺 which, by
the definition of 𝐿, is an 𝑅/𝑝𝑅-isomorphism. This gives a commutative diagram

𝐿/𝑝𝐿

𝑓𝑝
��

≃
// 𝐺/𝑝𝐺

𝑓𝑝 ≃
��

𝐿/𝑝𝐿 ≃
// 𝐺/𝑝𝐺

where 𝑓𝑝 is induced by 𝑓 and 𝑓𝑝 by 𝑓. It follows that 𝑓𝑝 is an isomorphism as

well and so det𝑓 cannot be divisible by 𝑝. In other words det𝑓 is relatively prime
to 𝑑1. Let 𝑀 be the matrix of 𝑓 in the basis 𝑬 and let 𝐵′ be the matrix of the
discriminant bilinear form with respect to the new basis 𝑓(𝑬). Then

𝑑1 · · · 𝑑𝑟 · det𝐵′ = 𝑑1 · · · 𝑑𝑟 · (det𝑀)2 · det𝐵, det𝑀 ∈ (𝑅/𝑑1𝑅)×.
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It follows that

𝛿(𝑏) = 𝑑1 · · · 𝑑𝑟 · det𝐵 ∈ D(𝑅/𝑑1𝑅) (9.2)

is well defined. We call it the reduced discriminant of the torsion symmetric
form 𝑏.

For a quadratic torsion form (𝐺, 𝑞) we consider its polar form 𝑏𝑞. Since the
diagonal elements 𝐵𝑖𝑖 in Lemma 9.1.3 are well defined modulo 2𝑅, as a consequence,

𝛿(𝑞) := 𝛿(𝑏𝑞) ∈ D (𝑅/[gcd(2,𝑑1)𝑑1] · 𝑅)

is a well-defined invariant of 𝑞, the reduced discriminant of the torsion
quadratic form 𝑞. For examples, see Table 9.1.1.

Lemma 9.1.5. Let (𝐺, 𝑏), (𝐺′, 𝑏′) be two non-degenerate 𝑝-primary bilinear tor-
sion forms 1 and let 𝑝𝑎 , 𝑝𝑎

′
be the first elementary divisors of 𝐺, respectively 𝐺′.

Then the reduced discriminant of 𝐺 ⦹ 𝐺′ is the product 𝛿(𝑏) · 𝛿(𝑏′) considered in
D(𝑅/𝑝𝑐𝑅), 𝑐 = min(𝑎 , 𝑎 ′), under the homomorphism which is induced by multipli-
cation

𝑅/𝑝𝑎𝑅 × 𝑅/𝑝𝑎′𝑅 −−−−−→ 𝑅/𝑝𝑐𝑅.

Proof. Choose an ordered basis 𝑬 for 𝐺 and 𝑬′ for 𝐺′. The Gram matrix for

𝑏⦹ 𝑏′ with respect to 𝑬 ∪𝑬′ is a block matrix, say 𝐶 =

(
𝐵 0
0 𝐵′

)
with determinant

det𝐵 · det𝐵′. In general the chosen basis is not an ordered basis for 𝐺 ⊕ 𝐺′: one
might have to exchange some basis elements of 𝑬 against some from 𝑬′, but this
does not change det𝐶 since in this process any permutation of columns occurs
together with a corresponding permutation of rows. This implies that 𝛿(𝑏⦹ 𝑏′) =
|𝐺⦹𝐺′ | ·det𝐶 ∈ D(𝑅/𝑝𝑐𝑅), where 𝑐 is the first elementary divisor of 𝐺⦹𝐺′. Since
𝑐 = min(𝑎 , 𝑎 ′), one finds 𝛿(𝑏⦹𝑏′) = ( |𝐺 |·det𝐵)·( |𝐺′ |·det𝐵′) = 𝛿(𝑏)𝛿(𝑏′) ∈ D(𝑅/𝑝𝑐𝑅)
as desired. □

Example 9.1.6. Suppose 𝑅 = ℤ and consider the case of a homogeneous 𝑝-primary
discriminant group 𝐺 of exponent 𝑘. The reduced discriminant uses the group
D(ℤ/𝑝𝑘ℤ) of the units in ℤ/𝑝𝑘ℤ modulo squares. The latter group is well known,
see Lemma A.1.5 in Appendix A.

In the case of an odd prime 𝑝 both 𝛿(𝑏) and 𝛿(𝑞) belong to the same group.
Indeed, for all 𝑘, the group D(ℤ/𝑝𝑘ℤ) is cyclic and generated by a non-square
modulo 𝑝, say 𝜖𝑝. More precisely, multiplication by 𝑝𝑘−1 induces an isomorphism

D(ℤ/𝑝𝑘ℤ) ∼−→ D(ℤ/𝑝ℤ) ≃ D(𝔽𝑝) = {1, 𝜖𝑝}. (9.3)

This implies that for all 𝑝-primary symmetric or quadratic torsion forms, the
reduced discriminant is either 1 or 𝜖𝑝.

For 𝑝 = 2, this is more involved. Observe however, that for a symmetric or
quadratic form on a cyclic group of order 2𝑘, the reduced discriminant is precisely

1See Appendix A.1 for background on torsion forms over principal ideal domains.
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the unit used to classify such a form as we see from Table 6.1.1. So, only if cyclic
groups of order 2 or 4 are present, the reduced discriminant for symmetric and
quadratic forms may differ. The following table gives the invariants for the basic
building blocks.

Table 9.1.1: Representatives of the reduced discriminant

𝑝 𝑘 𝑏# 𝛿(𝑏#) 𝑞# 𝛿(𝑞#)
odd 𝑘 ≥ 1 ⟨𝑢 · 𝑝−𝑘⟩ 𝑢 ∈ {1, 𝜖𝑝} [ 12𝑢 · 𝑝−𝑘] 𝑢 ∈ {1, 𝜖𝑝},
𝑝 = 2 ⟨𝑢 · 2−1⟩ 𝑢 ≡ 1 mod 2 [𝑢 · 2−2] 𝑢 ≡ 1, 3 mod 4
𝑝 = 2 ⟨𝑢 · 2−2⟩ 𝑢 ≡ 1, 3 mod 4 [𝑢 · 2−3] 𝑢 ≡ ±1,±3 mod 8
𝑝 = 2 𝑘 ≥ 3 ⟨𝑢 · 2−𝑘⟩ 𝑢 ≡ ±1,±3 mod 8 [𝑢 · 2−𝑘−1] same as for bil. form
𝑝 = 2 𝑢1, 𝑣1 1 mod 2 𝑢1, 𝑣1 3 mod 4
𝑝 = 2 𝑢2, 𝑣2 3 mod 4 𝑢2, 𝑣2 −1, 3 mod 8,
𝑝 = 2 𝑘 ≥ 3 𝑢𝑘, 𝑣𝑘 −1, 3 mod 8 𝑢𝑘, 𝑣𝑘 same asf or bil. form

9.2 The Sylow Decomposition

From now on we assume that 𝐺 is a finite abelian group. We shall write the group

operation additively so that we consider 𝐺 as a torsion ℤ-module.

Consider the Sylow decomposition

𝐺 =
⊕

𝑝 prime

𝐺𝑝, 𝐺𝑝 = {𝑥 ∈ 𝐺 | 𝑝𝑛 · 𝑥 = 0 for some prime power 𝑝𝑛}.

We claim that if 𝑏 is non-degenerate, 𝑏 |𝐺𝑝 is also non-degenerate and that the
Sylow decomposition is orthogonal. To show the claim, suppose that 𝑥 ∈ 𝐺𝑝 is
such that 𝑏(𝑥,𝐺𝑝) = 0. Then 𝑥 is also orthogonal to all 𝐺𝑞 for all primes 𝑞 with
𝑞 ≠ 𝑝. To see this, note that for a suitable power 𝑝𝑘 of 𝑝 and 𝑧 ∈ 𝐺𝑞 we have
0 = 𝑏(𝑝𝑘𝑥, 𝑧) = 𝑝𝑘𝑏(𝑥, 𝑧), which implies that 𝑏(𝑥,𝑝𝑘𝑧) = 𝑝𝑘𝑏(𝑥, 𝑧) = 0 and so 𝑝𝑘𝑧
is orthogonal to 𝑥. Since 𝑝 is invertible in 𝐺𝑞, also 𝑧 is orthogonal to 𝑥. In other
words, 𝑏(𝑥,𝐺) = 0 and so, since 𝑏 is non-degenerate, 𝑥 = 0, which shows that 𝑏 |𝐺𝑝

is non-degenerate.

Next, observe that for 𝑥, 𝑦 ∈ 𝐺𝑝 with 𝑝𝑘𝑥 = 𝑝ℓ𝑦 = 0 we have 0 = 𝑏(𝑝𝑘𝑥,𝑝ℓ𝑦) =
𝑝𝑘+ℓ𝑏(𝑥, 𝑦) ∈ ℚ/ℤ and so 𝑏 |𝐺𝑝 takes values in ℚ(𝑝)/ℤ, where we recall that ℚ(𝑝)

consists of those rational numbers whose denominator is a 𝑝-power. Using the
isomorphism ℚ(𝑝)/ℤ ≃ ℚ𝑝/ℤ𝑝, we thus get a 𝑝-primary symmetric torsion form.
Summarizing, we have shown:



9.3 Jordan Splittings for 𝑝-primary Torsion Groups 185

Proposition 9.2.1. 1. There is a commutative diagram

𝐺 × 𝐺
𝑏 // ℚ/ℤ

𝐺𝑝 × 𝐺𝑝

?�

OO

𝑏 |𝐺𝑝 // ℚ(𝑝)/ℤ
?�

OO

≃
// ℚ𝑝/ℤ𝑝.

In particular, (𝐺𝑝, 𝑏 |𝐺𝑝 ) is in a natural way a 𝑝-primary symmetric torsion
group.

2. The Sylow decomposition is orthogonal, i.e. (𝐺, 𝑏) = ⦹𝑝 (𝐺𝑝, 𝑏 |𝐺𝑝 ).

Similar considerations hold for quadratic torsion forms (𝐺, 𝑞), where the polar
form 𝑏𝑞 is used. Since 𝑞(𝑥) = 1

2𝑏𝑞 (𝑥,𝑥), the values 𝑞(𝑥) for 𝑥 ∈ 𝐺𝑝 belong to
1
2ℚ

(𝑝)/ℤ ≃ 1
2ℚ𝑝/ℤ𝑝 which is isomorphic to ℚ𝑝/ℤ𝑝 if 𝑝 is odd, since then 2 is a unit

in ℤ𝑝. For 𝑝 = 2 we have 1
2ℚ

(2)/ℤ = ℚ(2)/ℤ2 ≃ ℚ2/ℤ2. So for quadratic forms the
diagram of Proposition 9.2.1 becomes

𝐺
𝑞 // ℚ/ℤ

𝐺𝑝

?�

OO

𝑞 // 1
2ℚ

(𝑝)/ℤ
?�

OO

≃
// ℚ𝑝/ℤ𝑝.

Hence also (𝐺𝑝, 𝑞 |𝐺𝑝 ) is in a natural way a 𝑝-primary quadratic torsion group and
one has an orthogonal Sylow decomposition (𝐺, 𝑞) = ⦹𝑝 (𝐺𝑝, 𝑞 |𝐺𝑝 ).

9.3 Jordan Splittings for 𝒑-primary Torsion Groups

The Sylow decomposition reduces classification to that of the 𝑝-primary torsion
groups, the subject of this section. The proofs are valid in the context of principal
ideal domains but we restrict the discussion to 𝑅 = ℤ and leave it to the reader to
make the necessary changes in the general case.

9.3.A The Jordan decomposition. Suppose that 𝐺 is a 𝑝-primary torsion
group, that is, a direct sum of cyclic groups of order a power of 𝑝. Grouping the
cyclic submodules of order 𝑝𝑘 together gives 𝐻𝑘, the homogeneous summand
of exponent 𝑘, leading to a Jordan decomposition 𝐺 = ⊕𝑠

𝑘=1
𝐻𝑘. Recall (cf.

Appendix A.1) that the elementary divisors of 𝐺 are the powers of 𝑝𝑘 for which
𝐻𝑘 ≠ {0} and that the length of 𝐻𝑘 is the number of elementary divisors equal
to 𝑝𝑘. In particular, this is an invariant of the group 𝐺. However, a Jordan
decomposition itself is not intrinsically associated to the torsion group (but see
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Section 9.3.C for a canonically associated filtration). Also, it is in general not an
orthogonal one.

We shall follow a path which after several steps yields an orthogonal Jordan
decomposition. The first step concerns the behavior of the form with regards to
the Jordan decomposition:

Lemma 9.3.1. 1. Let (𝐻, 𝑏) be a symmetric form on a homogeneous 𝑝-primary
torsion group of exponent 𝑘. Then the Gram matrix of 𝑏 with respect to an
ordered basis is represented by

𝐵 = 𝑝−𝑘𝐴, 𝐴 = (𝐴𝑖𝑗), 𝐴𝑖𝑗 = 𝐴𝑗𝑖 ∈ ℤ, (9.4)

and 𝑏 is non-degenerate if and only if det(𝐴) is relatively prime to 𝑝.

2. Let (𝐺, 𝑏) be a symmetric form on a 𝑝-primary group 𝐺 with Jordan decom-
position 𝐺 = ⊕𝑠

𝑘=1
𝐻𝑘. If 𝑏 is non-degenerate, the restriction of 𝑏 to each

homogeneous summand 𝐻𝑘 is non-degenerate.

Proof. 1. By Lemma 9.1.3 the Gram matrix of 𝑏 has the indicated shape. By Corol-
lary 9.1.4, if 𝑏 is non-degenerate, the determinant of 𝐴 is prime to 𝑝. To show the
converse, observe that the matrix of the correlation morphism 𝑏𝐺 with respect to
an ordered basis {𝑒1, . . . , 𝑒𝑟} and the ”dual” basis {𝑢∗1, . . . ,𝑢∗𝑟 } (cf. Lemma 9.1.1)
is precisely 𝐴. Indeed, since 𝑢∗𝑗 (𝑒𝑖) = 𝑝−𝑘𝛿𝑖𝑗 , we see that 𝑏𝐺 (𝑒𝑖) =

∑
𝐴𝑖𝑘𝑢

∗
𝑘
. So, if

det(𝐴) is relatively prime to 𝑝, then 𝑏𝐺 is injective and hence 𝑏 is non-degenerate.
2. To prove this we reduce the situation so that item 1 applies. Let 𝐵 be the
Gram matrix of 𝑏 with respect to an ordered basis of 𝐺 which respects the Jordan
decomposition. From Lemma 9.1.3 we see that 𝐵 has a corresponding block decom-
position with blocks 𝑝−𝑘𝐴𝑘𝑘 on the diagonal and with off-diagonal blocks 𝑝−𝑘𝐴𝑗𝑘

for 𝑗 > 𝑘 and 𝑝−𝑗𝐴𝑗𝑘 for 𝑗 < 𝑘. The matrices 𝐴𝑖𝑗 have entries in ℤ. Next we
study |𝐺 | det(𝐵). Multiplying every column of 𝐵 by the corresponding elementary
divisor we see that every entry in every block corresponding to the positions of
𝐴𝑗𝑘 (𝑗 < 𝑘) is divisible by 𝑝. Hence we obtain a matrix which modulo 𝑝 has zero

blocks above the diagonal blocks and so has determinant
∏

𝑘 det𝐴𝑘𝑘 modulo 𝑝. On
the other hand, this determinant equals |𝐺 | · det𝐵. Hence, if 𝑏 is non-degenerate,
by Corollary 9.1.4 the product

∏
𝑘 det𝐴𝑘𝑘 must be relatively prime to 𝑝 and so

each of the factors det𝐴𝑘𝑘 is relatively prime to 𝑝. By 1 this implies that 𝑏 |𝐻𝑘
is

non-degenerate. □

For quadratic torsion forms special phenomena can occur as illustrated in the
following example.

Example 9.3.2 (Exponent 1). The two cases 𝑝 odd and 𝑝 = 2 have a different
flavour. For odd 𝑝 a non-degenerate quadratic form on a 𝑝-primary group of
exponent 1 takes values in 1

𝑝ℤ/ℤ, but in 1
4ℤ/ℤ if 𝑝 = 2. Hence in the first case,

since 1
𝑝ℤ/ℤ ≃ 𝔽𝑝, the torsion module (𝐺, 𝑞) is isometric to an inner product space

over 𝔽𝑝 and, as we have seen (cf. Corollary 8.3.4), there are two isometry types
according to disc(𝑞) being a square or not. In terms of 𝑝-primary lattices, either
𝑞 ≃ ⦹ℓ(𝐺) ⟨𝑝−1⟩ or 𝑞 ≃ ⦹ℓ(𝐺)−1⟨𝑝−1⟩ ⦹ ⟨𝑢 · 𝑝−1⟩ where 𝑢 is a non-square modulo 𝑝.
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For 𝑝 = 2 this is no longer the case. Referring to the discussion after Defini-
tion 1.7.2, there are essentially two types, the type I forms which can be considered
as quadratic 𝔽2-spaces whose isometry type is determined by the Arf invariant,
and the type II forms, the non-degenerate ℤ/4ℤ-valued forms assuming at least
one value in ℤ/4ℤ − 2ℤ/4ℤ. The latter forms can have several isometry types, as
we shall see later (cf. Table 11.2.2).

9.3.B Homogeneous symmetric torsion groups. Here we perform the sec-
ond step of our procedure which consists in relating the exponent 𝑘 case to ex-
ponent 1. So we let (𝐺, 𝑏) be a homogeneous 𝑝-primary symmetric torsion group
of exponent 𝑘. Note that 𝑏 takes values in 𝑝−𝑘ℤ/ℤ since for 𝑥, 𝑦 ∈ 𝐺 we have
𝑝𝑘𝑏(𝑥, 𝑦) = 𝑏(𝑝𝑘𝑥, 𝑦) = 0 (mod ℤ). The following procedure 𝜌 yields a symmetric
torsion group (𝜌(𝐺), 𝜌(𝑏)) of exponent 1:

𝜌 : 𝐺 → 𝐺/𝑝𝐺, 𝑥 ↦→ [𝑥] = 𝑥 mod 𝑝𝐺
𝜌(𝑏) ( [𝑥], [𝑦]) = 𝑝𝑘−1𝑏(𝑥, 𝑦) ∈ 𝑝−1ℤ/ℤ. (9.5)

During this simplifying procedure of multiplying the form by 𝑝𝑘−1 one does not
loose essential information about non-degeneracy as we shall see.

The reduced discriminant 𝛿(𝑏) ∈ D(ℤ/𝑝𝑘ℤ) is defined by means of formula (9.2).
If 𝑝 is odd, by (9.3), multiplication with 𝑝𝑘−1 induces an isomorphism and identifies
𝛿(𝑏) with 𝛿(𝜌(𝑏)) ∈ D(ℤ/𝑝ℤ). This invariant can also be viewed as disc(𝜌(𝑏)) ∈
D(𝔽𝑝) provided we identify ℤ/𝑝ℤ with the field 𝔽𝑝. The form 𝜌(𝑏) reflects the
non-degeneracy of 𝑏:

Lemma 9.3.3. If 𝐺 is a homogeneous 𝑝-primary group of exponent 𝑘 equipped
with a symmetric 𝑝-primary torsion form 𝑏, then (𝐺, 𝑏) is non-degenerate if and
only if 𝜌(𝑏) is. More precisely, 𝑏 ≃ 𝑝−𝑘 · 𝑏′ where 𝑏′ is unimodular and is (under
suitable identifications) isometric to 𝜌(𝑏).

In that case, if 𝐻 splits off orthogonally, then so does 𝜌(𝐻) and conversely.

Proof. First of all, by (9.4), the Gram matrix of 𝑏 with respect to an ordered basis
𝑬 of 𝐺 (cf. Definition 9.1.2) is of the form 𝑝−𝑘𝐴, where 𝐴 has its entries in ℤ,
and so the Gram matrix of 𝜌(𝑏) with respect to the basis 𝜌(𝑬) for 𝜌(𝐺) is 𝑝−1𝐴.
Secondly, by Lemma 9.3.1, 𝑏 is non-degenerate if and only if gcd(det𝐴,𝑝) = 1.
The form 𝜌(𝑏) is non-degenerate if and only if the same condition holds.

Suppose that 𝐺 = 𝐻 ⦹ 𝐾, then, by the definition of 𝜌(𝑏), one has 𝜌(𝐺) =

𝜌(𝐻)⦹ 𝜌(𝐾). Conversely, if 𝜌(𝐺) = 𝜌(𝐻)⦹𝐾 and if 𝑏 |𝐻 has Gram matrix 𝑝−𝑘 · 𝐵,
then 𝜌(𝐻) has Gram matrix 𝑝−1 · 𝐵. Since 𝜌(𝑏 |𝐻) is non-degenerate, 𝑏 |𝐻 is non-
degenerate and so 𝐻 splits off orthogonally, say 𝐺 = 𝐻 ⦹𝐻′. But then 𝜌(𝐻′) = 𝐾
and so the splitting 𝐺 = 𝐻 ⦹𝐻′ induces the given splitting of 𝜌(𝐺). □

9.3.C Final step for the symmetric case. We combine the previous results
to achieve our goal, an orthogonal Jordan decomposition for a not necessarily
homogeneous 𝑝-primary group 𝐺.
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We start with a purely group theoretic fact, the existence of a canonical fil-
tration 𝐺1 ⊂ 𝐺2 ⊂ · · · ⊂ 𝐺 of 𝐺 by subgroups 𝐺𝑚 and associated quotient groups
𝜌𝑚𝐺:

𝐺𝑚 = {𝑎 ∈ 𝐺 | 𝑝𝑚 · 𝑎 = 0}
𝜌𝑚𝐺 = 𝐺𝑚/(𝐺𝑚−1 + 𝑝𝐺𝑚+1).

To see that the second group makes sense, first of all note that 𝐺𝑚−1 ⊂ 𝐺𝑚.
Secondly, since for 𝑥 ∈ 𝐺𝑚+1 one has 0 = 𝑝𝑚+1𝑥 = 𝑝𝑚 (𝑝𝑥), we obtain the inclusion
𝑝𝐺𝑚+1 ⊂ 𝐺𝑚.

Example 9.3.4. Let 𝑇 be the 2-primary group with generators 𝑒1, 𝑒2, 𝑒3 of orders
4, 4, 16, respectively. Thus 𝑇 is isomorphic to ℤ/4ℤ ⊕ ℤ/4ℤ ⊕ ℤ/16ℤ. Here 𝑇4 = 𝑇
and

𝑇3 = ⟨𝑒1, 𝑒2, 2𝑒3⟩ ≃ ℤ/4ℤ ⊕ ℤ/4ℤ ⊕ ℤ/8ℤ,
𝑇2 = ⟨𝑒1, 𝑒2, 4𝑒3⟩ ≃ ℤ/4ℤ ⊕ ℤ/4ℤ ⊕ ℤ/4ℤ,
𝑇1 = ⟨2𝑒1, 2𝑒2, 8𝑒3⟩ ≃ ℤ/2ℤ ⊕ ℤ/2ℤ ⊕ ℤ/2ℤ.

We see that indeed 2𝑇4 ⊂ 𝑇3, 2𝑇3 ⊂ 𝑇2 and 2𝑇2 = 𝑇1. The quotients 𝑇4/𝑇3 ≃ ℤ/2ℤ
and 𝑇2/(𝑇1 + 2𝑇3) ≃ ℤ/2ℤ⊕2 ”pick out” the two homogeneous summands ℤ/16ℤ,
respectively ℤ/4ℤ ⊕ ℤ/4ℤ. The remaining quotients 𝜌3 (𝑇 ) and 𝜌1 (𝑇 ) are zero.

Let us first state some elementary properties of this construction:

Lemma 9.3.5. Let 𝐺 be a 𝑝-primary torsion group.

1. If 𝐺 is a homogeneous group of exponent 𝑘, then 𝜌𝑘 (𝐺) coincides with 𝜌(𝐺)
as in (9.5).

2. Every 𝜌𝑘 is additive on direct sums.

3. If 𝐺 = ⊕𝐻𝑚 with 𝐻𝑚 homogeneous of exponent 𝑚, then 𝜌𝑘 (𝐺) = 𝜌𝑘 (𝐻𝑘) =

𝜌(𝐻𝑘) for every 𝑘.

Proof. 1. If 𝐺 is homogeneous of exponent 𝑘, then 𝐺𝑘 = 𝐺𝑘+1 = 𝐺, 𝐺𝑘−1 = 𝑝𝐺 and
so 𝜌𝑘𝐺 = 𝐺/𝑝𝐺 = 𝜌(𝐺).
2. This is clear.
3. If 𝐺 is homogeneous of exponent 𝑠 and 𝑘 < 𝑠, then 𝐺𝑘 = 𝑝𝐺𝑘+1 and so 𝜌𝑘 (𝐺) = 0.
Therefore 𝜌𝑘 (𝐺) = 0 if 𝑘 ≠ 𝑠. Since 𝜌𝑘 is additive on direct sums, the result
follows. □

This result implies that, as in the previous example, 𝜌𝑘 picks out the exponent
𝑘 piece of 𝐺 (in any decomposition) and replaces it with an exponent 1 group of
the same rank.

We next investigate the behavior of a (non-degenerate) symmetric torsion form
𝑏 on 𝐺. As in the homogeneous case 𝑏 induces a 𝑝−1ℤ/ℤ-valued form on 𝜌𝑘𝐺



9.3 Jordan Splittings for 𝑝-primary Torsion Groups 189

analogous to the one in (9.5). Explicitly, if [𝑥] is the coset containing 𝑥 ∈ 𝐺𝑘 we
put for 𝑥, 𝑦 ∈ 𝐺𝑘

𝜌𝑘 (𝑏) ( [𝑥], [𝑦]) := 𝑝𝑘−1𝑏(𝑥, 𝑦).

That this is well defined in this setting follows from

𝑝𝑘−1𝑏(𝑥, 𝑦) =
{
𝑏(𝑝𝑘−1𝑥, 𝑦) = 0 if 𝑥 ∈ 𝐺𝑘−1
𝑏(𝑝𝑘−1 (𝑝𝑧), 𝑦) = 𝑏(𝑧,𝑝𝑘𝑦) = 0 if 𝑥 = 𝑝𝑧 ∈ 𝑝𝐺𝑘+1.

(9.6)

Let us tie this in with what we have seen in Lemma 9.3.1 for Gram matrices
for 𝑝-primary torsion groups. Just as in that lemma we see: only the blocks on
the diagonal matter!

Lemma 9.3.6. Let (𝐺, 𝑏) be a 𝑝-primary symmetric torsion group with Jordan
decomposition 𝐺 = ⊕𝐻𝑘.

1. If 𝑏 is non-degenerate, then 𝜌𝑘 (𝑏) is non-degenerate for all 𝑘.

2. If 𝜌𝑘 (𝑏) is non-degenerate, then 𝑏 |𝐻𝑘
is non-degenerate.

Proof. 1. The Gram matrix of 𝑏 |𝐻𝑘
with respect to a system 𝑬 of generators of 𝐻𝑘

can be written as 𝑝−𝑘 · 𝐴𝑘 with 𝐴𝑘 a symmetric matrix with entries in ℤ. Then
the Gram matrix of 𝜌𝑘 with respect to 𝜌𝑘 (𝑬) is 𝑝−1𝐴𝑘. If 𝑏 is non-degenerate,
Lemma 9.3.1 implies that det(𝐴𝑘) is relatively prime to 𝑝. This implies that 𝐴𝑘,
viewed as a matrix with coefficients in the field 𝔽𝑝, is invertible and so 𝜌𝑘 (𝑏) is
non-degenerate.
2. If 𝜌𝑘 (𝑏) is non-degenerate, then det(𝐴𝑘) is relatively prime to 𝑝 which, again
by Lemma 9.3.1, implies that 𝑏 |𝐻𝑘

is non-degenerate. □

Combining the above results finally leads to a splitting of 𝐺 into homogeneous
forms:

Proposition 9.3.7. A non-degenerate symmetric 𝑝-primary torsion group (𝐺, 𝑏)
admits a Jordan splitting, that is, an orthogonal Jordan decomposition2 𝐺 =

⦹𝑠
𝑘=1

𝐻𝑘, where, we recall, each 𝐻𝑘 is a homogeneous 𝑝-primary torsion group of
exponent 𝑘 equipped with a non-degenerate symmetric form. Moreover, each of the
symmetric torsion forms 𝜌𝑘 (𝑏) are non-degenerate and the reduced discriminant3

𝛿(𝑏) is invertible.4

Proof. The proof is by induction on the number of different exponents. For ho-
mogeneous groups the result is true. In the filtration 𝐺1 ⊂ 𝐺2 ⊂ · · · ⊂ 𝐺, assume
𝐺 = 𝐺𝑠. Take a maximal homogeneous subgroup 𝐻𝑠 ⊂ 𝐺 of exponent 𝑠. By Lemma
9.3.6 the non-degeneracy of the form on 𝐺 implies that 𝑏 |𝐻𝑠 is non-degenerate and
hence unimodular (𝐻𝑠 and its dual have the same cardinality and so the injec-
tive map induced by 𝑏 is bijective). Thus we can split off 𝐻𝑠, say 𝐺 = 𝐻𝑠 ⦹ 𝐻⊥

𝑠 .

2This is not a canonical decomposition.
3See the defining formula (9.2).
4Under suitable identifications 𝑏 |𝐻𝑘 is isometric to 𝑝−𝑘𝜌𝑘 (𝑏).
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By induction we find 𝐻⊥
𝑠 = ⦹𝑠−1

𝑘=1
𝐻𝑘 with 𝐻𝑘 homogeneous of exponent 𝑘 and

𝑏 |𝐻𝑘
non-degenerate for all 𝑘. Lemma 9.3.6 implies that 𝜌𝑘 (𝑏) is non-degenerate

(𝑘 = 1, . . . , 𝑠 − 1). By Lemma 9.1.5, the invariant 𝛿 is multiplicative on orthogonal
sums. On a homogeneous summand 𝐻𝑘 it is a unit since 𝑏 |𝐻𝑘 is non-degenerate
and so 𝛿(𝑏) is a unit. □

The advantage of the above approach is two-fold: one can recursively construct
a splitting into homogeneous 𝑝-primary groups starting with a maximal homoge-
neous subgroup 𝐻𝑠 ⊂ 𝐺 of exponent 𝑠 and then applying induction to 𝐻⊥

𝑠 . The
second advantage is the compatibility with the canonical operators 𝜌𝑘 which allows
to obtain invariants:

Definition 9.3.8. The basic invariants under isometry of a non-degenerate
𝑝-primary symmetric torsion group (𝐺, 𝑏) are:

• the number of elementary divisors of 𝐺 equal to 𝑝𝑘

= the length of 𝐻𝑘 in any Jordan splitting 𝐺 = ⦹𝐻𝑘 of 𝐺
= the rank of 𝜌𝑘 (𝐺) as a ℤ/𝑝ℤ-module;

• if 𝑝 is odd, for each 𝑘 as above, disc(𝜌𝑘 (𝑏)) ∈ D(𝔽𝑝).

For 𝑝-primary quadratic torsion groups (𝐺, 𝑞) the invariants are those of the asso-
ciated polar form 𝑏𝑞.

The reader should be warned at this point that the existence of a Jordan
splitting in the quadratic case does not follow directly from what we said so far,
at least for 𝑝 = 2. We investigate this more closely in the next subsection.

9.3.D The quadratic case. Assuming that 𝑝 is odd, the theory for quadratic
and symmetric torsion forms is similar. This is due to the fact that in this case
2 is a unit in ℚ𝑝. Indeed, a 𝑝 primary quadratic torsion form takes values in
𝑄(𝑝)/ℤ which through the embedding 𝑄(𝑝) ↩→ ℚ𝑝 is isomorphic to ℚ𝑝/ℤ𝑝 as shown
in Appendix A.2. Consequently we can divide by 2 in ℚ𝑝/ℤ𝑝. If (𝐺, 𝑞) is a 𝑝-
primary torsion form, then for all 𝑥 ∈ 𝐺 one has 𝑏𝑞 (𝑥,𝑥) = 2𝑞(𝑥) ∈ ℚ𝑝/ℤ𝑝 and so
𝑞(𝑥) = 2−1𝑏𝑞 (𝑥,𝑥) in ℚ𝑝/ℤ𝑝. Using this, we prove:

Lemma 9.3.9. Let 𝑝 be an odd prime and let 𝐺 be a 𝑝-primary torsion equipped
with a quadratic form 𝑞. Define 𝜌𝑘 (𝑞) on 𝜌𝑘 (𝐺) by

𝜌𝑘 (𝑞) [𝑥] := class of 𝑝𝑘−1𝑞(𝑥) in ℚ(𝑝)/ℤ.

This form is a well-defined 𝑝−1ℤ/ℤ-valued quadratic form on 𝜌𝑘 (𝐺). It is non-
degenerate if and only if 𝑞 is.

Proof. One has 𝜌𝑘 (𝑏𝑞) (𝑥,𝑥) = 𝑝−𝑘𝑏𝑞 (𝑥,𝑥) = 2𝜌𝑘 (𝑞) (𝑥) ∈ ℚ𝑝/ℤ𝑝 and so 𝜌𝑘 (𝑞) is
well defined as a ℚ𝑝/ℤ𝑝-valued form and hence as a 𝑄(𝑝)/ℤ-valued form.

We see that also 𝑝 · 𝑝𝑘−1𝑞(𝑥) = 0 since 2𝑝 · 𝑝𝑘−1𝑞(𝑥) = 𝑝 · 𝑝𝑘−1𝑏𝑞 (𝑥,𝑥) =

𝑏𝑞 (𝑝𝑘𝑥,𝑥) = 0. Hence 𝜌𝑘 (𝑞) takes values in 𝑝−1ℤ/ℤ.
Finally, by definition 𝑞 is non-degenerate if and only 𝑏𝑞 is, while 𝜌𝑘 (𝑞) is non-

degenerate if and only 𝜌𝑘 (𝑏𝑞) is. The result then follows from Lemma 9.3.3. □
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For 𝑝 = 2 this argument fails since the same polar form may occur for several
non-isometric quadratic forms. This problem only occurs for the exponent 1 sum-
mand, e.g. the quadratic forms ⟨2−1⟩ and ⟨−2−1⟩ have the same polar form and
this holds also for 𝑢1 and 𝑣1. To remedy this, by ”halving” one constructs from
a 2-primary torsion group 𝐺 one that only has generators of order ≥ 4 and then
”doubling” gives back 𝐺.

Definition 9.3.10. Let 𝐺 be a 2-primary torsion group equipped with a symmetric
form 𝑏). Its halving , (𝑮,𝒃) = ( 12𝐺,

1
2𝑏), is the pair consisting of a 2-primary torsion

group 𝑮 of exponent ≥ 2 together with a symmetric form 𝒃 on 𝑮 constructed as
follows: For each summand 𝐺𝑘 of exponent 𝑘 in a chosen decomposition of 𝐺.
choose generators, 𝑒𝑘1, . . . , 𝑒𝑘𝑟 (with 𝑟 depending on 𝑘). Define 𝑮𝑘 by generators
𝒆𝑘𝑗 , 𝑗 = 1, . . . , 𝑟, of order precisely 2𝑘+1 and set 𝑮 =

⊕
𝑮𝑘. The form b = 1

2𝑏 is
given by

𝒃(𝒆𝑘𝑖 , 𝒆ℓ𝑗) =
1

2
𝑏(𝑒𝑘𝑖 , 𝑒ℓ𝑗) ∈ ℚ(2)/ℤ.

To check that this is well defined, assume that 2𝑘+1𝒙 = 0 for some 𝒙 ∈ 𝑮𝑘, 𝒙 =∑
𝑥𝑗𝒆𝑘𝑗 and let 𝑥 =

∑
𝑥𝑗𝑒𝑘𝑗 be the corresponding element in 𝐺. Since

2𝑘+1𝒃(𝒙, eℓ𝑗) = 2𝑘𝑏(𝑥, 𝑒ℓ𝑗)
= 𝑏(2𝑘𝑥, 𝑒ℓ𝑗) = 0 ∈ ℚ(2)/ℤ,

the form 𝑏 is indeed well defined.

The reverse procedure, ”doubling” consists of shifting the exponents down. In
detail, starting with a non-degenerate symmetric 2-primary torsion group (𝑮,𝒃)
without summands of order 2, this goes as follows. The group 2𝑮 is the group
𝑮/𝑮1, where, we recall, 𝑮1 := {𝑥 ∈ 𝑮 | 21 · 𝑥 = 0}. For 𝑥 the class in 𝑮/𝑮1

of an element 𝒙 ∈ 𝑮, set 𝑞(𝑥) := 𝒃(𝒙,𝒙). To see that this is well defined, take
𝒛 = 2𝒘 ∈ 𝑮1. Then

𝒃(𝒙 + 𝒛,𝒙 + 𝒛) = 𝒃(𝒙,𝒙) + 2𝒃(𝒙, 𝒛) + 𝒃(𝒛, 𝒛)
= 𝒃(𝒙,𝒙) + 𝒃(𝒙, 2𝒛) + 𝒃(2𝒘, 2𝒘)
= 𝒃(𝒙,𝒙) + 4𝒃(𝒘,𝒘) ∈ ℚ(2)/ℤ.

The last equality holds since 2𝒛 = 0, and since 𝒃(𝒘,𝒘) ∈ 1
4ℤ/ℤ.

The just defined operation sends a non-degenerate 𝒃 to a non-degenerate 𝑞.
Indeed,

𝑏𝑞 (𝑥, 𝑦) = 𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦)
= 𝒃(𝒙 + 𝒚,𝒙 + 𝒚) − 𝒃(𝒙,𝒙) − 𝒃(𝒚,𝒚)
= 2𝒃(𝒙,𝒚) = 𝒃(2𝒙,𝒚),

and so if 𝒃(2𝒙,𝒚) = 0 for all 𝒚 ∈ 𝑮, then 2𝒙 = 0, that is 𝒙 ∈ 𝑮1 and so 𝑥 = 0.

This indeed reverses the process:
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Lemma 9.3.11. Let (𝐺, 𝑞) be a 2-primary quadratic torsion group. Then the
halving (𝑮,𝒃) of (𝐺, 𝑏𝑞) gives a symmetric torsion group (without cyclic summands
of order 2) such that we retrieve (𝐺, 𝑞) via 2(𝑮,𝒃) as above.

Also (𝐺, 𝑞) is non-degenerate if and only if (𝑮,𝒃) is non-degenerate.

Proof. Since by definition 2(𝒃) (𝑥,𝑥) = 1
2𝑏𝑞 (𝒙,𝒙) = 𝑞(𝑥), we have 2(𝑮,𝒃) = (𝐺, 𝑞).

We already showed that a non-degenerate 𝑏 gives a non-degenerate 𝑞. Con-
versely, to verify that 𝑏 is non-degenerate assuming 𝑞 is, observe that 𝜌𝑘 (𝒃) =

𝜌𝑘−1 (𝑏𝑞), 𝑘 ≥ 2. Since 𝑞 is non-degenerate, so are the forms 𝜌𝑘 (𝒃) and hence, so is
𝒃, since 𝑮 has no cyclic summands of order 2. □

The previous lemma allows us to extend the results obtained so far for odd
primes to the prime 2. Combining everything we arrive at the final result:

Theorem 9.3.12. A non-degenerate 𝑝-primary quadratic form (𝐺, 𝑞) admits a
Jordan splitting 𝐺 = ⦹𝑠

𝑘=1
𝐻𝑘. Moreover,

1. For each 𝑘 = 1, . . . , 𝑠, the restriction 𝑞 |𝐻𝑘
is non-degenerate if and only if the

quadratic torsion form 𝜌𝑘 (𝑞) is non-degenerate. Under suitable identifica-
tions 𝑞 |𝐻𝑘 is isometric to 𝑝−𝑘𝜌𝑘 (𝑞).

2. The reduced discriminant 𝛿(𝑏𝑞) is invertible if and only if the quadratic tor-
sion forms 𝜌𝑘 (𝑞), 𝑘 = 1, . . . , 𝑠, are non-degenerate.

Proof. For 𝑝 odd this follows from Lemma 9.3.9 which implies that the splitting
of (𝐺, 𝑏𝑞) from Proposition 9.3.7 gives a splitting for (𝐺, 𝑞).

If 𝑝 = 2 we first obtain a homogeneous splitting for the halving (𝑮,𝒃) using
Proposition 9.3.7. Since doubling preserves homogeneous orthogonal direct sums,
(𝐺, 𝑞) = 2(𝑮,𝒃) admits a Jordan splitting. Lemma 9.3.11 then shows that the
remaining assertions hold since they hold for (𝑮,𝒃). □

9.4 Building Blocks For 𝒑-Primary Torsion Forms

We can now show that the length 1 and 2 symmetric and quadratic torsion groups
we introduced in Chapter 1 (cf. Examples 1.9.5) indeed give all building blocks in
the sense that all non-degenerate torsion forms are orthogonal direct sums of these
blocks.

First of all, the Jordan splitting, Proposition 9.3.7, implies that the building
blocks are homogeneous and so it suffices to classify these. By Lemma 9.3.3 one
may reduce to exponent one. Explicitly, a symmetric torsion form 𝑏 on a homoge-
neous 𝑝-primary torsion group of exponent 𝑘 is isometric to 𝑝−𝑘𝜌𝑘 (𝑏).

Secondly, in the exponent 1 case, for 𝑝 odd one uses the classification of non-
degenerate symmetric forms on 𝔽𝑝-vector spaces as given in Chapter 8 together
with Proposition 9.3.12 which states that a similar assertion holds for quadratic
torsion forms. For 𝑝 = 2, in addition, type II forms on 𝔽2-spaces play a role as
noted in Example 9.3.2.

For 𝑝 odd this leads to:
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Proposition 9.4.1. Let 𝑝 be odd. A non-degenerate homogeneous 𝑝-primary
symmetric torsion form 𝑏 of exponent 𝑘 and length 𝑟 is isometric to ⦹𝑟⟨𝑝−𝑘⟩ if
disc(𝜌𝑘 (𝑏)) = 1 and to ⦹𝑟−1⟨𝑝−𝑘⟩⦹ ⟨𝜖𝑝−𝑘⟩ if disc(𝜌𝑘 (𝑏)) = 𝜖, a non-square modulo
𝑝. A similar assertion holds for quadratic forms.

Proof. We only have to recall that for 𝑝 odd, non-degenerate symmetric or quadratic
forms on an 𝔽𝑝-vector space are diagonalizable and, by Corollary 8.3.4, such forms
belong to two isometry classes. Which of the two is determined by the value of
disc(𝜌𝑘 (𝑏)) (or disc(𝜌𝑘 (𝑏𝑞))). □

For 𝑝 = 2 one uses Proposition 8.2.1: there are three building blocks of 𝔽2-inner
product spaces: the form ⟨1⟩ and the forms 𝑈 and 𝑉. These are all of type I and
lead to the symmetric building blocks ⟨𝑢 · 2−𝑘⟩, 𝑢 a dyadic unit, 𝑢𝑘 and 𝑣𝑘 on
2-primary groups of exponent 𝑘. The quadratic building blocks on such groups are
⟨𝑢 · 2−𝑘−1⟩, 𝑢𝑘 and 𝑣𝑘. By Lemma 9.3.11 there is no essential difference between
2-primary quadratic torsion forms and symmetric torsion forms of exponent ≥ 2.
As explained above on ℤ/2ℤ there are the type II forms [2−2], [3 · 2−2]. Moreover,
the symmetric torsion forms 𝑢1 and 𝑣1 are the same since 2 = 0 in ℤ/2ℤ. Hence
one deduces:

Proposition 9.4.2. • A non-degenerate symmetric (respectively quadratic) form
on a homogeneous 2-primary group of exponent 𝑘 ≥ 2 and length 𝑟 is isomet-
ric to

⦹𝑎
𝑗=1⟨𝑢(𝑗)2−𝑘⟩ ⦹𝑏 𝑢𝑘 ⦹𝑐 𝑣𝑘 𝑎 + 2(𝑏 + 𝑐) = 𝑟, 𝑢(𝑗) ∈ D(ℤ/2𝑘ℤ)

⦹𝑎
𝑗=1 [𝑢(𝑗)2−𝑘−1] ⦹𝑏 𝑢𝑘 ⦹𝑐 𝑣𝑘 respectively.

• A non-degenerate symmetric form on a homogeneous 2-primary group of
exponent 1 and length 𝑟 is isometric to

⦹𝑎
𝑗=1⟨𝑢(𝑗)2−1⟩ ⦹𝑏 𝑢1, 𝑎 + 2𝑏 = 𝑟, 𝑢(𝑗) ∈ D(ℤ/2𝑘ℤ).

• A non-degenerate quadratic form on a homogeneous 2-primary group of ex-
ponent 1 and length 𝑟 is isometric to

⦹𝑎 [𝑢 · 2−2] ⦹𝑏 𝑢1 ⦹𝑐 𝑣1, 𝑎 + 2𝑏 + 2𝑐 = 𝑟, 𝑢 ∈ 1, 3 = D(ℤ/4ℤ).

Historical and Bibliographical Notes. For the material of Section 9.1 we followed
Sections 1–6 in Chapter II of the notes [156] by R. Miranda and D. Morrison. That the
Sylow decomposition of a torsion symmetric group is compatible with the symmetric or
quadratic form, as shown in Section 9.2, has been observed by various people, e.g. by A.
Durfee (cf. Lemma 1.2 in [56]). According to the latter the compatibility of the Jordan
decomposition with symmetric and quadratic forms is due to E. van Kampen (cf. [232])
although the terminology ”Jordan splitting” seems to be due to A. Durfee himself. Our
presentation of Section 9.3 is modeled on C.T.C. Wall’s paper [245].
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𝑝-adic Lattices

In this chapter all 𝑝-adic lattices are assumed to be non-degenerate.

Introduction

In this chapter we first classify 𝑝-adic lattices of rank 1 and 2. Then, in Section 10.2
we show that these generate all 𝑝-adic lattices upon taking orthogonal sums. In
particular we show that a 𝑝-adic lattice is an orthogonal direct sum of lattices of
the form 𝐿(𝑝𝑘) with 𝐿 unimodular. The latter are called homogeneous of exponent
𝑘 since their discriminant form is a homogeneous 𝑝-primary torsion form of that
same exponent. Such a decomposition is called a Jordan splitting. It induces a
Jordan splitting of the discriminant form (in the sense of Chapter 9). We have
shown in Section 9.3 that all 𝑝-primary torsion forms admit a Jordan splitting.
We use this to prove in Section 10.3 that every 𝑝-primary torsion form is the
discriminant form of a 𝑝-adic lattice which is unique up to isometry if 𝑝 is odd.
For 𝑝 = 2 some ambiguity remains.

In section 10.4 Hasse invariants of 𝑝-adic lattices are calculated making use of
the classification obtained in the preceding sections. The results are used later in
Chapter 12 to determine the signature mod 8 for quadratic torsion forms.

10.1 Low Rank 𝒑-adic Lattices

Recall that a (non-degenerate) 𝑝-adic lattice consists of a pair (𝐿, 𝑏) with 𝐿 a free
ℤ𝑝-module of finite rank and 𝑏 : 𝐿 × 𝐿 −→ ℤ𝑝 a non-degenerate symmetric bilinear
form with values in ℤ𝑝. A quadratic 𝑝-adic lattice is a pair (𝐿, 𝑞) with 𝐿 a free
ℤ𝑝-module of finite rank and 𝑞 : 𝐿 → ℤ𝑝 a non-degenerate quadratic form. In
Section 1.9, we gave some examples of 𝑝-adic lattices (cf. Examples 1.9.5). We
discuss these here in more detail.
Rank one 𝑝-adic lattices. These have been classified in Section 6.1. See the
table on page 146.
Rank two 𝑝-adic lattices, 𝑝 odd. By Proposition 6.3.11, the unimodular bi-
nary forms are ⟨𝑢⟩⦹ ⟨𝑣⟩, where 𝑢, 𝑣 are 𝑝-adic units. We shall see later (Proposi-
tion 10.2.2) that for 𝑝 ≠ 2 all 𝑝-adic lattices are decomposable.
Rank two dyadic lattices. 1. For a non-negative integer 𝑘 we have the lattice
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𝑈𝑘 = 𝑈ℤ2
(2𝑘), where 𝑈ℤ2

is the dyadic symmetric hyperbolic lattice. Recall that

with respect to the standard basis of ℤ2
2 the Gram matrix of 𝑈𝑘 is

(
0 2𝑘

2𝑘 0

)
. The

form on the unimodular lattice 𝑈 = 𝑈0 is the polar form of (𝑥1,𝑥2) ↦→ 𝑥1𝑥2. We
claim that the lattice 𝑈𝑘 is indecomposable. It suffices to prove this for 𝑘 = 0.
Since disc(𝑈) = −1, which is a unit, 𝑈 cannot be an even decomposable lattice
since then it would have discriminant divisible by 4.

2. Consider ℤ⊕2
2 equipped with the unimodular bilinear form given by 𝑉 =

(
2 1
1 2

)
.

We are mainly interested in the quadratic form (𝑥1,𝑥2) ↦→ 𝑥2
1 +𝑥1𝑥2+𝑥2

2 of which it
is the polar form. The symbol 𝑉 stands also for the associated quadratic (or sym-
metric) dyadic lattice and 𝑉𝑘 stands for 𝑉 (2𝑘). We have seen in Example 1.9.5,
4. that disc(𝑉𝑘) = 3 · 22𝑘, and since 3 ≠ −1 modulo squares, this implies that
this lattice is not isometric to 𝑈𝑘. A similar argument as for 𝑈𝑘 shows that this
lattice is also indecomposable. Summarizing, we have two indecomposable rank
two lattices, here given by the corresponding quadratic forms:

𝑈𝑘 : (𝑥1,𝑥2) ↦→ 2𝑘𝑥1𝑥2, disc(𝑈𝑘) = −22𝑘 · (ℤ×
2 )2

𝑉𝑘 : (𝑥1,𝑥2) ↦→ 2𝑘 (𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2), disc(𝑉𝑘) = 3 · 22𝑘 · (ℤ×
2 )2.

The above two examples exhaust the possibilities for indecomposable rank two
dyadic lattices:

Lemma 10.1.1. The lattices 𝑈𝑘 are the only indecomposable rank two symmetric
dyadic lattices which represent zero. There are no indecomposable symmetric rank
2 dyadic lattices other than 𝑈𝑘 and 𝑉𝑘.

Proof. We first show that a rank two dyadic indecomposable symmetric lattice
(𝑉, 𝑏) representing 0 is isometric to some 𝑈𝑘.

Suppose that 𝑒1 is a primitive isotropic vector. By primitivity, we may extend
𝑒1 to a basis {𝑒1, 𝑒2}. Since 𝑏(𝑒1, 𝑒2) ≠ 0, replacing 𝑒1 with 𝑢𝑒1 for a suitable unit
𝑢 ∈ ℤ2, we may assume that for some integer 𝑘 ≥ 0 we have 𝑏(𝑒1, 𝑒2) = 2𝑘. Let
𝑟 := 𝑏(𝑒2, 𝑒2). If 𝑟 = 0 we are done. Otherwise, the 2-adic valuation of 𝑟 = 𝑏(𝑒2, 𝑒2)
is at least 𝑘 + 1. Indeed, if not, then 2𝑘𝑟−1 ∈ ℤ2 and

𝑏(𝑒1 − 2𝑘𝑟−1𝑒2, 𝑒2) = 2𝑘 − 2𝑘𝑟−1 · 𝑟 = 0.

In other words, 𝑒′1 = 𝑒1 − 2𝑘𝑟−1𝑒2 ∈ 𝑉 would be orthogonal to 𝑒2 and the new basis
{𝑒′1, 𝑒2} of the lattice would give an orthogonal direct sum decomposition, contrary
to the assumption that 𝑉 is indecomposable. It follows that we can replace 𝑒2 with
𝑒′2 = 𝑒2 − 𝑟/2𝑘+1 · 𝑒1 and in the basis {𝑒1, 𝑒′2} the Gram matrix is precisely 𝑈𝑘 as we
verify without problem.

To show that (𝑉, 𝑏) ≃ 𝑉𝑘 in case 𝑉 is indecomposable and does not represent
zero is a bit more complicated. We make essential use of the dyadic topology on ℤ⊕2

2

underlying 𝑉, which by definition is the product dyadic topology on 𝑉 induced by
the dyadic valuation 𝑣2 on ℤ2. Since the latter ring is compact (Proposition A.2.2),
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also 𝑉 is compact and so every sequence in 𝑉 has a converging subsequence, a
property which will be used below.

Since 𝑉 is indecomposable, we may assume that we have a basis 𝑬 = {𝑒1, 𝑒2}
for 𝑉 with 𝑏(𝑒1, 𝑒2) = 2𝑘 so that the Gram matrix is of the form

𝑏E =

(
𝑎 2𝑘

2𝑘 𝑏

)
.

If 𝑎 = 2ℓ𝑎 ′ with a unit 𝑎 ′ and with ℓ ≤ 𝑘, then 𝑒′2 = 2𝑘−ℓ𝑒1−𝑎 ′𝑒2 is orthogonal to 𝑒1,
and in the basis {𝑒1, 𝑒′2} the Gram matrix would become diagonal, contradicting
our assumption on 𝑉. A similar argument applies to 𝑏. So we may assume that
2𝑘+1 divides both 𝑎 and 𝑏, but then 2𝑘 divides all entries of the Gram matrix and
hence we may reduce to the case 𝑘 = 0. Moreover, 𝑎 = 2𝑢, 𝑏 = 2𝑣. In other words,
we may assume that the Gram matrix with respect to {𝑒1, 𝑒2} is

𝑏𝑬 =

(
2𝑢 1
1 2𝑣

)
, 𝑢, 𝑣 ∈ ℤ2.

We argue that both 𝑢 and 𝑣 have to be odd. If for instance 𝑣 is even, say 𝑣 = 𝑣′2𝑛,
𝑣′ a unit and 𝑛 ≥ 1, we replace 𝑒2 with 𝑒3 = 2𝑛𝑒1 + (1− 2𝑛+1𝑢)𝑒2. Then {𝑒1, 𝑒3} is a
new basis with 𝑏(𝑒1, 𝑒3) = 1 and

𝑏(𝑒3, 𝑒3) = 𝑏(2𝑛𝑒1 + (1 − 2𝑛+1𝑢)𝑒2, 2𝑛𝑒1 + (1 − 2𝑛+1𝑢)𝑒2)
= 22𝑛+1𝑢 + 2𝑛+1 (1 − 2𝑛+1𝑢) + (1 − 2𝑛+1𝑢)2 2𝑛+1𝑣′

= 2𝑛+1 (2𝑛𝑢 + 1 − 2𝑛+1𝑢 + 𝑣′ − 2𝑛+2𝑣′𝑢 + 22𝑛+2𝑢2𝑣′)
= 2𝑛+1 (1 + 𝑣′ + 𝑤),

where 𝑣2 (𝑤) ≥ 𝑛 ≥ 1. Since 1 + 𝑣′ is even we find 𝑣2 (𝑏(𝑒3, 𝑒3)) ≥ 𝑛 + 2. This
process of replacing the second basis vector can be continued indefinitely. Using
the dyadic compactness of 𝑉, we may assume that the resulting sequence converges
to an isotropic vector 𝑒∞. Since also 𝑏(𝑒1, 𝑒∞) = 1, the vector 𝑒∞ is not the zero-
vector, contradicting our assumption on 𝑏. Consequently,

𝑏𝑬 =

(
2𝑢 1
1 2𝑣

)
, 𝑢, 𝑣 odd.

If 𝑣 ≠ 1 we set

𝑣 = 1 + 2𝑚𝑡, 𝑡 odd, 𝑚 ≥ 1,

one has 𝑣2 (𝑏(𝑒2, 𝑒2) − 2) = 𝑚 + 1. The next step is to replace 𝑒2 successively with
𝑒3, 𝑒4, . . . such that 𝑣2 (𝑏(𝑒𝑘, 𝑒𝑘) − 2) becomes larger and larger. To start, take
𝑒3 = 2𝑚𝑒1 + (1− 2𝑚+1𝑢)𝑒2. Just as before, 𝑏(𝑒1, 𝑒3) = 1 and, by a calculation similar
to the one we just did, we find

𝑏(𝑒3, 𝑒3) = 2(1 + 2𝑚 (𝑡 + 1) + 𝑧), with 𝑣2 (𝑧) ≥ 𝑚 + 1

= 2(1 + 2𝑚+1𝑤), 𝑤 ∈ ℤ2,
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since 𝑡 is odd. Therefore 𝑣2 (𝑏(𝑒3, 𝑒3) − 2) ≥ 𝑚 + 2. This process can be iterated
so that we obtain a sequence of vectors in 𝑉 converging to some vector 𝑒∞ for

which 𝑏(𝑒∞, 𝑒∞) = 2. In the basis {𝑒1, 𝑒∞} the Gram matrix for 𝑏 becomes

(
2𝑢 1
1 2

)
.

Observe that since the Gram matrix has non-zero determinant, {𝑒1, 𝑒∞} is indeed
a basis.

Now going through a similar procedure with 𝑒1 we can subsequently make
𝑢 = 1. □

Given a Gram matrix of a binary dyadic symmetric form, how can one deter-
mine its isometry class? Such a Gram matrix can always be written as 2𝑘𝐴, where
det𝐴 is a unit and so it suffices to consider unimodular binary forms. The answer
is provided by:

Lemma 10.1.2 (Recognising binary dyadic forms). For a Gram matrix

(
𝛼 𝛽
𝛽 𝛾

)
of a unimodular dyadic symmetric form 𝑏, setting 𝑑 = disc(𝑏), the following possi-
bilities occur:

1. The form is decomposable if and only if either 𝛼 or 𝛾 is odd, i.e., a unit.
More precisely,

(a) if 𝛼 is odd, 𝑏 ≃ ⟨𝛼⟩ ⦹ ⟨𝛼 · 𝑑⟩.
(b) if 𝛾 is odd, 𝑏 ≃ ⟨𝛾⟩ ⦹ ⟨𝛾 · 𝑑⟩.

2. If 𝛼 and 𝛾 are both even (hence 𝑏 is even), then 𝛽 is odd, 𝑏 is indecomposable,
and

(a) if 1
4𝛼𝛾 is even, 𝑏 ≃ 𝑈

(b) and if 1
4𝛼𝛾 is odd, 𝑏 ≃ 𝑉.

For a unimodular binary dyadic quadratic lattice, only case 2 occurs.

Proof. 1. Lemma 10.1.1 implies that an odd rank 2 form is decomposable. Let us
make this precise. Suppose first that 𝛼 is odd. Then changing the basis 𝑒1, 𝑒2 into
𝑒1,−𝛽𝑒1 + 𝛼𝑒2, the Gram matrix changes into(

1 0
−𝛽 𝛼

) (
𝛼 𝛽
𝛽 𝛾

) (
1 −𝛽
0 𝛼

)
=

(
𝛼 0
0 𝛼𝑑

)
.

Similarly, if 𝛾 is odd we have the second possibility. Conversely, if the form 𝑏

is decomposable, for some invertible matrix 𝑀 =

(
𝑎 𝑏
𝑐 𝑑

)
the matrix 𝑀T𝐵𝑀 is a

diagonal matrix, where 𝐵 is the Gram matrix. This is equivalent to 𝑎𝑏 ·𝛼 + 𝛾 · 𝑐𝑑 +
(𝑎𝑑 − 𝑏𝑐) · 𝛽 + 2𝑏𝑐 · 𝛽 = 0. So if 𝛼 and 𝛾 are even, also 𝛽 is even which is impossible
since det𝐵 is a unit. It follows that for a decomposable form either 𝛼 or 𝛾 is odd.
2. From item 1 we know that the form must be indecomposable. Write 𝛼 = 2𝛼1,
𝛾 = 2𝛾1. By Lemma 10.1.1 there are only two types of unimodular indecomposable
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such lattices, 𝑈 and 𝑉, and 𝑈 is the only one representing 0. We infer that the
lattice is isometric to 𝑈 if and only if 𝛼1𝑥

2 + 𝛽𝑥𝑦 + 𝛾1𝑦
2 = 0 is solvable. This is

the case if and only if the discriminant 𝛽2 − 4𝛼1𝛾1 = det𝐵 is a square in ℤ×
2 , i.e., if

and only if 𝛽2 − 4𝛼1𝛾1 ≡ 1 (mod 8). Since 𝛽 is odd, 𝛽2 ≡ 1 (mod 8), and so this
happens if and only if 𝛼1𝛾1 is even. And then of course, 𝑏 � 𝑉 if and only if 𝛼1𝛾1
is odd. □

As an application we mention a representability result, this time valid for any
prime, even or odd.

Lemma 10.1.3. A 𝑝-adic unimodular quadratic form of rank two represents all
𝑝-adic units.

Proof. Let us first consider the dyadic case. The form 𝑥𝑦 with Gram matrix 𝑈
clearly represents all 2-adic integers. Next, consider the form 𝑥2 + 𝑥𝑦 + 𝑦2 with
Gram matrix 𝑉. The equation 𝑥2 +𝑥𝑦 +𝑦2 = 𝑢 can be solved primitively modulo 8
for any 𝑢 ∈ {1, 3, 5, 7}, and Hensel’s Lemma A.4.3 gives solutions in ℤ2. This settles
representability for the lattice 𝑉. In the dyadic setting there is no decomposable
unimodular lattice.

Any other rank two unimodular quadratic form is isometric to 𝑢𝑥2 +𝑣𝑦2, 𝑢, 𝑣 ∈
ℤ×
𝑝, 𝑝 odd, and represents all 𝑝-adic integers by Example A.4.2. □

We are going to use this representability result for classification purposes and
for the study of orthogonal groups. See e.g. the proof of Theorem 14.5.5.

Corollary 10.1.4. Let (𝐿, 𝑞) be a unimodular binary quadratic 𝑝-adic lattice and
𝑢 a 𝑝-adic unit. Then 𝐿 admits a reflection 𝜎𝑥 in a vector 𝑥 ∈ 𝐿 with 𝑞(𝑥) = 𝑢.

Proof. Lemma 10.1.3 implies that there exists a vector 𝑥 ∈ 𝐿 with 𝑞(𝑥) = 𝑢. Then,
by Lemma 7.1.1, the reflection 𝜎𝑥 preserves 𝐿. □

10.2 Jordan Splitting of 𝒑-adic Lattices

We show now that the examples from Section 10.1 constitute the basic blocks for
building non-degenerate 𝑝-adic symmetric (and quadratic) lattices.

Let (𝐿, 𝑞) be a quadratic lattice. The set 𝑞(𝐿) generates a non-zero ideal in
ℤ𝑝 which we denote (𝑞(𝐿)). Any 𝑥0 for which 𝑣𝑝 (𝑞(𝑥0)) is minimal provides a
generator 𝑞(𝑥0) of this ideal, since 𝑣𝑝 is archimedean. If 𝑏 is the polar form of 𝑞,
this implies that the 𝑝-adic number 2𝑞(𝑥0) = 𝑏(𝑥0,𝑥0) generates the ideal 2(𝑞(𝐿)).
Let (𝑏(𝐿,𝐿)) be the ideal of ℤ𝑝 generated by all 𝑏(𝑦, 𝑧), 𝑦, 𝑧 ∈ 𝐿. This ideal is
generated by an element 𝑏(𝑥, 𝑦) with 𝑣𝑝 (𝑏(𝑥, 𝑦)) minimal. Since 𝑏(𝑧, 𝑧) = 2𝑞(𝑧),
𝑧 ∈ 𝐿, we have the inclusions

2(𝑞(𝐿)) ⊂ (𝑏(𝐿,𝐿)) ⊂ (𝑞(𝐿)) ⊂ ℤ𝑝,

where the first inclusion can only be strict for 𝑝 = 2, that is, for dyadic lattices,
and then (𝑞(𝐿)) = (𝑏(𝐿,𝐿)). If this is the case, and 𝑏(𝑥, 𝑦) generates the ideal
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(𝑏(𝐿,𝐿)), then 𝑥 and 𝑦 must be independent. Indeed, if not, we may assume that
𝑥 = 𝛼𝑦 and then 𝑏(𝑥, 𝑦) = 𝛼𝑏(𝑦, 𝑦) ∈ 2(𝑞(𝐿)), contrary to our assumption.

Lemma 10.2.1. Let (𝐿, 𝑞) be a non-degenerate 𝑝-adic quadratic lattice. Write 𝑏
for the polar form of 𝑞. Let (𝑞(𝐿)), (𝑏(𝐿,𝐿)) and 𝑥0 ∈ 𝐿 be as above. Suppose that
2(𝑞(𝐿)) = (𝑏(𝐿,𝐿)) (which is the case for 𝑝 odd, but not necessarily for 𝑝 = 2).
Then ℤ𝑝 ·𝑥0 splits off orthogonally. Consequently, if there is no rank one sublattice
of 𝐿 which splits off, then 𝑝 = 2 and 2(𝑞(𝐿)) ⊊ (𝑏(𝐿,𝐿)) ⊂ ℤ2.

Proof. Suppose that 2(𝑞(𝐿)) = (𝑏(𝐿,𝐿)), then 𝑏(𝑥0,𝑥0) = 2𝑞(𝑥0) must generate
(𝑏(𝐿,𝐿)). Hence for any 𝑧 ∈ 𝐿 we can find 𝑟 = 𝑟(𝑧) ∈ ℤ𝑝 such that 𝑏(𝑧,𝑥0) =

𝑟𝑏(𝑥0,𝑥0). So, writing 𝑧 = 𝑟 ·𝑥0+(𝑧−𝑟 ·𝑥0) shows that ℤ𝑝 ·𝑥0 splits off orthogonally.
□

We can now state and prove the basic decomposition result for 𝑝-adic lattices.

Proposition 10.2.2 (Classification (I)). 1. For 𝑝 odd, any (non-degenerate)
symmetric (quadratic) 𝑝-adic lattice is isometric to an orthogonal direct sum
of rank one 𝑝-adic lattices of the form ⟨𝑢𝑝𝑘⟩, where 𝑢 ∈ ℤ×

𝑝 and 𝑘 ≥ 0.

2. Dyadic symmetric, respectively quadratic lattices split into an orthogonal di-
rect sum of rank one lattices of the form ⟨𝑢 · 2𝑘⟩, 𝑢 ∈ {±1,±3}, where 𝑘 ≥ 0,
respectively 𝑘 ≥ 1, together with copies of 𝑈𝑘 and of 𝑉𝑘, 𝑘 ≥ 0.

Proof. For 𝑝 ≠ 2 the number 2 is a unit in the ring ℤ𝑝. Hence by Lemma 10.2.1
and applying induction, the form 𝑏 is diagonalizable.

Let us now assume that 𝑝 = 2 and let (𝐿, 𝑏) be a non-degenerate dyadic sym-
metric lattice. The values 𝑏(𝑥,𝑥), 𝑥 ∈ 𝐿, generate an ideal in ℤ2. If this is not
a proper ideal, then, since ℤ2 is a local ring, there exists 𝑥0 ∈ 𝐿 with 𝑏(𝑥0,𝑥0) a
unit, and 𝑥0 splits off as in the proof of Lemma 10.2.1. Continuing in this way, we
successively split off rank one lattices ℤ2𝑥 with 𝑏(𝑥,𝑥) a unit.

The remaining lattice 𝐿′ is even since now 𝑏(𝑥,𝑥) ⊂ 2ℤ2 for all 𝑥 ∈ 𝐿′. In
particular 𝑏 is the polar form of a quadratic form 𝑞. As long as the condition of
Lemma 10.2.1 is satisfied, we may continue splitting off rank one lattices. Next,
assume that no rank one lattice can be split off from our lattice 𝐿. Lemma 10.2.1
now tells us that we may henceforth assume that (2𝑞(𝐿)) ≠ (𝑏(𝐿,𝐿)), so that
(𝑏(𝐿,𝐿)) is generated by an element 𝑏(𝑥, 𝑦) with 𝑥, 𝑦 independent vectors in 𝐿.
For any 𝑧 ∈ 𝐿 we then write

𝑏(𝑧,𝑥) = 𝑟1𝑏(𝑥, 𝑦)
𝑏(𝑧, 𝑦) = 𝑟2𝑏(𝑥, 𝑦).

Since the ideals (2𝑞(𝐿)) and (𝑏(𝐿,𝐿)) are different, we have (𝑏(𝐿,𝐿)) = (𝑞(𝐿)), and
we can find elements 𝑟, 𝑠 ∈ ℤ2 with 2𝑞(𝑥) = 2𝑟𝑏(𝑥, 𝑦) and 2𝑞(𝑦) = 2𝑠𝑏(𝑥, 𝑦). The
unit 𝑢 := 1 − 22𝑟𝑠 can now be used to split off the module 𝑀 generated by 𝑥 and
𝑦 as follows. Solving

0 = 𝑏(𝑧 + 𝛼𝑥 + 𝛽𝑦,𝑥) = (𝑟1 + 𝛼2𝑟 + 𝛽)𝑏(𝑥, 𝑦)
0 = 𝑏(𝑧 + 𝛼𝑥 + 𝛽𝑦, 𝑦) = (𝑟2 + 𝛼 + 𝛽2𝑠)𝑏(𝑥, 𝑦)
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for 𝛼 and 𝛽 leads to 𝛼 = 𝑢−1 (2𝑠𝑟1 − 𝑟2) and 𝛽 = 𝑢−1 (2𝑟𝑟2 − 𝑟1), both in Z2. So

𝑧 = 𝑧 + 𝛼𝑥 + 𝛽𝑦 − (𝛼𝑥 + 𝛽𝑦)

with 𝑧 + 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀⊥ and 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀. Now repeat the argument with 𝑀⊥.
We have shown in Section 10.1 that the rank two dyadic lattices 𝑀 that we

have split off, which are necessarily indecomposable, can only be of two types: the
ones that represent zero are isometric to some 𝑈𝑘, those that don’t, are isometric
to some 𝑉𝑘. This finishes the proof for 𝑝 = 2. □

Example 10.2.3. Since disc(𝑈) = −1, disc(𝑉) = 3, the lattice 𝐸8 ⊗ ℤ2, being even
with discriminant 1, is isometric to either ⦹4𝑈, ⦹4𝑉 or to ⦹2𝑈 ⦹⦹2𝑉. We shall
see (Lemma 11.2.1) that these 3 dyadic lattices are isometric.

There is a remarkable consequence of the preceding result:

Corollary 10.2.4. A 𝑝-adic unimodular quadratic form of rank ≥ 2 represents all
𝑝-adic units. For 𝑝 ≠ 2 the lattice admits isotropic vectors if its rank is at least 3,
for 𝑝 = 2 this is the case if the rank is at least 4.

Proof. By Proposition 10.2.2 𝑝-adic lattices of rank ≥ 2 always split off a rank two
lattice and so the first assertion follows from Lemma 10.1.3. For the existence of an
isotropic vector, we use that for odd 𝑝 a unimodular quadratic lattice diagonalizes,
while for 𝑝 = 2 it is a direct sum of lattices isometric to 𝑈 or 𝑉. So it suffices to
consider a lattice of the form 𝐿 = 𝑀 ⦹ 𝑁 where rank(𝑀) = 2 and rank(𝑁) = 1 if
𝑝 ≠ 2 or rank(𝑁) = 2 in the dyadic situation. In both cases, take a vector 𝑦 ∈ 𝑁
such that 𝑏(𝑦, 𝑦) = 𝑐 is a unit. By the representation result, there exists 𝑥 ∈ 𝑀
with 𝑏(𝑥,𝑥) = −𝑐 and then 𝑥 + 𝑦 is isotropic. □

Remark 10.2.5. The existence of isotropic vectors is used in the proof of Corol-
lary A.3.7. This result in particular states that the occurrence of one root in an
indefinite lattice of rank ≥ 4 implies that there are infinitely many. This, in turn,
is a crucial ingredient in the proof of Theorem 17.2.11 which roughly states that
for ”most” lattices with Witt index ≥ 2 the Weyl group is as big as possible.

The splitting described in Proposition 10.2.2 gives a Jordan splitting , that
is, an orthogonal splitting into lattices of the form 𝐿(𝑝𝑘) with 𝐿 unimodular. A
summand such as 𝐿(𝑝𝑘) is called a homogeneous 𝑝-adic lattice of exponent
𝑘. We give a simple direct proof of the existence of such a Jordan splitting which
has the additional merit that it gives invariants. The proof is very similar to what
we did in Section 9.3 for torsion groups.

Proposition 10.2.6. A non-degenerate symmetric 𝑝-adic lattice (𝐿, 𝑏) has a Jor-
dan splitting, i.e.,

𝐿 = 𝐿0 ⦹ 𝐿1 (𝑝) ⦹ · · ·⦹ 𝐿𝑟 (𝑝𝑟),

where each 𝐿𝑗 is unimodular. The rank of 𝐿𝑗 as well as its discriminant, disc(𝐿𝑗) ∈
D(ℤ𝑝), is uniquely determined by (𝐿, 𝑏).
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Proof. For 𝑘 ≥ 0 let 𝐿(𝑘) = {𝑥 ∈ 𝐿 | 𝑏(𝑥,𝐿) ⊂ 𝑝𝑘ℤ𝑝}. This gives a canonical
decreasing filtration of 𝐿 by ℤ𝑝-submodules so that the quotients

𝜌(𝑘)𝐿 = 𝐿(𝑘)/(𝑝𝐿(𝑘−1) + 𝐿(𝑘+1)) (and 𝐿(0)/𝐿(1) for 𝑘 = 0)

are canonically defined ℤ𝑝-modules annihilated by 𝑝 and so are 𝔽𝑝-vector spaces.
In particular their dimensions are invariants. The form 𝑏 descends to each of these
vector spaces as an 𝔽𝑝-valued form by setting

𝜌(𝑘) (𝑏) ( [𝑥], [𝑦]) = class of 𝑏(𝑥, 𝑦) ∈ 𝑝𝑘ℤ𝑝/𝑝𝑘+1ℤ𝑝 ≃ ℤ𝑝/𝑝ℤ𝑝 ≃ 𝔽𝑝.

The proof that this is well defined is analogous to the computation (9.6).1

To construct the desired splitting, we may assume that 𝐿(1) ≠ 𝐿, otherwise take
the smallest 𝑘 such that 𝐿(𝑘) ≠ 𝐿 and divide the form by 𝑝𝑘−1.

Since 𝑝𝐿 ⊂ 𝐿(1) , the vector space 𝐿/𝑝𝐿 contains 𝐿(1)/𝑝𝐿. Choose a complemen-
tary subspace �̄�0 so that 𝐿/𝑝𝐿 = �̄�0 ⊕ 𝐿(1)/𝑝𝐿 and let 𝐿0 ⊂ 𝐿 be a sublattice of the
same rank as �̄�0 and mapping surjectively onto �̄�0 under the projection 𝐿 → 𝐿/𝑝𝐿.
Note that 𝐿 = 𝐿0 + 𝐿(1) for since 𝐿0 + 𝐿(1) surjects onto 𝐿/𝑝𝐿 and 𝑝𝐿 ⊂ 𝐿(1) we get
𝐿 ⊂ 𝐿0 + 𝐿(1) + 𝑝𝐿 ⊂ 𝐿0 ⊕ 𝐿(1) .

The aim is to show that 𝑏 restricts unimodularly to 𝐿0. To show this, it suffices
to prove that the discriminant of this restriction is a unit, which comes down to
showing that 𝑏 induces a non-degenerate form 𝑏 on the 𝔽𝑝-vector space �̄�0. To
check this, suppose that 𝑥 ∈ 𝐿0 with class 𝑥 ∈ 𝐿/𝑝𝐿 satisfies 𝑏(𝑥, �̄�0) = 0. Then
𝑏(𝑥,𝐿0) ≡ 0 mod 𝑝. Since 𝑏(𝑥,𝐿(1)) ≡ 0 mod 𝑝, one then has 𝑏(𝑥,𝐿) ≡ 0 mod 𝑝,
that is, by definition, 𝑥 ∈ 𝐿(1) . But then 𝑥 ∈ �̄�0 ∩ (𝐿(1)/𝑝𝐿) = {0}.

As a result, we have an orthogonal splitting 𝐿 = 𝐿0 ⦹ 𝐿⊥0 with 𝐿0 unimodular.
The form 𝑏 |𝐿⊥0 is divisible by 𝑝 since for all 𝑥 ∈ 𝐿⊥0 we have 𝑏(𝑥,𝐿⊥0 ) = 𝑏(𝑥,𝐿) =

𝑏(𝑥,𝐿(1)) ⊂ 𝑝ℤ𝑝 where we use that 𝐿 = 𝐿0 + 𝐿(1) . Observe that 𝜌(0)𝐿 = 𝐿/𝐿(1) =
𝐿/𝑝𝐿/(𝐿(1)/𝑝𝐿) ≃ �̄�0 and that the form induced by 𝑏 on the former corresponds to
the form 𝜌(0) (𝑏), and so the rank of 𝐿0 and the discriminant of 𝑏 |𝐿0 are invariants.

Continue now with (𝐿⊥0 ,𝑝−1𝑏) and apply induction to obtain a Jordan split-
ting. Multiplying the form by 𝑝 we may then assume that we have found a Jordan
decomposition 𝐿⊥0 = ⦹𝑗≥1𝐿𝑗 (𝑝𝑗) such that 𝐿𝑗 ⊗ ℤ𝑝/𝑝ℤ𝑝 ≃ 𝜌(𝑗)𝐿 with 𝑏 |𝐿𝑗 corre-
sponding to 𝜌(𝑗) (𝑏). This yields the desired decomposition and it also shows that
ranks and discriminants of the 𝐿𝑗 are uniquely determined by 𝑏. □

Remark 10.2.7. For 𝑝 = 2 a Jordan splitting need not be unique. We discuss
this extensively in Appendix C. See in particular Lemma C.3.3 where relation (V)
as well as (VI) exhibit two distinct Jordan splittings for a non-degenerate rank 3
dyadic lattice. The summands on the left and on the right side of the equivalence
are indeed non-isometric since these have different discriminants. For uniqueness
for odd 𝑝, see Proposition 11.1.3.

Lemma 2.1.2 tells us that even integral lattices with odd discriminant have even
rank. Let us show that this is also an application of the local classification.

1The proof gives the compatibility relation 𝜌𝑘 (𝑏#𝐿 ) = 𝜌(𝑘) (𝐿, 𝑏).
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Corollary 10.2.8 (Suggested by M. Schütt). An even integral lattice of odd rank
has even discriminant.

Proof. The discriminant is the product of the local discriminants up to units (see
(1.19)). The contribution of an odd prime is always odd. We have seen that for
the prime 2 the only way to get an odd rank lattice is when diagonal forms split
off. But these can only come from even forms if they are of the form ⟨unit · 2𝑘⟩
with 𝑘 ≥ 1 and then the discriminant is even. □

10.3 Compatibility of Jordan Splittings for Lattices and their
Discriminant Forms

In this section we compare the Jordan splitting of a given 𝑝-adic lattice with the
Jordan splitting of its discriminant quadratic form as given by Theorem 9.3.12.

For 𝑝 odd Proposition 9.4.1 states that homogeneous symmetric and homoge-
neous quadratic 𝑝-primary torsion forms are diagonalizable, just as this is the case
for the 𝑝-adic lattices (cf. Proposition 10.2.2). The building blocks for homoge-
neous 2-primary symmetric and quadratic torsion forms are given by 9.4.2 which
parallels what Proposition 10.2.2 tells us for dyadic lattices. Since Jordan split-
tings respect orthogonal sums, to compare Jordan splittings for ℤ𝑝-lattices and
those of their discriminant forms, it suffices to do this for these building blocks.
The correspondence is given by Table 10.3.1. In the first two lines 𝑝 is on odd
prime. This table integrates the results on cyclic torsion groups from the table on
page 146 and from Table 6.1.1. As a consequence, the assignment{
isometry classes of symmetric
(quadratic) 𝑝-adic lattices

}
discriminant form−−−−−−−−−−−−−−−→

{
isometry classes of symmetric
(quadratic) 𝑝-torsion groups

}
is surjective. It is never injective since unimodular lattices have trivial discriminant
form. To make these results a bit more precise we need the following auxiliary result
which is an analog of Lemma 10.2.1:

Lemma 10.3.1. Let (𝐺, 𝑞) be a non-degenerate 𝑝-adic torsion quadratic group.
Write 𝑏 for the polar form of 𝑞. Let (𝑞(𝐺)) ⊂ ℚ𝑝/ℤ𝑝, (𝑏(𝐺,𝐺)) ⊂ ℚ𝑝/ℤ𝑝 be the
ℤ𝑝-submodule generated by the values of 𝑞(𝑥),𝑥 ∈ 𝐺, respectively 𝑏(𝑥, 𝑦),𝑥, 𝑦 ∈ 𝐺,
and let 𝑥0 ∈ 𝐺 such that 𝑞(𝑥0) generates (𝑞(𝐺)). Suppose that 2(𝑞(𝐺)) = (𝑏(𝐺,𝐺))
(which is the case for 𝑝 odd). Then the cyclic group generated by 𝑥0 splits off
orthogonally.

Consequently, if there is no non-degenerate cyclic torsion subgroup of 𝐺 which
splits off, then 𝑝 = 2 and 2(𝑞(𝐺)) ⊊ (𝑏(𝐺,𝐺)) ⊂ ℚ2/ℤ2.

Proof. A finitely generated ℤ𝑝-submodule of ℚ𝑝/ℤ𝑝 is generated by a single ele-
ment: a class whose representative has smallest 𝑝-adic valuation. Using this, the
proof is analogous to the proof of Lemma 10.2.1. □
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Table 10.3.1: Basic non-unimodular 𝑝-adic lattices and their discriminant forms

Lattice (symmetric) disc. group disc. bilin. form ——–

——– (quadratic) ——– discr. quadr. form

⟨𝑢 · 𝑝𝑘⟩,𝑢 ∈ ℤ×
𝑝, ℤ/𝑝𝑘ℤ ⟨𝑢 · 𝑝−𝑘⟩

[𝑢/2 · 𝑝𝑘] 𝑢 even [ 12𝑢 · 𝑝−𝑘]
⟨2⟩, ⟨−3 · 2⟩ ℤ/2ℤ ⟨2−1⟩

[1] [2−2]
⟨3 · 2⟩, ⟨−1 · 2⟩ ⟨2−1⟩

[3] [3 · 2−2]
⟨22⟩ ℤ/22ℤ ⟨2−2⟩
[2] [2−3]

⟨−3 · 22⟩ ⟨2−2⟩
[−3 · 2] [−3 · 2−3]
⟨3 · 22⟩ ⟨3 · 2−2⟩
[3 · 2] [3 · 2−3]

⟨−1 · 22⟩ ⟨3 · 2−2⟩
[−2] [−1 · 2−3]

⟨𝑢 · 2𝑘⟩, 𝑘 ≥ 3 ℤ/2𝑘ℤ ⟨𝑢 · 2−𝑘⟩
[𝑢 · 2𝑘−1], 𝑘 ≥ 3 [𝑢 · 2−𝑘−1]

𝑈𝑘, 𝑘 ≥ 1 ℤ/2𝑘ℤ × ℤ/2𝑘ℤ 𝑢𝑘 𝑢𝑘
𝑉1 ℤ/2ℤ × ℤ/2ℤ 𝑢1 = 𝑣1 𝑣1

𝑉𝑘, 𝑘 ≥ 2 ℤ/2𝑘ℤ × ℤ/2𝑘ℤ 𝑣𝑘 𝑣𝑘

Proposition 10.3.2 (Compatibility of splittings). 1. Let 𝐿 be a non-degenerate
symmetric or quadratic 𝑝-adic lattice with Jordan splitting

𝐿 = 𝐿0 ⦹ 𝐿1 (𝑝) ⦹ · · ·⦹ 𝐿𝑛 (𝑝𝑛). (10.1)

Then its discriminant form admits a Jordan splitting

dg𝐿 = dg𝐿1 (𝑝) ⦹ dg𝐿2 (𝑝2) ⦹ · · ·⦹ dg𝐿𝑛 (𝑝𝑛) . (10.2)

2. Given a basis for the homogeneous components of the discriminant form of
𝐿, there is a corresponding basis for the homogeneous components of 𝐿. More
precisely,

𝑝 odd. For all 𝑗 ≥ 1, let {𝑔(𝑗)
1 , . . . , 𝑔

(𝑗)
𝑠 } be an orthogonal basis for dg𝐿𝑗 (𝑝𝑗 )

with 𝑏#𝑗 (𝑔(𝑗)
𝑘

, 𝑔
(𝑗)
𝑘

) = 𝑢𝑘,𝑗𝑝
−𝑗, 𝑢𝑘,𝑗 a 𝑝-adic unit. Then there is an orthogonal

basis {𝑒(𝑗)1 , . . . , 𝑒
(𝑗)
𝑠 } for the summand 𝐿𝑗 (𝑝𝑗) of 𝐿 with 𝑏𝑗 (𝑒(𝑗)𝑘

, 𝑒
(𝑗)
𝑘

) = 𝑢𝑘,𝑗𝑝
𝑗.

A similar result is true for quadratic 𝑝-adic lattices.
𝑝 = 2. For all 𝑗 ≥ 1, let

dg𝐿𝑗 (2𝑗 ) = ⦹𝑎𝑗
𝑘=1

⟨𝑢𝑗,𝑘 · 2−𝑗⟩ ⦹𝑏𝑗 𝑣𝑗 ⦹𝑐𝑗 𝑢𝑗 , 𝑢𝑗,𝑘 ∈ D(ℤ/2𝑗+1ℤ),
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be an orthogonal direct sum splitting. Then there exists a compatible orthog-
onal direct sum splitting

𝐿𝑗 (2𝑗) = ⦹𝑎𝑗
𝑘=1

⟨�̃�𝑗,𝑘 · 2𝑗⟩ ⦹𝑏𝑗 𝑉𝑗 ⦹𝑐𝑗 𝑈𝑗 , �̃�𝑗,𝑘 ∈ D(ℤ2).

Here �̃�𝑗,𝑘 = 𝑢𝑗,𝑘 ∈ {±1,±3} if 𝑗 ≥ 2, while for 𝑗 = 1 the representative �̃�1,𝑘 ∈
{±1,±3} coincides up to multiplication by −3 mod 8 with the representative
𝑢1,𝑘 ∈ {1, 3}. In other words, such non-isometric rank one lattices have the
same discriminant form.

For 𝑗 ≥ 2, 𝑎𝑗 = 0 if and only if the ideal in ℤ2 generated by 𝑏𝑞 (𝐿𝑗 ,𝐿𝑗) differs
from the ideal generated by 2 · 𝑞𝑗 (𝐿𝑗) – or – equivalently, if and only the
submodule of ℚ2/ℤ2 generated by 𝑏𝑞 (𝐺𝑗 ,𝐺𝑗), 𝐺𝑗 = dg𝐿𝑗 (2𝑗 ), differs from the
submodule generated by 2 · 𝑞𝑗 (𝐺𝑗).
In particular, the vanishing or not of 𝑎𝑗 is an intrinsic property of the lattice.

Proof. Assertion 1 is self-evident.
Assertion 2. We shall apply induction on the number of indecomposable summands
and we may thus assume

𝐿 = 𝐿𝑗 (𝑝𝑗), 𝑗 ≥ 1, 𝐺 = dg𝐿,

with (𝐺, 𝑞) homogeneous of exponent 𝑗. This implies that the only elementary
divisor of the discriminant group is (𝑝𝑗) and that ⟨𝑏(𝐿,𝐿)⟩ = (𝑝𝑗).

Suppose that 𝑝 is odd. Then 2(𝑞(𝐺)) = (𝑝−𝑗), say 𝑞(𝑔) = 𝑢 · 𝑝−𝑗 with 𝑢 a unit
and 𝑔 ∈ 𝐺. Since 𝐺 is the discriminant group of 𝐿, there is an element 𝑦 = 𝑝−𝑗𝑥 ∈ 𝐿∗

which maps to 𝑔 and 2(𝑞(𝐿)) = (𝑞(𝑥)). As in the proof of Lemma 10.2.1 we can
split off ℤ𝑝 · 𝑥 from 𝐿. Applying induction proves the case where 𝑝 is odd.

For 𝑝 = 2 we apply the preceding argument first to the cyclic orthogonal sum-
mands 𝐺. The corresponding rank one dyadic lattice which splits off, say ℤ2 · 𝑥,
𝑥 ∈ 𝐿 with 𝑞(𝑥) = �̃� · 2−𝑗 , is uniquely determined if 𝑗 ≥ 2. For 𝑗 = 1, the non-
isometric lattices ⟨2⟩, ⟨−3 · 2⟩ have the same discriminant form and the unit �̃�
determines which of the two we have. This is also true for the two non-isometric
lattices ⟨−1 · 2⟩ and ⟨3 · 2⟩. In this way we split off all such cyclic summands. The
remaining indecomposable summands have rank 2. So we now assume that 𝐿 has
rank 2 and 𝑞 = 𝑏#𝐿 with polar form 𝑏. Lemma 10.3.1 implies that there are two
independent elements 𝑔,ℎ ∈ 𝐺 such that 𝑏(𝑔,ℎ) generates ⟨𝑏(𝐺,𝐺)⟩. Let 𝑥,𝑥′ ∈ 𝐿
be two independent elements such that 2−𝑗𝑥, 2−𝑗𝑥′ ∈ 𝐿∗ and which map to 𝑔 and
ℎ, respectively. By the argument used for the proof of Proposition 10.2.2, the
elements 𝑥,𝑥′ span an indecomposable dyadic sublattice. If 𝑞 = 𝑢𝑗 , then 𝐿 ≃ 𝑈𝑗

and if 𝑞 = 𝑣𝑗 , then 𝐿 ≃ 𝑉𝑗 .
Finally, 𝑎𝑗 = 0 means that 𝐺𝑗 has no cyclic summands and by Lemma 10.3.1

this is equivalent to 2(𝑞(𝐺𝑗)) ⊊ (𝑏𝑞 (𝐺𝑗 ,𝐺𝑗)). □

Remark 10.3.3. In Chapter 11 we return to the nature of the discriminant form
map on lattices whose rank equals the length of its discriminant quadratic form.
See Proposition 11.1.3 and Proposition 11.2.4.
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10.4 Application: the Hasse Invariants of 𝒑-adic Lattices

In this section we derive some results on the Hasse invariants which are going to
be used in Section 12.3. The calculations are based on the classification results for
𝑝-adic lattices we just derived. Since these split into a sum of rank one and rank
two lattices, we need a general rule which governs orthogonal sums.

Recall (cf. (3.1)) that the Hasse invariant for a diagonal form 𝑞 =
∑
𝑎𝑗𝑥

2
𝑗 ,

𝑎𝑗 ∈ ℚ𝑣, is given by 𝜀𝑣 (𝑞𝑣) =
∏

𝑖<𝑗 (𝑎𝑖 , 𝑎𝑗)𝑣, where (𝑎 , 𝑏)𝑣 is the Hilbert symbol (cf.
Appendix A.4). From the properties of the Hilbert symbol (cf. (A.10)) we find (for
any prime 𝑝):

Lemma 10.4.1. Let 𝑓, 𝑔 be two non-degenerate quadratic forms over ℚ𝑝. Then

𝜀𝑝 (𝑓⦹ 𝑔) = 𝜀𝑝 (𝑓) · 𝜀𝑝 (𝑔) · (disc(𝑓),disc(𝑔))𝑝.

Proof. Write 𝑓 =
∑
𝑎𝑘𝑥

2
𝑘
and 𝑔 =

∑
𝑏ℓ𝑦

2
ℓ . Then

𝜀𝑝 (𝑓⦹ 𝑔) = 𝜀𝑝 (𝑓) · 𝜀𝑝 (𝑔) ·
∏
𝑘,ℓ

(𝑎𝑘, 𝑏ℓ)𝑝

= 𝜀𝑝 (𝑓) · 𝜀𝑝 (𝑔) · (disc(𝑓),disc(𝑔))𝑝. □

Before using this, we raise a subtle point for dyadic lattices. In Chapter 3 the
convention is to calculate Hasse invariants for quadratic forms 𝑞 whose associated
bilinear form is given by half the polar form (cf. equation (3.2)). This influences
the calculation of the Hasse invariant of 𝑏ℚ𝑝 for the prime 2 (and for that prime
only). Let us illustrate this for the two basic unimodular dyadic lattices 𝑈 and
𝑉. The associated 2-adic quadratic forms used for the calculation are not 𝑥𝑦 and
𝑥2 + 𝑥𝑦 + 𝑦2 but half these forms:

2−1𝑥𝑦 = 2−3
(
(𝑥 + 𝑦)2 − (𝑥 − 𝑦)2

)
≃ℚ2

1
2𝑢

2 − 1
2𝑣

2

2−1 (𝑥2 + 𝑥𝑦 + 𝑦2) = 2−1 (𝑥 + 1
2𝑦)

2 + 3
8𝑦

2 ≃ℚ2
2𝑢2 + 3

2𝑣
2.

Formula (A.9) implies 𝜀2 (𝑈) = 1 while Theorem A.4.4 can be used to show that
𝜀2 (𝑉) = −1. One can also verify that 𝜀2 ( 12𝑈) = 1 and 𝜀2 ( 12𝑉) = 1, and so for the
Hasse invariant of 𝑉 the choice of 𝑏 matters. With this in mind, we calculate the
Hasse invariants for those lattices that we need later on.

Lemma 10.4.2. 1. Let 𝑝 be an odd prime and suppose that 𝑓 = 𝑝𝑘 · 𝑔 with 𝑔
unimodular of rank 𝑟. Then we have

𝜀𝑝 (𝑓) = (−1) 1
2
𝑟(𝑟−1)𝑘·𝜀(𝑝)

(
disc(𝑔)

𝑝

𝑘(𝑟−1)
)
, 𝜀(𝑝) =

{
0 if 𝑝 ≡ 1 mod 4

1 if 𝑝 ≡ 3 mod 4.

2. Let 𝑓 be a unimodular dyadic quadratic lattice of rank 𝑟𝑓 and discriminant
𝑑𝑓, and set

𝜇(𝑓) = −𝑟𝑓 − 𝑑𝑓 + 1, 𝛿𝑓 =
1

2
(𝑑𝑓 − 1).
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Then 𝜇(𝑓) is divisible by 4 and

𝜀2 (𝑓) = (−1) 1
4
𝜇(𝑓) = (−1) 1

4
(−𝑟𝑓−𝑑𝑓+1) .

If 𝑔 is also a unimodular form, then 𝜇(𝑓⦹ 𝑔) = 𝜇(𝑓) + 𝜇(𝑔) − 4𝛿𝑓 · 𝛿𝑔.

Proof. 1. For an odd prime 𝑝 a unimodular form 𝑔 has Hasse invariant 𝜀𝑝 (𝑔) = 1 as
follows from Hensel’s Lemma (See Example A.4.2) and the definition of the Hasse
invariant and Hilbert symbols. By Theorem A.4.4, a form 𝑝𝑘 · 𝑔 thus has Hasse
invariant as stated (since the exponent is only relevant modulo 2, the computation
comes down to counting the number of pairs in a diagonalization of 𝑓).
2. The addition formula for 𝜇 follows directly. Every unimodular quadratic dyadic
lattice is an orthogonal sum of copies of 𝑈 and 𝑉, for both of which 𝜇 is clearly
divisible by 4. Hence 𝜇 is divisible by 4.

The formula for 𝜀2 for 𝑈 and 𝑉 can be checked directly from what we said so
far. Using that for all possible dyadic units 𝑢,𝑢′ we have (𝑢 − 1) (𝑢′ − 1) ≡ 4 mod 8
if and only if 𝑢 ≡ 𝑣 ≡ −1 mod 4, Theorem A.4.4 implies

(−1) 1
4
(𝑑𝑓−1)·(𝑑𝑔−1) = (𝑑𝑓,𝑑𝑔)2,

which shows that the additive formula for 𝜇 matches the multiplicative formula
for the Hasse symbols from Lemma 10.4.1. Hence the expression for 𝜀2 holds
for orthogonal sums of 𝑈 and 𝑉. Again, since every unimodular quadratic dyadic
lattice is an orthogonal sum of lattices isometric to 𝑈 or to 𝑉, the result follows. □

Historical and Bibliographical Notes. That 𝑝-adic lattices admit a Jordan split-
ting is classical. See e.g. Chapter 8 in J. Cassels’ monograph [36]. The refined version
stated as Proposition 10.2.6, is essentially due to A. Durfee [56, §3]. The classification
of low rank 𝑝-adic lattices in Section 10.1 as well as the material in Section 10.3 follows
Chapter IV of the notes [156] by R. Miranda and D. Morrison. The application to the
Hasse invariants is modeled on the proof of Theorem 8.14 in [99].
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Normal Forms and the Genus

Introduction

The genus of a lattice turns out to be determined by the discriminant form and
the signature of the lattice. In this chapter we shall show this for even lattices.
For odd ones this is subtler and makes use of the theory developed in Chapter 12
and we relegate this to Section 12.5.

The proof uses normal forms for 𝑝-adic lattices and we compare these to the
normal forms for the discriminant forms as established in Chapter 9. The Jordan
splitting of a symmetric 𝑝-adic lattice given there is not unique. In Sections 11.1
and 11.2 we show that using suitable isometries essentially unique normal forms
are obtained. As a consequence, each quadratic or symmetric 𝑝-primary torsion
form is isometric to the discriminant form of a 𝑝-adic lattice in normal form. For
𝑝 odd this is without ambiguity. In Section 11.2 we show that this is almost true
for 𝑝 = 2 but not quite. The reason is that for the prime 2 normal forms for non-
homogeneous forms can give isometric lattices. This subtle problem is relegated
to Appendices C.3.A–C.3.B.

In Section 11.3, having come to grips with this problem, we achieve our goal
and prove that the genus of an integral quadratic lattice is indeed completely
determined by its index and discriminant quadratic form.

11.1 Normal Form Decomposition for odd 𝒑

We show that every non-degenerate symmetric torsion form 𝑏# on a (additively
written) finite abelian 𝑝-primary group 𝐺 is the discriminant form of a unique
non-degenerate 𝑝-adic lattice 𝐿𝑏# of rank ℓ(𝐺), the length of 𝐺. Existence has
been shown in the introductory discussion of Section 10.3. To show uniqueness,
we establish normal forms. We define these as follows:

Definition 11.1.1. Let 𝑝 be an odd prime.

• A homogeneous symmetric 𝑝-adic lattice of rank 𝑟 ≥ 1 and exponent 𝑘 is in
homogeneous normal form if it is of the form 𝐿𝑟,𝑢 (𝑝𝑘), where

𝐿𝑟,𝑢 = ⟨𝑢⟩ ⦹⦹𝑟−1⟨1⟩, 𝑢 ∈ ℤ×
𝑝 ,

a unimodular lattice.

• A symmetric 𝑝-adic lattice is in normal form if it is an orthogonal direct
sum of homogeneous normal forms.
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• A 𝑝-primary symmetric torsion form is in normal form if it is an orthogonal
sum of forms 𝑏#𝑟,𝑢 (𝑝−𝑘), the symmetric discriminant form of 𝐿𝑟,𝑢 (𝑝𝑘), 𝑘 ≥ 1.

Proposition 9.4.1 can be restated as the existence of normal forms for homoge-
neous 𝑝-primary symmetric torsion groups. We shall show that arguments similar
to those of Section 9.4 establish existence of normal forms for 𝑝-adic symmetric
lattices. First we observe:

Lemma 11.1.2. 1. For fixed 𝑟 there are exactly two isometry classes for 𝐿𝑟,𝑢
distinguished by 𝑢 being a square or a non-square modulo 𝑝.
2. Every non-degenerate 𝑝-adic lattice admits a normal form of the above shape.

Proof. It suffices to show item 1. Because of the existence of a Jordan splitting
(Proposition 10.2.6), for 𝑝-adic lattices we can reduce the proof to the unimodular
situation. Any unimodular lattice is of the form ⟨1⟩ ⦹ · · · ⦹ ⟨1⟩ ⦹ ⟨𝜖⟩ ⦹ · · · ⦹ ⟨𝜖⟩
where 𝜖 is a non-square unit. We claim that ⟨𝜖⟩⦹ ⟨𝜖⟩ is isometric to ⟨1⟩⦹ ⟨1⟩. To
see this we turn to Example A.4.2 which shows that the equation 𝜖(𝑥2 + 𝑦2) = 1
has a solution in ℤ𝑝, say (𝑥, 𝑦) = (𝑢, 𝑣). Consequently,(

𝑢 −𝑣
𝑣 𝑢

) (
𝜖 0
0 𝜖

) (
𝑢 𝑣
−𝑣 𝑢

)
=

(
1 0
0 1

)
,

which gives an explicit isometry between ⟨1⟩ ⦹ ⟨1⟩ and ⟨𝜖⟩ ⦹ ⟨𝜖⟩. Applying this
inductively proves the result in the unimodular situation and hence in general. □

To a 𝑝-primary torsion symmetric group (𝐺, 𝑏#) with 𝑏# in normal form

𝑏# := 𝑏#𝑟1,𝑢1
(𝑝−𝑘1 ) ⦹ · · ·⦹ 𝑏#𝑟𝑠 ,𝑢𝑠 (𝑝

−𝑘𝑠 ), (11.1)

as given in Proposition 9.4.1, we associate the 𝑝-adic lattice

𝐿𝑏# := 𝐿𝑟1,𝑢1
(𝑝𝑘1 ) ⦹ · · ·⦹ 𝐿𝑟𝑠 ,𝑢𝑠 (𝑝𝑘𝑠 ). (11.2)

Here 𝑘1, . . . , 𝑘𝑠 are positive integers and so ℓ(𝐺) = ∑𝑠
𝑗=1 𝑟𝑗 = rank(𝐿𝑏# ). So, recall-

ing Proposition 10.2.6, stating that the discriminant as well as the ranks of the
Jordan blocks are uniquely determined, we have shown:

Proposition 11.1.3. Let 𝑝 be an odd prime and let (𝐺, 𝑏#) be a non-degenerate
𝑝-primary torsion symmetric group of length ℓ(𝐺) with 𝑏# in normal form (11.1).
Then:

1. The lattice 𝐿𝑏# given by (11.2) is up to isometry the unique non-degenerate
𝑝-adic lattice of rank ℓ(𝐺) and discriminant form 𝑏#. Its discriminant equals
|𝐺 | · ∏𝑠

𝑘=1 𝑢𝑘 = |𝐺 | · 𝛿(𝑏#), where 𝛿(𝑏#) is the reduced discriminant of 𝑏#.

2. The discriminant form map{
isom. classes of 𝑝-adic

symmetric lattices of rank 𝑟

}
−−→

{
isom. classes of 𝑝-primary torsion

symmetric forms of length 𝑟

}
is injective (and hence bijective).
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Note that the restriction on the length of 𝐺 is necessary in order to achieve
injectivity for the map in item 2. This unicity result for normal forms makes it
possible to assign unambiguously a lattice 𝐿𝑏# to any symmetric torsion group
𝑏#, even if the latter is not in normal form. Using this convention, we have the
following normal forms for lattices of ranks possibly larger than the length of its
discriminant form:

Proposition 11.1.4 (Normal forms for non-degenerate 𝑝-adic lattices, 𝑝 odd).
Let 𝑝 be an odd prime, (𝐺, 𝑏#) a non-degenerate 𝑝-primary symmetric torsion
form, 𝑟 an integer ≥ ℓ(𝐺) and 𝑡 = 𝑟 − ℓ(𝐺).
1. Let 𝜖 be a non-square modulo 𝑝. A non-degenerate 𝑝-adic lattice 𝐿 of rank 𝑟 and
with discriminant form (𝐺, 𝑏#) is isometric to one of the following two lattices:{

𝐿 ≃ 𝐿𝑏# ⦹⦹𝑡 ⟨1⟩ if disc(𝐿) = disc(𝐿𝑏# ) = |𝐺 | · 𝛿(𝑏#)
𝐿 ≃ 𝐿𝑏# ⦹ ⟨𝜖⟩ ⦹𝑡−1 ⟨1⟩ if disc(𝐿) = 𝜖 · disc(𝐿𝑏# ) = |𝐺 | · 𝜖 · 𝛿(𝑏#).

(11.3)

2. Let �̃� be a non-degenerate integral lattice of rank 𝑟. Then the discriminant form
of �̃� determines the localization �̃�𝑝 up to isometry.

Proof. 1. This follows directly from what we have said so far since the unimodular
summand has two normal forms and which of the two occurs is uniquely determined
by disc(𝐿).
2. Let 𝑏# be the 𝑝-primary part of the discriminant symmetric form of the 𝑝-adic
lattice �̃�𝑝 = �̃� ⊗ ℤ𝑝. Let 𝐿𝑏# be the 𝑝-adic lattice determined by 𝑏# given in
equation (11.2). For 𝑡 we take 𝑟 − rank(𝐿𝑏# ). Depending on 𝑝 this results in one
of the two cases mentioned in 1. To determine which of the two, one proceeds
as follows. Referring to (1.18), the value of 𝑑𝑝 = disc(�̃�𝑝) is given by viewing the

integer disc(�̃�) = |𝐺 | · disc(�̃�∞) as a 𝑝-adic integer. Once 𝑑𝑝 is found, one writes
𝑑𝑝 = 𝜖𝑝 ·disc(𝐿𝑏# ) and if 𝜖𝑝 is a square mod 𝑝 the first alternative holds and if not,
the second takes place. □

Examples 11.1.5. 1. We take 𝑝 = 7. The squares modulo 7 are 1, 2, 4 and the non-
squares are 3, 5, 6. Consider the torsion form 𝑏# = ⟨3·7−1⟩⦹⟨7−1⟩⦹⟨5·7−2⟩. This is
already in normal form and it is the discriminant form of 𝐿𝑏# = ⟨3 ·7⟩⦹⟨7⟩⦹⟨5 ·72⟩.
Its discriminant equals 74 (up to squares of units) and so, for example, the normal
form of a 7-adic lattice 𝐿 of rank 8 with discriminant 5 · 74 and discriminant
symmetric form 𝑏# is 𝐿 = ⟨3 · 7⟩ ⦹ ⟨7⟩ ⦹ ⟨5 · 72⟩ ⦹ ⟨5⟩ ⦹⦹4⟨1⟩.
2. Let us consider the normal forms of the 𝑝-adic localizations of the A-D-E root
lattices, where 𝑝 is an odd prime. First of all we consider the unimodular root
lattice 𝐸8. Since disc(𝐸8) = 1, all of its localizations have discriminant 1. Hence,
the normal form of 𝐸8 ⊗ℤ𝑝 is the diagonal 𝑝-adic lattice ⦹8⟨1⟩. The normal forms
of the other root lattices depend on the odd prime 𝑝. To determine these, one may
use Table 4.1.1.

As an example, consider 𝐴5, which has discriminant 6 and discriminant group
isomorphic to ℤ/6ℤ = ℤ/2ℤ × ℤ/3ℤ. If 𝑝 ≠ 2, 3 the form 𝐴5 ⊗ ℤ𝑝 is unimodular
and its discriminant is a unit in ℤ𝑝 which may or may not be a square modulo
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𝑝. For instance, 6 is a non-square modulo 7 and so 𝐴5 ⊗ ℤ7 � ⟨6⟩ ⊕ ⊕4⟨1⟩, while
𝐴5 ⊗ ℤ5 � ⊕5⟨1⟩ since 6 is a square modulo 5. For 𝑝 = 3 we need the 3-adic
discriminant symmetric form of 𝐴5 which is the restriction of the discriminant
form of 𝐴5 to the 3-primary part by (1.20). The discriminant form of 𝐴5 is ⟨5/6⟩.
The 3-primary part of ℤ/6ℤ is isomorphic to ℤ/3ℤ and generated by the class of
2 in ℤ/6ℤ, so that the 3-adic discriminant symmetric form 𝑏# is determined by
its value on the pair (2, 2), which is 22 · 5/6 ≡ 1/3 modulo ℤ. So 𝑏# = ⟨1/3⟩ and
𝐿𝑏# = ⟨3⟩. Hence 𝐴5 ⊗ℤ3 has normal form ⟨3⟩ ⊕ ⟨2⟩ ⊕ ⊕3⟨1⟩ since 2 is a non-square
in ℤ3.

11.2 Normal Form Decomposition for 𝒑 = 2

For 𝑝 = 2 it is more involved to give normal forms. By Proposition 10.3.2 it suf-
fices to give normal forms for homogeneous lattices and homogeneous discriminant
forms. We saw that a homogeneous dyadic bilinear or quadratic form of given
exponent 𝑗 and given length ℓ𝑗 can be written as a direct sum

⦹𝑎𝑗
𝑘=1

⟨�̃�𝑗,𝑘 · 2𝑗⟩ ⦹𝑏𝑗 𝑉𝑗 ⦹𝑐𝑗 𝑈𝑗 , 𝑎𝑗 + 2(𝑏𝑗 + 𝑐𝑗) = ℓ𝑗 ,

but a priori this decomposition is not unique. For classifying purposes, we use
the isometries below to reduce the number of representations considerably. Since
the isometries are also valid between the corresponding discriminant forms, we can
make similar reductions on the level of discriminant forms.

Lemma 11.2.1 (Relations between dyadic lattices and 2-primary torsion forms).
Let 𝑢,𝑢′,𝑢′′ be units in ℤ2. Then 𝑣 = 𝑢𝑢′ + 𝑢𝑢′′ + 𝑢′𝑢′′ is a 2-adic unit with
𝑣 ≡ 3 mod 8 or 𝑣 ≡ −1 mod 8 and the following relations hold between symmetric
2-adic lattices:

𝑈𝑘 ⦹𝑈𝑘 ≃ 𝑉𝑘 ⦹ 𝑉𝑘, 𝑘 ≥ 0, (I)

(⟨𝑢⟩ ⦹ ⟨𝑢′⟩ ⦹ ⟨𝑢′′⟩)(2𝑘) ≃


𝑉𝑘 ⦹ ⟨(𝑢 + 𝑢′ + 𝑢′′) · 2𝑘⟩

in case 𝑢𝑢′ + 𝑢𝑢′′ + 𝑢′𝑢′′ ≡ 3 mod 8

𝑈𝑘 ⦹ ⟨(𝑢 + 𝑢′ + 𝑢′′) · 2𝑘⟩
in case 𝑢𝑢′ + 𝑢𝑢′′ + 𝑢′𝑢′′ ≡ −1 mod 8

𝑘 ≥ 0 (II)

(⟨𝑢⟩ ⦹ ⟨𝑢′⟩)(2𝑘) ≃ (⟨−3𝑢⟩ ⦹ ⟨−3𝑢′⟩)(2𝑘), 𝑘 ≥ 0 (III)

There are similar relations (I) – (III) between the corresponding discriminant
forms.

The proofs, although straightforward, have been placed in Appendix C.3.A.
The relation (II) serves to reduce the number of cyclic summands to at most 2,
and using (I), the number of summands 𝑉𝑘 can be reduced to at most 1. This leads
to the following definition.
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Definition 11.2.2. • A homogeneous symmetric dyadic lattice of rank 𝑟 and
exponent 𝑘 is in normal form if it is of the form 𝐿(2𝑘) with

𝐿 = ⦹𝑖≤𝑎 ⟨𝑢(𝑖)⟩ ⦹⦹𝑏𝑉 ⦹𝑐 𝑈, 𝑎 ≤ 2, 𝑏 ≤ 1, 𝑐 =
1

2
(𝑟 − 𝑎) − 𝑏 ≥ 0,𝑢(𝑖) ∈ ℤ×

2 .

For 𝑘 = 0 and 𝐿 an even dyadic lattice, the cyclic forms are not present, that
is, 𝑎 = 0 in this case.

• A symmetric dyadic lattice is in normal form if it is the orthogonal direct
sum of homogeneous normal forms.

• A 2-primary symmetric (quadratic) torsion form is in normal form if it is
the discriminant form of a symmetric (quadratic) dyadic lattice in normal
form.

The above relations immediately imply the following result:

Proposition 11.2.3. • Let (𝐿, 𝑏) be a non-degenerate symmetric (quadratic)
dyadic lattice. Then 𝐿 is isometric to a normal form and so is its symmetric
(quadratic) discriminant form.

• Every 2-primary symmetric (quadratic) torsion form is isometric to a normal
form. Moreover, there is a one-to-one correspondence between normal forms
for symmetric and quadratic torsion forms on the same torsion group (with
the same notation, as illustrated in the table below).

It should be observed right away that two different 2-primary quadratic torsion
forms can have isometric symmetric torsion forms which complicates the classifica-
tion. Table 9.1.1 shows that, furthermore, the basic symmetric (quadratic) torsion
form 𝑏# (resp. 𝑞#) of length ≤ 2 can be the discriminant form of several lattices
(of rank equal to the length of the torsion group) which in the table are denoted
𝐿𝑏# , (resp. 𝐿𝑞#).

Table 11.2.1: Symmetric versus quadratic torsion forms (𝑝 = 2)

exponent 𝑏# 𝐿𝑏# 𝑞# 𝐿𝑞# 𝑢

1 ⟨2−1⟩ ⟨𝑢 · 2⟩ [2−2] ⟨𝑢 · 2⟩ 1,−3 mod 8
1 ⟨2−1⟩ ⟨3𝑢 · 2⟩ [3 · 2−2] ⟨3𝑢 · 2⟩ 1,−3 mod 8
2 ⟨2−2⟩ ⟨𝑢 · 22⟩ [3𝑢 · 2−3], ⟨𝑢 · 22⟩ 1,−3 mod 8
2 ⟨3 · 2−2⟩ ⟨3𝑢 · 22⟩ [3𝑢 · 2−3] ⟨3𝑢 · 22⟩ 1,−3 mod 8

≥ 3 ⟨𝑢 · 2−𝑘⟩ ⟨𝑢 · 2𝑘⟩ [𝑢 · 2−𝑘−1] ⟨𝑢 · 2𝑘⟩ ±1,±3 mod 8
1 𝑢1 𝑈1 𝑢1 𝑈1

1 𝑣1 = 𝑢1 𝑉1 𝑣1 𝑉1
≥ 2 𝑢𝑘 𝑈𝑘 𝑢𝑘 𝑈𝑘
≥ 2 𝑣𝑘 𝑉𝑘 𝑣𝑘 𝑉𝑘

To explain this, recall that symmetric (quadratic) torsion forms on the cyclic
group ℤ/2𝑘ℤ have been classified in Table 6.1.1. If 𝑘 ≥ 3 non-isometric quadratic
torsion groups have non-isometric polar forms and determine the same rank one
lattice 𝐿𝑏# . A symmetric torsion group 𝐺 isomorphic to ℤ/2ℤ or to ℤ/4ℤ is the
discriminant form of four, respectively two rank one dyadic lattices having different
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values for |𝐺 |−1 disc(𝐿𝑏# ) mod 8. Hence the occurrence of two or four non-isometric
dyadic lattices with isometric discriminant form. In the quadratic situation this
discordance happens only for ℤ/2ℤ and then each form is the discriminant form of
two non-isometric lattices.

As for 𝑈𝑘 and 𝑉𝑘, recall (cf. Table 10.3.1) that the quadratic discriminant
symmetric forms 𝑢1 and 𝑣1 have the same polar form. Consequently, the two non-
isometric quadratic lattices 𝑈1,𝑉1 have isometric symmetric discriminant forms
but non-isometric quadratic discriminant forms. For 𝑘 ≥ 2 this discrepancy does
not occur.

Quadratic Dyadic Lattices. The previous considerations lead to Table 11.2.2

which enumerates certain lattices 𝐿𝑞# ,𝐿
(1)
𝑞#

,𝐿(2)
𝑞#

associated to homogeneous 2-primary

torsion forms 𝑞# in standard form (here 𝑢 ≡ ±1,±3 mod 8 if 𝑘 ≥ 2 and 𝑢 ≡
1, 3 mod 4 if 𝑘 = 1).

Table 11.2.2: Homogeneous dyadic quadratic normal forms of exponent 𝑘 ≥ 1.

Discriminant form 𝑞# Range 𝑎 𝑏 |𝐺 |−1 disc(𝐿𝑞# ) Normal form 𝐿𝑞#

⦹𝑐𝑢𝑘 𝑘 ≥ 1 0 0 (−1)𝑐 𝐿𝑞# = ⦹𝑐𝑈𝑘

⦹𝑐𝑢𝑘 ⦹ 𝑣𝑘 𝑘 ≥ 1 0 1 3(−1)𝑐 𝐿𝑞# = ⦹𝑐𝑈𝑘 ⦹ 𝑉𝑘
[𝑢 · 2−𝑘−1] ⦹𝑐 𝑢𝑘 𝑘 ≥ 2 1 0 𝑢 · (−1)𝑐 𝐿𝑞# = ⟨𝑢 · 2𝑘⟩ ⦹𝑐 𝑈𝑘

[𝑢 · 2−𝑘−1]⦹ 𝑘 ≥ 2 1 1 3𝑢 · (−1)𝑐 𝐿𝑞# = ⟨𝑢 · 2𝑘⟩⦹
⦹𝑐𝑢𝑘 ⦹ 𝑣𝑘 ⦹𝑐𝑈𝑘 ⦹ 𝑉𝑘

[𝑢 · 2−𝑘−1] ⦹ [𝑢′ · 2−𝑘−1] 𝑘 ≥ 2 2 0 𝑢𝑢′ · (−1)𝑐 𝐿𝑞# = ⟨𝑢 · 2𝑘⟩ ⦹ ⟨𝑢′ · 2𝑘⟩
⦹𝑐𝑢𝑘 ⦹𝑐𝑈𝑘

[𝑢 · 2−𝑘−1] ⦹ [𝑢′ · 2−𝑘−1] 𝑘 ≥ 2 2 1 3𝑢𝑢′ · (−1)𝑐 𝐿𝑞# = ⟨𝑢 · 2𝑘⟩ ⦹ ⟨𝑢′ · 2𝑘⟩
⦹𝑐𝑢𝑘 ⦹ 𝑣𝑘 ⦹𝑐𝑈𝑘 ⦹ 𝑉𝑘

⟨𝑢 · 2−1⟩ ⦹𝑐 𝑢1 𝑘 = 1 1 0 𝑢 · (−1)𝑐 𝐿
(1)
𝑞#

= ⟨𝑢 · 2⟩ ⦹𝑐 𝑈1

−3𝑢 · (−1)𝑐 𝐿
(2)
𝑞#

= ⟨−3𝑢 · 2⟩ ⦹𝑐 𝑈1

[𝑢 · 2−2]⦹ 𝑘 = 1 1 1 3𝑢 · (−1)𝑐 𝐿
(1)
𝑞#

= ⟨𝑢 · 2⟩⦹
⦹𝑐𝑢1 ⦹ 𝑣1 ⦹𝑐𝑈1 ⦹ 𝑉1

−𝑢 · (−1)𝑐 𝐿
(2)
𝑞#

= ⟨−3𝑢 · 2⟩⦹
⦹𝑐𝑈1 ⦹ 𝑉1

[𝑢 · 2−2] ⦹ [𝑢′ · 2−2] 𝑘 = 1 2 0 𝑢𝑢′ · (−1)𝑐 𝐿
(1)
𝑞#

= ⟨𝑢 · 2⟩ ⦹ ⟨𝑢′ · 2⟩
⦹𝑐𝑢1 ⦹𝑐𝑈1

−3𝑢𝑢′ · (−1)𝑐 𝐿
(2)
𝑞#

= ⟨−3𝑢 · 2⟩ ⦹ ⟨𝑢′ · 2⟩
⦹𝑐𝑈1

[𝑢 · 2−2] ⦹ [𝑢′ · 2−2] 𝑘 = 1 2 1 3𝑢𝑢′ · (−1)𝑐 𝐿
(1)
𝑞#

= ⟨𝑢 · 2⟩ ⦹ ⟨𝑢′ · 2⟩
⦹𝑐𝑢1 ⦹ 𝑣1 ⦹𝑐𝑈1 ⦹ 𝑉1

−𝑢𝑢′ · (−1)𝑐 𝐿
(2)
𝑞#

= ⟨−3𝑢 · 2⟩ ⦹ ⟨𝑢′ · 2⟩
⦹𝑐𝑈1 ⦹ 𝑉1
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From the table we derive the classification:

Proposition 11.2.4. Let (𝐺, 𝑞#) be a quadratic 2-primary torsion group of length
𝑟 decomposed into homogeneous normal form. Then the following two types of
forms occur, each with different behaviour with respect to normal forms:

Type 1. No cyclic orthogonal summands of order 2 split off from 𝑞#. Then there
is a unique isometry class of a dyadic lattice 𝐿 of rank 𝑟 with discriminant
form 𝑞# represented by the normal form 𝐿𝑞# with discriminant 𝛿(𝑞#) · |𝐺 |.

Type 2. Otherwise there are precisely two isometry classes 𝐿(𝑖)
𝑞#

, 𝑖 = 1, 2, of rank

𝑟 lattices with discriminant form 𝑞# in normal form characterized by their

discriminants, disc(𝐿(1)
𝑞#

) = 𝛿(𝑞#) · |𝐺 |, respectively disc(𝐿(2)
𝑞#

) = −3 ·𝛿(𝑞#) · |𝐺 |.

Moreover the discriminant form map{
isom. classes of dyadic

quadratic lattices of rank 𝑟

}
−−→

{
isom. classes of 2-primary torsion

quadratic forms of length 𝑟

}
is surjective, and injective on the preimage of type 1 forms, and two-to-one onto
on the preimage of type 2 forms.

Proof. As we explained at the start of the section, every quadratic torsion form is
isometric to one in normal form. On the other hand, by Proposition 10.3.2, every
quadratic torsion form is the discriminant quadratic form of a dyadic lattice with
a similar Jordan splitting. So, if we start with a quadratic dyadic form 𝑞#, then
there is an isometry bringing 𝑞# in normal form and a corresponding lattice 𝐿 in
normal form whose discriminant quadratic torsion form is isometric to 𝑞#.

We only have to check in which cases several non-isometric lattices in normal
form have discriminant forms with the same normal form. As explained just before
the statement of this proposition, if 𝑘 ≥ 2 this does not occur. For 𝑘 = 1, one sees
from the tables that as soon as one or two cyclic summands of type ⟨𝑢 · 2−1⟩ are
present there are exactly two non-isometric lattices in normal form whose discrim-
inant form is the given one. A priori, in case 𝑎 = 2 (see Definition 11.2.2 and Ta-
ble 11.2.2), there could be more such lattices, but relation (III) (see Lemma 11.2.1),
which has not been used yet, in each case reduces the possibilities to the two stated
ones.

We see from Table 11.2.2 that these two lattices in normal form have distinct
discriminant and so are not isometric, while their discriminant forms are isometric.
Indeed, as we recalled before starting the proof, in the latter situation the units
𝑢,𝑢′ have to be considered modulo 4 instead of modulo 8. □

Examples 11.2.5. 1. From Table 11.2.2 we see that there are two normal forms
of non-degenerate quadratic torsion forms on ⊕5ℤ/23ℤ. First of all, ⟨𝑢 · 2−3⟩⦹2 𝑢3,
the discriminant form of ⟨𝑢 · 23⟩ ⦹2 𝑈3, and, secondly, ⟨𝑢 · 2−3⟩ ⦹ 𝑢3 ⦹ 𝑣3, the
discriminant form of ⟨𝑢 · 23⟩ ⦹𝑈3 ⦹ 𝑉3.
2. On ⦹6ℤ/2ℤ we have the following possibilities for non-degenerate quadratic
torsion forms:
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• ⦹3𝑢1, the discriminant form of ⦹3𝑈1;

• ⦹2𝑢1 ⦹ 𝑣1, the discriminant form of ⦹2𝑈1 ⦹ 𝑉1;

• ⟨𝑢 · 2−1⟩⦹ ⟨𝑢′ · 2−1⟩⦹2 𝑢1, the discriminant form of ⟨𝑢 · 2⟩⦹ ⟨𝑢′ · 2⟩⦹2 𝑈1 or
of ⟨−3𝑢 · 2⟩ ⦹ ⟨𝑢′ · 2⟩ ⦹2 𝑈1;

• ⟨𝑢 ·2−1⟩⦹ ⟨𝑢′ ·2−1⟩⦹𝑢1⦹𝑣1, the discriminant form of ⟨𝑢 ·2⟩⦹ ⟨𝑢′ ·2⟩⦹𝑈1⦹𝑉1

or of ⟨−3𝑢 · 2⟩ ⦹ ⟨𝑢′ · 2⟩ ⦹𝑈1 ⦹ 𝑉1.

We next use the above classification to find normal forms for discriminant forms
of several integral lattices related to root lattices.
3. The unimodular lattice 𝐸8 has discriminant 1. Likewise, 𝐸8 ⊗ ℤ2 is unimodular
with discriminant 1. Hence (see Example 10.2.3) it is isometric to ⦹4𝑈 ⊗ ℤ2. To
find the discriminant form for 𝐿 = 𝐸8 (2𝑘), arguing as in Example 1.6.8.2, we see
that 𝑏#𝐿⊗ℤ2

= 𝑏#𝐿 ≃ ⦹4𝑢𝑘.

4. The lattice 𝐸7 has 2-primary discriminant quadratic form 𝑞# = ⟨3 · 2−1⟩ with

𝐿(1)
𝑞#

= ⟨3 · 2⟩ and 𝐿(2)
𝑞#

= ⟨−1 · 2⟩. Then 𝐸7 ⊗ ℤ2 has normal form ⟨−1 · 2⟩ ⦹ ⦹3𝑈

since disc(𝐸7) = 2 = (−2) · (−1)3. Turning to 𝐸7 (2𝑘), one then finds that 𝑞#
𝐸7 (2𝑘)

=

⟨−2−𝑘−1⟩ ⦹⦹3𝑢𝑘 .

The next task is to describe standard forms for dyadic lattices 𝐿 whose ranks are
not necessarily equal to the length of their discriminant group dg𝐿. Observe that a
unimodular even ℤ2-lattice must have even rank as follows from the normal form
decomposition. So the unimodular summands that need to be added to the forms

𝐿𝑞# or 𝐿(1)
𝑞#

,𝐿(2)
𝑞#

can only be of rank two. This explains why rank(𝐿) − ℓ(𝐺) is an
even number in the statement of the main result, the analog of Proposition 11.1.4.

Proposition 11.2.6 (Normal forms for quadratic dyadic lattices). Let (𝐺, 𝑞#).
be a 2-primary quadratic torsion group, 𝑟 an integer ≥ ℓ(𝐺) and 𝑡 = 𝑟 − ℓ(𝐺).

1. A non-degenerate even 2-adic lattice 𝐿 of rank 𝑟 and with discriminant quadratic
form (𝐺, 𝑞#) is isometric to one of the following two types of lattices:
(a) If 𝑞# has no cyclic orthogonal summands of order 2 in its normal form
decomposition, then

𝐿 ≃
{
⦹ 1

2
𝑡𝑈 ⦹ 𝐿𝑞# if disc(𝐿) = disc(𝐿𝑞# ) · (−1)

1
2
𝑡

⦹ 1
2
𝑡−1𝑈 ⦹ 𝑉 ⦹ 𝐿𝑞# if disc(𝐿) = disc(𝐿𝑞# ) · 3 · (−1)

1
2
𝑡−1.

(11.4)

(b) Otherwise, that is, if 𝑞# ≃ ⟨𝑢 · 2−1⟩ ⦹ 𝑞′ for some unit 𝑢 ∈ ℤ2, then

𝐿 ≃ ⦹
1
2
𝑡𝑈 ⦹ 𝐿(𝑖)

𝑞#
, 𝑖 = 1, 2. (11.5)

Which of the two cases occurs can be determined as follows: If 𝛿(𝑞#) · |𝐺 | ≡
(−1) 1

2
𝑡 disc(𝐿) mod 4, then 𝑖 = 1 and otherwise 𝑖 = 2.
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2. Let �̃� be a non-degenerate even integral lattice of rank 𝑟. Then the discrimi-
nant form of �̃� determines the localization �̃�2 uniquely up to isometry.

Proof. 1. Case (a) follows from what we have said. If ⟨𝑢 · 2−1⟩ occurs, one uses
relation (I) from Lemma 11.2.1 to replace 𝑉 with 𝑈 should it occur. Then apply
Proposition 11.2.4.
2. This is a direct consequence of the foregoing. □

Examples 11.2.7. We return to the non-degenerate quadratic forms 𝑞# on the
first two torsion groups listed in Examples 11.2.5 and corresponding dyadic lattices
𝐿𝑞# . Here we search for dyadic lattices 𝐿 of rank 4 + ℓ(𝐺) where 𝐺 is the stated
discriminant group.
1. For the first example with 𝐺 = ⊕5ℤ/23ℤ, ℓ(𝐺) = 5, there are two possible
quadratic forms 𝑞#:

• 𝑞# = ⟨𝑢·2−3⟩⦹2𝑢3 with 𝐿𝑞# = ⟨𝑢·23⟩⦹2𝑈3. Then either 𝐿 ≃ ⟨𝑢·23⟩⦹2𝑈3⦹2𝑈
with discriminant 𝑢 · 215 or 𝐿 ≃ ⟨𝑢 · 23⟩ ⦹2 𝑈3 ⦹ 𝑈 ⦹ 𝑉 with discriminant
−3𝑢 · 215. So in this case disc(𝐿) ≠ −𝑢, 3𝑢.

• 𝑞# = ⟨𝑢 ·2−3⟩⦹𝑢3⦹𝑣3 with 𝐿𝑞# = ⟨𝑢 ·23⟩⦹𝑈3⦹𝑉3. Then either 𝐿 ≃ ⟨𝑢 ·23⟩⦹
𝑈3⦹𝑉3⦹2𝑈 with discriminant −3𝑢 ·215 or 𝐿 ≃ ⟨𝑢 ·23⟩⦹𝑈3⦹𝑉3⦹𝑈⦹𝑉 with
discriminant 𝑢 · 215 (up to squares of units) and here also disc(𝐿) ≠ −𝑢, 3𝑢.
So no rank 9 lattices 𝐿 with dg𝐿 = 𝐺 and disc(𝐿) = −𝑢, 3𝑢 exist.

2. For the second example, 𝐺 = ⊕6ℤ/2ℤ, ℓ(𝐺) = 6 and there are four possible 𝑞#.
We search for rank 10 dyadic lattices 𝐿 with discriminant −3 · 26, starting with the

rank 6 lattices 𝐿𝑞# in the first two cases and both forms 𝐿(𝑖)
𝑞#

, 𝑖 = 1, 2, in the last

two cases:
• 𝐿𝑞# = ⦹3𝑈1 has discriminant −26. It is impossible to get the required dis-
criminant −3 · 26 from this since 𝑈 ⦹𝑈 has discriminant 1.

• 𝐿𝑞# = ⦹2𝑈1 ⦹ 𝑉1 has discriminant 3 · 26 which is not possible for the same
reason.

• Here 𝐿(1)
𝑞#

= ⟨𝑢 · 2⟩⦹ ⟨𝑢′ · 2⟩⦹2 𝑈1 and one has disc(𝐿(1)
𝑞#

) = 𝑢𝑢′ · 26. However,

𝐿 = 𝐿(1)
𝑞#

⦹2 𝑈 has discriminant 𝑢𝑢′26 which is never equal to −3 · 26 since

𝑢,𝑢′ ∈ {1, 3}.
If 𝐿(2)

𝑞#
= ⟨−3𝑢 · 2⟩⦹ ⟨𝑢′ · 2⟩⦹2 𝑈1, the discriminant is −3𝑢𝑢′ · 26 and in order

that 𝐿 = 𝐿(2)
𝑞#

⦹2 𝑈, we must have 𝑢𝑢′ = 1, i.e, 𝑢 = 𝑢′.

• Here 𝐿(1)
𝑞#

= ⟨𝑢 ·2⟩⦹ ⟨𝑢′ ·2⟩⦹𝑈1⦹𝑉1 or 𝐿(2)
𝑞#

= ⟨−3𝑢 ·2⟩⦹ ⟨𝑢′ ·2⟩⦹𝑈1⦹𝑉1 with

discriminant −3𝑢𝑢′ ·26, respectively 𝑢𝑢′ ·26. In the first case 𝐿 = 𝐿(1)
𝑞#

⦹𝑈⦹𝑈

and so we must have 𝑢𝑢′ = 1, i.e, 𝑢 = 𝑢′. The second case is impossible.

11.3 Characterizing the Genus of a Quadratic Lattice

Recall that the genus of a non-degenerate symmetric lattice 𝐿 consists of the set
of isometry classes of lattices whose localisations are isometric to those of 𝐿, and
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that the isometry class of 𝐿∞ = 𝐿ℝ is determined by its signature since 𝐿∞ is
non-degenerate. For prime numbers 𝑝 the isometry class of the localization 𝐿𝑝 is
determined by its Hasse invariant, but only over the field ℚ𝑝 and so extra informa-
tion is needed. Classically this gives a description of the genus in terms of Hasse
invariants.

We show now a major consequence of what we have done in this chapter, namely
a characterization of the genus for non-degenerate quadratic lattices (equivalently,
non-degenerate even symmetric lattices). It uses the notion of genus invariant:

Definition. The genus invariant of a non-degenerate integral quadratic
lattice (𝐿, 𝑞) is the triple g(𝐿) := (𝑟+, 𝑟−, [𝑞#𝐿 ]), where (𝑟+, 𝑟−) is the signa-

ture of 𝐿 and [𝑞#𝐿 ] is the isometry class of the discriminant quadratic form

𝑞#𝐿 of 𝐿.

Theorem 11.3.1 (Nikulin [171, Cor. 1.9.4]). The genus of a non-degenerate
quadratic lattice (𝐿, 𝑞) is completely determined by its genus invariant g(𝐿).

Proof. The discriminant group dg𝐿 of 𝐿 splits into its 𝑝-primary constituents. Now
formula (1.19) from Chapter 1 shows that up to sign these determine the discrim-
inant of 𝐿 while the signature yields the sign. Formula (1.18) then shows how to
extract disc(𝐿𝑝) for a given prime 𝑝. The rank of 𝐿 is also determined from the
signature and we have now all the ingredients to apply Propositions 11.1.4 and
11.2.6. As we saw, these results make it possible to determine the isometry class
of 𝐿𝑝 given a), the 𝑝-primary part of the discriminant form 𝑞#, and b), the local
discriminant disc(𝐿𝑝). □

Examples 11.3.2. 1. The lattices Γ16 and Γ8 ⦹ Γ8 (≃ 𝐸8 ⦹ 𝐸8). We calculate
the Hasse invariants using Lemma 10.4.2. Being unimodular, both have 𝜀𝑝 = 1
for 𝑝 odd. Since disc(Γ8) = disc(Γ16) = 1 we find 𝜇(Γ8 ⦹ Γ8) = 𝜇(Γ16) = −16
and so 𝜀2 (𝑓) = 1 in both cases. It follows that both lattices have the same Hasse
invariants. This shows that there is an isometry between the localized lattices, but
the isometry is a priori only over ℚ𝑝. The case ℚ∞ is evident. The next example
shows that they are isometric over ℤ𝑝, i.e. they belong to the same genus.
2. Unimodular quadratic lattices. These have 0 discriminant form and hence
the genus is completely determined by the signature. In particular all positive
definite even unimodular lattices of the same rank are in one genus.

Historical and Bibliographical Notes. Most of this material is due to V. Nikulin,

cf. [171]. The proof of Lemma 11.2.1 is from Ch. IV of the preprint [156] by R. Miranda–

D. Morrison.
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Integral Lattices: the Discriminant Form

Introduction

In this chapter we consider integral lattices in relation to their discriminant forms.

We saw in Chapter 11 that every 𝑝-primary quadratic torsion group is the dis-
criminant form of a 𝑝-adic lattice. A further natural question is: Is every quadratic
torsion group the discriminant form of an integral lattice? This is indeed the case
as is shown in Section 12.1. Clearly, uniqueness does not hold since the discrim-
inant form for a unimodular lattice is zero. Conversely, a non-degenerate lattice
with zero discriminant form is unimodular. However, this is the only obstruction
to uniqueness as we shall show in Section 12.2. Since the index of a unimodular
even lattice is divisible by 8, this result enables us to define the mod 8 index of a
quadratic torsion form 𝑞#, denoted 𝜏8 (𝑞), as the index of any even lattice with 𝑞#

as discriminant quadratic form.

A more precise existence result can be stated provided one prescribes the sig-
nature, say (𝑟+, 𝑟−): The main result, Theorem 12.4.4 of Section 12.4, states that
(modulo some technical condition), a quadratic torsion form 𝑞# with 𝜏8 (𝑞#) ≡
𝑟+ − 𝑟− (mod 8) is the discriminant form of a non-degenerate even integral lattice
with signature (𝑟+, 𝑟−) provided of course the rank 𝑟+ + 𝑟− is at least as large at the
length of 𝑞#. This result pins down the importance of the index mod 8. It turns
out that knowing its values for the basic building blocks is essential. These are
calculated in Section 12.3.

In Section 12.5 the techniques developed so far are applied to odd lattices. This
uses the basic observation that if 𝐿 is any lattice, even or odd, the lattice 𝐿(2) is
certainly even. From previous results on even lattices it follows firstly that also
the genus of an odd lattice is determined by its signature and discriminant bilinear
form. Secondly, these lead to an existence criterion for odd lattices.

12.1 Existence of Quadratic Integral Lattices with Given Dis-
criminant Form

Analogous to diagram 1.20 – which applies to symmetric lattices – there is a
commutative diagram in the quadratic setting (equivalently, for even symmetric
lattices):
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Localization

quadratic
ℤ-lattice (𝐿, 𝑞) localization in 𝑝

//

discriminant form

��

𝑝-adic
lattice (𝐿𝑝, 𝑞𝑝)

discriminant form
��

quadratic torsion

group (dg𝐿, 𝑞
#
𝐿 ) 𝑝-primary part

// 𝑝-primary quadratic

torsion group (dg𝐿𝑝 , 𝑞
#
𝐿𝑝
)

(12.1)

In other words, the discriminant group of 𝐿𝑝 = 𝐿 ⊗ ℤ𝑝 is the 𝑝-primary part 𝐺𝑝

of the discriminant group of 𝐿 and the discriminant form for 𝐿𝑝 can be identified
with the restriction to 𝐺𝑝 of the discriminant form for 𝐿.

The main results of Chapter 11 can be summarized concisely by saying that the
right-most vertical arrow is surjective. We next prove an existence result which
shows that the left-most vertical arrow is a surjection:

Theorem 12.1.1. Every non-degenerate quadratic torsion form is the discrimi-
nant quadratic form of a non-degenerate quadratic lattice.

Proof. Let us recall that in Section 9.3 we showed that a non-degenerate quadratic
torsion form splits orthogonally into homogeneous 𝑝-primary torsion groups. These
decompose further, as we saw in Section 9.4, into orthogonal sums of forms on the
cyclic groups ℤ/𝑝𝑘ℤ and (if 𝑝 = 2) into the binary forms 𝑢𝑘 or 𝑣𝑘. So it suffices to
show that each of these is the discriminant form of some even lattice.

To start, by Proposition 4.3.9 the rank one torsion groups ⟨𝑎 · 𝑝−𝑘⟩ are all
realized as the discriminant form of some even lattice.

Next, 𝑢𝑘 is obtained as the discriminant quadratic form of the lattice ℤ𝑒 ⊕ ℤ𝑓

with Gram matrix given by

(
0 2𝑘

2𝑘 0

)
. This is clear: the dual module is given by

ℤ𝑒∗ ⊕ ℤ𝑓∗ and 𝑒∗ = 2−𝑘𝑒,𝑓∗ = 2−𝑘𝑓 with 𝑒∗ · 𝑓∗ = 2−2𝑘 · 2𝑘 = 2−𝑘.
Finally, we claim that the inverse 𝑉𝑘, 𝑘 ≥ 1, of the matrix

𝑊𝑘 :=
©«
21−𝑘 2−𝑘 0 0
2−𝑘 21−𝑘 1 0
0 1 2𝑎 1
0 0 1 2(−1)𝑘−1

ª®®®¬ , 𝑎 =
1

3
(2𝑘 − (−1)𝑘), (12.2)

is the Gram matrix of an even rank 4 lattice whose discriminant form is 𝑣𝑘. Note
that 𝑎 is a (positive) integer. To prove the claim, one first computes det(𝑊𝑘) = 2−2𝑘.
Hence 𝑉𝑘, which equals 22𝑘 times the adjugate matrix of 𝑊𝑘, is clearly integral and
has even entries on the diagonal. Since 𝑊𝑘 modulo the integers gives 𝑣𝑘, applying
Lemma 1.6.3.2, shows that the discriminant form of 𝑉𝑘 is 𝑣𝑘. □

Remark 12.1.2. The reader may wonder why one cannot find a rank 2 integral
lattice in order to realize 𝑣𝑘 of length two. To explain this, if there would have been
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a rank two integral lattice with discriminant quadratic form 𝑣𝑘, by Theorem 12.4.4,
we would have disc(𝑉𝑘) = ±22𝑘 in D(ℤ2) which is not the case since disc(𝑉𝑘) = 3·22𝑘.

12.2 Stable Equivalence and Discriminant Forms

Unimodular lattices have trivial discriminant lattice. This motivates the notion of
stable equivalence.

Definition 12.2.1. Two non-degenerate symmetric lattices 𝐿1 and 𝐿2 are stably
equivalent if there are unimodular lattices 𝑈1 and 𝑈2 such that 𝐿1 ⦹ 𝑈1 and
𝐿2 ⦹𝑈2 are isometric. If 𝐿1 and 𝐿2 are even and 𝑈1 and 𝑈2 can be taken even as
well, then we say that 𝐿1 and 𝐿2 are evenly stably equivalent .

Stably equivalent lattices have isomorphic discriminant forms. The converse is
also true:

Theorem 12.2.2. Two non-degenerate symmetric integral lattices with isometric
discriminant symmetric forms are stably equivalent. Two non-degenerate quadratic
lattices with isometric discriminant quadratic forms are evenly stably equivalent.

Proof. 1 Let 𝐿1,𝐿2 be two non-degenerate lattices and let 𝑓 be an isometry of their
discriminant bilinear forms. Recall that we view 𝐿1,𝐿2 as sublattices of 𝐿∗1,𝐿

∗
2 via

the correlation homomorphisms 𝑏𝐿1 , 𝑏𝐿2 . The idea is to first find a suitable lift
𝑓 : 𝐿∗1 → 𝐿∗2 of 𝑓 as a group homomorphism and as a second step to construct –
using 𝑓 and 𝑓 – two unimodular lattices 𝑈1 and 𝑈2 such that there is an isometry

𝐿1 ⦹𝑈1 ≃ 𝐿2 ⦹𝑈2. (12.3)

To construct 𝑓, choose bases for the lattices 𝐿∗𝑗 , 𝑗 = 1, 2, such that the first 𝑚

vectors, say 𝑒
(𝑗)
1 , . . . , 𝑒

(𝑗)
𝑚 , map to generators 𝑒

(𝑗)
1 , . . . , 𝑒

(𝑗)
𝑚 of 𝐿∗𝑗/𝐿𝑗 which are adapted

to the elementary divisors of the respective discriminant groups (note that for
𝑗 = 1, 2 the 𝑚 is the same by the uniqueness statement in the elementary divisor

theorem A.1.2). If 𝑓(𝑒(1)
𝑘

) =
∑
𝑎𝑘ℓ𝑒

(2)
ℓ , 𝑎𝑖𝑗 ∈ ℚ/ℤ, choose representatives 𝑎𝑖𝑗 ∈ ℚ

and set 𝑓(𝑒(1)
𝑘

) = ∑
𝑎𝑘ℓ 𝑒

(2)
ℓ . The remaining basis vectors of 𝐿∗1, if these exist, are

mapped to 0. Such a lift need not be a surjection, nor does it necessarily preserve
the bilinear forms. For our choice of lift the image misses the basis vectors of 𝐿∗2
that map to zero in dg𝐿2 , but these belong to 𝐿2 ⊂ 𝐿∗2. And indeed, from the
commutative diagram

0 // 𝐿1
𝑏𝐿1

//

𝑓|𝐿1
��

𝐿∗1
//

𝑓

��

dg𝐿1

𝑓 ≃
��

// 0

0 // 𝐿2
𝑏𝐿2

// 𝐿∗2
// dg𝐿2

// 0

1Proof is due to A. Durfee, cf. [56, Thm. 4.1].
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it follows that

𝑓(𝐿∗1) + 𝐿2 = 𝐿∗2. (12.4)

The remainder of the proof is now divided into several steps. We use a dot to
denote the bilinear forms on 𝐿∗1 as well as on 𝐿∗2.
Step 1: Constructing the unimodular lattice 𝑈2. We set

𝑈2 := (𝐿1 ⊕ 𝐿∗1, 𝑏𝑓), 𝑏𝑓 (𝑥 ⊕ 𝑦,𝑥′ ⊕ 𝑦′) = 𝑥 · 𝑦′ + 𝑦 · 𝑥′ + (𝑦 · 𝑦′ − 𝑓(𝑦) · 𝑓(𝑦′)).

Using that 𝑓 preserves the forms on the discriminant groups we find

𝑓(𝑦) · 𝑓(𝑦′) ≡ 𝑓(𝑦) · 𝑓(𝑦′)
≡ 𝑦 · 𝑦′ mod ℤ,

(12.5)

and so 𝑦 · 𝑦′ − 𝑓(𝑦) · 𝑓(𝑦′) is an integer. It follows that 𝑈2 is an integral lattice. It
is unimodular as we show now. First of all 𝑏𝑓 (𝑥,𝑥′) = 0 for 𝑥,𝑥′ ∈ 𝐿1 = 𝐿1 ⦹ 0 ⊂
𝐿1 ⊕ 𝐿∗1. Next, we choose a basis {𝑒1, . . . , 𝑒𝑛} for 𝐿1 and let {𝑒∗1, . . . , 𝑒∗𝑛} be the dual
basis which we use for the summand 𝐿∗1. Then 𝑏𝑓 (𝑒𝑖 , 𝑒∗𝑗 ) = 𝑏𝑓 (𝑒∗𝑖 , 𝑒𝑗) = 𝛿𝑖𝑗 and so
the matrix of 𝑏𝑓 becomes (

0 1𝑛
1𝑛 ∗

)
with determinant (−1)𝑛.
Step 2: 𝐿∗1 embeds isometrically in 𝑈2⦹𝐿∗2 with image the graph Γ𝑓 of 𝑓.

Recall that 𝑈2 = 𝐿1 ⊕ 𝐿∗1 and so the map 𝑓 gives an embedding 𝐿∗1
𝜄−→ 𝑈2 ⦹ 𝐿∗2,

𝜄(𝑦) = (0, 𝑦,𝑓(𝑦)) which preserves the symmetric form (also denoted by a dot)
because

𝜄(𝑦) · 𝜄(𝑦′) = (0, 𝑦,𝑓(𝑦)) · (0, 𝑦′,𝑓(𝑦′))
= 𝑏𝑓 (𝑦, 𝑦′) + 𝑓(𝑦) · 𝑓(𝑦′)
= 𝑦 · 𝑦′ − 𝑓(𝑦) · 𝑓(𝑦′) + 𝑓(𝑦) · 𝑓(𝑦′)
= 𝑦 · 𝑦′, 𝑦, 𝑦′ ∈ 𝐿∗1.

In other words, the embedding 𝜄 establishes an isometry between 𝐿∗1 and the graph
Γ𝑓 of 𝑓 considered as a sublattice of 𝑈2 ⦹ 𝐿∗2.
Step 3: There is an orthogonal decomposition 𝑈2 ⦹ 𝐿∗2 = Γ𝑓 ⦹ Γ⊥

𝑓
with Γ⊥

𝑓

unimodular, yielding
𝑈1 := Γ⊥

𝑓 .

This is shown by proving the following assertions:
(a) The form on 𝑈2 ⦹ 𝐿∗2 restricts non-degenerately to Γ𝑓;
(b) Γ𝑓 ⦹ Γ⊥

𝑓
= 𝑈2 ⦹ 𝐿∗2.

(c) Γ⊥
𝑓
is unimodular.

(a) This is clear since the sublattice Γ𝑓 ⊂ 𝑈2 ⦹ 𝐿∗2 is isometric to 𝐿∗1 which is
non-degenerate.
(b) We first prove two auxiliary assertions about 𝐿1 ⊕ 𝐿∗1 ⊕ 𝐿2 ⊂ 𝑈2 ⦹ 𝐿∗2:
Claim I: 𝐿1 ⊕ 𝐿∗1 ⊕ 𝐿2 ⊂ 𝐿1 + Γ⊥

𝑓
and
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Claim II: 𝐿1 ⊕ 𝐿∗1 ⊕ 𝐿2 ⊂ Γ𝑓 + Γ⊥
𝑓
.

To show (I), start with a vector 𝒕 = (𝑥, 𝑦, 𝑧) ∈ 𝐿1 ⊕ 𝐿∗1 ⊕ 𝐿2. Recall that 𝑦 ·𝑢−𝑓(𝑦) ·
𝑓(𝑢), 𝑢 ∈ 𝐿∗1, is an integer by (12.5). Also 𝑧 · 𝑓(𝑢) ∈ ℤ since 𝑧 ∈ 𝐿2 and 𝑓(𝑢) ∈ 𝐿∗2.
So the vector 𝒕 leads to the integral function 𝜑𝒕 on 𝐿∗1 given by

𝜑𝒕 (𝑢) = 𝑦 · 𝑢 − 𝑓(𝑦) · 𝑓(𝑢) + 𝑧 · 𝑓(𝑢).

Since 𝜑𝒕 ∈ Homℤ (𝐿∗1,ℤ) = (𝐿∗1)∗ = 𝐿1 we can write 𝜑𝒕 (𝑢) = −𝑤 · 𝑢 for some 𝑤 ∈ 𝐿1.
The sign is chosen so that the vector (𝑤, 𝑦, 𝑧) is orthogonal to the graph Γ𝑓:

(𝑤, 𝑦, 𝑧) · (0,𝑢,𝑓(𝑢)) = 𝑤 · 𝑢 + (𝑦 · 𝑢 − 𝑓(𝑦) · 𝑓(𝑢) + 𝑧 · 𝑓(𝑢))
= 𝑤 · 𝑢 + 𝜑𝒕 (𝑢) = 0.

So (𝑥, 𝑦, 𝑧) = (𝑥−𝑤, 0, 0)+(𝑤, 𝑦, 𝑧) ∈ 𝐿1+Γ⊥
𝑓
. This shows the inclusion 𝐿1⊕𝐿∗1⊕𝐿2 ⊂

𝐿1 + Γ⊥
𝑓
.

We next show (II). Let 𝑥 ∈ 𝐿1 and write 𝜄(𝑥) = (0,𝑥,𝑓(𝑥)) so that 𝑥 − 𝜄(𝑥) =

(𝑥,−𝑥,−𝑓(𝑥)). This vector is orthogonal to the graph of 𝑓 since for all 𝑦 ∈ 𝐿∗1 one
has

(𝑥,−𝑥,−𝑓(𝑥)) · (0, 𝑦,𝑓(𝑦)) = 𝑥 · 𝑦 − 𝑥 · 𝑦 + 𝑓(𝑥) · 𝑓(𝑦) − 𝑓(𝑥) · 𝑓(𝑦) = 0.

Since 𝑥 = 𝑥− 𝜄(𝑥) + 𝜄(𝑥), 𝜄(𝑥) ∈ Γ𝑓, it follows that 𝐿1 ⊂ Γ𝑓 +Γ⊥
𝑓
. Claim I now implies

Claim II.
Completion of the proof of (b): We first show the inclusion of 𝑈2 ⦹ 𝐿∗2 ⊂ Γ𝑓 + Γ⊥

𝑓
.

Let (𝑥, 𝑦, 𝑧) ∈ 𝑈2⦹𝐿∗2 = 𝐿1⊕𝐿∗1⦹𝐿∗2. Since 𝐿
∗
2 = 𝑓(𝐿∗1)+𝐿2, we can write 𝑧 = 𝑓(𝑢)+𝑣

with 𝑢 ∈ 𝐿∗1, 𝑣 ∈ 𝐿2. Then

(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦 − 𝑢, 𝑣) + (0,𝑢,𝑓(𝑢))

with (𝑥, 𝑦 − 𝑢, 𝑣) ∈ 𝐿1 ⊕ 𝐿∗1 ⦹ 𝐿2 and (0,𝑢,𝑓(𝑢)) ∈ Γ𝑓. By Claim II we have
𝐿1 ⊕ 𝐿∗1 ⦹ 𝐿2 ⊂ Γ𝑓 + Γ⊥

𝑓
, so that (𝑥, 𝑦 − 𝑢, 𝑣) + (0,𝑢,𝑓(𝑢)) ∈ Γ𝑓 + Γ⊥

𝑓
.

Conversely, Γ𝑓 + Γ⊥
𝑓
⊂ 𝐿1 ⊕ 𝐿∗1 ⊕ 𝐿∗2 = 𝑈2 ⊕ 𝐿∗2, and so the two sets are equal.

Moreover, the sum Γ𝑓+Γ⊥
𝑓
is an orthogonal direct sum because Γ𝑓 is non-degenerate.

(c). To prove that Γ⊥
𝑓
is unimodular, we show that | disc(Γ⊥

𝑓
) | = 1. To do so we take

discriminants in the equality derived in part b. First recall that by Remark 1.2.1.2
the notion of discriminant makes sense for non-integral lattices, and secondly,
that by Lemma 1.6.3 one has | disc(𝐿∗1) | = 1/| disc(𝐿1) | = 1/| dg𝐿1 | and, similarly,
disc(𝐿∗2) = 1/| dg𝐿2 |. So | disc(𝐿∗1) | = | disc(𝐿∗2) |. Next, from Γ𝑓 ⦹ Γ⊥

𝑓
� 𝑈2 ⦹ 𝐿∗2 we

obtain
| disc(Γ𝑓) | · | disc(Γ⊥

𝑓 ) | = | disc(𝑈2) · | disc(𝐿∗2).

As 𝑈2 is unimodular, Γ𝑓 ≃ 𝐿∗1 and hence | disc(Γ𝑓) | = | disc((𝐿∗1) | = | disc(𝐿∗2) |, we
conclude | disc(Γ⊥

𝑓
)) | = 1. Consequently, Γ⊥

𝑓
is unimodular.

Step 4: Completion of the proof in the symmetric case.
We have constructed two unimodular integral lattices, 𝑈2 and 𝑈1 with the

property that 𝑈2 ⦹ 𝐿∗2 = Γ𝑓 ⦹ 𝑈1. Since 𝑈2 and 𝑈1 are unimodular, and hence
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self-dual, dualizing the above equality of lattices gives 𝑈2 ⦹ 𝐿2 = Γ∗
𝑓
⦹ 𝑈1. The

isometry 𝜄 : 𝐿∗1 ≃ Γ𝑓 yields an isometry Γ∗
𝑓
≃ 𝐿1 and so 𝐿2 ⦹𝑈2 ≃ 𝐿1 ⦹𝑈1, that is,

we have established our goal (12.3) and so 𝐿1 and 𝐿2 are stably equivalent.
Step 5: Quadratic lattices.

The proof is easily adapted as follows. Let us use 𝑞𝑗 for the quadratic forms
on 𝐿𝑗 . On 𝑈2 we have a quadratic form 𝑞𝑓 (𝑥, 𝑦) := 𝑥 · 𝑦 + 𝑞1 (𝑦) − 𝑞2 (𝑓(𝑥)). Its
polar form is 𝑏𝑓 and 𝜄 preserves 𝑞𝑓. So the two unimodular lattices 𝑈2 and Γ⊥

𝑓
are

quadratic which shows the assertion for the even case. □

By Theorem 2.4.2 all even unimodular lattices 𝐿 have index 𝜏(𝐿) divisible by
8. This leads to the following definition.

Definition 12.2.3. The index modulo 8 of a non-degenerate quadratic tor-
sion group (𝐺, 𝑞), denoted 𝜏8 (𝑞), is the modulo 8 integer 𝜏(𝐿) mod 8 of any non-
degenerate quadratic lattice 𝐿 whose discriminant form is 𝑞.

This makes sense since by Theorem 12.1.1 we can always find a quadratic lattice
for which a given quadratic torsion group is its discriminant form; any two such
choices are stably equivalent by Theorem 12.2.2 and hence have the same index
mod 8:

Corollary 12.2.4. Let (𝐺, 𝑞) be a non-degenerate quadratic torsion group and 𝐿
a non-degenerate quadratic lattice with 𝑞#𝐿 = 𝑞. Then

𝜏8 (𝑞) ≡ 𝜏(𝐿) mod 8

is independent of the choice of 𝐿.

The index modulo 8 is additive in ℤ/8ℤ, that is 𝜏8 (𝑞1 ⦹ 𝑞2) = 𝜏8 (𝑞1) + 𝜏8 (𝑞2).

Examples 12.2.5. Consider the examples of Section 10.1:
1. Using Table 4.1.1 we find for instance that 𝜏8 [ 𝑛

2(𝑛+1) ] = 𝑛 mod 8. This follows

since the quadratic torsion group [ 𝑛
2(𝑛+1) ] is the discriminant form of the

positive definite lattice 𝐴𝑛 of rank 𝑛.
2. We have 𝜏8 (𝑢𝑘) = 0 since 𝜏(𝑈 (𝑘)) = 0.
3. Recall the notation 𝑉−1

𝑘
for the even integral lattice (12.2) representing 𝑣𝑘.

For 𝑘 = 6 we find the quadratic form 𝑊6 = 2−5 (𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2) + 𝑥2𝑥3 +
21𝑥2

3 + 𝑥3𝑥4 − 𝑥2
4 on its dual whose signature is the same as that of 𝑉−1

6 .

Since det
(
𝑉−1
6

)
> 0 and the value of the quadratic form on the fourth basis

vector is negative, the signature must be (2, 2) and so 𝜏8 (𝑣6) = 0. We give
the argument for all 𝑘 when proving Proposition 12.3.3.

12.3 Calculation of the Index Mod 8

In this section we calculate 𝜏8, the index mod 8, for the quadratic torsion groups
that are the basic building blocks. The simplest of these is the form ⟨ 𝑠𝑡 ⟩ with 𝑠
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and 𝑡 co-prime, and 0 < 𝑠 < |𝑡 |. The main input consists of the integral lattice
(ℤ𝑛+1,𝑄) with discriminant ±𝑡 up to squares and with discriminant bilinear form
⟨ 𝑠𝑡 ⟩ constructed in Proposition 4.3.9. It uses the euclidean algorithm for (𝑡, 𝑠)
which yields the inverse 𝑄−1 of the Gram matrix and since the signature of 𝑄 is
the same as the signature for 𝑄−1, this gives a way to calculate the index mod 8.
The computations also involve the Hasse invariants.

Before we illustrate this in some numerical examples, we first recall that the
euclidean algorithm for (𝑡, 𝑠) inductively gives numbers 𝑎𝑘,𝑑𝑘 such that(

𝑑𝑘+1
𝑑𝑘+2

)
= 𝐵𝑘

(
𝑑𝑘
𝑑𝑘+1

)
, 𝐵𝑘 =

(
0 1
−1 𝑎𝑘

)
,

starting with 𝑑0 = 𝑡,𝑑1 = 𝑠 and ending if 𝑑𝑛 = ±1. The 𝑎𝑘 are determined by
demanding that 𝑎𝑘𝑑𝑘+1 is the even multiple of 𝑑𝑘+1 closest to 𝑑𝑘. The matrix 𝑄−1

is determined from the 𝑎𝑘: The last 𝑛 diagonal elements for 𝑄−1 are 𝑎0, . . . , 𝑎𝑛−1
and the left upper diagonal entry equals 𝑠/𝑡. The algorithm can also be given in

terms of the inverses 𝐴𝑘 = 𝐵−1
𝑘

=

(
𝑎𝑘 −1
1 0

)
ending with (see Corollary 4.3.5)

𝐴0 · · ·𝐴𝑛 = ±
(
𝑡 −𝑠∗
𝑠 −𝑡∗

)
.

The numbers 𝑠∗, 𝑡∗, which are not needed to determine the index mod 8 in any
given example, come up in the theoretic arguments below. In the calculations that
follow |𝑡 | is a prime power.

Examples 12.3.1. 1. We construct an even lattice with discriminant form ⟨4 ·
5−2⟩. Let 𝑠 = 4, 𝑡 = 52. Since 25 = 6 · 4− (−1), we get 𝐴0 =

(
6 −1
1 0

)
and 𝐴1 =(

−4 −1
1 0

)
. Since 𝑎0 = 6 we get 𝑄−1 =

(
4 · 5−2 1

1 6

)
. Hence 𝑄 =

(
−150 25
25 −4

)
.

Since det𝑄 = −25 < 0, the index of 𝑄 must be zero, and so the index mod 8
of ⟨4 · 5−2⟩ is also zero.

2. Consider now ⟨− 2
3 ⟩. Here −3 = 2 · (−2) − (−1) and hence 𝑄−1 =

(
− 2

3 1
1 −2

)
,

with inverse 𝑄 =

(
−6 −3
−3 −2

)
which is negative definite, as one easily verifies.

Hence 𝜏8 (⟨−23 ⟩) = −2 (one can also use 𝐴2 (−1)).
3. The even form with matrix 𝑄 and discriminant form ⟨ 25 ⟩ we found in Ex-

ample 4.3.11 shows that the signature is (1, 1) and so its index mod 8 is
zero.

4. For ⟨ 58 ⟩ we find 𝑎0 = 𝑎1 = 2 and 𝑎2 = −2 so that

𝑄−1 =
©«
5 · 2−3 1 0

1 2 1
0 1 2

ª®¬ and 𝑄 =
©«
−24 16 −8
16 −10 5
−8 5 −2

ª®¬ .
The signature of 𝑄 is found to be (2, 1) and hence the index mod 8 of ⟨ 58 ⟩ is
1.
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Let us now pass to the situation where 𝑡 = 𝑝𝑘, 𝑝 a prime, and if 𝑝 is odd, 𝑠
is an even number co-prime to 𝑝, while if 𝑝 = 2, 𝑠 is odd. We use the method of
Lemma 4.3.6 to diagonalize this form over ℚ. This is possible, even if this form
is not integral, since the computation of 𝑄−1 is based on a slight extension of the
euclidean algorithm as follows. Rewrite the relation 𝑠𝑠∗−𝑡𝑡∗ = 1 as 1/𝑡 = (𝑠/𝑡)·𝑠∗−𝑡∗.
Recall (Corollary 4.3.5) that 𝑑∗𝑛+1 = 𝑠∗, 𝑑∗𝑛 = 𝑡∗. Now set 𝑑∗𝑛+2 = 1/𝑡, 𝑎−1 = 𝑠/𝑡 and
consider

𝑑∗𝑛+2 = 𝑎−1𝑑∗𝑛+1 − 𝑑∗𝑛
...

𝑑∗
𝑘

= 𝑎𝑛−𝑘+1𝑑
∗
𝑘−1 − 𝑑∗

𝑘−2
...

𝑑∗2 = 𝑎𝑛−1𝑑∗1 − 𝑑∗0.

To be able to imitate the procedure of Lemma 4.3.6 we let 𝑐𝑘 = 𝑑∗
𝑛+1−𝑘/𝑑

∗
𝑛−𝑘,

𝑘 = −1, . . . ,𝑛 − 1. This gives the recurrence 𝑐𝑘 = 𝑎𝑘 − 1/𝑐𝑘+1, 𝑘 = −1, . . . ,𝑛 − 2. As
in the proof of Lemma 4.3.6-3 we find (with 𝑦−1 = 𝑥−1 and 𝑦𝑚 = 𝑥𝑚 + 1/𝑐𝑚 · 𝑥𝑚−1,
𝑚 = 0, . . . ,𝑛 − 1)∑𝑛−1

𝑘=−1 𝑎𝑘𝑥
2
𝑘
+ ∑𝑛−1

𝑘=0 2𝑥𝑘𝑥𝑘−1 =
∑𝑛−1

𝑘=−1 𝑐𝑘𝑦
2
𝑘

= 𝑄′(𝑦−1) + 𝑄′′(𝑦0, . . . , 𝑦𝑛−1),
(12.6)

and hence
∑𝑛−1

𝑘=−1 𝑐𝑘𝑦
2
𝑘
of rank 𝑟 = 𝑛 + 1 as diagonal form. Now the discriminant of

the first term 𝑄′(𝑦−1) = 𝑐−1𝑦2−1 equals 𝑐−1 = 𝑑∗𝑛+2/𝑑∗𝑛+1 = (1/𝑡)/𝑠∗ = 1/(𝑠∗𝑡). Up to
squares the discriminant is then the integer 𝑠∗𝑡 = 𝑠∗𝑝𝑘. Since the discriminant of∑𝑛−1

𝑘=−1 𝑐𝑘𝑦
2
𝑘
is ±𝑡 (the discriminant of 𝑄), the discriminant of the remaining term,

𝑄′′(𝑦0, . . . , 𝑦𝑛−1), is, again up to squares, ±𝑠∗.
To find the index mod 8, we proceed as follows. We use the splitting 𝑄 = 𝑄′+𝑄′′

to inductively calculate the Hasse invariants 𝜀𝑞 (𝑄) at all primes 𝑞. Recall their
definition (3.1) and the convention 𝜀𝑞 (𝑄) = 1 if rank(𝑄) = 1. It turns out that only
the primes 𝑝 and 2 matter. The product formula (3.6) for the Hasse invariants,∏

𝑣∈P 𝜀𝑣 (𝑄) = 1, then gives 𝜀∞ (𝑄) which incorporates the index. We finally recall
(cf. Theorem A.4.4) that in the expressions for the Hilbert symbols the following
functions on odd integers 𝑛 play a role:

𝜀(𝑛) =
{
0 if 𝑛 ≡ 1 mod 4

1 if 𝑛 ≡ −1 mod 4
(12.7)

𝜔(𝑛) =
{
0 if 𝑛 ≡ ±1 mod 8

1 if 𝑛 ≡ ±3 mod 8.
(12.8)

12.3.A 𝒑 odd. We write disc(𝑄) = 𝜎𝑝𝑘, where 𝜎 = ±1. For any prime 𝑞 ≠ 𝑝, the
form 𝑄 is unimodular as a form in ℤ𝑞. Applying Lemma 10.4.2 we conclude that
𝜀𝑞 (𝑄) = 1 if 𝑞 ≠ 2,𝑝. For the prime 𝑝 we argue as follows. Write 𝑄 ≃ℚ 𝑄′ + 𝑄′′

as in (12.6). Since disc(𝑄′′) is an integer prime to 𝑝, the form 𝑄′′ is unimodular
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as a form in ℤ𝑝 and again 𝜀𝑝 (𝑄′′) = 1. Now apply Lemma 10.4.1 which shows
𝜀𝑝 (𝑄) = (𝑝𝑘 · 𝑠∗,𝜎𝑠∗)𝑝. Since in this situation 𝑠𝑠∗ ≡ 1 mod 𝑝, using Theorem A.4.4,
we thus find

𝜀𝑝 (𝑄) = (𝑝𝑘𝑠,𝜎𝑠)𝑝,

=

(
𝑠

𝑝

)𝑘
·
(
𝜎

𝑝

)𝑘
=


(
𝑠

𝑝

)𝑘
if 𝜎 = 1(

𝑠

𝑝

)𝑘
· (−1)𝑘𝜖(𝑝) if 𝜎 = −1.

(12.9)

Next, observe that 𝑄 is an even integral form with odd discriminant and so 𝑄2 is
a unimodular ℤ2-form. For those we have calculated in Lemma 10.4.2 that

𝜀2 (𝑄) = (−1) 1
4
(− rank(𝑄)−disc(𝑄)+1) .

Set rank(𝑄) = 𝑟 = 𝑟+ + 𝑟− and recall that 𝜏 = 𝑟+ − 𝑟− is the index of 𝑄 and that
𝜀∞ (𝑄) = (−1) 1

2
𝑟− (𝑟−−1) (see Remark 3.3.6.2). Then

𝜀∞ (𝑄) · 𝜀2 (𝑄) = (−1) 1
4
(−𝑟−disc(𝑄)+1+2𝑟− (𝑟−−1)) .

Observe that −𝑟 + 1 + 2𝑟− (𝑟− − 1) + 𝜏 = 2𝑟− (𝑟− − 2) + 1 is equal to 1 (mod 8) if 𝑟−
is even and to −1 (mod 8) otherwise, while 𝜎, the sign of disc(𝑄), equals (−1)𝑟− .
Hence

𝜀∞ (𝑄) · 𝜀2 (𝑄) =
{
(−1) 1

4 (−𝜏−𝑝𝑘+1) if 𝜎 = 1

(−1) 1
4 (−𝜏+𝑝𝑘−1) if 𝜎 = −1.

(12.10)

The product formula for the Hasse symbols implies that the right-hand side of
(12.10) equals the right-hand side of (12.9). For 𝑘 even 𝑝𝑘 ≡ 1 mod 8 and so we
get 𝜏 = 0 mod 8; for 𝑘 odd we have 𝑝𝑘 − 1 ≡ 𝑝− 1 mod 8 and so we may take 𝑘 = 1.
The result does not depend on 𝜎 because the quotient of the values of the right-
hand side of (12.9) for 𝜎 = 1 and 𝜎 = −1 equals (−1)𝜖(𝑝) , which equals (−1) 1

2
(𝑝−1) ,

the quotient of the two values on the right-hand side of (12.10) (remember that
𝜀(𝑝) = 0 if 𝑝 ≡ 1 mod 4 and 𝜀(𝑝) = 1 if 𝑝 ≡ 3 mod 4). So we may set 𝜎 = 1 and a

straightforward comparison gives 𝜏 ≡ 1 − 𝑝 mod 8 if
(
𝑠
𝑝

)
= 1, and 𝜏 ≡ 5 − 𝑝 mod 8

otherwise, as summarized in the table appearing in the next proposition.

Proposition 12.3.2. The values of 𝜏8 for ⟨ 𝑠

𝑝𝑘
⟩, 𝑝 odd, are as follows.

𝑝 mod 8 𝑘 even 𝑘 odd,
(
𝑠
𝑝

)
= 1 𝑘 odd,

(
𝑠
𝑝

)
= −1

1 0 0 4
−1 0 2 −2
3 0 −2 2
−3 0 4 0

As a check consider Examples 12.3.1.1 and 2. The first, ⟨4 · 5−2⟩, has 𝑘 = 2
which is even and the table confirms that we have vanishing index mod 8. For the
second, ⟨−2 · 3−1⟩, one has 𝑘 = 1 and since −2 ≡ 1 mod 3 is a quadratic residue, we
have 𝜏8 ≡ −2 mod 8 as in the table.



226 12 Integral Lattices: the Discriminant Form

12.3.B The prime 𝒑 = 2.

Proposition 12.3.3. The mod 8 indices of the basic building blocks for 𝑝 = 2 are
as follows.

• Forms of length 1. Here we have 𝜏8

(
⟨ 𝑠
2𝑘
⟩
)
≡ 𝑠+4𝑘𝜔(𝑠) mod 8 which yields

the table

𝑠 mod 8 𝑘 even 𝑘 odd

1 1 1
−1 −1 −1
3 3 −1
−3 −3 1

• The form 𝑢𝑘. Here 𝜏8 (𝑢𝑘) = 0 for 𝑘 = 1, 2 . . . .
• The form 𝑣𝑘. Depending on the parity of 𝑘 we find

𝜏8 (𝑣𝑘) ≡
{
0 mod 8 𝑘 even,

4 mod 8 𝑘 odd.

Proof. Length 1 forms. The cases 𝑘 = 1, 2 can be easily dealt with using Ta-
ble 4.1.1. We next assume 𝑘 ≥ 3.

We calculate 𝜀2 (𝑄) where 𝑄−1 is now associated to the inverse euclidean al-
gorithm for the pair (𝑠, 𝑡 = 2𝑘) yielding 𝑠∗, 𝑡∗ with 𝑠𝑠∗ − 𝑡𝑡∗ = 1. Again, we write
𝑄 = 𝑄′ + 𝑄′′ with disc(𝑄′) = 2𝑘𝑠∗ and disc(𝑄′′) = 𝜎𝑠∗, where 𝜎 is the sign of det𝑄.
So, if, as before, rank(𝑄) = 𝑟 and (𝑟+, 𝑟−) is the signature of 𝑄, then 𝑟− is even if
and only if 𝜎 = +. Let us first assume that 𝜎 = −. Then, as before, one has

𝜀2 (𝑄) = 𝜀2 (𝑄′) · 𝜀2 (𝑄′′) · (disc(𝑄′),disc(𝑄′′))2
= 𝜀2 (𝑄′′) (2𝑘𝑠∗,−𝑠∗)2
= (−1)𝑘𝜔(𝑠∗)𝜀2 (𝑄′′).

The form 𝑄′′ is unimodular in ℤ2 and, again by Lemma 10.4.2, we find

𝜀2 (𝑄′′) = (−1) 1
4
(− rank(𝑄′′)−disc(𝑄′′)+1) = (−1) 1

4
(−𝑟+𝑠∗+2) .

Now 𝜀2 (𝑄) = 𝜀∞ (𝑄) = (−1) 1
2
𝑟− (𝑟−−1) , and so we find 2𝑟− (𝑟− − 1) + 𝑟 ≡ 2 + 𝑠∗ +

4𝑘𝜔(𝑠∗) mod 8. Using 𝜏 = 𝑟+−𝑟− this can be written 2𝑟2−+𝜏 ≡ 2+𝑠∗+4𝑘𝜔(𝑠∗) mod 8.
As explained before, 𝜎 = − implies that 𝑟− is odd. So the previous line gives
𝜏 ≡ 𝑠∗ + 4𝑘𝜔(𝑠∗) mod 8 and the result follows since 𝑠∗ ≡ 𝑠 mod 8 for 𝑘 ≥ 3 (use
𝑠𝑠∗ − 𝑡𝑡∗ = 1). If disc(𝑄′′) = 𝑠∗ the calculation is similar, using that now 𝑟− is even

and (disc(𝑄′),disc(𝑄′′))2 = (−1)𝑘𝜔(𝑠∗)+𝜀(𝑠∗)2 .
The form 𝑢𝑘. This is easy since the lattice 𝑈 (2𝑘) of index 0 has 𝑢𝑘 as its dis-
criminant form.
The form 𝑣𝑘. The signature is the same as the signature of the matrix 𝑊𝑘 given
by (12.2). We know that 𝑉𝑘 , the inverse of 𝑊𝑘, satisfies disc(𝑉𝑘) > 0 and so the
signature can be either (4, 0), (0, 4) or (2, 2). The entry of 𝑊𝑘 at place (1, 1) is
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positive and so (0, 4) is not possible. If 𝑘 is even, the entry of 𝑊𝑘 at place (4, 4)
is negative and so then the signature is (2, 2). The case of odd 𝑘 remains, where
we verify Sylvester’s criterion stating that a matrix is positive definite if all the
leading principal minors are positive. In this situation we only have to check the
third principal minor which equals 21−2𝑘 and so is indeed positive. Hence the index
is 4 in this case. □

Remark 12.3.4. The previous calculations also imply that for 2-primary quadratic
torsion forms 𝑞 one has the equality 𝜏8 (𝑞( 12 )) = 𝜏8 (𝑞) + 4𝜔(𝛿(𝑞)) mod 8. By ad-
ditivity of 𝜏8 and of 𝜔(𝛿(𝑞), it suffices to check this for the building blocks. For
rank 1 this is statement 1 of the previous proposition. Since 𝜔(𝛿(𝑢𝑘)) = 0 and
𝜔(𝛿(𝑣𝑘)) = 1 the claimed equality also holds for 𝑢𝑘 and 𝑣𝑘.

12.4 Applications to the Genus: Existence of Even Lattices

By Theorem 11.3.1, the genus of a non-degenerate quadratic integral lattice is
completely determined by the genus invariant, that is, the signature and the dis-
criminant form. In this section we consider the question: which genus invariants
occur? To answer it, we first quote the following well-known conditions for the
existence of a rational form:

Theorem ([204, IV.3.3]). Given 𝑑 ∈ D(ℚ), non-negative integers 𝑟+, 𝑟− with 𝑟+ +
𝑟− ≥ 3, and for each 𝑣 ∈ P a number 𝜀𝑣 ∈ {1,−1}. There exists a rational quadratic
form 𝑞 of rank ≥ 3 with discriminant 𝑑, signature (𝑟+, 𝑟−), rank 𝑟 = 𝑟+ + 𝑟− and
Hasse invariants 𝜀𝑣 if and only if

1. almost all 𝜀𝑣 are 1 and
∏

𝑣 𝜀𝑣 = 1;

2. 𝑑∞ = (−1)𝑟− (in D(ℝ)) and 𝜀∞ = (−1)𝑠, 𝑠 = 1
2𝑟− (𝑟− − 1).

Note that the genus of a rational form 𝑞 consists of the (isometry classes of)
rational forms with the same local forms 𝑞𝑣 and so the latter necessarily satisfy
some conditions, for instance all local discriminants are localizations of the rational
number 𝑑 = disc(𝑞). In particular one has 𝑑∞ = (−1)𝑟− . Likewise 𝜀∞ = (−1)𝑠 and
so if we impose the condition 𝑑 = 𝑑𝑣 for all 𝑣 ∈ P, the only remaining condition is
the first condition.

For rank 2 forms a further condition is stated in loc. cit.: we must exclude the
combination disc(𝑞) = −1 ∈ D(ℚ𝑣), 𝜀𝑣 (𝑞) = −1. If we are given a genus of a rank
2 rational form this combination is automatically excluded: disc(𝑞) = −1 ∈ D(ℚ𝑣)
is only possible for a form of signature (1, 1) and such a form is isometric to
𝑎 (𝑥2

1 − 𝑥2
2) which has Hasse invariant 𝜀𝑣 (𝑞) = (1,−1)𝑣 = 1. Consequently, we arrive

at the following existence result (cf. also [36, Ch 6, Thm. 1.3]):

Theorem 12.4.1. Let 𝐿 be a ℚ-vector space of dimension ≥ 2 and suppose that
for every 𝑣 ∈ P a non-degenerate quadratic form 𝑞𝑣 on 𝐿𝑣 is given. Let 𝑑 be a
non-zero rational number. Suppose that
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1. disc(𝑞𝑣) = 𝑑 for all 𝑣 ∈ P (where we consider 𝑑 ∈ D(ℚ𝑣) under the natural
homomorphism D(ℚ) → D(ℚ𝑣) induced by ℚ ↩→ ℚ𝑣);

2. 𝜀𝑣 (𝑞𝑣) = 1 for almost all 𝑣 ∈ P and the product formula
∏

𝑣∈P 𝜀𝑣 (𝑞𝑣) = 1
holds.

Then there exists a ℚ-valued (non-degenerate) quadratic form 𝑞 on 𝐿 such that
disc(𝑞) = 𝑑 (up to squares) and the localization of 𝑞 at 𝑣 is isometric to 𝑞𝑣 for all
𝑣 ∈ P.

There is also a Hasse principle for integral lattices which roughly states that
existence over ℚ implies existence over the integers:

Theorem 12.4.2 (Hasse principle for lattices). Let 𝑛 ≥ 1, 𝑑 ≠ 0 be integers.
Suppose that for every prime 𝑝 a non-degenerate 𝑝-adic integral quadratic form 𝑞𝑝
of rank 𝑛 and discriminant 𝑑 is given, as well as a real valued form 𝑞∞ of rank 𝑛 and
discriminant 𝑑. If there exists a rational quadratic form 𝑔 such that 𝑔𝑣 ≃ 𝑞𝑣 ⊗ ℚ𝑣

for all 𝑣 ∈ P, then there exists an integral quadratic form 𝑞 whose localization
at 𝑣 is equivalent (over ℤ𝑣) to 𝑞𝑣 for all places 𝑣 ∈ P (with the convention that
ℤ∞ = ℝ).

For a proof we refer to [36, Ch. 9, Thm. 1.2]. We rephrase the preceding results
using the relation between the discriminant of an integral lattice and the orders of
the local discriminant groups as given in (1.19). This step is used to translate the
existence criterion in terms of the local discriminant quadratic forms.

Corollary 12.4.3. Let 𝐿 be a free ℤ-module of finite rank 𝑟 ≥ 2. Suppose that a
pair (𝑟+, 𝑟−) of non-negative integers is given with 𝑟 = 𝑟+ + 𝑟−, and for every prime
𝑝 a non-degenerate 𝑝-adic integral quadratic form 𝑞𝑝 on 𝐿𝑝.

There exists a non-degenerate integral quadratic form 𝑞 on 𝐿 such that 𝑞⊗ℤ𝑝 ≃
𝑞𝑝 for all primes 𝑝 and with signature (𝑟+, 𝑟−) (corresponding to a real form 𝑞∞
with this signature) if and only if the following conditions hold:

1. 𝐿𝑝 is unimodular for almost all primes 𝑝;

2. Setting2 𝑑 = (−1)𝑟− ∏
𝑝 prime | dg𝐿𝑝 |, then up to a 𝑝-adic unit disc(𝑞𝑝) = 𝑑 for

all primes 𝑝;

3. The product formula
∏

𝑣∈P 𝜀𝑣 (𝑞𝑣) = 1 holds.

Proof. Let us first show that the conditions are necessary. If an integral quadratic
lattice (𝐿, 𝑞) exists, for almost all 𝑣 ∈ P the lattice 𝐿𝑣 is unimodular, which shows
item 1. If 𝐿𝑣 is unimodular and 𝑣 = 𝑝 is an odd prime, by Lemma 10.4.1 its
Hasse invariant is equal to 1. So 𝜀𝑣 (𝑞𝑣) = 1 except for a finite set of places and the
product formula makes sense. Since for a rational form 𝑞(𝑥) = ∑

𝑎𝑗𝑥
2
𝑗 , by definition

𝜀𝑣 (𝑞) :=
∏

𝑖<𝑗 (𝑎𝑖 , 𝑎𝑗)𝑣, the Hilbert product formula (Theorem A.4.6) implies then
that

∏
𝑣∈P 𝜀𝑣 (𝑞) = 1, proving 3.

2Recall that dg𝐿𝑝 is the discriminant group of the lattice 𝐿𝑝.
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By equations (1.18) and (1.19) we have

disc(𝐿) = (−1)𝑟− | dg𝐿 |
= (−1)𝑟− ∏

𝑝 prime | dg𝐿𝑝 |.
(12.11)

Since | dg𝐿𝑞 | is a unit in ℤ𝑝 for any prime 𝑞 different from a given prime 𝑝, condition
2 holds as well.

Conversely, suppose that the conditions 1–3 hold. The pair (𝑟+, 𝑟−) determines
𝑞∞ and so for all 𝑣 ∈ P we have a 𝑣-adic lattice (𝐿𝑣, 𝑞𝑣) of rank 𝑟. Condition 2
tells us that the 𝑣-adic value of 𝑑 equals disc(𝑞𝑣). So Theorem 12.4.1 then implies
the existence of a ℚ-valued form 𝑔 on 𝐿 with 𝑔𝑣 = 𝑞𝑣 (over ℚ𝑣) and such that
disc(𝑔𝑣) = 𝑑 for all 𝑣 ∈ P. Choosing an integral basis for 𝐿 we identify 𝑔 with a
rational form in 𝑟 variables and then Theorem 12.4.2 shows that there exists an
integral form 𝑞 whose localization at 𝑣 is isometric to 𝑞𝑣, ∀𝑣 ∈ P. Such a form
endows 𝐿 with the structure of an integral quadratic lattice satisfying all of the
required conditions. □

The final step is a formulation of this assertion in terms of the genus and signa-
ture. Recall (cf. Propositions 11.1.3 , 11.2.4) that for a given quadratic 𝑝-primary
quadratic torsion form (𝐺, 𝑞#) there exists a unique rank 𝑟 = ℓ(𝐺) quadratic lattice
𝐿𝑞# whose discriminant form is 𝑞# if either 𝑝 is an odd prime, or if 𝑝 = 2 and no
cyclic quadratic torsion group of order two splits off from 𝐺.

Theorem 12.4.4 (Existence of even lattices, [171, Thm. 1.10.1]). Let (𝑟+, 𝑟−) be a
pair of non-negative integers and let (𝐺, 𝑞#) be a non-degenerate quadratic torsion
form. There exists a non-degenerate quadratic lattice 𝐿 with g(𝐿) = (𝑟+, 𝑟−, [𝑞#])
(and hence of rank 𝑟 = 𝑟+ + 𝑟−) if and only if all of the following conditions are
fulfilled.

1. 𝑟+ − 𝑟− ≡ 𝜏8 (𝑞#) mod 8;

2. 𝑟 ≥ ℓ(𝐺);

3. For all primes 𝑝 ≠ 2 for which 𝐺𝑝 has length 𝑟 and for 𝑝 = 2 in case 𝐺2 has
length 𝑟 but does not split off an order two cyclic summand, one has3

disc(𝐿𝑞#𝑝 ) = (−1)𝑟− |𝐺 | in D(ℤ𝑝).

Proof of the necessity. Let 𝐿 be a non-degenerate quadratic lattice with discrimi-
nant group 𝐺 and discriminant form 𝑞#. The first condition follows from the fact
that the index mod 8 for a non-degenerate quadratic torsion group (𝐺, 𝑞#) (see
Definition 12.2.3) is well defined as the modulo 8 index of any non-degenerate even
lattice with 𝑞# as its discriminant form. For the second condition see (1.9). To
show that the third condition holds, note that if 𝐺𝑝 has length 𝑟, one has 𝐿𝑞#𝑝

= 𝐿𝑝,

so that disc(𝐿𝑝) = disc(𝐿)𝑝 = (−1)𝑟− · |𝐺 | in D(ℤ𝑝) by localizing the first equality of
(12.11).

3If 𝑝 = 2 and 𝑞# splits off an order two cyclic summand there is no extra restriction.
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Proof of the sufficiency. The idea is to invoke Corollary 12.4.3. Its input consists
of a collection of local lattices of the same rank 𝑟 obeying conditions 1–3 mentioned
there, which are phrased in terms of their local invariants. The crucial remark is
that these conditions are satisfied for any even integral lattice. We make use of it
by invoking Theorem 12.1.1 which states the existence of a non-degenerate even
integral lattice, say 𝐿′, whose discriminant form is 𝑞#. However, its signature
(𝑟′+, 𝑟′−) need not be equal to (𝑟+, 𝑟−). We shall first remedy this using that 𝐿′ is
only unique up to unimodular summands.
Step 1. By adding a suitable number of copies of the even lattice 𝑈 of signature
(1, 1) to 𝐿′, one may assume that 𝐿′ is an even lattice for which

𝑟′ = rank(𝐿′) ≥ 𝑟 = 𝑟+ + 𝑟−
𝑟′± ≡ 𝑟± mod 8. (12.12)

As for the second equality, note that since by condition 1 the differences 𝑟+ − 𝑟−
and 𝑟′+ − 𝑟′− are fixed modulo 8, if 𝑟′+ − 𝑟+ is made divisible by 8, this also holds for
𝑟′−−𝑟−. This equality implies that (−1)𝑟− = (−1)𝑟′− and so the required condition 2 of
Corollary 12.4.3 also holds for the lattice 𝐿′. Conditions 1 and 3 of Corollary 12.4.3
hold automatically, since 𝐿′ is an even integral lattice. We presently do not further
make use of Corollary 12.4.3 since we still have to adapt the rank of 𝐿′.
Step 2. For each prime 𝑝 we construct a local lattice of the correct rank 𝑟 from the
localization 𝐿′𝑝 of the lattice 𝐿′ we just constructed and in such a way that this new
local lattice still satisfies the conditions of Corollary 12.4.3. The main idea here is
that the conditions given in the statement of the theorem enable us to drop off a
unimodular lattice of rank 𝑟′ − 𝑟 from 𝐿′𝑝 in such a way that first of all the Hasse
invariant remains unchanged (so that the product formula holds), and, secondly,
the local discriminant remains unchanged so that condition 2 of Corollary 12.4.3
remains true. We achieve this by either dropping off a suitable number of trivial
summands ⟨1⟩ or, if 𝑝 = 2, by dropping off a suitable even number of hyperbolic
planes 𝑈. Indeed, for trivial lattices both the local discriminant and the Hasse
invariant are equal to 1, while disc(⦹𝑘𝑈) = (−1)𝑘 and 𝜀2 (⦹𝑘𝑈) = 1.

We start with the normal form decomposition for the lattice 𝐿′𝑝 as given by
Propositions 11.1.4 and 11.2.6.
Case 1: 𝑝 is an odd prime.

𝐿′𝑝 =

{
𝐿𝑞#𝑝

⦹⦹𝑡′𝑝 ⟨1⟩, 𝑣′𝑝 = 0

𝐿𝑞#𝑝
⦹ ⟨𝜀⟩ ⦹⦹𝑡′𝑝−1⟨1⟩, 𝑣′𝑝 = 1.

(12.13)

The two cases, which are distinguished by the value of disc(𝐿′𝑝), have been labeled
by 𝑣′𝑝 ∈ {0, 1}. Explicitly,

𝑡′𝑝 = 𝑟′ − ℓ(𝐺𝑝)
𝑣′𝑝 = 𝑡′𝑝 − rank(trivial summand in 𝐿′𝑝).

We now compare 𝑡′𝑝 with
𝑡𝑝 = 𝑟 − ℓ(𝐺𝑝).
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Suppose first that 𝑡𝑝 ≥ 1. Since by construction 𝑟′ ≥ 𝑟, this implies that

𝑡′𝑝 − 𝑣′𝑝 = 𝑟′ − 𝑣′𝑝 − ℓ(𝐺𝑝) ≥ 𝑟 − 𝑣′𝑝 − ℓ(𝐺𝑝) ≥ 𝑟 − 1 − ℓ(𝐺𝑝) = 𝑡𝑝 − 1 ≥ 0.

In this case, since 𝑣′𝑝 ∈ {0, 1}, certainly 𝑣′𝑝 ≤ 𝑡𝑝. Hence 𝑟′ − 𝑟 = 𝑡′𝑝 − 𝑡𝑝 ≤ 𝑡′𝑝 − 𝑣′𝑝,
i.e., 𝑟′− 𝑟 is at most equal to the number of trivial summands in 𝐿′𝑝 so that we can
drop off enough trivial summands to make the rank 𝑟′ of 𝐿′𝑝 equal to 𝑟.

Finally, if 𝑡𝑝 = 0 we show that 𝑣′𝑝 = 0 by considering the discriminant of 𝐿′𝑝 in
D(ℤ𝑝):

disc(𝐿′𝑝) = (−1)𝑟− · |𝐺 |
= disc(𝐿𝑞#𝑝 ) (in D(ℤ𝑝)).

The first equality is based on equation (12.11), the second is assumption 3. But
then 𝑣′𝑝 = 0 because if not, the normal form (12.13) shows that disc(𝐿′𝑝)/disc(𝐿𝑞#𝑝 )
would be a non-square in ℤ×

𝑝. Consequently, we can modify 𝐿′𝑝 by dropping off
𝑟′ − ℓ(𝐺𝑝) trivial summands.
Case 2: 𝑝 = 2. Here we have the normal decompositions

Case (2a) 𝐿′2 =

{
𝐿𝑞#2

⦹⦹ 1
2
𝑡′2 𝑈, 𝑣′2 = 0,

𝐿𝑞#2
⦹ 𝑉 ⦹⦹ 1

2
𝑡′2−1𝑈, 𝑣′2 = 1,

Case (2b) 𝐿′2
(𝑖)

= 𝐿(𝑖)
𝑞#2

⦹⦹
1
2
𝑡′2 𝑈, 𝑖 = 1, 2,

with

𝑣′2 =
1

2
𝑡′2 −#(summands 𝑈)

𝑡′2 = 𝑟′ − ℓ(𝐺2).

Case (2a) occurs if and only if no cyclic quadratic torsion group of order 2 can be

split off from 𝑞#2 . Here the same argument as for 𝑝 odd can be applied in order
to make 𝑟′ equal to 𝑟, but now we drop off 1

2 (𝑡
′
2 − 𝑡2) copies of 𝑈. For case (b),

since 𝑡′2 ≥ 𝑡2, we can drop off 1
2 (𝑡

′
2 − 𝑡2) copies of 𝑈 in order to make 𝑟′ equal to 𝑟.

In view of the remarks made at the beginning of the proof, we only need observe
that 1

2 (𝑡
′
2 − 𝑡2) = 1

2 (𝑟
′ − 𝑟) is even by (12.12).

Case 3: the place at ∞. We replace 𝐿′
ℝ

with an inner product space 𝐿ℝ of
dimension 𝑟 and signature (𝑟+, 𝑟−). Since, again by (12.12), 1

2𝑟
′
− (𝑟′− − 1) ≡ 1

2𝑟− (𝑟− −
1) mod 4, we have 𝜀∞ (𝐿′) = (−1) 1

2
𝑟′− (𝑟′−−1) = (−1) 1

2
𝑟− (𝑟−−1) = 𝜀∞ (𝐿ℝ) and disc(𝐿′

ℝ
) =

(−1)𝑟′− = (−1)𝑟− = disc(𝐿ℝ). Once again, all the conditions 1–3 of Corollary 12.4.3
hold.
Final step. For clarity we denote the new local lattices of rank 𝑟 by 𝑀𝑣, 𝑣 ∈ P.
Let 𝐿 be a free ℤ-module of rank 𝑟 whose localizations at 𝑣 shall be identified
with 𝑀𝑣 as ℤ𝑣-modules. On each 𝑀𝑣 we have constructed a ℤ𝑣-valued quadratic
form 𝑞𝑣 (with the convention that ℤ∞ = ℝ). The preceding steps ensure that
the conditions needed to apply Corollary 12.4.3 hold. Consequently, an integral
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quadratic form 𝑞 on 𝐿 exists having signature (𝑟+, 𝑟−) and whose localization at
each place 𝑣 is isometric to 𝑞𝑣. Taking discriminant quadratic forms, this finally
shows that 𝑞#𝐿 = ⦹𝑝𝑞

#
𝐿𝑝

= ⦹𝑝𝑞
#
𝑝 = 𝑞#. □

Remark 12.4.5. 1. Existence of a genus does not imply uniqueness of the lattice
itself. We have seen that for instance non-isometric definite lattices exist in the
same genus (see e.g. Table 1.12.1).
2. Let us illustrate what limitations condition 3 puts on a genus.

• First, assume 𝑝 is an odd prime. For example, assume that 𝑝 ≡ −1 mod 8.
Then −1 is a non-square in ℤ𝑝 (see e.g. [204, Ch. I, Theorem 5]). Suppose
that 𝐺 is 𝑝-primary of length 𝑟 and homogeneous of odd degree 𝑘 carrying
the torsion form 𝑞# of the lattice 𝐿𝑞# = 𝐿(𝑝𝑘), 𝐿 = ⟨−1⟩ ⦹ ⦹𝑟−1⟨1⟩. From
the table of Proposition 12.3.2, we see that 𝜏8 = −2 + 2(𝑟 − 1) = 2𝑟 − 4 mod 8.
But 2𝑟− (𝐿) = 𝑟 − 𝜏(𝐿) ≡ −𝑟 + 4 mod 8 and so 𝑟 has to be even and the parity
of 𝑟− (𝐿) is the parity of 1

2𝑟. So, if 1
2𝑟 is even, (−1)𝑟− (𝐿) = 1. This shows

that condition 3 does not hold unless 1
2𝑟 is odd. So one cannot weaken this

condition to disc(𝐿𝑞# ) = ±|𝐺 |.
• For the prime 2 this is different. It turns out that if disc(𝐿𝑞# ) = ±|𝐺 | and
𝑞# does not have cyclic order 2 factors, the sign is automatically equal to
(−1)𝑟− . For this reason V. Nikulin in [171, Thm. 1.10.1] stated that in this
situation the condition disc(𝐿𝑞# ) = ±|𝐺 | is necessary and sufficient.
To indicate why this is the case, it is helpful to distinguish two types of normal
forms: Let us say that we have type 𝐼 if the discriminant equals ±|𝐺 | and type
𝐼𝐼 in case the discriminant is ±3|𝐺 |. For type 𝐼 one calculates as before that
𝑟− = 1

2 (𝑟−𝜏) mod 4, from which the parity of 𝑟− follows. Comparing with the
sign of disc(𝐿𝑞# ) then shows that this sign equals (−1)𝑟− . For type 𝐼𝐼 one gets
the opposite sign while disc(𝐿𝑞# ) = ±3 · |𝐺 |. Since the latter lattice cannot
be isometric to the 2-adic localization of an integral lattice of the same rank,
this shows that in the homogeneous situation the signs match. It also shows
that in general an even number of type 𝐼𝐼 homogeneous summands must
be present. Since the parities of 𝑟− for the various homogeneous summands
add, while the discriminants multiply (an even number giving ±1), one easily
checks that the signs match in general.
For example, consider first a homogeneous lattice in normal form, 𝐿𝑞# =

𝐿(2𝑘), 𝑘 odd, with 𝐿 = ⟨3⟩ ⦹⦹𝑐−1𝑈 ⦹ 𝑉, a lattice of rank 2𝑐 + 1. From the
table of Proposition 12.3.3 we see that 𝜏8 (𝑞#) = 3. Since disc(𝐿) = ±1 we
have a type 𝐼 lattice and so 𝑟− ≡ 𝑐 + 1 mod 2. In fact, disc(𝐿) = (−1)𝑐+1, and
so the signs match.
To give an example of an inhomogeneous normal form, consider 𝑀𝑘 ⦹𝑀𝑘+2
with 𝑘 odd and 𝑀 = ⟨1⟩⦹⦹𝑐−1𝑈⦹𝑉 so that 𝑀𝑘 and 𝑀𝑘+2 are both of type
𝐼𝐼. One has 𝑟(𝑀) = 2𝑐 + 1, and from the table of Proposition 12.3.3, one sees
that 𝜏8 (𝑞# (𝑀𝑘)) = 𝜏8 (𝑞# (𝑀𝑘+2)) = −3. One calculates 𝑟− (𝑀𝑘) = 𝑟− (𝑀𝑘+1) ≡
𝑐 − 1 mod 2. Then disc(𝐿) = 3 · 3|𝐺 | = |𝐺 | since disc(𝑀) = 3(−1)𝑐, while
𝑟− ≡ 2(𝑐 − 1) ≡ 0 mod 2. So, again, the signs match.

3. The theorem implies that unimodular even lattices of index (𝑟+, 𝑟−) exist if
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and only if 𝑟+ − 𝑟− is divisible by 8. We saw this already in Chapters 1 and 2:
That even unimodular lattices have index divisible by 8 is part of the statement of
Theorem 2.4.2, existence in the indefinite case is Corollary 2.4.3, while the definite
case follows from the existence of 𝐸8.
4. Observe that the existence proof is not constructive at all. Consider for instance
the genus given by signature (8, 0) and zero torsion form. The proof starts out with
𝐿′ = 0 and enlarges it to 𝐿′ = ⦹8𝑈. Then 𝐿′𝑝 is replaced by a trivial rank 8 lattice

for all odd 𝑝 as well as for the place ∞, while 𝐿′2 is replaced by ⦹4𝑈. Then
existence is deduced from the modified Hasse principle. Of course we know the
required lattice exists: 𝐿 = 𝐸8, but it never comes up during the proof.

We shall mostly use the following consequence of Theorem 12.4.4 which uses
the relation ℓ(𝐺) = max𝑝 ℓ(𝐺𝑝) ≤ 𝑟 = rank(𝐿) so that condition 3 in the above
theorem only applies in case rank(𝐿) = ℓ(𝐺).

Corollary 12.4.6. Let (𝑟+, 𝑟−) be a pair of non-negative integers and let (𝐺, 𝑞)
be a non-degenerate quadratic torsion group. There exists a non-degenerate even
lattice 𝐿 of rank 𝑟 = 𝑟+ + 𝑟−, signature (𝑟+, 𝑟−) and with discriminant form (𝐺, 𝑞) if
the following two conditions are fulfilled.

1. 𝑟+ − 𝑟− ≡ 𝜏8 (𝑞) mod 8,

2. 𝑟 > ℓ(𝐺).

12.5 Applications to Odd Lattices

12.5.A The Genus of an Odd Lattice. The first goal is to search for a re-
formulation of the genus in terms of discriminant forms similar to what we did in
Theorem 11.3.1 for even lattices. Since parity is detected at the prime 2, we shall
focus on symmetric ℤ2-lattices and their symmetric discriminant forms. As a con-
sequence of the classification (cf. Proposition 11.2.3) every 2-primary symmetric
torsion form is a polar form, but it can be the polar form of several non-isometric
quadratic torsion forms. So, despite the similarity of the normal forms in the sym-
metric and the quadratic situation, several non-isometric normal forms may have
isometric polar forms. For the basic building blocks this is already demonstrated
in Table 10.3.1. We extract the relevant information:

Lemma 12.5.1. The following pairs of 2-primary quadratic forms have isometric
polar forms:

1. ⟨2−1⟩ and ⟨3 · 2−1⟩ have polar form ⟨2−1⟩,

2. ⟨2−2⟩ and ⟨−3 · 2−2⟩ have polar form ⟨2−2⟩, ⟨3 · 2−2⟩ and ⟨−1 · 2−2⟩ have polar
form ⟨−1 · 2−2⟩,

3. 𝑢1 and 𝑣1 have polar form ⟨𝑢1⟩.



234 12 Integral Lattices: the Discriminant Form

If the normal form of a 2-primary quadratic torsion form does not contain either
one of the above forms, then it is the polar form of a unique quadratic torsion
form.

For composite forms, the result is as follows:

Proposition 12.5.2. Two non-degenerate 2-primary quadratic torsion forms with
isometric polar forms are themselves isometric if and only if they have the same
index modulo 8.

Before proving this, we describe some consequences using the following concept:

Definition 12.5.3. The index set of a non-degenerate 2-primary symmetric tor-
sion form 𝑏 is defined as the following subset of ℤ/8ℤ

T8 (𝑏) = {𝜏8 (𝑞) ∈ ℤ/8ℤ | 𝑞 a non-degenerate quadratic torsion form with 𝑏𝑞 ≃ 𝑏}.

If T8 (𝑏) ⊂ {0̄,±2̄, 4̄}, respectively T8 (𝑏) ⊂ {±1̄,±3̄}, one calls T8 (𝑏) an even-index
set , respectively an odd–index set . If equality holds, we say that T8 (𝑏) is a
complete even-index set, respectively a complete odd-index set.

Example 12.5.4. The polar forms of Lemma 12.5.1 have the following index sets
T8 (⟨2−1⟩) = {1̄,−1̄}, T8 (⟨2−2⟩) = {1̄,−3̄}, T8 (⟨−2−2⟩) = {−1̄, 3̄}, T8 (𝑢1) = {0̄, 4̄}.
Moreover, Lemma 12.5.1 also implies that if the normal form of 𝑏 does not contain
any of such forms, then 𝑏 is the polar form of a unique quadratic form 𝑞 and
T8 (𝑏) = {𝜏8 (𝑞)}.

Index sets can be added using addition in ℤ/8ℤ:

T8 (𝑏) + T8 (𝑏′) = {𝜏 + 𝜏′ | 𝜏 ∈ T8 (𝑏), 𝜏′ ∈ T8 (𝑏)}.

If 𝑏 = 𝑏𝑞 and 𝑏′ = 𝑏𝑞′ , we have 𝜏(𝑞 ⦹ 𝑞′) = 𝜏(𝑞) + 𝜏(𝑞′) and hence T8 (𝑏) + T8 (𝑏′) ⊂
T8 (𝑏⦹ 𝑏′). Obviously, in this process the parities (being an odd-index set or an
even-index set) add like the addition in 𝔽2.

We formulate an elementary property of even- and odd-index sets.

Lemma 12.5.5. Let (𝐺, 𝑏) be a non-degenerate 2-primary symmetric torsion form.
If ℓ(𝐺) is even (odd), then T8 (𝑏) is an even-index (odd-index) set.

Proof. From Proposition 12.3.3 we deduce that for any length 1 quadratic torsion
form 𝑞, we have 𝜏8 (𝑞) ≡ 1 mod 2, while for the length two forms 𝑢𝑘, 𝑣𝑘 we have
𝜏8 (𝑢𝑘) ≡ 𝜏8 (𝑣𝑘) ≡ 0 mod 2. The additivity of the parity then shows the result. □

The proof of Proposition 12.5.2 requires some further reductions for the dyadic
normal forms where adjacent weights are involved.
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Lemma 12.5.6. Let 𝑢,𝑢′,𝑢′′ be units in ℤ2. Then the following relations hold
between non-homogeneous dyadic lattices.

⟨𝑢 · 2𝑘−1⟩ ⦹𝑈𝑘 ≃ ⟨−3𝑢 · 2𝑘−1⟩ ⦹ 𝑉𝑘 for 𝑘 ≥ 1 (V)

𝑈𝑘−1 ⦹ ⟨𝑢 · 2𝑘⟩ ≃ ⟨−3𝑢 · 2𝑘⟩ ⦹ 𝑉𝑘−1 for 𝑘 ≥ 1 (VI)

⟨𝑢 · 2𝑘−1⟩ ⦹ ⟨𝑢′ · 2𝑘⟩ ≃ ⟨(𝑢 + 2𝑢′) · 2𝑘−1⟩ ⦹ ⟨(𝑢′ + 2𝑢) · 2𝑘⟩ for 𝑘 ≥ 1 (VII)

(⟨𝑢⟩ ⦹ ⟨𝑢′⟩)(2𝑘−1) ⦹ ⟨2𝑘⟩ ≃ (⟨𝑢 + 2⟩ ⦹ ⟨𝑢′ − 2⟩)(2𝑘−1) ⦹ ⟨−3 · 2𝑘⟩ (VIII)

if 𝑢 ≡ 𝑢′ mod 4 𝑘 ≥ 1

⟨𝑢 · 2𝑘−2⟩ ⦹ ⟨𝑢′ · 2𝑘⟩ ≃ ⟨−3𝑢 · 2𝑘−2⟩ ⦹ ⟨−3𝑢′ · 2𝑘⟩, for 𝑘 ≥ 3. (IX)

Similar relations hold for their quadratic torsion forms, that is, for the 2-
primary quadratic torsion groups where the exponents 2𝑗 are replaced by 2−𝑗 and
for 𝑢𝑘 and 𝑣𝑘 instead of 𝑈𝑘 and 𝑉𝑘.

The proofs of these relations have been placed in Appendix C.3.B.

Proof of Proposition 12.5.2. The proof of the non-trivial implication is by induc-
tion on the length ℓ of the torsion group and uses the normal form decomposition
for symmetric torsion forms. On the cyclic groups ℤ/2𝑘ℤ, 𝑘 ≥ 3, by Lemma 12.5.1
every non-degenerate symmetric form 𝑏 is the polar form of a unique quadratic
form, i.e. #T8 (𝑏) = 1, and so the result holds trivially in this case.

In case of the three pairs of non-isometric quadratic cyclic groups with the
same polar form given by Lemma 12.5.1, the two have different indexes mod 8 (see
Example 12.5.4) which finishes the proof of the proposition for ℓ = 1.

Assuming the result has been proven for all quadratic torsion forms on 2-
primary groups of length ≤ ℓ, let 𝑞, 𝑞′ be such torsion forms on a 2-primary group
of length ℓ + 1. We may assume that 𝑏 = 𝑏𝑞 = 𝑏𝑞′ is in normal form and we assume
that 𝜏8 (𝑞) = 𝜏8 (𝑞′).

Suppose first that 𝑏 = 𝑏1 ⦹ 𝑏2 where 𝑏1 is one of the forms ⟨𝑢 · 2−𝑘⟩, 𝑘 ≥ 3,
𝑢𝑘, 𝑘 ≥ 2, or 𝑣𝑘, 𝑘 ≥ 2. In this case 𝑏1 is the polar form of a unique quadratic
form 𝑞1. Suppose 𝑏2 = 𝑏𝑞2 = 𝑏𝑞′2 for some quadratic forms 𝑞2 and 𝑞′2. Then
𝑏 is the polar form of 𝑞 = 𝑞1 ⦹ 𝑞2 as well as of 𝑞′ = 𝑞1 ⦹ 𝑞′2. Indeed, using
the correspondence between normal forms mentioned in Proposition 11.2.3, any 2-
primary quadratic form in normal form with 𝑏 as polar form splits off 𝑞1. Assuming
that 𝜏8 (𝑞) = 𝜏8 (𝑞′), one has 𝜏8 (𝑞2) = 𝜏8 (𝑞′2), and so, by induction 𝑞2 ≃ 𝑞′2 and hence
𝑞 ≃ 𝑞′. This shows the result in case the normal form of 𝑏 = 𝑏𝑞 splits off a summand
which is the polar form of a unique quadratic form.

If 𝑏 does not split as above, the normal form of 𝑏𝑞 = 𝑏𝑞′ splits off one of the
following three types of symmetric torsion forms (consult also Table 11.2.1):

Type 1: ⦹𝑎1 ⟨2−1⟩, 𝑎1 ≤ 2, Type 2: ⦹𝑎2 ⟨𝑢 · 2−2⟩, 𝑎2 ≤ 2, Type 3 : ⦹𝑐𝑢1 .

• We first consider the case of type 3 forms with 𝑐 ≥ 2, that is, where two copies
of 𝑢1 split off from 𝑏𝑞. Then on the level of quadratic forms we may assume
that 𝑞 ≃ ⦹2𝑢1 ⦹ 𝑞2 and 𝑞′ ≃ ⦹2𝑢1 ⦹ 𝑞′2 or 𝑞′ ≃ 𝑢1 ⦹ 𝑣1 ⦹ 𝑞′2, since 𝑢1 = 𝑣1
in the symmetric situation. Suppose that 𝜏8 (𝑞) = 𝜏8 (𝑞′). Taking away 𝑢1, it
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follows that 𝜏8 (𝑢1 ⦹ 𝑞2) = 𝜏8 (𝑣1 ⦹ 𝑞′2) or 𝜏8 (𝑢1 ⦹ 𝑞2) = 𝜏8 (𝑢1 ⦹ 𝑞′2), and so,
by induction 𝑢1 ⦹ 𝑞2 ≃ 𝑣1 ⦹ 𝑞′2 or 𝑢1 ⦹ 𝑞2 ≃ 𝑢1 ⦹ 𝑞′2 and hence 𝑞 ≃ 𝑞′, as
desired.

• We next consider type 2 forms with 𝑎2 = 2, so two cyclic copies of order 4
are present as direct summands of 𝑏𝑞 ≃ 𝑏𝑞′ . Table 6.1.1 shows that the non-
isometric quadratic forms ⟨2−2⟩ = [2−3] and ⟨−3 · 2−2⟩ = [−3 · 2−3] have the
same polar form, and, similarly, for ⟨3·2−2⟩ = [3·2−3] and ⟨−1·2−2⟩ = [−1·2−3].
However an orthogonal sum of two cyclic such forms changes the situation,
since by relation III given in Appendix C.3.A, one has isometries

⟨𝑢 · 2−2⟩ ⦹ ⟨𝑢′ · 2−2⟩ ≃ ⟨−3𝑢 · 2−2⟩ ⦹ ⟨−3𝑢′ · 2−2⟩

on the level of quadratic torsion forms, eliminating the ambiguity. Assuming
that 𝑏𝑞 ≃ 𝑏𝑞′ and 𝜏8 (𝑞) = 𝜏8 (𝑞′), splitting off the same type 2 component
from both quadratic forms gives quadratic forms of lower ranks with the
same index mod 8 and with isometric polar form. Hence, by induction these
quadratic forms are isometric, and so also 𝑞 and 𝑞′ are.

• In the same way one can treat the situation where a type 2 form with 𝑎2 = 1
combined with 𝑢1 is present, i.e. if ⟨𝑢 · 2−2⟩ ⦹ 𝑢1 splits off. Here we use
relation VI stating that on the level of quadratic torsion forms, ⟨𝑢 ·2−2⟩⦹𝑣1 ≃
⟨−3𝑢 · 2−2⟩ ⦹ 𝑢1.

• The case (𝑎1, 𝑎2) = (2, 1), that is, where three cyclic copies ⦹2⟨2−1⟩⦹⟨𝑢′ ·2−2⟩
split off from 𝑏𝑞.
The possible quadratic forms are 𝑞𝑢,𝑢′,𝑢′′ = ⟨𝑢 ·2−1⟩⦹ ⟨𝑢′ ·2−1⟩⦹ ⟨𝑢′′ ·2−2⟩ and
𝑞′𝑢,𝑢′,𝑢′′ = ⟨𝑢 ·2−1⟩⦹ ⟨𝑢′ ·2−1⟩⦹ ⟨−3𝑢′′ ·2−2⟩, 𝑢′,𝑢′,𝑢′′ ≡ 1, 3 mod 4. Using VIII
these can be reduced to 𝑞1,1,𝑢′′ and 𝑞′1,1,−3𝑢′′ . Hence in both cases we can split

off ⦹2⟨2−1⟩ and then 𝑏 = 𝑏𝑞 ≃ 𝑏𝑞′ , 𝑞 = ⦹2⟨2−1⟩ ⦹ 𝑞2, 𝑞
′ = ⦹2⟨2−1⟩ ⦹ 𝑞′2, and

assuming 𝜏8 (𝑞) = 𝜏8 (𝑞′), we find that 𝜏8 (𝑞2) = 𝜏8 (𝑞′2) and so, by induction,
𝑞 ≃ 𝑞′.

• The case (𝑎1, 𝑐) = (2, 1), that is, ⦹2⟨2−1⟩ ⦹ 𝑢1 splits off from 𝑏𝑞.
The possibilities for 𝑞 are 𝑞𝑢,𝑢′ = ⟨𝑢 · 2−1⟩ ⦹ ⟨𝑢′ · 2−1⟩ ⦹ 𝑢1 and 𝑞′𝑢,𝑢′ =

⟨𝑢 ·2−1⟩⦹ ⟨𝑢′ ·2−1⟩⦹𝑣1 with (𝑢,𝑢′) = (1, 1), (1, 3), (3, 3). Using the isometries
III we can write these as a direct sum of four terms ⟨𝑢 · 2−1⟩ with at least
one 𝑢 equal to 1 mod 4 and splitting off this term we may apply induction.

A limited number of cases remain to be discussed. We already discussed length
1. From the length ≥ 2 cases, only 𝑏 = ⦹2⟨2−1⟩, 𝑏 = ⟨2−1⟩ ⦹ ⟨𝑢 · 2−2⟩, 𝑏 = 𝑢1 and
𝑏 = ⟨2−1⟩ ⦹ 𝑢1 remain. One checks that all of the non-isometric quadratic torsion
forms 𝑞 with the same polar form 𝑏 = 𝑏𝑞 have distinct indexes mod 8, completing
the proof of the proposition. □

As a consequence, using also Proposition 11.2.4, we can count the number of
non-isometric dyadic lattices with given symmetric discriminant form and of rank
equal to the length of the discriminant group:

Corollary 12.5.7. If 𝑏 is the symmetric discriminant form of some non-degenerate
dyadic lattice, there are #T8 (𝑏) non-isometric non-degenerate dyadic lattices of
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rank equal to the length of the discriminant group for which 𝑏 appears as discrim-
inant form, unless ⟨2−1⟩ splits off from 𝑏. In that case the number is twice as
big.

We shall next link even and odd integral lattices at the level of their genus:

Proposition 12.5.8. A non-degenerate lattice (𝐿, 𝑏) is odd if and only if 𝑳 = 𝐿(2)
is an even non-degenerate lattice having the properties

1. 𝑳2 splits off a summand ⟨𝑢 · 2⟩, 𝑢 a unit;

2. dg𝑳2
has length equal to the rank of 𝐿, or, equivalently, with 𝐿(0)

2 the exponent
0 summand in the Jordan splitting of 𝐿2, one has

rank(𝐿) − rank(𝐿(0)
2 ) = ℓ(dg𝐿2 ).

Proof. If 𝐿 is odd, 𝐿(2) = 𝑳 is even and 𝑳2 must split off ⟨𝑢 · 2⟩, 𝑢 ∈ ℤ×
2 , by

Proposition 10.2.2, otherwise 𝐿 would be even. The exponent 0 summand in the
normal form of 𝐿2 gives the exponent 1 summand in 𝑳2 and so the discriminant
group of 𝑳 has length equal to rank(𝑳).

Conversely, if 𝑳 = 𝐿(2) has the stated properties, the bilinear form on 𝑳2 is
divisible by 2 and so 𝐿2 = 𝑳2 ( 12 ) is a dyadic lattice. Since for odd primes 𝑝, 2 is
a unit and 𝐿𝑝 = 𝑳𝑝 ( 12 ), all localizations of 𝐿 are 𝑝-adic lattices. But then 𝐿 is an
integral lattice. It is odd, since 𝐿2 is odd. □

The above observation motivates the following notation for a non-degenerate
symmetric lattice (𝐿, 𝑏):

𝑳 = 𝐿(2), 𝒒2 := 𝑏#𝑳2
, 𝒒2 := 𝑞#𝑳2

,

𝐿2 = 𝐿(0)
2 ⦹ 𝐿≥1

2 , 𝑏2 := 𝑏#𝐿2 ,

𝑳2 = 𝑳(1)
2 ⦹ 𝑳≥2

2 , 𝑳(1)
2 = 𝐿(0)

2 (2), 𝑳≥2
2 = 𝐿≥1

2 (2),
𝒃2 = 𝒃(1)

2 ⦹ 𝒃≥2
2 , 𝒃(1)

2 = 𝑏#
𝐿
(0)
2 (2)

, 𝒃≥2
2 = 1

2𝑏2,

(12.10)

where the upper indices indicate exponents of the Jordan splitting. The last line
uses the ”halving” procedure explained in Definition 9.3.10.

We can now formulate Nikulin’s characterization of the genus in the case of
odd lattices:

Theorem 12.5.9 ([171, Cor. 1.16.3]). Let (𝐿, 𝑏) be a non-degenerate odd sym-
metric integral lattice. Then the genus 𝔤(𝐿) is determined by the discriminant
symmetric form of 𝐿 together with the signature of 𝐿.

Proof. We show that the locations of 𝐿 are determined by its discriminant sym-
metric form and its signature. In order to invoke the previous results on even
lattices, we use 𝑳 = 𝐿(2) introduced above.
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As noted at the start of this subsection, for 𝑝 odd, there is no difference between
symmetric and quadratic 𝑝-adic lattices. So 𝑏#𝑳𝑝 determines 𝑞#

𝐿#
𝑝

and conversely.

Note that 𝑞#𝑳𝑝 = 𝑞#𝐿𝑝 (2) in this case.

We now concentrate on 𝑝 = 2. Recall from Table 11.2.1 the various homoge-

neous normal forms and recall also that 𝑢1 = 𝑣1 for symmetric forms. So 𝒃(1)
2 has

normal form ⦹𝑎 ⟨2−1⟩ ⦹𝑏 𝑢1 with 𝑎 = 1 or 𝑎 = 2. From Proposition 12.5.8.2 we
find that 𝑎 + 2𝑏 = 𝑟 − ℓ(dg𝑳≥2

2
), 𝑟 = rank(𝐿). So, if this number is odd, 𝑎 = 1 and

𝑏 = 1
2 (𝑟 − 1 − ℓ(dg𝑳≥2

2
)), and otherwise 𝑎 = 2 and 𝑏 = 1

2 (𝑟 − 2 − ℓ(dg𝑳≥2
2
)). This

determines the symmetric form 𝒃(1)
2 up to isometry if we know 𝑟 and the form

dg𝑳≥2
2

= 𝑏2 (2−1). Hence, given 𝑟, the forms 𝑏2 and 𝒃2 determine each other up to
isometry.

We next show that 𝜏8 (𝒒2) is completely determined by the discriminant bilinear
form and the signature of 𝐿. First remark that the indexes of 𝐿 and 𝑳 are the
same and so 𝜏8 (𝑞#𝑳 ), the index mod 8 of the quadratic discriminant form of 𝑳, is

completely determined by the index of 𝐿. From 𝑞#𝑳 = ⦹𝑝 prime 𝑞
#
𝑳𝑝

≃ ⦹𝑝≠2𝑞
#
𝐿𝑝
⦹𝑞#𝑳2

,

we infer that 𝜏8 (𝑞#𝑳 ) = ∑
𝑝≠2 𝜏8 (𝑞

#
𝐿𝑝
) + 𝜏8 (𝑞#𝑳2

) and so 𝜏8 (𝑞#𝑳2
) is indeed completely

determined by the discriminant symmetric form and the signature of 𝐿. Here we
use that for odd primes 𝑝 the mod 8 index of 𝑞#𝐿𝑝 is determined from the localization

at 𝑝 of the discriminant symmetric form since 𝑏#𝐿𝑝 ≃ 𝑞#𝐿𝑝 .

Combining the preceding two observations, Proposition 12.5.2 implies that the
isometry class of the discriminant quadratic form for 𝑳2 is completely determined
by the discriminant symmetrc form of 𝐿 and its signature. Since we know all
the other local discriminant forms as well as the index of the lattice 𝑳, by The-
orem 11.3.1 the genus of 𝑳 is determined by the discriminant symmetric form of
𝐿 together with its signature. Hence the genus of 𝐿 is determined by the same
data. □

Remark 12.5.10. Defining the genus invariant of the odd lattice 𝐿 as the
triple g(𝐿) := (𝑟+, 𝑟−, [𝑏#𝐿 ]), where (𝑟+, 𝑟−) is the signature of 𝐿 and [𝑏#𝐿 ] is the

isometry class of the discriminant bilinear form 𝑏#𝐿 of 𝐿, the preceding result can
be rephrased by saying that the genus of an odd lattice is completely determined
by its genus invariant.

12.5.B Existence Results. The next goal is to prove Nikulin’s existence result
for odd lattices. In the proof an index-like invariant 𝑡8 (𝑏) for certain 2-primary
symmetric torsion forms 𝑏 plays a decisive role. It is defined using any quadratic
torsion form 𝑞 with polar form 𝑏. So a priori this depends on 𝑞, but, as it turns
out, only if 𝑏 splits off ⟨2−1⟩. Its definition uses the expression 𝜔(𝛿(𝑞)), where, we
recall from § 9.1.B, 𝛿(𝑞) ∈ D(ℤ2) is the reduced discriminant. So, if we identify
D(ℤ2) with (ℤ/8ℤ)×, the expression 𝜔(𝛿(𝑞)) makes sense.4

4Recall (cf. (12.8)) that 𝜔(𝑡) = 0 if 𝑡 ≡ ±1 mod 8 and 𝜔(𝑡) = 1 if 𝑡 ≡ ±3 mod 8.
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Table 12.5.1: Mod 8 invariants

𝑞 [2−2] [3 · 2−2] 𝑢1, 𝑣1 𝑢2, 𝑣2 [2−3], [−3 · 2−3] [−2−3], [3 · 2−3]
𝑏 = 𝑏𝑞 ⟨2−1⟩ ⟨2−1⟩ 𝑢1 𝑢2, 𝑣2 ⟨2−2⟩ ⟨−2−2⟩
𝜏8 (𝑞) 1 −1 0, 4 0, 0 1, −3 −1, 3

4𝜔◦𝛿(𝑞) 0 4 0, 4 0, 0 0, 4 0, 4
𝑡8 (𝑏) 1 3 0 0, 0 1 −1

Lemma 12.5.11. 1. For a non-degenerate 2-primary quadratic torsion form 𝑞
one has 𝜏8 (𝑞(2−1)) ≡ 𝜏8 (𝑞) + 4𝜔(𝛿(𝑞)) mod 8.
2. Suppose 𝑏 is a (not necessarily 2-primary) non-degenerate symmetric torsion
form which does not split off ⟨2−1⟩ and let 𝑞 be a quadratic torsion form 𝑞 with
polar form 𝑏. Then the quantity 𝜏8 (𝑞) + 4𝜔(𝛿(𝑞2)) mod 8 only depends on 𝑏 and
so

𝑡8 (𝑏) := 𝜏8 (𝑞) + 4𝜔(𝛿(𝑞2)) mod 8 (12.11)

is well defined. Moreover, for any such choice of 𝑞 and any prime 𝑝 one has
𝑡8 (𝑏𝑝) = 𝜏8 (𝑞𝑝 (2−1)).

Proof. 1. The proof of this formula is given in Remark 12.3.4.
2. Note that for any odd prime 𝑝 the 𝑝-primary part of 𝑏 is the polar form of
the form 𝑞𝑝 and so one may as well assume that 𝑏 is 2-primary. It suffices further
to consider the Jordan summands of exponent 1 and 2 since for higher exponents
there is a unique (non-degenerate) quadratic torsion form whose polar form is a
given (non-degenerate) symmetric torsion form. But in these cases the assertion
follows from the table. □

Recall the notation 12.10 which is tied to a given odd lattice 𝐿. The 2-adic
localization of 𝑳 = 𝐿(2) has discriminant symmetric form 𝒃2. We consider the
collection T8 (𝒃2) of torsion quadratic forms with 𝒃2 as its polar form in an abstract
manner:

Proposition 12.5.12. Let 𝒃2 be a non-degenerate torsion symmetric form on a

2-primary group G2 such that 𝒃(1)
2 splits off ⟨2−1⟩.

1. For 𝒃(1)
2 the following normal forms occur:

(a) If 𝒃(1)
2 = ⟨2−1⟩, then T8 (𝒃(1)

2 ) = {1,−1}.

(b) If 𝒃(1)
2 = ⦹2⟨2−1⟩, then T8 (𝒃(1)

2 ) = {0, 2,−2}.

(c) If 𝒃(1)
2 = ⟨2−1⟩ ⦹⦹𝑏𝑢1, 𝑏 ≥ 1, then T8 (𝒃(1)

2 ) = {1,−1, 3,−3}, a complete
set of odd parity5.

(d) If 𝒃(1)
2 = ⦹2⟨2−1⟩ ⦹𝑏 𝑢1, 𝑏 ≥ 1, then T8 (𝒃(1)

2 ) = {0, 2,−2, 4}, a complete
set of even parity.

5See Definition 12.5.3,
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2. If 𝒃≥2
2 = 𝑏2 (2−1) for some 2-primary torsion symmetric form 𝑏2 which does

not split off ⟨2−1⟩, then 𝑡8 (𝑏2) = 𝜏8 (𝒒≥2
2 ), where 𝒒≥2

2 is a quadratic form with
polar form 𝒃≥2.

Proof. Item 1 follows from Table 12.5.1.
2. This is a consequence of Lemma 12.5.11. □

The above results lead to

Theorem 12.5.13 (Existence for odd lattices [171, Thm. 1.16.5]). Let there be
given two non-negative integers (𝑟+, 𝑟−) and a non-degenerate symmetric torsion
group (𝐺, 𝑏#). There exists a non-degenerate odd lattice (𝐿, 𝑏) of rank 𝑟 = 𝑟+ + 𝑟−,
signature (𝑟+, 𝑟−) and with discriminant bilinear form (𝐺, 𝑏#) if and only if all of
the following conditions are fulfilled.

a) 𝑟 ≥ ℓ(𝐺𝑝) for odd primes 𝑝, 𝑟 ≥ ℓ(𝐺2) + 1 (recall that 𝐺𝑝 is the 𝑝-primary
part of 𝐺).

b) For every odd prime 𝑝 with 𝑟 = ℓ(𝐺𝑝) we have (−1)𝑟− |𝐺𝑝 | = disc(𝑏#𝑝 ) ·
(ℤ×

𝑝)2 in D(ℤ𝑝).

c) Suppose that 𝑟 = ℓ(𝐺2) + 1 and no non-degenerate cyclic rank 2 torsion

quadratic form splits off from 𝑏#2 . Then 𝑟+ − 𝑟− ≡ 𝑡8 (𝑏#) + 𝛿 mod 8, 𝛿 ∈
{1,−1}.

d) Suppose that 𝑟 = ℓ(𝐺2) + 2 and no non-degenerate cyclic rank 2 torsion

quadratic form splits off from 𝑏#2 . Then 𝑟+ − 𝑟− ≡ 𝑡8 (𝑏#) + 𝛿 mod 8, 𝛿 ∈
{0, 2,−2}.

Proof. We first assume that conditions a)–d) hold. The strategy is to construct a
suitable quadratic torsion group 𝒒 which is the discriminant quadratic form of an
even lattice L = 𝐿(2), where 𝐿 is odd, has discriminant symmetric form 𝑏# and
signature (𝑟+, 𝑟−). Since the only prime that matters is 2, we start with 𝑏#2 and we
aim to first construct 𝒃2, the discriminant symmetric form of the localization L2

of the purported lattice 𝑳. To define 𝒃2, we start by setting (cf. Definition 9.3.10)

𝒃≥2
2 :=

1

2
𝑏#2 .

By construction, its underlying torsion group, the halving of 𝐺2, has the same
length as 𝐺2, the group underlying 𝑏#2 .

By Proposition 12.5.8, the length of the searched for 𝒃(1)
2 satisfies the relation

ℓ(𝒃(1)
2 ) = 𝑟+ + 𝑟− − ℓ(𝒃(≥2)

2 ) = 𝑟+ + 𝑟− − ℓ(𝐺2).

If the last number (determinable from the data) is odd, i.e., 𝑟+ + 𝑟− − ℓ(𝐺2) = 1+ 2𝑏
for some 𝑏 ≥ 0, we set

𝒃(1)
2 := ⟨2−1⟩ ⦹⦹𝑏𝑢1. (12.12)
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If it is even, say 𝑟+ + 𝑟− − ℓ(𝐺2) = 2 + 2𝑏, set

𝒃(1)
2 := ⦹2⟨2−1⟩ ⦹⦹𝑏𝑢1. (12.13)

Here we have used condition a) for 𝑝 = 2 and that, again by Proposition 12.5.8
⟨2−1⟩ must split off from 𝑳2. Now set

𝒃2 := 𝒃(1)
2 + 𝒃≥2

2

so that the length of the group underlying 𝒃2 is then precisely 𝑟 as it should.

The primes 𝑝 ≠ 2 do not play an essential role since 𝑏#𝑝 is the polar form of

a unique quadratic torsion form 𝑞#𝑝 . The essential part of the proof consists in
constructing 𝒒2 with polar form 𝒃2 so that the mod 8 index of

𝒒 := 𝒒2 ⦹𝑝≠2 𝑞
#
𝑝 (2−1),

satisfies 𝑟+ − 𝑟− ≡ 𝜏8 (𝒒) mod 8. We distinguish several cases:

1. 𝑟 − ℓ(𝐺2) ≥ 3. In other words, we are in one of the cases (12.12) or (12.13)

with 𝑏 ≥ 1. By Proposition 12.5.12, T8 (𝒃(1)
2 ) then consists of a complete

set of odd or even parity, so that it is always possible to choose 𝒒(1)
2 with

𝜏8 (𝒒) ≡ 𝑟+ − 𝑟− mod 8.

2. If 𝑟 − ℓ(𝐺2) ∈ {1, 2} and ⟨2−1⟩ splits off from 𝑏#2 , then 𝑏 = 0, i.e., either

𝒃(1)
2 = ⟨2−1⟩ (and so 𝒃(2)

2 = ⟨2−2⟩), or 𝒃(1)
2 = ⦹2⟨2−1⟩ (and so 𝒃(2)

2 = ⦹2⟨2−2⟩).
In other words, we are in case 1(a) or 1(b) of Proposition 12.5.12. Since
T8 (⟨2−1⟩) = {1,−1} and T8 (⟨2−2⟩) = {1,−3}, it follows that T8 (⟨2−1⟩ ⦹ ⟨2−2⟩) =
{0, 2,−2, 4}, a complete set of even indexes mod 8. If 𝒃(1)

2 = ⟨2−1⟩, we can

choose 𝒒(1)
2 and 𝒒(2)

2 in such a way that all possible even or odd indexes mod

8 for 𝒒 can be realized. A similar argument applies if 𝒃(1)
2 = ⦹2⟨2−1⟩.

3. If 𝑟 − ℓ(𝐺2) ∈ {1, 2} and ⟨2−1⟩ does not split off from 𝑏#2 , then item 2 of

Proposition 12.5.12 states that 𝑡8 (𝑏#2 ) = 𝜏8 (𝒒≥2
2 ). By definition (cf. (12.11)),

𝑡8 (𝑏#𝑝 ) = 𝜏8 (𝑞#𝑝 ) for odd primes 𝑝. So 𝜏8 (𝒒) = 𝑡8 (𝑏#) + 𝜏8 (𝒒(1)
2 ). Items 1(a)

and 1(b) of Proposition 12.5.12 enumerate the choices we have for 𝜏8 (𝒒(1)
2 )

and these match exactly the values of 𝛿 given by condition c) or d). So the

value of 𝛿 determines the form 𝒒(1)
2 we must choose.

We now can apply Theorem 12.4.4 which shows the existence of the purported
even lattice 𝑳.

Conversely, assume that an odd non-degenerate 𝐿 exists with the stated prop-
erties and let 𝑳 = 𝐿(2). For odd 𝑝 we have 𝐿𝑝 ≃ 𝑳𝑝 and so for those primes the
conditions a) and b) of the present theorem hold since these hold for the even lat-
tice 𝑳. For the prime 2 condition a) holds since 𝐿2 splits off a rank one unimodular
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lattice. To verify the remaining conditions, observe first that the index of 𝑳 is the
same as the index of (𝐿, 𝑏) and so

𝑟+ − 𝑟− ≡
∑︁
𝑝≠2

𝜏8 (𝒒𝑝) + 𝜏8 (𝒒≥2
2 ) + 𝜏8 (𝒒(1)

2 ) mod 8

≡ 𝑡8 (𝑏#) + 𝑡 mod 8, 𝑡 ∈ T8 (𝒃(1)
2 ) (by Proposition 12.5.12, item 2),

and so conditions c) and d) follow from Proposition 12.5.12 items 1(a) and 1(b). □

Corollary 12.5.14. Let (𝑟+, 𝑟−) be a pair of non-negative integers and let (𝐺, 𝑏)
be a non-degenerate symmetric torsion group. There exists a non-degenerate odd
lattice 𝐿 of rank 𝑟, signature (𝑟+, 𝑟−) and with discriminant form (𝐺, 𝑏) if 𝑟 ≥
ℓ(𝐺) + 3.

Historical and Bibliographical Notes. The existence of lattices with given dis-
criminant quadratic form was first shown by C.T.C. Wall in [245]. In Section 12.1 we
have given his proof, of which the crucial ingredient, the euclidean algorithm and its
consequences, was already discussed in Section 4.3.

Uniqueness up to stable equivalence dates back to A. Durfee’s thesis [56], which we
have closely followed. The concept of ”index mod 8” is due to V. Nikulin [171] who
attributes its calculation to C.T.C. Wall. Our version as given in Section 12.3 is inspired
by the calculations used to prove Theorem 8.14 in the book [99] by F. Hirzebruch, W.
Neumann and S. Koh.

The insight that the classical existence results Theorems 12.4.1 and 12.4.2 can be

reformulated in terms of the discriminant form (cf. Theorems 12.4.4, 12.5.13) is due to V.

Nikulin and has been elaborated in his article [171]. It also contains the characterization

of the genus in the case of odd lattices which is stated here as Theorem 12.5.9.
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The Spin Group

Introduction

The spin group of a quadratic vector space (𝑉, 𝑞) over a field 𝑘 is defined by means
of its Clifford algebra C(𝑞). As a vector space this is just the exterior algebra Λ(𝑉)
and it contains 𝑉. The algebra structure comes from 𝑞. For us its importance lies
in the action of the algebra conjugation. Firstly, conjugation with a non-isotropic
vector 𝑢 ∈ 𝑉 preserves 𝑉 and, secondly, in 𝑉 this gives the hyperplane reflection
𝜎𝑢 up to a sign. This property for 𝑢 can be extended to a ”large” subgroup of
C(𝑞). To do this properly, one makes use of a canonical splitting of C(𝑞) into even
and odd elements. The even elements form a subalgebra, the even Clifford algebra.
The conjugation with 𝑢 receives a sign according to whether 𝑢 is odd or even. The
Clifford group consists of the invertible elements 𝑢 of the Clifford algebra which
have the property that twisted conjugation with 𝑢 preserves 𝑉.

The classical Hamilton quaternions form the even Clifford algebra for the stan-
dard inner product on ℝ3, as we shall see in Example 13.1.3.2; the non-zero quater-
nions give the special Clifford group as shown in Example 13.2.1.1. In Exam-
ple 13.1.3.2 we show that, surprizingly, the classification of real Clifford algebras is
equivalent to the classification of symmetric forms on 𝔽2-vector spaces having an
at most 1-dimensional radical. So the Arf invariant reappears here. Remarkably,
the Arf invariant also comes up in § 13.1.B where the center of the Clifford algebra
is calculated.

In the remainder of the chapter the field 𝑘 has characteristic different from 2. In
Section 13.2 some essential properties of the Clifford group are established. These
are used to make sense of the spinor norm, a certain 𝑘×-valued function on Clif (𝑞),
which is introduced in Section 13.3. Now one makes use of two observations: any
element in the Clifford group is an algebra product of non-isotropic vectors in 𝑉
and secondly, the Clifford algebra acts on 𝑉 through a twisted adjoint action which
for 𝑢 ∈ 𝑉 is given by the reflection 𝜎𝑢. Combining the two, one defines the spinor
norm of a product of such reflections as the spinor norm of the corresponding 𝑢.
The Cartan–Dieudonné theorem implies that in this way we can define the spinor
norm for any isometry. Since the decomposition of an isometry into reflections
is not unique, this is ambiguous. To take this into account, we do not take 𝑘
as the value group of this spinor norm, but D(𝑘) = 𝑘×/(𝑘×)2. This version of
the spinor norm shall play an essential role in establishing the classification of
indefinite lattices given in Chapter 14.1 In the final Section 13.4 we define all of

1For this last application only the even Clifford algebra and the untwisted adjoint action is of
importance. We have chosen to involve the full Clifford algebra since it makes the presentation
more coherent.
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the preceding concepts in the setting of lattices.

13.1 The Clifford Algebra

In this section 𝑘 is a field of any characteristic, 𝑉 a 𝑘-vector space and 𝑞 a (possibly

degenerate) quadratic form on 𝑉.

13.1.A Basic properties. Recall that the exterior algebra Λ(𝑉) is the quotient
of the tensor algebra 𝑇 (𝑉) by the two-sided ideal generated by the tensors 𝑥⊗𝑥, 𝑥 ∈
𝑉. This is a 𝑘-vector space of dimension 2dim𝑉 . In the presence of a quadratic form
we consider another (non-commutative) unital 𝑘-algebra, the Clifford algebra C(𝑞)
of (𝑉, 𝑞), which might be viewed as a deformation of Λ(𝑉) in that the generating
relations 𝑥 ⊗ 𝑥 = 0 have been replaced by

𝑥 ⊗ 𝑥 = 𝑞(𝑥) · 1, 𝑥 ∈ 𝑉, (13.1)

where we denote the unit by 1 in C(𝑞) and the product with a dot. One finds
back Λ(𝑉) in case 𝑞 = 0 and in that sense C(𝑞) is a deformation of the exterior
algebra and so both vector spaces have the same dimension. This is elaborated
below resulting in Lemma 13.1.2.

The Clifford algebra C(𝑞) contains 𝑉 (see below). The defining rule (13.1)
implies first of all that non-isotropic vectors 𝑥 ∈ 𝑉 are invertible within C(𝑞) with
two-sided inverse 𝑞(𝑥)−1𝑥. Secondly, using the algebra rules, the commutation rule
for two vectors 𝑥, 𝑦 ∈ 𝑉 is completely determined by (13.1):

𝑏𝑞 (𝑥, 𝑦) · 1 = 𝑞(𝑥 + 𝑦) · 1 − 𝑞(𝑥) · 1 − 𝑞(𝑦) · 1
= (𝑥 + 𝑦) · (𝑥 + 𝑦) − 𝑥 · 𝑥 − 𝑦 · 𝑦
= 𝑥 · 𝑦 + 𝑦 · 𝑥.

It follows in particular that 𝑥 · 𝑦 + 𝑦 · 𝑥 = 0 whenever 𝑥 and 𝑦 are orthogonal. Sur-
prisingly, using this commutation rule, conjugation within C(𝑞) by a non-isotropic
𝑢 ∈ 𝑉 preserves 𝑉 and induces in 𝑉 the reflection 𝜎𝑢 up to sign:2

𝑢 · 𝑥 · 𝑢−1 = (𝑢 · 𝑥 + 𝑥 · 𝑢)𝑢−1 − 𝑥, 𝑥 ∈ 𝑉

= 𝑏𝑞 (𝑥,𝑢)𝑢−1 − 𝑥,

= 𝑏𝑞 (𝑥,𝑢)𝑞(𝑢)−1𝑢 − 𝑥

= −𝜎𝑢 (𝑥).

(13.2)

If the characteristic is different from 2, the Cartan–Dieudonné theorem 7.2.4 then
implies that all orthogonal transformations up to sign extend to the algebra C(𝑞)
as conjugations. This shows the relevance of this algebra. Its formal definition is
as follows:

2In the calculation the unit has been dropped.
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Definition 13.1.1. The Clifford algebra C(𝑞) is defined as the quotient of the
tensor algebra 𝑇 (𝑉) on 𝑉 by the two-sided ideal 𝐼 (𝑞) generated by 𝑥 ⊗ 𝑥 − 𝑞(𝑥) · 1,
𝑥 ∈ 𝑉, and with multiplication induced by the multiplication in 𝑇 (𝑉). We denote
the multiplication in the Clifford algebra by a dot.

The natural composition

𝜄 : 𝑉 → 𝑇 (𝑉) → 𝑇 (𝑉)/𝐼 (𝑞) = C(𝑞)

is a map of 𝑘-vector spaces for which 𝜄(𝑥) · 𝜄(𝑥) = 𝑞(𝑥) · 1. One can show that 𝜄
is injective. We refer to [137, Ch. I.1] for a proof. To simplify notation we shall
identify 𝑉 with its image 𝜄(𝑉).

Alternatively, we may use the Bourbakist definition of this algebra which is as
follows: the Clifford algebra on 𝑞 is a pair (C(𝑞), 𝜄) of a 𝑘-algebra C(𝑞) with unit
1 together with a 𝑘-linear map 𝜄 : 𝑉 → C(𝑞) for which 𝜄(𝑥) · 𝜄(𝑥) = 𝑞(𝑥) · 1 and
which satisfies the following universality property: any 𝑘-linear map 𝑢 : 𝑉 → 𝐴 to
a 𝑘-algebra 𝐴 such that 𝑢(𝑥) · 𝑢(𝑥) = 𝑞(𝑥) · 1 extends to C(𝑞). For the statement
and proof that the preceding construction implies universality, see [137, Ch. I,
Prop 1.1].

The grading on 𝑇 (𝑉) does not descend to C(𝑞) since the ideal 𝐼 (𝑞) is not
homogeneous. However, it is generated in even degrees only, which implies that
C(𝑞) gets a ℤ/2ℤ-grading, that is

C(𝑞) = C0 (𝑞) ⊕ C1 (𝑞), C𝑖 (𝑞) · C𝑗 (𝑞) ⊂ C𝑖+𝑗 (𝑞),

where the indices are taken modulo 2. In particular C0 (𝑞) is a subalgebra, the even
Clifford algebra . The universality property for the Clifford algebra applied to
𝑢 = −𝜄 shows for example that there exists an involution 𝛼 restricting to −id on
𝑉 ⊂ C1 (𝑞). It satisfies

𝛼 : C(𝑞) → C(𝑞),
{
𝛼 |C0 (𝑞) = id,

𝛼 |C1 (𝑞) = −id.
(13.3)

This gives the Bourbakist definition of the even and odd Clifford algebra as eigenspaces
of 𝛼.

We claimed above that C(𝑞) is a deformation of the exterior algebra Λ(𝑉).
This can be made more precise. The tensor-degree defines an obvious filtration 𝐹•

on 𝑇 (𝑉) which descends to C(𝑞). It preserves the algebra structure in the sense
that 𝐹𝑖 · 𝐹𝑗 ⊂ 𝐹𝑖+𝑗 and the associated grading gives C(𝑞) the structure of a graded
algebra. The graded algebra Λ𝑉 is canonically isomorphic to this graded algebra
through the map which sends 𝑣1 ∧ · · · ∧ 𝑣𝑘 to the class of 𝑣1 · · · 𝑣𝑘. This map is
clearly surjective and one can show by induction on the degree that it is also an
injective map. See e.g. [137, Ch 1.1, Prop. 1.2].

This shows:

Lemma 13.1.2. There is a canonical vector space isomorphism Λ(𝑉) ≃−→ C(𝑞). In
particular, dim𝑘 C(𝑞) = 2dim𝑉 .
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Examples 13.1.3. 1. Hamiltonian quaternions revisited. Consider the
standard diagonal form 𝑥2

1 + 𝑥2
2 + 𝑥2

3 on ℝ3. Its Clifford algebra has as a vector
space basis {1, 𝑒1, 𝑒2, 𝑒3, 𝒊 = 𝑒2𝑒3, 𝒋 = 𝑒3𝑒1,𝒌 = 𝑒2𝑒1, 𝑒1𝑒2𝑒3}, where {𝑒1, 𝑒2, 𝑒3} is the
standard basis of ℝ3. Since for 𝑖, 𝑗 = 1, 2, 3 we have 𝑒𝑖𝑒𝑗 = −𝑒𝑗𝑒𝑖 for 𝑖 ≠ 𝑗, and 𝑒2𝑖 = 1,
it follows that 𝒊 · 𝒋 = 𝑒2𝑒3𝑒3𝑒1 = 𝑒2𝑒1 = 𝒌 and similarly for the cyclic permutations
of 𝒊, 𝒋,𝒌. Moreover, 𝒊2 = 𝒋2 = 𝒌2 = −1. So the vector space with basis {1, 𝒊, 𝒋,𝒌}
generates the algebra of the Hamilton quaternions ℍ which we already encountered
in § 5.4.A. This is the even Clifford algebra for the dot product form on ℝ3. As
a special case of the second example below we shall see that ℍ also figures as the
full Clifford algebra of the form −𝑥2

1 − 𝑥2
2 on ℝ2.

Recall also that we explained in Section 5.4 how to associate a ternary quadratic

form to any quaternion algebra 𝐷 =

(
𝑎 ,𝑏
𝑘

)
, namely the norm form restricted to the

subspace 𝐷 (0) of the quaternions of trace 0. For the Hamilton quaternions this is
the dot product form on ℝ3 where ℝ3 is identified with the real space with basis
{𝒊, 𝒋,𝒌}, the so-called pure quaternions. In general the even Clifford algebra of the
norm form on 𝐷 (0) is precisely 𝐷.
2. Real Clifford algebras (cf. [68, 179]) By Sylvester’s law 8.1.3 non-
degenerate real forms are classified by their signature (𝑟, 𝑠) with representing di-
agonal quadratic forms

∑𝑟
𝑖=1 𝑥

2
𝑖 − ∑𝑛

𝑖=𝑟+1 𝑥
2
𝑖 , 𝑛 = 𝑟 + 𝑠. The corresponding Clifford

algebra C𝑟,𝑠 is then generated by the standard basis {𝒆1, . . . , 𝒆𝑟+𝑠} subject to the
relations

𝒆2𝑖 =

{
1 if 𝑖 ≤ 𝑟

−1 if 𝑖 > 𝑟
and 𝒆𝑖 · 𝒆𝑗 + 𝒆𝑖 · 𝒆𝑗 = 0 if 𝑖 ≠ 𝑗.

For example, C0,0 = ℝ, C1,0 = ℝ ⊕ ℝ, while C0,1 = ℂ. We shall now show that
the isomorphism class of the Clifford algebra of a real quadratic form does not
determine the signature. To do so we make basic use of quadratic forms over
𝔽2 as suggested by the signs that appear in the above relations. We start by
considering the group ring ℝ[𝐺], 𝐺 =

∏𝑛 𝐶2. where 𝐶2 is the cyclic group of order 2.
Viewing 𝐶2 as the field 𝔽2 and switching to additive notation and identifying group-
elements of 𝐺 with vectors 𝒙 ∈ 𝔽𝑛2, this group ring becomes the real vector space
𝑉 := ⊕𝒙∈𝐺ℝ · 𝑒𝒙 with algebra structure induced by the additive group structure,
i.e., the product ∗ is given by 𝑒𝒙 ∗ 𝑒𝒚 = 𝑒𝒙+𝒚. As vector spaces 𝑉 and C𝑟,𝑠 are
isomorphic: identify 𝑒𝒙 ∈ 𝑉 with the element 𝒆𝑖1 · · · 𝒆𝑖𝑘 ∈ C𝑟,𝑠 where 𝒙 has 𝑖-th
coordinate 1 precisely if 𝑖 ∈ {𝑖1, . . . , 𝑖𝑘}. In particular, if {𝑒1, . . . , 𝑒𝑛} is the standard
basis of 𝔽2,

𝑒𝑒𝑘 corresponds to 𝒆𝑘. (13.4)

The possibly non-commutative Clifford algebra C𝑟,𝑠 comes from the twisted group
action

𝑒𝒙 · 𝑒𝒚 = (−1)𝛽𝑟,𝑠 (𝒙,𝒚)𝑒𝒙 ∗ 𝑒𝒚, (13.5)

where 𝛽𝑟,𝑠 is the 𝔽2-valued (in general non-symmetric) bilinear form on F𝑛2, which
in coordinates with respect to the standard basis {𝑒1, . . . , 𝑒𝑛} is given by 𝒙𝐴𝑟,𝑠𝒚T,
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where 𝐴 is the upper-triangular matrix

𝐴𝑟,𝑠 =

©«
0 1 · · · 1
... 0

. . .
...

... · · · . . . 1
0 · · · · · · 0

ª®®®®®¬
+

©«
0𝑟 0𝑟×𝑠

0𝑠×𝑟 1 𝑠

ª®®®®®¬
(13.6)

By the correspondence (13.4) the relations (−1)𝐴
𝑟𝑠
𝑖𝑗 = −1 for 𝑗 > 𝑖 and (−1)𝐴

𝑟𝑠
𝑖𝑗 = 1

for 𝑗 < 𝑖 imply that the desired anti-commutation relations hold, while (−1)𝐴𝑟𝑠
𝑖𝑖 = 1

for 𝑖 ≤ 𝑟 and (−1)𝐴𝑟𝑠
𝑖𝑖 = −1 for 𝑖 > 𝑟, proving the remaining two relations.

Observe that as in equation (1.1) in Chapter 1, a bilinear form defines a unique
quadratic form on 𝔽𝑛2. Conversely, given a basis for a 𝔽2-vector space, a quadratic
form 𝑞 determines an upper-triangular bilinear form 𝛽 which can be used to define
a twisted product (13.5). The resulting associative algebra is denoted Cℝ [𝔽𝑛2 , 𝑞].
This algebra has a special structure: either the generators 𝒆𝑖 and 𝒆𝑗 for 𝑖 ≠ 𝑗 anti-
commute (namely if 𝛽𝑖𝑗 = 1 for 𝑖 < 𝑗 since then 𝒆𝑖 · 𝒆𝑗 = −𝒆𝑖 ∗ 𝒆𝑗 and 𝒆𝑗 · 𝒆𝑖 = 𝒆𝑖 ∗ 𝒆𝑗),
or they commute (if 𝛽𝑖𝑗 = 0 for 𝑖 < 𝑗, since then 𝒆𝑖 · 𝒆𝑗 = 𝒆𝑗 · 𝒆𝑖 = 𝒆𝑖 ∗ 𝒆𝑗). It follows
that isometric forms 𝑞 give isomorphic algebras.

So the classification of the real Clifford algebras follows from the classification
of the quadratic forms on the vector spaces 𝔽𝑛2 as given in Example 8.2.7. The non-
degenerate forms live on even-dimensional spaces and come in two types depending
on the Arf invariant. The ones with zero Arf invariant are the form 𝑞0 = ⦹𝑚𝑈,
𝑛 = 2𝑚, the ones with Arf invariant 1 are of the form 𝑞1 = ⦹𝑚−1𝑈 ⦹ ⦹2⟨1⟩,
𝑛 = 2𝑚. On odd dimensional spaces, say of dimension 𝑛 = 2𝑚 + 1, one has three
types with dim rad(𝑞) ≤ 1, namely 𝑞′0 = ⦹𝑚𝑈 ⦹ 0, 𝑞′1 = ⦹𝑚−1𝑈 ⦹⦹2⟨1⟩ ⦹ 0 and
𝑞2 = ⦹𝑚𝑈 ⦹ [1]. We shall show that these types indeed give all the real Clifford
algebras C𝑟,𝑠.

Note however, to identify Cℝ [𝔽𝑛2 , 𝑞] with some C𝑟,𝑠, one has to transform each
of the 5 types of quadratic forms 𝑞(𝒙) into the desired shape 𝒙𝐴𝑟,𝑠𝒙⊤, where 𝐴𝑟,𝑠

is as in formula (13.6). This poses no problem for Cℝ [𝔽2
2, 𝑞𝑖], 𝑖 ∈ {0, 1}: these are

the 4-dimensional Clifford algebras C2,0,C0,2 with generators 𝒆1, 𝒆2 subject to

𝒆21 = 𝒆22 = 1, 𝒆1 · 𝒆2 = −𝒆2 · 𝒆1 for 𝑞0 (13.7)

𝒆21 = 𝒆22 = −1, 𝒆1 · 𝒆2 = −𝒆2 · 𝒆1 for 𝑞1. (13.8)

Next, since 𝑥1𝑥2 + 𝑥2
2 has Arf invariant 0 it is isometric to 𝑥1𝑥2 (in fact (𝑥1,𝑥2) ↦→

(𝑥1 + 𝑥2,𝑥2) is an isometry). The first corresponds to C1,1 and the second to C2,0,
which indeed shows that the Clifford algebra does not determine the signature.

To continue, one checks that C2𝑚,0 = Cℝ [𝔽2𝑚
2 , 𝑞0] since 𝐴2𝑚,0 corresponds to

𝑞0. Likewise C0,2𝑚 = Cℝ [⊕2𝑚𝔽2, 𝑞1]. The forms 𝑞′0, 𝑞
′
1 correspond to C2𝑚+1,0,

respectively C0,2𝑚+1 and 𝑞2 corresponds to C𝑚,𝑚+1. The resulting 2 types of 22𝑚-
dimensional real Clifford algebras and 3 types of 22𝑚+1-dimensional real Clifford
algebras fit in a remarkable periodic table of period 8 displayed as [137, Table II
in §I.4]. This table makes use of an identification of these Clifford algebras with
familiar matrix algebras as follows. The relations (13.7) show that the assignments
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𝒆1 ↦→
(
1 0
0 −1

)
, 𝒆2 ↦→

(
0 1
1 0

)
give an algebra-isomorphism of C2,0 with Mat(2,ℝ).

Similarly, the map induced by 𝒆1 ↦→ 𝒊, 𝒆2 ↦→ 𝒋 (13.8) identifies the Clifford alge-
bra C0,2 with the Hamiltonian quaternions. It follows that C2𝑚,0 = Cℝ [𝔽2𝑚

2 , 𝑞0]
leads to ⊗𝑚 Mat(2,ℝ) = Mat(2𝑚,ℝ) and C0,2𝑚 = Cℝ [⊕2𝑚𝔽2, 𝑞1] to Mat(2,ℝ) ⊗ℍ ≃
Mat(2𝑚−1,ℍ). Finally, the Clifford algebras C2𝑚+1,0, C0,2𝑚+1 and C𝑚,𝑚+1 are iso-
morphic to Mat(2𝑚,ℝ) + Mat(2𝑚,ℝ), Mat(2𝑚−1,ℍ) + Mat(2𝑚−1,ℍ), respectively
Mat(2𝑚,ℂ).

13.1.B The center of the Clifford Algebra.

Proposition 13.1.4 (char(𝑘) ≠ 2). Let (𝑉, 𝑞) be a 𝑘-quadratic space with an
orthogonal basis {𝑒1, . . . , 𝑒𝑛}. Setting 𝑒 = 𝑒1 · · · 𝑒𝑛 ∈ C(𝑞), we have:

• The center of C(𝑞) =
{
𝑘 if 𝑛 is even

𝑘 + 𝑘 · 𝑒 if 𝑛 is odd

• The center of C0 (𝑞) =
{
𝑘 if 𝑛 is odd

𝑘 + 𝑘 · 𝑒 if 𝑛 is even

Proof. The relations 𝑒𝑖𝑒𝑗 = −𝑒𝑗𝑒𝑖, 𝑖 ≠ 𝑗, imply that 𝑒𝐽 = 𝑒𝑗1 · · · 𝑒𝑗𝑘 , 𝐽 = {𝑗1, . . . , 𝑗𝑘} ⊂
{1, . . . ,𝑛} having 𝑘 distinct elements, commutes with 𝑒𝑖𝑒𝑗 if either both or none of
𝑖 and 𝑗 belong to 𝐽. Otherwise there is a minus sign. It follows that 𝑒 commutes
with all products 𝑒𝑖𝑒𝑗 . But if ∅ ≠ 𝐽 ≠ {1, . . . ,𝑛}, taking 𝑖 ∉ 𝐽 and 𝑗 ∈ 𝐽, we see
that 𝑒𝐽 does not commute with 𝑒𝑖𝑒𝑗 . Since every element of C(𝑞) is a 𝑘-linear
combination of such elements 𝑒𝐽 , we conclude that

C(𝑞)C0 (𝑞) = {𝑥 ∈ C(𝑞) | 𝑥𝑦 = 𝑦𝑥 for all 𝑦 ∈ C0 (𝑞)} = 𝑘 + 𝑘𝑒.

Since 𝑒 · 𝑒𝑖 = (−1)𝑛−1𝑒𝑖 · 𝑒, for 𝑛 odd 𝑒 commutes with all elements in C(𝑞) which
shows the assertion for C(𝑞). Since C(𝑞)C0 (𝑞) ∩ C0 (𝑞) is the center of C0 (𝑞), the
second assertion follows as well. □

In characteristic two the situation is different (note the striking reappearance
of the Arf invariant):

Proposition 13.1.5. Suppose that char(𝑘) = 2. Let 𝑞 be a non-degenerate quadratic
form, and let {𝑒1, . . . , 𝑒2𝑛} be a symplectic basis such that 𝑞 =

∑𝑛
𝑗=1 𝑥𝑖𝑥𝑛+𝑖+

∑2𝑛
𝑗=1 𝑎𝑗𝑥

2
𝑗 .

Setting 𝒛 = 𝑒1𝑒𝑛+1 + · · · + 𝑒𝑛𝑒2𝑛 ∈ C0 (𝑞), the center of C(𝑞) is 𝑘 and the center of
C0 (𝑞) equals 𝑘 + 𝑘𝒛.

Moreover, 𝒛 satisfies the relation 𝒛2 + 𝒛 ≡ a(𝑞) mod ℘(𝑘), where we recall that
a(𝑞) is the Arf invariant of 𝑞.

Proof. In the Clifford algebra one has the relations

𝑒2𝑖 = 𝑎𝑖 , 𝑖 = 1, . . . ,𝑛,
𝑒𝑖𝑒𝑗 = 𝑒𝑗𝑒𝑖 , 𝑖, 𝑗 = 1, . . . ,𝑛, or 𝑖, 𝑗 = 𝑛 + 1, . . . , 2𝑛,

𝑒𝑖𝑒𝑛+𝑗 + 𝑒𝑛+𝑖𝑒𝑗 = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, . . . ,𝑛.
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From these relations one sees that 𝒛 ·𝑒𝑖 = 𝑒𝑖 ·𝒛+𝑒𝑖 and 𝒛 ·𝑒𝑗𝑒𝑖 = 𝑒𝑗𝑒𝑖 ·𝒛 for all 𝑖, 𝑗, and
so 𝒛 centralizes C0 (𝑞) but not C(𝑞). If we have any odd product, say 𝑒𝐽 = 𝑒𝑗1 · · · 𝑒𝑗𝑘
of the 𝑒𝑖, then 𝑒𝐽𝒛 = 𝒛𝑒𝐽 +𝑒𝐽 . This proves that the center of C(𝑞) consists of 𝑘 while
that of C0 (𝑞) equals 𝑘+𝑘 ·𝒛. The final relation follows from 𝒛2+𝒛 =

∑𝑛
𝑖=1 𝑎𝑖𝑎𝑖+𝑛. □

13.2 The Clifford Group

In this section 𝑉 is a vector space over a field 𝑘 of characteristic ≠ 2 and 𝑞 : 𝑉 → 𝑘 is

a non-degenerate quadratic form, i.e. (𝑉, 𝑞) is a quadratic inner product space.

The Clifford group, to be defined below, is a subgroup of the group C(𝑞)× of
the invertible elements of the Clifford algebra C(𝑞) of 𝑞. Examples of invertible
elements are the non-isotropic vectors 𝑢 ∈ 𝑉, whose inverses are, we recall, given by
𝑞(𝑢)−1𝑢. In that case, Ad𝑢, conjugation by 𝑢 within the Clifford algebra, preserves
𝑉 and −Ad𝑢 |𝑉 = 𝜎𝑢 by equation (13.2). It is convenient for our purposes to extend
−Ad, which leads to the twisted adjoint

Ãd : C(𝑞)× −−→ Aut(C(𝑞)), Ãd𝑢𝑥 = 𝛼(𝑢) · 𝑥 · 𝑢−1,

where 𝛼 is the involution (13.3). In other words, if 𝑢 ∈ C0 (𝑞), this is the usual
adjoint, but for 𝑢 ∈ 𝐶1 (𝑞) this is minus the adjoint. TheClifford group consists of
all invertible elements of the Clifford algebra whose twisted adjoint action preserves
𝑉:

Clif (𝑞) := {𝑢 ∈ C(𝑞)× | Ãd𝑢 (𝑉) ⊂ 𝑉}.
Note that Clif (𝑞) contains 𝑘× and is indeed a group. For instance, if 𝑢 ∈ Clif (𝑞)
then 𝑢−1 ∈ Clif (𝑞). To see this, observe that 𝑣 ∈ 𝑉 can be written in the form
𝑣 = 𝛼(𝑢) · 𝑣′ · 𝑢−1, since Ãd𝑢 is an automorphism, and then 𝛼(𝑢−1) · 𝑣 · 𝑢 =

𝛼(𝑢−1)𝛼(𝑢) · 𝑣′ · 𝑢−1 · 𝑢 = 𝑣′ ∈ 𝑉.
The special Clifford group is given by Clif0 (𝑞) := Clif (𝑞) ∩ C0 (𝑞).

Examples 13.2.1. 1. Hamilton quaternions (II). With 𝑞 the standard dot
product on ℝ3 spanned by 𝑒1, 𝑒2, 𝑒3, we have seen that C0 (𝑞) = ℍ, the Hamilton
quaternion algebra (cf. Example 13.1.3.2). The involution 𝒙 ↦→ 𝒙∗ sending 𝒙 = 𝑥0+
𝑥1𝒊+𝑥2𝒋+𝑥3𝒌 to 𝒙∗ = 𝑥0−𝑥1𝒊−𝑥2𝒋−𝑥3𝒌 (the usual extension of complex conjugation
to quaternions) can be used to define the norm Nm(𝒙) = 𝒙𝒙∗ = 𝑥2

0 +𝑥1
1 +𝑥2

2 +𝑥2
3 ∈ ℝ

of a quaternion 𝒙. A non-zero element 𝒙 ∈ ℍ has Nm(𝒙)−1𝒙 as its inverse. It is
easy to verify that conjugating by 𝒙 preserves the span of 𝑒1, 𝑒2, 𝑒3. So ℍ − {0}
is the special Clifford group. Now identify the pure quaternions, i.e. those with
𝑥0 = 0, with (another copy of) ℝ3. These are preserved under conjugation with
a non-zero quaternion, as one easily verifies. This gives a representation of the
special Clifford group on ℝ3 by means of orthogonal transformations. In fact, one
can show that it gives a surjection onto the rotation group SO (3) with kernel ℝ×,
whence a finite surjective homomorphism

Spin(3) = {𝒙 ∈ ℍ | Nm(𝒙) = 1} → SO (3).
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The left-hand side is the classical spin group. The map turns out to have degree 2
and gives the universal cover of SO (3). See also Remark 13.3.6.3.
2. Let us consider the Lorentzian type inner product space ℝ3 with standard basis
{𝑒1, 𝑒2, 𝑒3} and quadratic form given by 𝑞(𝑥1,𝑥2,𝑥3) = 𝑥2

1 + 𝑥2
2 − 𝑥2

3. Then C0 (𝑞)
is spanned by 𝒊 = 𝑒3𝑒2, 𝒋 = 𝑒1𝑒3 and 𝒌 = 𝑒2𝑒1, but now 𝒊2 = 𝒋2 = 1, 𝒌2 = −1,
𝒊𝒋 = −𝒋𝒊 = −𝒌 and similarly for cyclic permutations of 𝒊, 𝒋,𝒌. This algebra has
a representation as a matrix algebra, where 𝑥 + 𝒊𝑦 + 𝒋𝑧 + 𝒌𝑤 corresponds to the

matrix

(
𝑥 + 𝑦 𝑧 − 𝑢
𝑧 + 𝑢 𝑥 − 𝑦

)
.

The twisted adjoint is not a faithful representation. Its kernel is going to play
a central role in Section 13.3.

Proposition 13.2.2. The kernel of the homomorphism Clif (𝑞) → Aut(𝑉) given
by 𝑢 ↦→ Ãd𝑢 |𝑉 is equal to 𝑘× · 1.

Proof. We follow the proof of [137, Prop. 2.4]. Suppose that for some 𝑢 ∈ Clif (𝑞)
twisted conjugation by 𝑢 induces the identity in 𝑉. Since 𝑞 is non-degenerate,
there is an orthogonal basis {𝑒1, . . . , 𝑒𝑛} of 𝑉. Write 𝑢 = 𝑢0 + 𝑢1 with 𝑢0 even and
𝑢1 odd. So for all 𝑣 ∈ 𝑉 we have

𝛼(𝑢) · 𝑣 = 𝑣 · 𝑢 =⇒
{
𝑣 · 𝑢0 = 𝑢0 · 𝑣
𝑣 · 𝑢1 = −𝑢1 · 𝑣.

(13.9)

If one writes 𝑢0 as a (non-commuting) polynomial in the basis elements and uses
orthogonality to rearrange terms, one finds an expression of the form

𝑢0 = 𝑎0 + 𝑒1 · 𝑎1, 𝑎0 ∈ C0 (𝑞), 𝑎1 ∈ C1 (𝑞), both polynomials in 𝑒2, . . . , 𝑒𝑛.

In particular 𝑒1 commutes with 𝑎0 and anti-commutes with 𝑎1. Now apply the
first equation of (13.9) with 𝑣 = 𝑒1 and we get

𝑒1 · 𝑎0 + 𝑒21 · 𝑎1 = 𝑎0 · 𝑒1 + 𝑒1 · 𝑎1 · 𝑒1 = 𝑒1 · 𝑎0 − 𝑒21 · 𝑎1,

and so3 0 = 2𝑒21 · 𝑎1 = 2𝑞(𝑒1)𝑎1 which implies that 𝑎1 = 0. So 𝑢0 does not involve
𝑒1. Inductively, one shows that 𝑢0 does not involve any of the 𝑒𝑗 and so 𝑢0 ∈ 𝑘.
Doing the same for 𝑢1 we find that 𝑢1 does not involve any of the 𝑒𝑗 and so, since
it is odd, it must be zero. We conclude that 𝑢 = 𝑡 · 1 and hence 𝑢 ∈ 𝑘× · 1. □

There is a second fundamental involution on C(𝑞) induced by the order reversal
map 𝑥1 ⊗ · · · ⊗ 𝑥𝑟 ↦→ 𝑥𝑟 ⊗ · · · ⊗ 𝑥1 on 𝑇 (𝑉). Since this map preserves the ideal 𝐼 (𝑉),
it descends to an involution on the Clifford algebra, the canonical involution ,
denoted by 𝑢 ↦→ 𝑢∗. This is in fact an anti-involution with respect to the product
in the sense that (𝑢 · 𝑣)∗ = 𝑣∗ · 𝑢∗ and (𝑢∗)∗ = 𝑢, which is immediate from the
definitions. Note that 𝑢∗ = 𝑢 whenever 𝑢 ∈ 𝑉. Moreover, since the canonical
involution respects the ℤ/2ℤ-grading, 𝛼(𝑢∗) = 𝛼(𝑢)∗. In other words, the two
fundamental involutions commute. We shall use two more properties:

3Here we clearly see that we need to assume char(𝑘) ≠ 2
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Lemma 13.2.3. The two involutions 𝛼 and ∗ preserve the Clifford group Clif (𝑞).

Proof. Let 𝑣 ∈ 𝑉 be arbitrary. Since 𝛼 is an involution and 𝛼(𝑣) = −𝑣 we have

𝛼(𝛼(𝑢))𝑣𝛼(𝑢)−1 = 𝑢𝑣𝛼(𝑢−1) = −𝛼2 (𝑢)𝛼(𝑣)𝛼(𝑢−1) = −𝛼(𝛼(𝑢)𝑣𝑢−1) ∈ 𝑉.

A similar proof holds for the second fundamental involution ∗. □

Example 13.2.4. For Examples 13.2.1 we find that 1∗ = 1 and 𝒊∗ = −𝒊, 𝒋∗ = −𝒋
and 𝒌∗ = −𝒌. This shows that the notation is consistent with the notation for the
classical Hamiltonians. For the latter we have seen that 𝒙 · 𝒙∗ ∈ ℝ. This is also
true for the second example: we find that 𝒙 · 𝒙∗ = 𝑥2 − 𝑦2 − 𝑧2 + 𝑤2. However, for
mixed degree elements in a Clifford algebra this need not be the case as is shown
by the example 𝒙 = 𝑒1 + 𝑒1𝑒2, where 𝒙 · 𝒙∗ = (𝑒1 + 𝑒1𝑒2) (𝑒1 + 𝑒2𝑒1) = 2 − 2𝑒2.

13.3 The Spin Group and Spinor Norm

In this section (𝑉, 𝑞) is a quadratic inner product space over 𝑘, char(𝑘) ≠ 2.

For vectors 𝑣 ∈ 𝑉 ⊂ C(𝑞) we have 𝑣 · 𝑣 = 𝑞(𝑣) which we may rewrite as
𝑣 · 𝛼(𝑣∗) = −𝑞(𝑣). Although Example 13.2.4 shows that for 𝑢 ∈ C(𝑞) the product
𝑢 · 𝑢∗ need not belong to 𝑘, we shall show that the product does belong to 𝑘 if
𝑢 ∈ Clif0 (𝑞). In fact, we show that the spinor norm

Nmspin (𝑢) := 𝑢 · 𝛼(𝑢∗), 𝑢 ∈ Clif (𝑞),

belongs to 𝑘× and so the spinor norm, by Lemma 13.2.3 a priori only Clif (𝑞)-
valued, is a 𝑘-valued function and which extends the quadratic form 𝑞 (restricted
to non-isotropic vectors):

Proposition 13.3.1. The spinor norm is a homomorphism from Clif (𝑞) to 𝑘×.

Proof. We follow the arguments in [137, Ch. 1.2]. Let us first show that for
𝑢 ∈ Clif (𝑞), Nmspin (𝑢) ∈ 𝑘×.

By definition, 𝛼(𝑢) · 𝑣 · 𝑢−1 ∈ 𝑉 whenever 𝑣 ∈ 𝑉. It suffices to show that
the twisted adjoint of Nmspin (𝑢) induces the identity in 𝑉 since then the result
follows from Proposition 13.2.2. Let us elaborate this. Since 𝑢 ∈ Clif(𝑞) implies
𝑢∗ ∈ Clif(𝑞) (see Lemma 13.2.3), the element 𝛼(𝑢∗) · 𝑣 · (𝑢∗)−1 is in 𝑉. Applying
the homomorphism 𝛼 then yields that 𝑢∗ · 𝑣 · 𝛼(𝑢∗)−1 ∈ 𝑉. Since the canonical
involution is the identity on 𝑉, we then find that

𝑢∗ · 𝑣 · 𝛼(𝑢∗)−1 = (𝑢∗ · 𝑣 · 𝛼(𝑢∗)−1)∗ = 𝛼(𝑢−1) · 𝑣 · 𝑢. (13.10)

On the other hand, setting 𝑤 = Nmspin (𝑢) = 𝑢 · 𝛼(𝑢∗), we find

Ãd𝑤𝑣 = 𝛼(𝑤) · 𝑣 · 𝑤−1 = 𝛼(𝑢) · 𝑢∗ · 𝑣 · 𝛼(𝑢∗)−1 · 𝑢−1 (13.10)
= 𝑣.
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This completes the proof that the twisted adjoint of Nmspin (𝑢) induces the identity
in 𝑉

To check that the spinor norm is a group homomorphism, note that 𝑢𝑣 ·
𝛼((𝑢𝑣)∗) = 𝑢𝑣 · 𝛼(𝑣∗𝑢∗) = 𝑢 · (𝑣 · 𝛼(𝑣∗)) · 𝛼(𝑢∗) = (𝑢 · 𝛼(𝑢∗)) · (𝑣 · 𝛼(𝑣∗)), since
the middle term 𝑣 · 𝛼(𝑣∗) belongs to 𝑘 and hence commutes with all elements in
the Clifford algebra. □

Remark 13.3.2. For non-isotropic vectors 𝑣 ∈ 𝑉, Nmspin (𝑣) = −𝑞(𝑣).

Corollary 13.3.3. 1. For 𝑢 ∈ Clif (𝑞) the induced map Ãd𝑢 on 𝑉 is an orthog-
onal transformation, and if 𝑢 ∈ Clif0 (𝑞), it is a rotation.

2. 𝑢 ∈ Clif (𝑞) can be written as a product 𝑢 = 𝑣1 · · · 𝑣𝑟 with non-isotropic 𝑣𝑗 ∈ 𝑉,
𝑗 = 1, . . . , 𝑟. Consequently

Nmspin (𝑢) = 𝑢 · 𝛼(𝑢∗) = (−1)𝑟𝑞(𝑣1) · · · 𝑞(𝑣𝑟) ∈ 𝑘×. (13.11)

If 𝑢 ∈ Clif0 (𝑞), then 𝑟 can be taken even.

3. Ãd induces isomorphisms Clif (𝑞)/𝑘× ≃−→ O (𝑞) and Clif0 (𝑞)/𝑘× ≃−→ SO (𝑞).

Proof. 1. We first prove that the 𝑘-linear automorphism Ãd𝑢 |𝑉 is an isometry on
non-isotropic vectors. First we show that this map indeed preserves non-isotropic
vectors 𝑣 ∈ 𝑉. If 𝑢 ∈ Clif (𝑞), then Ãd𝑢, being an automorphism of C(𝑞), preserves
invertible elements so that 𝑤 = Ãd𝑢 (𝑣) ∈ 𝑉 is invertible in the Clifford algebra.
Hence 𝑞(𝑤) = −𝑤 · 𝑤 ≠ 0 (see Remark 13.3.2). We use this in the following
computation:

𝑞(Ãd𝑢𝑣) = −Nmspin (Ãd𝑢𝑣)
= −Nmspin (𝛼(𝑢) · 𝑣 · 𝑢−1)
= −Nmspin (𝛼(𝑢)) · Nmspin (𝑣) · Nmspin (𝑢−1)
= −Nmspin (𝑢) · −𝑞(𝑣) · Nmspin (𝑢−1)
= 𝑞(𝑣) Nmspin (𝑢) Nmspin (𝑢−1) = 𝑞(𝑣) (since 𝑞(𝑣) ∈ 𝑘).

We also used that Nmspin (𝛼(𝑢)) = Nmspin (𝑢). This is the case since 𝛼(𝑢) ·
𝛼(𝛼(𝑢)∗) = 𝛼(𝑢 · (𝛼(𝑢)∗)) = 𝛼Nmspin (𝑢) = Nmspin (𝑢).

Since the inverse Ãd𝑢−1 |𝑉 of the map Ãd𝑢 |𝑉 also preserves non-isotropic vectors,
both must send isotropic vectors to isotropic vectors, completing the proof of 1.

2. By the Cartan–Dieudonné theorem all orthogonal transformations of 𝑉 are
products of reflections in non-isotropic vectors, say Ãd𝑢 |𝑉 = 𝜎𝑣1 ◦ · · · ◦𝜎𝑣𝑟 . On

the other hand, for the restrictions to 𝑉 we have Ãd𝑣𝑟 = −𝜎𝑣𝑟 , and so Ãd𝑢 =

(−1)𝑟Ãd𝑣1 ◦ · · · ◦Ãd𝑣𝑟 = (−1)𝑟Ãd𝑣1 ···𝑣𝑟 . Hence by Proposition 13.2.2, 𝑢 and 𝑣1 · · · 𝑣𝑟
differ by a multiplicative non-zero constant in 𝑘 which we use to adjust 𝑣1. So
every orthogonal transformation comes from twisted conjugation with elements of
the Clifford algebra and the rotations from conjugation with elements in the even
Clifford algebra.

Assertion 3 follows directly from these considerations. □
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We next define the (s)pin groups as the following kernels of Nmspin:

Definition 13.3.4. The (s)pin group is the group

Pin(𝑞) = ker
(
Nmspin : Clif (𝑞) → 𝑘×

)
, respectively,

Spin(𝑞) = ker
(
Nmspin : Clif0 (𝑞) → 𝑘×

)
.

that is, the subgroup of those 𝑢 ∈ Clif (𝑞), respectively 𝑢 ∈ Clif0 (𝑞), for which
𝑢𝛼(𝑢∗) = 1.

Since N𝑚spin restricted to 𝑘× is given by squaring, the spinor norm does not
descend directly to the orthogonal group O (𝑞) = Clif (𝑞)/𝑘×. It does descend if
we replace 𝑘× by D(𝑘) = 𝑘×/(𝑘×)2. Explicitly, write 𝜑 ∈ O (𝑞) as a product of
reflections, 𝜑 = 𝜎𝑣1 ◦ · · · ◦𝜎𝑣𝑟 . Then one defines

Nmspin (𝜑) := Nmspin (𝑣1 · · · 𝑣𝑟) ∈ 𝑘×.

However, this does not depend just on 𝜑, but also on the way 𝜑 is written as
a product of reflections. By Corollary 13.3.3.3, another choice leads to a scalar
multiple of 𝑣1 · · · 𝑣𝑟 and so Nmspin (𝜑) is well defined as an element of 𝑘×/(𝑘×)2,
that is:

𝜑 = 𝜎𝑣1 ◦ · · · ◦𝜎𝑣𝑟 ∈ O (𝑞) =⇒ Nmspin (𝜑) = 𝑞(𝑣1) · · · 𝑞(𝑣𝑟) ∈ D(𝑘). (13.12)

As for the intersection of 𝑘× and the (s)pin group: Clearly, any 𝑢 ∈ 𝑘× gives
𝑢 · 1 ∈ Clif0 (𝑞) with spinor norm 1 if and only if 𝑢2 = 1, which implies 𝑢 = ±1. So
we can summarize the above discussion as follows.

Theorem 13.3.5. The (s)pin group maps in a 2-to-1 fashion onto a normal sub-
group of the appropriate orthogonal group:

O+ (𝑞) = Im
(
Ãd|𝑉 : Pin(𝑞) → O (𝑞)

)
,

SO+ (𝑞) = Im
(
Ãd|𝑉 : Spin(𝑞) → SO (𝑞)

)
,

the reduced orthogonal groups. These groups appear in commutative diagrams
all of whose rows and columns are exact; for the spin group this diagram is as
follows:

1

��

1

��

1

��
1 // {1,−1}

��

// Spin(𝑞) Ad |𝑉 // //

��

SO+ (𝑞)

��

// 1

1 // 𝑘×
𝑥

↓
𝑥2 ��

// Clif0 (𝑞)

Nmspin

��

Ad |𝑉 // // SO (𝑞)

Nmspin

��

// 1

1 // (𝑘×)2 // 𝑘× // // D(𝑘) // 1
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and so

SO+ (𝑞) = {𝜎𝑣1 ◦ · · · ◦𝜎𝑣𝑟 ∈ SO (𝑞) | 𝑞(𝑣1) · · · 𝑞(𝑣𝑟) ∈ (𝑘×)2}.

For the pin group there is an analogous diagram involving the twisted adjoint,
Clif (𝑞),O+ (𝑞) and O (𝑞).

The image of the spinor norm on the rotation group is a subgroup of D(𝑘) which
might be a proper subgroup as shown in Remark 13.3.6.1 below. We introduce a
shorthand notation for this group:

S𝑉 = Im(Nmspin : SO (𝑞) → D(𝑘)). (13.13)

Remark 13.3.6. 1. For 𝑘 = ℝ the group D(𝑘) is the cyclic group 𝐶2 represented
by the real numbers {1,−1}. Often we use these representatives instead of their
classes. Note that if 𝑞 is positive definite, the spinor norm is always 1 and so Nmspin

is not surjective in this case. In particular, SO+ (𝑞) = SO (𝑞) and O+ (𝑞) = O (𝑞).
2. Suppose 𝑘 is a topological field. Then the orthogonal groups O (𝑞) and SO (𝑞)
are in a natural way topological groups. The preceding constructions give the
Clifford group Clif (𝑞) and the spin group Spin(𝑞) the structure of a topological
group. The adjoint representation as well as the spinor norm are continuous. So
all the maps in the preceding diagram are continuous. This holds for instance for
the fields ℝ,ℂ with the usual topology, or for ℚ𝑝 endowed with the 𝑝-adic topology.

The topological structure of the groups over ℝ is classical (see e.g. [96, Ch.
IX.4], [137, Theorem 2.10]). If 𝑞 has signature (𝑟, 𝑠) one writes O (𝑟, 𝑠), SO (𝑟, 𝑠),
Spin(𝑟, 𝑠) instead of O (𝑞), etc. If 𝑠 = 0, one writes of course O (𝑛) and SO (𝑛). We
shall occasionally use this:

Proposition 13.3.7 (Topological structure of orthogonal groups). 1. SO (𝑛),
𝑛 ≥ 2. is connected, but not simply connected:

• SO (2) is the circle group and thus 𝜋1 (SO (2)) = ℤ;
• for 𝑛 ≥ 3, one has 𝜋1 (SO (𝑛)) = ℤ/2ℤ and the universal cover of SO (𝑛) is

the group Spin(𝑛).
2. The groups SO (𝑟, 𝑠) have two connected components in case 𝑟, 𝑠 ≥ 1. The
component of the identity is SO+ (𝑟, 𝑠).

• SO (1, 𝑠), 𝑠 ≥ 1 has fundamental group ℤ/2ℤ and the universal cover is
Spin(𝑟, 𝑠);

• SO (𝑟, 𝑠), 𝑟, 𝑠 ≥ 2 has fundamental group ℤ/2ℤ×ℤ/2ℤ and the universal cover
is an unramified double cover of Spin(𝑟, 𝑠).

13.4 The Spin Group: Lattice Aspects

In this section 𝑅 is an integral domain and 𝑄(𝑅) its field of fractions of characteristic

different from 2.
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As before, we let (𝑉, 𝑞) be a quadratic 𝑄(𝑅)-space. In this section we investigate
how the spinor norm construction relates to 𝑅-lattices 𝐿 ⊂ 𝑉, i.e. 𝑅-modules for
which 𝑉 = 𝐿 ⊗𝑅 𝑄(𝑅). We assume that 𝑞 |𝐿 and hence 𝑏 |𝐿 are 𝑅-valued. If 2 is a
unit in 𝑅 then of course 𝑏 is 𝑅-valued if and only if 𝑞 is 𝑅-valued, but it need not
be true otherwise. In particular, assuming 𝑏(𝐿×𝐿) ⊂ 𝑅 allows to treat odd lattices
as well as even lattices.

To start, observe that the isometries of 𝐿 are precisely the isometries of 𝑉
preserving 𝐿:

O (𝐿, 𝑏) = {𝑔 ∈ O (𝑉, 𝑞) | 𝑔(𝐿) = 𝐿}.
So we may restrict the spinor norm map to the subgroup O (𝐿, 𝑏) of O (𝑉, 𝑞):

Nmspin : O (𝐿, 𝑏) −−→ D(𝑄(𝑅)) = 𝑄(𝑅)×/(𝑄(𝑅)×)2.

Analogous to Definition 13.3.4 we set

O+ (𝐿) = ker(Nmspin : O (𝐿, 𝑏) → D(𝑄(𝑅)))
SO+ (𝐿) = ker(Nmspin : SO (𝐿) → D(𝑄(𝑅))).

(13.14)

Only the image

S𝐿 = Im(Nmspin : SO (𝐿) → D(𝑄(𝑅))) (13.15)

is going to play a role in Chapter 14. There is a subtle point here: the spinor norm
for an isometry 𝜎 of a quadratic 𝑅-module is calculated using a decomposition of 𝜎
as a product of reflections within the vector space 𝐿⊗𝑄(𝑅) and so the spinor norm
does not necessarily take values in D(𝑅). For the analysis of indefinite lattices
in Section 14.2 we make use of lattices for which S𝐿 contains the image of 𝑅× in
D(𝑄(𝑅)). This is for instance the case if reflections exist, say 𝜎𝑥, 𝑥 ∈ 𝐿, with 𝑞(𝑥)
any given unit in 𝑅 as demonstrated in the next example.

Example 13.4.1 (𝑝-adic lattices). Let 𝑅 = ℤ𝑝 in which case 𝐿 is a 𝑝-adic lattice.
We consider various examples where S𝐿 contains all 𝑝-adic units.
1. A homogeneous rank 2 sublattice 𝑀 splits off from 𝐿, say 𝑀 = 𝑀0 (𝑘) with
𝑀0 unimodular and, if 𝑝 = 2, even. In Corollary 10.1.4 we have seen that O (𝑀0)
contains reflections 𝜎𝑥𝑢 with 𝑞(𝑥𝑢) = 𝑢 any given unit. Since O (𝑀0) = O (𝑀) ⊂
O (𝐿), this implies that the spinor norm takes on all 𝑝-adic units. Hence the image
of the spinor norm then contains ℤ×

𝑝 · (ℚ×
𝑝)2. This is clear for the orthogonal group

while for the special orthogonal group we take products of the form 𝜎𝑥1 ◦𝜎𝑥𝑢 .
2. In case 𝑝 = 2 and a homogeneous rank 3 lattice of exponent 𝑘 splits off, by
Proposition 10.2.2 either 𝑈𝑘, 𝑉𝑘 splits off or the lattice is diagonal. It suffices
to consider this last case separately. As before, we may assume that 𝑘 = 0. By
Lemma 11.2.1, the lattice is isometric to either a lattice splitting off 𝑈, or a lattice
splitting off 𝑉, which brings us to the previous situation.

A vector space isometry 𝑓 : 𝑉 → 𝑉 sending 𝐿 to the 𝑅-lattice 𝐿′ induces a
canonical rotation preserving isomorphism between O (𝐿) and O (𝐿′). It is given by
sending 𝛾 ∈ O (𝐿) to 𝛾′ = 𝑓◦𝛾◦𝑓−1 ∈ O (𝐿′). Since the spinor norm takes values in
an abelian group, 𝛾 and 𝛾′ have the same spinor norm. Hence:
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Lemma 13.4.2. S𝐿, the image of Nmspin : SO (𝐿) → D(𝑄(𝑅)), is an isometry
invariant.

Remark 13.4.3. Since for integral lattices the spinor norm takes values in D(ℚ) =
ℚ×/(ℚ×)2, this spinor norm is a more refined invariant than the real spinor norm
which, as we have explained above, only takes values 1 or −1.

To extend the definition of the (s)pin group itself to the setting of lattices, we
define

C(𝐿) := subring of C(𝑞) generated by 1 and the elements 𝑥 ∈ 𝐿,

C0 (𝐿) = C(𝐿) ∩ C0 (𝑞),
Pin(𝐿) = C(𝐿) ∩ Pin(𝑞),
Spin(𝐿) = C(𝐿) ∩ Spin(𝑞).

A word of warning here: the map Ad |𝐿 : Spin(𝐿) → SO+ (𝐿) is not necessarily
surjective any more (and likewise for the image of the twisted adjoint map on
Pin(𝐿)). See [36, Ch 10.4].

Historical and Bibliographical Notes. The importance of a group like the spin
group seems to have been observed already byW. Hamilton (1805–1865) when he invented
the quaternions in [90]. In connection to this, we mention that W. Clifford (1845–1879)
in [39] relates the quaternion algebra to the group of space rotations. Here the article
[141] by R. Lipschitz (1832–1903) should also be mentioned. See the amusing letter [248,
Appendix II], purportedly written by him from Hades.

There are many books and papers that give expositions of the Clifford algebra. Ours
follows mainly [137, Ch. 1] and [104, Ch. 11.4]. The relation with the Arf invariant is
explained in J. Dieudonné’s paper [48]. For the interplay with lattices we have followed
§10.4 in J.W. Cassels’s book [36].
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Spinor Equivalence

In this chapter 𝐿, 𝐿′, 𝐿′′, 𝑀 are free ℤ-modules of full rank within a quadratic inner-

product space (𝑉, 𝑞) over ℚ. In particular, 𝑉 = 𝐿ℚ = 𝐿′
ℚ
= 𝐿′′

ℚ
= 𝑀ℚ. We write 𝑏, 𝑏′, . . . ,

for the polar forms of 𝑞, 𝑞′, . . . . Moreover the forms 𝑏, 𝑏′, . . . , induced on 𝐿,𝐿′, . . . are

assumed to be integer-valued. The localizations of 𝑉 are (𝑉𝑝 , 𝑞𝑝) containing the local

lattices 𝐿𝑝 ,𝐿,𝐿
′
𝑝 , . . . .

Introduction

The main goal of this chapter is to arrive at criteria guaranteeing that a non-
degenerate indefinite lattice has class number one, that is, its genus has only one
isometry class. With Nikulin’s criterion of Section 11.3 in mind, we aim for criteria
in terms of the genus invariant, that is, the signature and the discriminant form of
the lattice.

As explained in Section 14.1, the appropriate way to compare integral lattices
in a given genus is to consider these as a full rank lattice of a fixed (quadratic)
inner product space over the rational numbers, say 𝑉. Observe that this fixes the
signature so that the place at infinity does not play a role. Isometric lattices 𝐿,𝐿′

have isometric localizations 𝐿𝑣 ≃ 𝐿′𝑣 and so by definition belong to the same genus
and belong to the localization 𝑉𝑣 of 𝑉.

The notion of spinor equivalence, introduced in Section 14.2, is a subtle equiv-
alence that uses the spinor norm, and which is intermediate between equiva-
lence(=isometry) and genus equivalence. Two lattices of the same genus need
not be spinor equivalent but there is a “computable” group that measures the dif-
ference. It follows for instance that the latter group is trivial if the primes in the
prime power decomposition of the discriminant of the quadratic form appear with
a sufficiently small exponent (see Corollary 14.2.6).

For indefinite lattices we can say much more: contrary to the definite case,
here spinor equivalence coincides with equivalence. This is a consequence of the
strong approximation theorem for the spin group. We explain the statement of
this theorem in Section 14.3. The proof of this result is strongly number theoretic
in spirit and falls outside the scope of this treatise. We refer to [36, Ch. 10.7] for
an elementary demonstration. Combining this fact with the results of Section 14.2,
one obtains useful criteria guaranteeing that an indefinite lattice has class num-
ber 1. This is the subject of Section 14.4. The same techniques are applied in
Section 14.5 and yield criteria for the surjectivity of the reduction homomorphism
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𝑟𝐿 : O (𝐿, 𝑞) → O (𝑞#𝐿 ) for quadratic lattices.
The chapter ends with a section on applications to 𝑝-elementary lattices.

14.1 The Genus Revisited

An integral lattice 𝐿 with 𝐿ℚ = 𝑉 underlies a free ℤ-submodule of 𝑉 of maximal
rank. We first consider these.

Proposition 14.1.1. Let 𝐿,𝑀 ⊂ 𝑉 be free ℤ-submodules of 𝑉 of maximal rank.
Then

1. 𝑀 = 𝛾 (𝐿) for some vector space isomorphism 𝛾 : 𝑉 → 𝑉.

2. 𝐿𝑝 = 𝑀𝑝 for almost all primes 𝑝.

3. 𝐿𝑝 = 𝑀𝑝 for all primes 𝑝 if and only if 𝐿 = 𝑀.

Proof. If {𝑒1, . . . , 𝑒𝑛} is a basis for 𝐿 and {𝑒′1, . . . , 𝑒′𝑛} a basis for 𝑀, then the linear
map determined by sending 𝑒𝑖 to 𝑒′𝑖 , 𝑖 = 1, . . . ,𝑛, is as required in 1. Next, write

𝑒′𝑖 =
∑︁

𝐴𝑖𝑗𝑒𝑗 , 𝐴 = (𝐴𝑖𝑗) ∈ GL𝑛 (ℚ). (14.1)

Let 𝑆 be the finite set of primes dividing the denominators of the entries of 𝐴 and
𝐴−1. Hence, for the primes 𝑝 ∉ 𝑆 the matrix 𝐴 belongs to GL𝑛 (ℤ𝑝), and for those
primes {𝑒′1, . . . , 𝑒′𝑛} is just another basis for 𝐿𝑝, that is 𝐿𝑝 = 𝑀𝑝. This proves 2.

To show 3, observe that if 𝐿𝑝 = 𝑀𝑝, localizing (14.1) in 𝑝 shows that the
assumption implies that every 𝐴𝑖𝑗 is a 𝑝-adic integer for all primes 𝑝 and so is an
integer. Hence 𝐿 = 𝑀. □

We also have a criterion for glueing local lattices which we state without proof:

Theorem 14.1.2 (Glueing local lattices, [36, Ch.11, Thm. 1.1]). Let 𝑉 be a finite
dimensional vector space over ℚ and let 𝐿 be a free ℤ-submodule of 𝑉 of maximal
rank. For every prime 𝑝, let 𝑀 (𝑝) be a 𝑝-adic free ℤ𝑝-module of maximal rank in
the localization 𝑉𝑝 of 𝑉. Then there exists a free ℤ-submodule 𝑀 of 𝑉 of maximal
rank whose localizations are 𝑀 (𝑝) if and only if

𝑀 (𝑝) = 𝐿𝑝 for almost all primes 𝑝.

If 𝑀 exists, it is uniquely determined by the condition 𝑀 (𝑝) = 𝑀𝑝 for all primes
𝑝.

For the purpose of this chapter it is useful to be able to view lattices of the
same genus as sublattices of a fixed quadratic space over ℚ. This is possible since
we have seen in Chapter 3 that quadratic spaces over ℚ are isometric if and only
if their localizations are isometric. Let us explain this in more detail. Recall from
Section 1.9 that two integral lattices 𝐿′,𝐿′′ (so not necessarily in the same vector
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space) whose localizations at all places are isometric, by definition belong to the
same genus. Hence, as we just recalled, 𝐿′

ℚ
and 𝐿′′

ℚ
are isometric and so can indeed

be identified with some fixed quadratic ℚ-vector space (𝑉, 𝑞).
If we follow the preceding convention, first of all, two sublattices 𝐿′,𝐿′′ of 𝑉 are

isometric precisely if there is a vector space isometry sending 𝐿′ to 𝐿′′ in which case
we call 𝐿′ and 𝐿′′ equivalent lattices. Secondly, 𝐿′ and 𝐿′′ belong to the same
genus precisely if for all primes 𝑝 local isometries 𝑔𝑝 of 𝑉𝑝 exist with 𝑔𝑝𝐿

′
𝑝 = 𝐿′′𝑝.

It is natural to consider a more restricted form of equivalence between sublat-
tices 𝐿′,𝐿′′ of 𝑉, namely equivalence under the rotation group SO (𝑉, 𝑞) in which
case we call the sublattices properly equivalent . The isometry group of the vec-
tor space 𝑉 always contains isometries other than rotations, e.g., if {𝑒1, . . . , 𝑒𝑛} is
an orthogonal basis, the linear map 𝜏 sending 𝑒1 to −𝑒1 and fixing all other basis
elements is such an isometry. Then, by definition, the lattices 𝐿 and 𝐿′ = 𝜏(𝐿)
are equivalent, but they need not be properly equivalent as shown in Example 3
below.

Examples 14.1.3. 1. The above argument shows that any form equivalent to a
diagonal form is also properly equivalent to it.
2. If dim𝑉 is odd, the isometry −id has determinant −1 and all lattices are
preserved by it. So in this case there is no difference between proper equivalence
classes and equivalence classes.
3. In Example 6.5.5.4 we showed that ±id are the only isometries of the integral
quadratic form 𝑞(𝑥, 𝑦) = 𝑎𝑥2 + 2𝑥𝑦 + 𝑐𝑦2 on ℤ2 with 𝑎 , 𝑐 ∈ ℤ and 𝑎 ≥ 2 and 𝑐 > 𝑎 .
Hence SO (𝑞) = O (𝑞). Now 𝑉 = ℚ𝑒1 ⦹ ℚ(𝑒1 − 𝑎𝑒2) and the reflection 𝜏 in 𝑉 with

matrix 𝜏 =

(
−1 −2𝑎−1
0 1

)
with respect to 𝑒1, 𝑒2 is in O (𝑉, 𝑞), so maps ℤ2 to the

equivalent lattice 𝜏(ℤ2) with basis {𝑒1,−(2/𝑎)𝑒1 + 𝑒2}, and form (in corresponding
coordinates) 𝑞′ = 𝑎𝑢2 − 2𝑢𝑣 + 𝑐𝑣2. It is, however, not properly equivalent to 𝑞.

This last example leads to the following observation.

Lemma 14.1.4. Let 𝐿 be a sublattice of 𝑉 of maximal rank. If every automorphism
of 𝐿 is a rotation, the equivalence class of 𝐿 splits into two proper equivalence
classes. If on the contrary 𝐿 admits an isometry with determinant −1, then every
lattice equivalent to 𝐿 is also properly equivalent to it.

In particular, if the genus of 𝐿 consists of one equivalence class, then SO (𝐿) is
of index 2 in O (𝐿).

The same argument shows that for 𝑝-adic lattices 𝐿𝑝 there is no difference
between equivalence and proper equivalence since by (7.1) there exists a reflection
preserving 𝐿𝑝. Let us tie this in with genus equivalence:

𝔤(𝐿′) = 𝔤(𝐿′′) ⇐⇒ ∀𝑣 ∈ P ∃ 𝑔𝑣 ∈ SO (𝑉𝑣, 𝑞𝑣) such that 𝐿′′𝑣 = 𝑔𝑣𝐿
′
𝑣. (14.2)

Modulo these observations, Theorem 14.1.2 implies:

Corollary 14.1.5. Let 𝐿′ be a lattice in 𝑉 of maximal rank.
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1. For every prime 𝑝 let 𝑔′𝑝 ∈ SO (𝑉𝑝, 𝑞𝑝). If 𝑔′𝑝 ∈ SO (𝐿′𝑝) for almost all 𝑝, then
there is a unique lattice 𝐿′′ in 𝑉 for which

𝐿′′𝑝 = 𝑔′𝑝𝐿
′
𝑝 for all 𝑝.

In particular 𝐿′ and 𝐿′′ belong to the same genus.

2. Conversely, if 𝐿′ and 𝐿′′ belong to the same genus, then for every prime 𝑝
there exists 𝑔′𝑝 ∈ SO (𝑉𝑝, 𝑞𝑝) with 𝐿′′𝑝 = 𝑔′𝑝𝐿

′
𝑝, and 𝑔′𝑝 ∈ SO (𝐿′𝑝) for almost all

𝑝.

14.2 The Spinor Genus

In this section we introduce the concept of spinor equivalence, intermediate between
genus equivalence and lattice equivalence. We illustrate this in Figure 14.2.1, where
one genus is depicted containing four spinor genera labeled 𝐴,𝐵,𝐶,𝐷, and each
contains one or more proper equivalence classes labeled 𝐴1, . . . ,𝐵,𝐶1, . . . , etc.

Figure 14.2.1: Genus, spinor genus, proper equivalence

𝐴1,𝐴2,𝐴3

𝐶1,𝐶2

𝐵

𝐷1,𝐷2,𝐷3,𝐷4

Definition 14.2.1. We say that two sublattices 𝐿′,𝐿′′ of (𝑉, 𝑞) (maximal rank)
are spinor-equivalent or belong to the same spinor genus if there exist 𝛾′ ∈
SO (𝑉, 𝑞) and 𝑔𝑝 ∈ SO+ (𝑉𝑝, 𝑞𝑝) for all primes 𝑝, such that

𝐿′′𝑝 = 𝛾′◦𝑔𝑝 (𝐿′𝑝) for all primes 𝑝.

Here 𝛾′ is interpreted as the induced localization at 𝑝.

This is indeed an equivalence relation, e.g., transitivity is shown as follows.
If 𝐿,𝐿′ and 𝐿′,𝐿′′ are spinor equivalent, there exist 𝛾, 𝛾′ ∈ SO (𝑉, 𝑞) and 𝑔𝑝, 𝑔

′
𝑝 ∈
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SO+ (𝑉𝑝, 𝑞𝑝) for all primes 𝑝 such that 𝐿′𝑝 = 𝛾◦𝑔𝑝 (𝐿𝑝), 𝐿′′𝑝 = 𝛾′◦𝑔′𝑝 (𝐿′𝑝). Writing

𝛾′◦𝑔′𝑝◦𝛾◦𝑔𝑝 = 𝛾′◦𝛾◦(𝛾−1◦𝑔′𝑝◦𝛾◦𝑔𝑝︸         ︷︷         ︸
𝑔′′𝑝

),

one observes that the spinor norm of 𝑔′′𝑝 is 1 since the spinor norm is a group
homomorphism onto an abelian group, and 𝑔𝑝 as well as 𝑔′𝑝 have spinor norm 1.

This equivalence relation is indeed intermediate between proper equivalence
and genus equivalence:

Lemma 14.2.2. 1. Properly equivalent lattices are spinor equivalent;

2. Spinor equivalent lattices are in the same genus.

Proof. 1. If 𝛾𝐿′ = 𝐿′′ with 𝛾 ∈ SO (𝑉, 𝑞), we take all 𝑔𝑝 to be the identity maps.
2. Assume 𝛾′ and 𝑔𝑝 are such that 𝐿′′𝑝 = 𝛾′◦𝑔𝑝 (𝐿′𝑝) for all primes 𝑝. Then 𝑔𝑝 sends

the localization 𝐿′𝑝 to the corresponding localization of 𝛾′−1𝐿′′ and so, by (14.2),

the lattices 𝛾′−1𝐿′′ and 𝐿′ are in the same genus. Since 𝐿′′ and 𝛾′−1𝐿′′ are isometric,
also 𝐿′ and 𝐿′′ are in the same genus. □

In this section we focus on comparing genus equivalence and spinor equivalence.
To do so we need to understand the image of the spinor norm on the level of vector
spaces 𝑉,𝑉𝑝 over ℚ, ℚ𝑝, respectively, and integral lattices 𝐿, respectively 𝑝-adic
lattices 𝐿𝑝. Accordingly, we extend the notation (13.15) as follows:

S𝑉 = Nmspin SO (𝑉) ⊂ D(ℚ) S𝑉𝑝 = Nmspin SO (𝑉𝑝) ⊂ D(ℚ𝑝)
S𝐿 = Nmspin SO (𝐿) ⊂ D(ℚ) S𝐿𝑝 = Nmspin SO (𝐿𝑝) ⊂ D(ℚ𝑝).

Let us first consider the spinor norm image for ℚ-vector space rotations:

Lemma 14.2.3. Suppose that 𝑛 = dim𝑉 ≥ 3. Then S𝑉 contains ℚ>0 · (ℚ×)2. If 𝑞
is indefinite, the spinor norm map is surjective: S𝑉 = D(ℚ).

Proof. Recall that (cf. (13.11)) to calculate Nmspin (𝑔) for 𝑔 ∈ SO (𝑉, 𝑞), we write
𝑔 as an even product of reflections 𝜎𝑥, 𝑥 ∈ 𝑉, and then Nmspin (𝑔) is the product
of the 𝑞(𝑥) up to squares. So, to show the assertions of the lemma, it suffices to
consider products 𝜎𝑥◦𝜎𝑦 of two reflections and solve equations of the form

𝑞(𝑥)𝑞(𝑦) =
{
𝑎 ∈ ℚ, 𝑎 > 0 if 𝑞 is definite

𝑎 ∈ ℚ× if 𝑞 is indefinite.
(14.3)

The idea is to solve this locally and then use a suitable Hasse principle to deduce
that global solutions exist. We first choose 𝑏, 𝑐 ∈ ℚ× so that 𝑎 = 𝑏𝑐. Choosing the
sign of 𝑏 (and hence of 𝑐) appropriately we can solve these equations also at the
place ∞.

To treat finite places in the case dim𝑉 ≥ 4 is easy. Since by Theorem 3.2.5
the localized form on 𝑉𝑝 represents all values, the equations 𝑞(𝑥) = 𝑏 and 𝑞(𝑦) = 𝑐
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are locally soluble in 𝑉𝑝 at all primes 𝑝. By the corollary to the Hasse–Minkowski
theorem 3.3.3, solutions then exist globally.

For dim𝑉 = 3 this is slightly more involved. In this case Remark 3.2.6 states
the set 𝑞(𝑉𝑝) · (ℚ×

𝑝)2 in D(ℚ𝑝) misses at most one single element 𝑒𝑝 · (ℚ×
𝑝)2, 𝑒𝑝 =

− disc(𝑞𝑝). This happens for at most a finite set 𝑃 of primes. We aim to write
𝑎 = 𝑏𝑐 such that for all 𝑝 ∈ 𝑃 both 𝑏 and 𝑐 are such that their cosets in D(ℚ𝑝) are
different from 𝑒𝑝 · (ℚ×

𝑝)2. This is indeed possible since by Theorem A.2.1 the group
D(ℚ𝑝) is either isomorphic to the product of two or three cyclic groups of order 2.
Hence we have enough elements left in D(ℚ𝑝) to write, for 𝑝 ∈ 𝑃, 𝑎 = 𝑏𝑝 · 𝑐𝑝 with
the cosets of 𝑏𝑝 and 𝑐𝑝 = 𝑎/𝑏𝑝 different from that of 𝑒𝑝. Now apply Corollary A.3.2
to find 𝑏 ∈ ℚ× such that its localizations at the primes 𝑝 ∈ 𝑃 are equal to 𝑏𝑝. Then
we can solve 𝑞(𝑥𝑝) = 𝑏𝑝 and 𝑞(𝑦𝑝) = 𝑎/𝑏𝑝 in 𝑉𝑝. For a prime not in 𝑃 there is no
such subtlety. The rest of the argument proceeds as before. □

Next, consider the images S𝐿 for lattices 𝐿 ⊂ 𝑉 and S𝐿𝑝 for the local lattices
𝐿𝑝 ⊂ 𝑉𝑝. By Lemma 13.4.2, if 𝐿 and 𝐿′ are equivalent lattices, then S𝐿 = S𝐿′ , and
if 𝐿 and 𝐿′ are genus-equivalent, then S𝐿𝑝 = S𝐿′𝑝 for all primes 𝑝. So, to gather
information on the number of spinor genera in the genus of 𝐿 it makes sense to
consider the subgroups S𝐿𝑝 for all primes 𝑝. These are small abelian subgroups of
D(ℚ𝑝). E.g. for 𝑝 odd, D(ℚ𝑝) is isomorphic to the Klein group and consists of the
cosets of 1, 𝑝, 𝜖 and 𝜖 ·𝑝, where 𝜖 is a non-square mod 𝑝 and so S𝐿𝑝 is either the full
group, the trivial group or one of the three cyclic groups of order 2 generated by
the cosets of 𝜖, 𝑝 or 𝜖 · 𝑝. These small groups form the basic source of information
about the number of spinor genera in the genus of 𝐿. We shall ultimately prove
(see Theorem 14.4.2) that the class number of the genus of 𝐿 is one if for all primes
𝑝 the group S𝐿𝑝 contains the subgroup of D(ℚ𝑝) generated by units.

First some examples where such groups are calculated. We use Example 13.4.1
for information about a typical binary lattice which leads to:

Examples 14.2.4. 1. If 𝐿 is a binary 𝑝-adic unimodular quadratic lattice, then
S𝐿 contains the classes of all 𝑝-adic units. This is a direct consequence of Corol-
lary 10.1.4. If 𝑝 is odd this holds for any 𝑝-adic lattice of rank ≥ 2 since such
lattices are diagonalizable by Proposition 10.2.2. Moreover, in this case, by the
Cartan–Dieudonné theorem in the shape of Corollary 7.2.5, this is the full image,
that is, S𝐿 = ℤ×

𝑝 · (ℚ×
𝑝)2.

2. Consider the integral lattice 𝐿 = 𝐴2 with quadratic form 𝑥2 + 𝑥𝑦 + 𝑦2. This
lattice is positive definite and has discriminant 3. For primes 𝑝 ≠ 3 the lattice 𝐿𝑝
is unimodular and then, by the argument of example 1, S𝐿𝑝 = ℤ×

𝑝 · (ℚ×
𝑝)2.

For the prime 3 the situation is different since the lattice 𝐿3 is not unimodular.
The basis 𝑒1 = (1, 0), 𝑒2 = (−1, 2) exhibits 𝐿3 ≃ [1] ⦹ [3] and the corresponding
reflections 𝜎𝑒1 and 𝜎𝑒2 have spinor norm 1, respectively 3. Since 𝑞(𝑥𝑒1 + 𝑦𝑒2) =

𝑥2 + 3𝑦2 cannot be of the form −𝑧2 in ℚ3 (a square is 1 modulo 3), the group S𝐿3
is the cyclic group of order 2 generated by the class of 1 · 3 and so again is strictly
smaller than D(ℚ3).

The next result demonstrates how to use information about the images of the
local spinor norms to deduce that the genus of 𝐿 contains only one spinor genus:
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Theorem 14.2.5 (Spinor equivalence = genus equivalence). Let (𝑉, 𝑞) be a quadratic
inner product space of dimension ≥ 3 over ℚ and let 𝐿 ⊂ 𝑉 be a maximal rank sub-
lattice with 𝑏𝑞 (𝐿,𝐿) ⊂ ℤ. If for all primes 𝑝 the coset in D(ℚ𝑝) of every 𝑝-adic
unit is the spinor norm of some rotation of 𝐿𝑝, all lattices in the genus of 𝐿 are
spinor equivalent. In other words, every lattice in the same genus as 𝐿 is spinor
equivalent to it if

S𝐿𝑝 = Nmspin (SO (𝐿𝑝)) ⊃ ℤ×
𝑝 · (ℚ×

𝑝)2 within D(ℚ𝑝) (for all primes 𝑝). (14.4)

For a given prime 𝑝 the inclusion (14.4) holds if a collection of 𝑝-adic units 𝑢𝑗,
and vectors 𝑥𝑗 ∈ 𝐿𝑝, 𝑗 ∈ 𝐽, exists such that

(a) 𝑞(𝑥𝑗) = 𝑢𝑗𝑝
𝑘 for all 𝑗 ∈ 𝐽, and some fixed 𝑘, and all reflections 𝜎𝑥𝑗 preserve

the lattice 𝐿𝑝;
(b) the set of pairwise products 𝑢𝑗1𝑢𝑗2 generate ℤ×

𝑝 · (ℚ×
𝑝)2.

This occurs for instance in the following cases:

1. In case 𝑝 ≠ 2: at least one homogeneous summand of exponent 𝑘 and rank
≥ 2 splits off from 𝐿𝑝. This holds if for example ℓ(dg𝐿𝑝 ) ≤ rank(𝐿) − 2.

2. In case 𝑝 = 2:
(a) If 𝐿 (and hence 𝐿2) is an even lattice, at least one homogeneous summand
of exponent 𝑘 and rank ≥ 2 splits off from 𝐿2, for example in case ℓ(dg𝐿2 ) ≤
rank(𝐿) − 2.
(b) If 𝐿 (and hence 𝐿2) is an odd lattice and a summand of one of the following
three types splits off from 𝐿2:

• either one of the rank two lattices 𝑈𝑘, 𝑉𝑘;
• any homogeneous summand of exponent 𝑘 and rank ≥ 3;
• a rank 3 lattice of the form 𝑀 = ⟨𝑢(1) · 2𝑘⟩⦹ ⟨𝑢(2) · 2𝑘⟩⦹ ⟨𝑢(3) · 2𝑘+1⟩ for

some dyadic units 𝑢(𝑖), 𝑖 = 1, 2, 3.

This is the case if for example ℓ(dg𝐿2 ) ≤ rank(𝐿) − 3 or if 𝑢𝑘 or 𝑣𝑘, 𝑘 ≥ 1,

splits off from 𝑞#𝐿 .

Proof. We show first that the assumption (14.4) implies that a lattice 𝐿′ in the
genus of 𝐿 is spinor equivalent to 𝐿. Being in the same genus implies (as noted
below Lemma 14.1.4) that for all primes 𝑝 there exists 𝑔𝑝 ∈ SO (𝑉𝑝) such that
𝐿′𝑝 = 𝑔𝑝𝐿𝑝, and so one may write

Nmspin (𝑔𝑝) = 𝑢𝑝𝑝
𝑟𝑝 · (ℚ×

𝑝)2, 𝑢𝑝 ∈ ℤ×
𝑝 , 𝑟𝑝 ∈ ℤ.

To prove spinor-equivalence, we adapt the 𝑔𝑝. By Proposition 14.1.1.2, for almost
all primes 𝑝 we have 𝐿′𝑝 = 𝐿𝑝 and so for those we may replace 𝑔𝑝 by 𝑔′𝑝 = id with
𝑟𝑝 = 0. There remains a finite set 𝑆 of primes and we put 𝑎 =

∏
𝑝∈𝑆 𝑝

𝑟𝑝 ∈ ℚ. Since
𝑎 > 0, by Lemma 14.2.3 there is some 𝛾 ∈ SO (𝑉, 𝑞) with Nmspin (𝛾) = 𝑎 up to
squares and hence for 𝑝 ∈ 𝑆

Nmspin (𝛾−1◦𝑔𝑝) = 𝑣𝑝 · (ℚ×
𝑝)2, 𝑣𝑝 ∈ ℤ×

𝑝 .
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By assumption (14.4) for every 𝑝 ∈ 𝑆 there exists 𝑤𝑝 ∈ SO (𝐿𝑝) with Nmspin (𝑤𝑝) =
𝑣−1𝑝 · (ℚ×

𝑝)2 and hence, since 𝐿′𝑝 = 𝛾 (𝛾−1◦𝑔𝑝)𝐿𝑝, we find

𝐿′𝑝 = 𝛾◦ (𝛾−1𝑔𝑝)◦𝑤𝑝︸        ︷︷        ︸
𝑔′𝑝

𝐿𝑝, with Nmspin (𝑔′𝑝) = 1 · (ℚ×
𝑝)2.

This precisely means that 𝑔′𝑝 belongs to the kernel SO+ (𝑉𝑝) of the spinor norm
map for all primes 𝑝 and so, by definition, 𝐿′ and 𝐿 are spinor equivalent.

Now suppose that for a fixed prime 𝑝 vectors 𝑥𝑗 and units 𝑢𝑗 , 𝑗 ∈ 𝐽, exist
with the properties (a) and (b). To show that (14.4) holds, note that by (a)
Nmspin (𝜎𝑥𝑗1𝜎𝑥𝑗2 ) = 𝑢𝑗1𝑢𝑗2𝑝

2𝑘 · (ℚ×
𝑝)2 = 𝑢𝑗1𝑢𝑗2 · (ℚ×

𝑝)2, and thus by assumption (b),

modulo (ℚ×
𝑝)2 units in ℤ𝑝 are spinor norms as asserted.

To deal with the further special cases, assume first 𝑝 ≠ 2 or 𝑝 = 2 and 𝐿 even.
Example 13.4.1 implies that such vectors 𝑥𝑗 exist if a homogeneous summand of
exponent 𝑘 and rank ≥ 2 splits off from 𝐿𝑝. Next, assuming 𝐿 odd and 𝑝 = 2, the
first two cases of 2(b) are also direct consequences of Example 13.4.1. Finally, we
check the claim for the lattice 𝑀 occurring in the third case of 2(b). This lattice
admits the 4 reflections 𝜎𝑥, for 𝑥 = 𝑒1, 𝑒1 + 2𝑒2, 𝑒2, 𝑒2 + 𝑒3, where 𝑒1, 𝑒2, 𝑒3 generate
the three summands of 𝑀. Since in D(ℤ2) one has

𝑞(𝑒1 + 2𝑒2)𝑞(𝑒1) =
𝑞(𝑒1 + 2𝑒2)

𝑞(𝑒1)
= 𝑞(𝑒1)/𝑞(𝑒1) + 4𝑞(𝑒2)/𝑞(𝑒1) = 1 + 4𝑢(2)/𝑢(1)

𝑞(𝑒2 + 𝑒3)𝑞(𝑒2) =
𝑞(𝑒2 + 𝑒3)
𝑞(𝑒2)

= 𝑞(𝑒2)/𝑞(𝑒2) + 𝑞(𝑒3)/𝑞(𝑒2) = 1 + 2𝑢(3)/𝑢(2) ,

the generators {5, 3} of the group D(ℤ2) – and hence all dyadic units – belong to
the image of the spinor norm.

To complete the proof, recall that 𝐿𝑝 determines 𝑏#𝐿𝑝 and so for odd primes 𝑝

the condition ℓ(dg𝐿𝑝 ) ≤ rank(𝐿) −2 implies that we are in situation 1. If 𝐿2 is even
and if ℓ(dg𝐿2 ) ≤ rank(𝐿) − 2, then, by Proposition 11.2.6, 𝑈 or 𝑉 splits off and

situation 2 occurs. This is also the case if 𝑢𝑘 or 𝑣𝑘, 𝑘 ≥ 1, splits off from 𝑞#𝐿 . If 𝐿2
is odd, and ℓ(dg𝐿2 ) ≤ rank(𝐿) − 3, we are again in (another instance of) situation
2. □

Corollary 14.2.6. Let (𝑊, 𝑞) be a quadratic inner product space over ℚ of di-
mension 𝑛 ≥ 3 and let 𝐿,𝐿′ be maximal rank quadratic sublattices of 𝑊 with the
same discriminant 𝑑. Suppose that the factorization of 𝑑 contains the prime 2 to
the power < ⌊ 12 (𝑛

2 + 1)⌋ and any odd prime to the power < 1
2 (𝑛(𝑛 − 1)). Then 𝐿,𝐿′

are spinor equivalent if and only if they are in the same genus.
In the case of odd symmetric lattices, the estimate for the power of 2 dividing

𝑑 can be replaced by < ⌊ 12 ((𝑛 − 1)2 + 1)⌋.

Proof. Consider first an odd prime 𝑝. Since 𝐿𝑝 is diagonalizable (Proposition 10.2.2)
it is isometric to ⦹𝑛

𝑖=1⟨𝑢𝑖 · 𝑝𝑟𝑖 ⟩ and we may assume 0 ≤ 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑛. If all the
exponents are distinct we have

∑
𝑟𝑖 ≥ 0 + 1 + · · · + (𝑛 − 1) = 1

2𝑛(𝑛 − 1). Hence∑︁
𝑟𝑖 <

1

2
𝑛(𝑛 − 1) (14.5)
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implies that at least two of the exponents must coincide and 𝐿𝑝 contains a rank
2 lattice of the form 𝑀 (𝑝𝑠), which is the condition described in the statement
of Theorem 14.2.5.1 for an odd prime 𝑝. On the other hand condition (14.5) is

equivalent to disc(𝐿)𝑝 = disc(𝐿𝑝) =
∏

𝑖 𝑢𝑖 · 𝑝
∑
𝑟𝑖 being not divisible by 𝑝

1
2
𝑛(𝑛−1) .

For the prime 2 we may assume that 𝐿2 is diagonalizable, since otherwise some
𝑈𝑘 or 𝑉𝑘 splits off and Theorem 14.2.5 directly gives the result. So we suppose
that 𝐿2 = ⦹𝑛

𝑖=1⟨𝑢𝑖 · 2𝑟𝑖 ⟩. As we observed before, every 𝑟𝑖 ≥ 1 and we may assume
1 ≤ 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑛. If for all odd 𝑗 one has 𝑟𝑗 ≥ 𝑗 it follows that

∑
𝑟𝑗 ≥

1 + 1 + 3 + 3 + · · · = ⌊ 12𝑛
2 + 1⌋ which is equivalent to disc(𝐿2) =

∏
𝑖 𝑢𝑖 · 2

∑
𝑟𝑖 being

divisible by 2𝑘 where 𝑘 = ⌊ 12 (𝑛
2 + 1)⌋. On the other hand, if this is not the case,

at least one 𝑟𝑗 with 𝑗 odd must be < 𝑗 and so there is a triplet {𝑟𝑖−2, 𝑟𝑖−1, 𝑟𝑖}, 𝑖 ≤ 𝑗,
with 𝑟𝑖 − 𝑟𝑖−2 ≤ 1, i.e., two of these numbers are equal and the third differs from
it by at most 1. Then the last mentioned condition in case 2 of Theorem 14.2.5
applies.

If the lattice 𝐿 is odd, 𝐿2 contains at least one summand of the form ⟨𝑢⟩, 𝑢 ∈ ℤ2,
which means that in the above argument the rank 𝑛 can be replaced by 𝑛 − 1. □

Remark 14.2.7. The theory of binary forms (lattices of rank 2) cannot be treated
with the above approach. See [36, Chapter 14 and Section 13.3] for a method to
classify the latter.

J. Cassels gives in [36, Section 11.3] a constructive way to calculate the number
of spinor genera in a given genus as the order of a certain computable finite group
𝐺(𝐿) of exponent 2. The latter is defined as follows. Fix a finite set 𝑃 of prime
numbers such that 2 ∈ 𝑃 and Nmspin (SO (𝐿𝑝)) = ℤ×

𝑝 · (ℚ×
𝑝)2 for all 𝑝 ∉ 𝑃. Such sets

exist: Take for 𝑃 the set of primes dividing disc(𝐿) and add 2 if disc(𝐿) happens
to be odd. This follows from Example 14.2.4.1 since 𝐿𝑝 is unimodular for all 𝑝 ∈ 𝑃
and 𝑝 ≠ 2. Making use of 𝑃, introduce the groups

𝑆 =
∏
𝑝∈𝑃

S𝐿𝑝 , S𝐿𝑝 = Nmspin (SO (𝐿𝑝)), 𝑅 =
∏
𝑝∈𝑃

D(ℚ𝑝)

𝑇 = {(𝑡, . . . , 𝑡) ∈ 𝑅 | 𝑡 ∈ D(ℚ) such that

{
𝑡 ∈ D(ℤ𝑝) simultaneously for all 𝑝 ∉ 𝑃

𝑡 > 0 in case 𝑞 is definite
}.

Here we make use of the map D(ℚ) → D(ℚ𝑝) induced by the embedding ℚ ↩→ ℚ𝑝

(which preserves units and squares). Finally set 𝐺(𝐿) = 𝑅/𝑆𝑇 . The result alluded
to is as follows:

Theorem 14.2.8 (Cassels, [36, §11.3]). The (finite commutative) group 𝐺(𝐿) does
not depend on the choice of 𝑃. It has exponent 2. The set of spinor genera in the
genus of (𝐿, 𝑏) forms a principal space under 𝐺(𝐿) and so its number is equal to
the order of the group 𝐺(𝐿) and hence a power of 2.

The group 𝐺(𝐿) can be understood as follows. We have seen that the groups
D(ℚ𝑝) for odd 𝑝 are isomorphic to the Klein 4-group generated by 𝑝 and a non-
square unit 𝜖, and that D(ℚ2) is the product of three order 2 cyclic groups generated
by −1,−3 and 2. The group 𝑇 consists of diagonally embedded cyclic groups of
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order two generated by the primes 𝑝 ∈ 𝑃 (and by −1 if 𝑞 is indefinite). Multiplica-
tion by 𝑝 ∈ 𝑇 takes care of the odd powers of the prime 𝑝 ∈ 𝑃 in the corresponding
factor of 𝑅, but changes the units in the other factors and so might enlarge 𝑆𝑇 so
that 𝐺(𝐿) becomes smaller. But in any case, if for all 𝑝 ∈ 𝑃 the 𝑝-adic units are
contained in S𝐿𝑝 , the group 𝐺(𝐿) is the trivial group, confirming Theorem 14.2.5
stating the uniqueness of the spinor genus in that case.

In general, 𝐺(𝐿) is a product of at most as many cyclic groups of order 2 as
there are odd primes 𝑝 ∈ 𝑃 for which S𝐿𝑝 is either trivial or a cyclic group generated
by 𝑝, and possibly at most two more cyclic groups of order two depending on the
behaviour at the prime 2 (here the (in)definiteness of the form is also of influence).
We give an example in the positive definite case from [36, Chap. 11, Examples]
where many more examples can be found.

Example 14.2.9. We enlarge the lattice of Example 14.2.4.2 to a rank 3 even
lattice as follows. The Gram matrix

©«
2 1 0
1 2 0
0 0 18

ª®¬
defines a quadratic lattice isometric to𝑀 = 𝐿⦹⟨2·32⟩, 𝐿 ≃ 𝐴2, (with quadratic form
𝑞(𝑥, 𝑦, 𝑧) = 𝑥2+𝑥𝑦+𝑦2+32𝑧2). It has discriminant 2·33. We can take 𝑃 = {2, 3}. The
local lattice 𝑀3 is isometric to ⟨2⟩⦹ ⟨2 · 3⟩⦹ ⟨2 · 32⟩. The corresponding reflections
in 𝑒1, 𝑒2, 𝑒3 have spinor norms 1, 3, 1. Note that 𝑞(𝑥, 𝑦, 𝑧) = 𝑥2 +3𝑦2 +32𝑧2 does not
represent −1 · (ℚ×)2 since squares modulo 3 are 1. So S𝑀3

is the group generated
by the class 3 · (ℚ×

3 )2.
The local lattice 𝑀2 is isometric to 𝐿2 ⦹ ⟨2⟩ and so, by Theorem 14.2.5,

S𝑀2
contains all units. In fact, it is not larger: any reflection has to preserve

the indecomposable summands and we have seen in Example 14.2.4.2 that re-
flections from 𝐿2 have spinor norm a unit, while the reflection 𝑒3 → −𝑒3 has
spinor norm 1. There is a subtle interaction between 𝑆 and 𝑇 in this exam-
ple. Here 𝑅 = D(ℚ2) × D(ℚ3) contains 32 elements and the group 𝑆𝑇 contains
16 elements: the 8 elements (±1, 1), (±3, 1), (±1, 3), (±3, 3) and (via the diagonal
action of {(2, 2), (3, 3)} ⊂ 𝑇 by coordinate-wise multiplication) we obtain the
supplementary set {(±2,−1), (±6,−1), (±2,−3), (±6,−3)} also consisting of 8 ele-
ments. Hence 𝐺(𝑀) = 𝑅/𝑆𝑇 is cyclic of order two and so there are two spinor
genera. A representing quadratic form for the second spinor genus is given by
𝑞′(𝑥, 𝑦, 𝑧) = 𝑧2 + 3(𝑥2 + 𝑥𝑦 + 𝑦2). To show this, observe first of all that 𝑞′ and 𝑞
are in the same genus (they are positive definite and have the same localizations
at 2 and 3). On the other hand 𝑞 and 𝑞′ are not isometric. This can be seen using
the unique splitting of positive definite forms into indecomposable forms (Eichler’s
theorem 1.12.3). Indeed, the form 𝑥2 + 𝑥𝑦 + 𝑦2 is indecomposable, since this is the
case for its localization 𝐿2 (see Section 10.1) and so is 3(𝑥2 +𝑥𝑦 +𝑦2). So the forms
𝑞 and 𝑞′ are already given as sums of indecomposable summands, and these are
different.
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14.3 Strong Approximation for the Spin Group

Let 𝐿 ⊂ 𝑉 be an integral lattice in a quadratic inner product space (𝑉, 𝑞) over the
rational numbers ℚ. We recall that we have the reduced orthogonal groups

SO+ (𝐿) = {𝜎𝑢1
· · · 𝜎𝑢2𝑟 ∈ SO (𝐿ℚ) ∩ O (𝐿) | 𝑞(𝑢1) · · · 𝑞(𝑢2𝑟) ∈ (ℚ×)2},

where the 𝜎𝑢𝑗 are hyperplane reflections in hyperplanes orthogonal to non-isotropic
vectors 𝑢𝑗 ∈ 𝐿, 𝑗 = 1, . . . , 2𝑟.

The inclusions ℤ ⊂ ℤ𝑝 ⊂ ℚ𝑝 and ℤ ⊂ ℚ ⊂ ℚ𝑝 induce inclusions

𝐿 ⊂ 𝐿𝑝 ⊂ 𝑉𝑝, 𝐿 ⊂ 𝑉 ⊂ 𝑉𝑝.

Using the 𝑝-adic topology described in Appendix A.3, these induce natural con-
tinuous homomorphisms fitting into commutative diagrams

Spin(𝐿𝑝)� s

%%

Ad |𝐿𝑝 // SO+ (𝐿𝑝)� s

%%
Spin(𝐿)

99

Ad |𝐿 //
� s

%%

SO+ (𝐿)

99

� s

&&

Spin(𝑉𝑝)
Ad |𝑉𝑝 // SO+ (𝑉𝑝)

Spin(𝑉)

88

Ad |𝑉 // SO+ (𝑉)

99

Since we work both with lattices 𝐿,𝐿𝑝, . . . and vector spaces 𝑉,𝑉𝑝, . . . , we have
written Spin(𝑉),Spin(𝐿) etc., instead of Spin(𝑞). Under the slant arrows coming
from extension of scalars we identify 𝑢 ∈ Spin(𝐿) with 𝑢 ⊗ 1 ∈ Spin(𝐿𝑝), etc., and
𝑔 ∈ SO+ (𝐿) with 𝑔 ⊗ 1 ∈ SO+ (𝐿𝑝), etc. In what follows we need to remember
(see Appendix A.3) that in the 𝑝-adic topology the lattice 𝐿𝑝 is an open subset of
the vector space 𝑉𝑝. Also the group Spin(𝐿𝑝) is an open subgroup of the group
Spin(𝑉𝑝).

We can now state the strong approximation theorem. For a proof we refer to
[36, Ch. 10.7]. It uses in an essential way another approximation theorem, stated
as Theorem A.3.6 in Appendix A.3. For the latter result indefiniteness of the
quadratic form is essential.

Theorem 14.3.1 (Strong approximation for the spin group). Let (𝑉, 𝑞) be a
quadratic inner product space over ℚ of dimension ≥ 3 with 𝑞 indefinite and
let 𝐿 ⊂ 𝑉 be a maximal rank integral lattice in 𝑉. For all prime numbers 𝑝 let
𝑈𝑝 ⊂ Spin(𝑉𝑝, 𝑞𝑝) be a non-empty open subset such that

𝑈𝑝 = Spin(𝐿𝑝) for almost all 𝑝.

Then there exists 𝑢 ∈ Spin(𝑉, 𝑞) such that its localization 𝑢𝑝 belongs to 𝑈𝑝 for all
primes 𝑝.

By continuity of the maps in the above diagrams, we conclude:
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Corollary 14.3.2. Under the assumptions on (𝑉, 𝑞) and 𝐿 of Theorem 14.3.1,
suppose that for all primes 𝑝 we have a non-empty open subset 𝑊𝑝 ⊂ SO+ (𝑉𝑝, 𝑞𝑝)
with the property that

𝑊𝑝 = SO+ (𝐿𝑝) for almost all 𝑝.

Then there is a 𝛿 ∈ SO+ (𝑉, 𝑞) such that 𝛿 belongs to 𝑊𝑝 for all primes 𝑝.

Remark 14.3.3. 1. There is no analog of Corollary 14.3.2 for the larger group
SO (𝑉, 𝑞). This is explained in [36] on page 187.
2. In subsequent sections we shall use the above corollary to show that spinor
equivalence and equivalence coincide in the indefinite case.

14.4 Genus, Spinor Genus and Equivalence

Recall that we assume that sublattices 𝐿 of a quadratic inner product space vector
space (𝑉, 𝑞) over ℚ are integer valued in the strong sense that 𝑏𝑞 (𝐿,𝐿) ⊂ ℤ. For
simplicity of notation, in the remainder of this section we will write 𝑏 instead of
𝑏𝑞. Recall also that two sublattices 𝐿′,𝐿′′ of 𝑉 are properly equivalent, respectively
spinor-equivalent, if there exist 𝛾, 𝛾′ ∈ SO (𝑉, 𝑞) and 𝑔′𝑝 ∈ SO+ (𝑉𝑝, 𝑞𝑝) (for all
primes 𝑝) such that 𝛾 (𝐿′) = 𝐿′′, respectively

𝐿′′𝑝 = 𝛾′◦𝑔′𝑝 (𝐿′𝑝) for all primes 𝑝. (14.6)

As announced, the strong approximation theorem implies that in the indefinite
case in dimension ≥ 3 spinor equivalence and proper equivalence are the same:

Theorem 14.4.1 (Spinor equivalence = proper equivalence). Let (𝑉, 𝑞) be an
indefinite quadratic inner product space over ℚ of dimension ≥ 3. Then spinor
equivalence for integer valued lattices in 𝑉 is the same as proper equivalence.

Proof. That proper equivalence implies spinor equivalence was already proved in
Lemma 14.2.2. Now let 𝐿′,𝐿′′ be two lattices that are spinor-equivalent via 𝛾′ ∈
SO (𝑉) and 𝑔′𝑝 ∈ SO+ (𝑉𝑝), that is, (14.6) holds. To show that 𝐿′ and 𝐿′′ are properly
equivalent, we shall use the strong approximation theorem for the spin group to
find some global vector space rotation inducing the local isometries 𝛾′◦𝑔′𝑝. If we
achieve this, by Proposition 14.1.1 the lattices 𝐿′ and 𝐿′′ are properly equivalent.
To carry this out, we choose the open sets in Corollary 14.3.2 to be

𝑊𝑝 = 𝑔′𝑝 SO
+ (𝐿′𝑝) ⊂ SO+ (𝑉𝑝).

As in the proof of Proposition 14.1.1.2, for all primes 𝑝 except for those in a finite
set we have 𝑔′𝑝 ∈ SO+ (𝐿′𝑝), and for these 𝑊𝑝 = SO+ (𝐿′𝑝). Hence, we can apply
Corollary 14.3.2 to conclude that there exists a (vector space) rotation 𝛿 ∈ SO+ (𝑉)
with 𝛿 ∈ 𝑔′𝑝 SO

+ (𝐿′𝑝) for all primes 𝑝, implying 𝛿(𝐿′𝑝) = 𝑔′𝑝 (𝐿′𝑝) for all primes 𝑝.
But then

(𝛾′◦𝛿(𝐿′))𝑝 = 𝛾′◦𝛿(𝐿′𝑝) = 𝛾′◦𝑔′𝑝 (𝐿′𝑝) = 𝐿′′𝑝 for all 𝑝.

So indeed, we found a vector space rotation 𝛾′◦𝛿 inducing 𝛾′◦𝑔′𝑝 for all primes 𝑝. □
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We can now use Theorem 14.4.1 together with the result on the uniqueness of
isometry classes in a spinor genus, cf. Theorem 14.2.5. Recall also (cf. Lemma 14.1.4)
that if there is only one isometry class in a genus, equivalence coincides with proper
equivalence which implies in turn that the isometry group of the lattice contains
isometries that are not rotations. All of these considerations taken together prove
the following important criterion:

Theorem 14.4.2 (Criterion for class number 1). Let (𝐿, 𝑏) be an indefinite non-
degenerate symmetric lattice of rank ≥ 3. If

Nmspin (SO (𝐿𝑝)) ⊃ ℤ×
𝑝 · (ℚ×

𝑝)2 for all primes 𝑝,

then 𝐿 has class number 1.

The above inclusion holds for a given prime 𝑝 if a collection of 𝑝-adic units 𝑢𝑗,
and vectors 𝑥𝑗 ∈ 𝐿𝑝, 𝑗 ∈ 𝐽, exist such that

1. 𝑞(𝑥𝑗) = 𝑢𝑗𝑝
𝑘 for all 𝑗 ∈ 𝐽, and some fixed 𝑘, and all reflections 𝜎𝑥𝑗 preserve

the lattice 𝐿𝑝;
2. the set of pairwise products 𝑢𝑗1𝑢𝑗2 generate D(ℤ𝑝).

This is in particular true in case we are in one of the situations 1 or 2 of Theo-
rem 14.2.5.

In these cases a lattice isometric to 𝐿 is also properly isometric to 𝐿 and SO (𝐿)
is of index two in O (𝐿). In other words, 𝐿 admits isometries that are not rotations.

This proves Theorem 1.13.2 from Section 1.13:

Corollary 14.4.3. Let 𝐿 be an even non-degenerate indefinite lattice of rank 𝑟 ≥ 3.
Assume that the minimal number of generators of the discriminant group dg𝐿 =

𝐿∗/𝐿 is at most 𝑟−2. Then 𝐿 has class number 1. In other words: if ℓ(dg𝐿) ≤ 𝑟−2,
then the isometry class of 𝐿 is determined by 𝑟, the index 𝜏(𝐿) and the discriminant
form 𝑞#𝐿 .

If 𝐿 is odd, a similar statement is true provided ℓ(dg𝐿) ≤ 𝑟 − 3 and we replace

𝑞#𝐿 with 𝑏#𝐿 .

The last assertion of the corollary follows from an application of Nikulin’s
characterization for the genus, Theorem 11.3.1 in the even case and Theorem 12.5.9
for the odd case.

Another practical test, stated in terms of discriminants only, follows from com-
bining Theorem 14.4.1 with Corollary 14.2.6

Corollary 14.4.4. Let 𝐿,𝐿′ be non-degenerate indefinite lattices of rank 𝑟 ≥ 3
with the same discriminant. Suppose that disc(𝐿) ∈ ℤ contains the prime 2 to the
power < ⌊ 12𝑟

2 + 1⌋ if 𝐿 is even, or, if 𝐿 is odd, to the power < ⌊ 12 (𝑟 − 1)2 + 1⌋, and
any odd prime to the power < 1

2𝑟(𝑟 − 1). Then 𝐿 and 𝐿′ are isometric if and only
if they are in the same genus.
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14.5 Lifting Isometries of the Discriminant Group

In this section (𝐿, 𝑞) is a quadratic integral lattice and (𝐿𝑝, 𝑞𝑝) denotes its
localization at 𝑝.

Since we are working with even integral lattices, we shall focus on the reduction
homomorphism 𝑟

𝑞
𝐿 given in (6.9) which for simplicity will be denoted as 𝑟𝐿. In other

words,
𝑟𝐿 : O (𝐿, 𝑞) → O (𝑞#𝐿 )

is the homomorphism that sends a lattice isometry to the induced isometry on the
discriminant quadratic group. The central question in this section is: when is this
map surjective? To arrive at a criterion, we first show lifting isometries can be
done locally:

Proposition 14.5.1. The local reduction maps 𝑟𝐿𝑝 are surjective for every prime
𝑝, that is, every isometry of the discriminant quadratic form of 𝐿𝑝 can be lifted to
an isometry of 𝐿𝑝.

Proof. We have seen in Section 10.2 that for 𝑝 odd all (symmetric or quadratic)
forms on 𝐿𝑝 are diagonalizable, while for 𝑝 = 2 such forms split orthogonally into
rank 1 pieces and rank 2 pieces of the form 𝑈𝑘 and 𝑉𝑘.

For 𝑝 odd, we can pick an orthogonal basis {𝑔1, . . . , 𝑔𝑛} of dg𝐿𝑝 . By Proposi-
tion 10.3.2, writing 𝐿𝑝 = 𝐿0 ⦹ 𝐿1 with 𝐿0 a maximal unimodular sublattice of 𝐿𝑝,
there is an orthogonal basis {𝑒1, . . . , 𝑒𝑛}, 𝑗 = 1, . . . ,𝑛, of 𝐿1 such that

𝑏𝑝 (𝑒𝑘, 𝑒𝑘) = 𝑢𝑘𝑝
𝑗𝑘 , 𝑏#𝐿𝑝 (𝑔𝑘, 𝑔𝑘) = 𝑢𝑘𝑝

−𝑗𝑘 , 𝑢𝑘 ∈ ℤ×
𝑝 , 𝑘 = 1, . . . ,𝑛.

Let �̄� be an isometry of 𝑏#𝐿𝑝 . The orthogonal basis {�̄�(𝑔1), . . . , �̄�(𝑔𝑛)} gives another
diagonalisation of the discriminant form and, applying Proposition 10.3.2 again,
there is a corresponding orthogonal basis {𝑒′1, . . . , 𝑒′𝑛}, 𝑗 = 1, . . . ,𝑛, of 𝐿1. Since then
𝑏𝑝 (𝑒𝑘, 𝑒𝑘) = 𝑏𝑝 (𝑒′𝑘, 𝑒

′
𝑘
), the isomorphism 𝜎 of 𝐿𝑝 defined by 𝜎 |𝐿0 = id and 𝜎(𝑒𝑘) = 𝑒′

𝑘
,

𝑘 = 1, . . . ,𝑛, is an isometry of 𝐿𝑝 that obviously induces �̄�.
If 𝑝 = 2, essentially the same argument applies, except that for the rank two

indecomposable summands 𝑈𝑘,𝑉𝑘 we choose a basis. If we define 𝜎 using this
basis, we can no longer guarantee that 𝜎 induces �̄�. However we can always adapt
our choice since by Examples 6.5.5.2–3, any isometry of 𝑢𝑘 or 𝑣𝑘 can be lifted. □

For the global lifting problem isometries inducing the identity on the discrim-
inant group play a decisive role. This motivates introducing the kernel of the
reduction homomorphism (6.8) and of the reduction homomorphism restricted to
the rotation group:

O# (𝐿, 𝑞) = ker
(
𝑟𝐿 : O (𝐿, 𝑞) → O (𝑞#𝐿 )

)
,

SO# (𝐿, 𝑞) = ker
(
𝑟′𝐿 : SO (𝐿, 𝑞) → O (𝑞#𝐿 )

)
.

(14.7)
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Similarly, we use the local versions O# (𝐿𝑝, 𝑞𝑝) and SO# (𝐿𝑝, 𝑞𝑝), the kernels of
the local reduction maps. We often drop the 𝑞 or 𝑞𝑝 in the notation. Standard
examples of isometries inducing the identity on the discriminant group are the
reflections in −2-roots (Cf. Lemma 7.1.1.3). Example 13.4.1 shows that the image
of the spinor norm evaluated on these smaller (local) groups already contains all
units:

Lemma 14.5.2. Let 𝐿𝑝 be a non-degenerate 𝑝-adic lattice, 𝑝 ≠ 2. Suppose that
a homogeneous rank 2 sublattice splits off. Then the image of the spinor norm
restricted to SO# (𝐿𝑝) contains ℤ×

𝑝 · (ℚ×)2. The same holds if 𝑝 = 2 and 𝐿2 is even.
If no homogeneous rank 2 lattice splits off, assume instead that a homogeneous
rank 3 sublattice splits off.

Later in this section this local result will be used in conjunction with the fol-
lowing result:

Proposition 14.5.3. Let (𝐿, 𝑞) be a non-degenerate indefinite quadratic integral
lattice of rank ≥ 3. Suppose that

Nmspin (SO# (𝐿𝑝)) ⊃ ℤ×
𝑝 · (ℚ×

𝑝)2 for all primes 𝑝. (14.8)

Then the reduction map 𝑟′𝐿 : SO (𝐿, 𝑞) → O (𝑞#𝐿 ) is surjective. Moreover, the map
𝑟′𝐿 is then already surjective on the subgroup of SO (𝐿, 𝑞) consisting of rotations
with real spinor norm 1.

Proof. Let �̄� ∈ O (𝑞#𝐿 ) with 𝑝-primary component �̄�𝑝. By Proposition 14.5.1 we
can find 𝜎𝑝 ∈ SO (𝐿𝑝) that induces �̄�𝑝.

In order to apply the strong approximation theorem (cf. Section 14.3), we view
the lattice 𝐿 as a sublattice of the ℚ-vector space 𝑉 = 𝐿ℚ and 𝐿𝑝 as a sublattice of
the localization 𝑉𝑝 of 𝑉. For almost all primes 𝑝 the lattice 𝐿𝑝 is unimodular and
so we may assume 𝜎𝑝 = id for primes 𝑝 outside some finite set 𝑆. If Nmspin (𝜎𝑝) =
𝑢𝑝𝑝

𝛼𝑝 · (ℚ×
𝑝)2, 𝑢𝑝 ∈ ℤ×

𝑝, set 𝑎 =
∏

𝑝∈𝑆 𝑝
𝛼𝑝 . By Lemma 14.2.3, there is a rotation 𝛾

of 𝑉 with Nmspin (𝛾) = 𝑎 . By Proposition 14.1.1, we may also enlarge 𝑆 if needed
so that 𝛾𝑝 preserves the lattice 𝐿𝑝 for all primes 𝑝 ∉ 𝑆. In ℚ𝑝 one may write

𝑎 = 𝑣𝑝𝑝
𝛼𝑝 , 𝑣𝑝 ∈ ℤ×

𝑝. By assumption there exists a rotation 𝜏𝑝 ∈ SO# (𝐿𝑝) with

Nmspin (𝜏𝑝) = 𝑢−1𝑝 𝑣𝑝 and so, by construction, Nmspin (𝛾−1◦𝜎𝑝◦𝜏𝑝) = 1. Define

𝑊𝑝 = 𝛾−1◦𝜎𝑝◦𝜏𝑝

(
SO+ (𝐿𝑝) ∩ SO# (𝐿𝑝)

)
⊂ SO+ (𝑉𝑝).

For 𝑝 ∉ 𝑆 the lattice 𝐿𝑝 is unimodular and so in particular SO# (𝐿𝑝) = SO (𝐿𝑝).
Since 𝛾 preserves 𝐿𝑝 for those primes, it follows that 𝑊𝑝 = SO+ (𝐿𝑝) for almost all
primes 𝑝 and we can apply Corollary 14.3.2 in our situation. So there is a spinor
norm 1 rotation 𝛿 ∈ SO+ (𝑉) whose localizations belong to 𝑊𝑝. This means that

for all primes 𝑝 one has 𝛿𝑝 = 𝛾−1◦𝜎𝑝◦𝜏𝑝◦𝑤𝑝 for some 𝑤𝑝 ∈ SO+ (𝐿𝑝) ∩ SO# (𝐿𝑝), or,
equivalently,

(𝛾◦𝛿)𝑝 = 𝜎𝑝◦𝜏𝑝◦𝑤𝑝 for all primes 𝑝.
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Since the right-hand side preserves 𝐿𝑝, Proposition 14.1.1 implies that the isometry
𝜎 := 𝛾◦𝛿 preserves the lattice 𝐿.

We claim that 𝜎 induces the isometry �̄� ∈ O (𝑞#𝐿 ) we started out with. To show
this, it suffices to prove this on every 𝑝-primary part of the discriminant group. By
construction, the localization of 𝜎 at 𝑝 equals 𝜎𝑝◦𝜏𝑝◦𝑤𝑝 and since 𝜏𝑝◦𝑤𝑝 ∈ SO# (𝐿𝑝),
the subgroup of SO (𝐿𝑝) acting as the identity on dg𝐿𝑝 , this shows the claim.

The last assertion follows since 𝛾 has ℚ-spinor norm 𝑎 · (ℚ×)2, 𝑎 =
∏

𝑝∈𝑆 𝑝
𝛼𝑝 > 0,

and so has real spinor norm 1, while 𝛿 already has rational spinor norm 1. □

Remark 14.5.4. Of course, the same conditions as stated in the previous propo-
sition imply surjectivity of the reduction homomorphisms for the full orthogonal
groups. A priori these conditions can be weakened but this leads to very techni-
cal considerations. See [156, Ch. VIII, 5] where the failure of surjectivity of the
reduction map is captured in an explicit group.

Now notice the similarity of the containment (14.4) in Theorem 14.2.5 and the
containment (14.8) in Proposition 14.5.3. Since Lemma 14.5.2 gives a condition
ensuring that the two conditions are in fact the same, we arrive at the main result
of this section:

Theorem 14.5.5. 1. Let 𝐿 be a non-degenerate indefinite quadratic lattice of rank
≥ 3. Suppose that for all primes 𝑝 a homogeneous rank 2 sublattice splits off from
𝐿𝑝 which is the case if for instance ℓ(dg𝐿) ≤ rank(𝐿) − 2. Then

• 𝐿 has class number 1;
• the reduction homomorphism 𝑟′𝐿 : SO (𝐿, 𝑞) → O (𝑞#𝐿 ) is surjective, as well as

its restriction to the subgroup SO+ (𝐿, 𝑞) of SO (𝐿, 𝑞) consisting of isometries
having real spinor norm 1.

2. For odd non-degenerate indefinite lattices a similar assertion holds provided
one sharpens the condition for the prime 𝑝 = 2 to demand that a homogeneous
rank 3 sublattice splits off from 𝐿2. All conditions are satisfied in this case if e.g.
ℓ(dg𝐿) ≤ rank(𝐿) − 3.

Examples 14.5.6. 1. 𝐿 = ⦹𝑘𝑈 (2), 𝑘 ≥ 3, satisfies the conditions of the above
theorem.
2. Sometimes the condition ℓ(dg𝐿) ≤ rank(𝐿) − 2 is not satisfied but can be
remedied by adding a non-trivial even unimodular lattice.

14.6 Uniqueness of 𝒑-Elementary Lattices

Recall (Section 1.7.B ) that 𝐿 is 𝑝-elementary if 𝑝𝐿∗ ⊂ 𝐿 ⊂ 𝐿∗. The discriminant
group of the 𝑝-elementary lattice 𝐿 is a 𝑝-primary group, and so 𝐿 is determined
by the localization 𝐿𝑝 = 𝐿 ⊗ ℤ𝑝. We have seen in loc. cit. that 𝑊𝐿 = 𝐿∗/𝐿 and
𝑉𝐿 = 𝐿/𝑝𝐿∗ are 𝔽𝑝-inner product spaces. We start by observing:

Lemma 14.6.1. Let (𝐿, 𝑏) be a non-degenerate 𝑝-elementary lattice. Then
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1. disc(𝐿) = ±𝑝𝑤, 𝑤 = dim𝑊𝐿. If 𝑏 is an even form and 𝑝 is odd, rank(𝐿) is
even;

2. There is a splitting 𝐿𝑝 = 𝐿(0) ⦹ 𝐿(1) (𝑝), where 𝐿(0) and 𝐿(1) are unimodular,
rank(𝐿(0)) = dim𝑉𝐿 and rank(𝐿(1)) = dim𝑊𝐿.

Proof. 1. Since 𝑊𝐿 = dg𝐿, we have disc(𝐿) = ±|𝑊𝐿 | = ±𝑝𝑤. If 𝑏 is even and 𝑝
is odd, disc(𝐿) = ±𝑝𝑤 is odd and by Corollary 10.2.8 this implies that rank(𝐿) is
even.
2. Note that since 𝑝𝐿∗𝑝 ⊂ 𝐿𝑝, there is a canonical projection map 𝐿𝑝 → 𝐿𝑝/𝑝𝐿∗𝑝 ≃
𝐿/𝑝𝐿∗ = 𝑉𝐿. We let 𝐿(0) be a primitive sublattice of 𝐿𝑝 spanned by vectors
{𝑒1, . . . , 𝑒𝑣}, 𝑣 = dim𝑉𝐿, that map to a basis of 𝑉𝐿 under the above projection.
Since the pairing on 𝑉𝐿 is non-degenerate, the matrix (𝑒𝑖 · 𝑒𝑗 mod 𝑝) has non-zero
determinant. Hence, the determinant of the matrix (𝑒𝑖 · 𝑒𝑗) is a unit in ℤ𝑝, and
so the product on 𝐿𝑝 restricts to a unimodular pairing on 𝐿(0) . Consequently, 𝐿(0)

splits off, say 𝐿𝑝 = 𝐿(0) ⦹ 𝐿′. Now rank(𝐿′) = 𝑤 and one has 𝐿′ ⊂ 𝑝𝐿∗𝑝. To see this,
let 𝑥 ∈ 𝐿′ and 𝑥 its class in 𝐿𝑝/𝑝𝐿∗𝑝 = 𝑉𝐿. If 𝑥 ≠ 0̄, then there exists 𝑦 ∈ 𝑉𝐿 such

that 𝑥 ·𝑦 ≠ 0. Since we may lift 𝑦 to 𝑦 ∈ 𝐿(0) (which is orthogonal to 𝐿′), this is im-
possible. So 𝑥 ∈ 𝑝𝐿∗𝑝 and therefore 𝐿′ ⊂ 𝑝𝐿∗𝑝. If 𝑥, 𝑧 ∈ 𝐿′, then 𝑥 ∈ 𝑝𝐿∗𝑝 and 𝑧 ∈ 𝐿𝑝,

and so 𝑥 · 𝑧 ∈ 𝑝ℤ𝑝. In other words, making use of (1.15), 𝐿′ = 𝐿(1) (𝑝) for some ℤ𝑝-
lattice 𝐿(1) . Calculating discriminants we find disc(𝐿′) = unit ·𝑝𝑤 = ±𝑝𝑤 disc(𝐿(1)),
and so 𝐿(1) is unimodular. □

From now on we assume that 𝐿 is even of rank ≥ 4. This assumption implies
that at least one of the unimodular lattices 𝐿(0) or 𝐿(1) must have rank ≥ 2. Then
Theorem 14.2.5 implies that the genus of 𝐿 contains one spinor equivalence class.
If, moreover, 𝐿 is indefinite, by Theorem 14.4.1 there is only one isometry class in
the genus and then, using Nikulin’s characterization of the genus, Theorem 11.3.1,
we deduce:

Corollary 14.6.2. Let 𝐿 be an even indefinite 𝑝-elementary lattice of rank ≥ 4.
Then the class number of 𝐿 is at most one. Up to isometry 𝐿 is thus determined
by its signature and its discriminant quadratic form.

So, classification of even 𝑝-elementary lattices of rank ≥ 4 is now reduced to
classifying the possible discriminant quadratic forms of even 𝑝-elementary lattices.
The basic invariant here is 𝜏8 (𝑞#), the index mod 8 of a torsion quadratic form
𝑞#. By Proposition 9.4.1, for odd 𝑝 the torsion quadratic form is isometric to

𝑝 mod 8 𝑢 square 𝑢 non-square

1 0 4
−1 2𝑤 2𝑤 + 4
3 −2𝑤 −2𝑤 + 4
−3 4𝑤 4𝑤 + 4

Table 14.6.1: Values of 𝜏8 (𝑞#𝑤,𝑢)
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𝑞#𝑤,𝑢 = ⟨𝑢 · 𝑝−1⟩⦹ ⟨𝑝−1⟩⦹𝑤−1 and by Proposition 12.3.2 the values of its index mod
8 are determined by 𝑝 mod 8 and 𝑤. This yields Table 14.6.1.

For 𝑝 = 2, recall the subdivision of 2-elementary lattices in type I and II
(Section 1.7). The normal forms for 𝑞# are enumerated in Table 11.2.2. Type I
lattices always split off length 1 torsion groups. The indices mod 8 of the building
blocks are given by Proposition 12.3.3. Combining this, we arrive at Table 14.6.2.

𝑞# 𝑤 𝑢 𝑢′ 𝜏8

[𝑢 · 2−2] ⦹ 𝑢
⦹ 1

2
(𝑤−1)

1 odd 1 1
3 −1

[𝑢 · 2−2] ⦹ 𝑢
⦹ 1

2
(𝑤−1)

1 ⦹ 𝑣1 odd 1 −3
3 3

[𝑢 · 2−2] ⦹ [𝑢′ · 2−2] ⦹ 𝑢
⦹ 1

2
(𝑤−2)

1 even 1 3 0
3 3 −2
1 1 2

[𝑢 · 2−2] ⦹ [𝑢′ · 2−2] ⦹ 𝑢
⦹ 1

2
(𝑤−4)

1 ⦹ 𝑣1 even 1 3 4
∗ 1 1 −2
∗ 3 3 2

Table 14.6.2: Type I lattices

In this table the two last rows containing a ”∗” give the same index mod 8 as the
possibilities in rows 6 and 7. These can be eliminated by making use of relation
(IV) (see Appendix C.3.A) which in terms of quadratic torsion forms reads:

𝑢1 ⦹ [𝑢 · 2−2] ⦹ [𝑢′ · (2−2] ≃ 𝑣1 ⦹ [(𝑢 − 2) · 2−2] ⦹ [(𝑢′ + 2) · 2−2]), if 𝑢 ≡ 𝑢′ mod 4.

Indeed, using this relation to replace the occurrence of 𝑣1 in the normal form by
𝑢1 in case there are also two copies of [2−2] or two copies of [3 · 2−2] present. This
procedure yields lattices isometric to those of rows 6 and 7 respectively. The above
tables can be used to show:

Proposition 14.6.3. Let (𝐿, 𝑏) be an indefinite, even 𝑝-elementary lattice of rank
≥ 4 and disc(𝐿) = ±𝑝𝑤 (so that 𝑤 = ℓ(dg𝐿), the length of dg𝐿).

1. For 𝑝 ≠ 2 the isometry class of 𝐿 is uniquely determined by its signature and
𝑤.

2. For 𝑝 = 2 the class of 𝐿 is determined by its type, 𝑤 and the signature.
Moreover, in case 𝐿 is of type II, 𝑤 must be even and two types occur ac-
cording to whether the Arf invariant of 𝑞# equals 0 or 1. In the first case,

𝑞# ≃ ⦹ 1
2
𝑤𝑢1 with 𝜏8 ≡ 0 mod 8, and in the second case 𝑞# ≃ ⦹ 1

2
(𝑤−2)𝑢1⦹ 𝑣1

with 𝜏8 ≡ 4 mod 8.
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Proof. 1. By Proposition 9.4.1, for 𝑝 ≠ 2 the discriminant quadratic form is
isometric to either⦹𝑤 ⟨𝑝−1⟩ with reduced discriminant 1, or to⦹𝑤−1⟨𝑝−1⟩⦹⟨𝜀 ·𝑝−1⟩
with reduced discriminant 𝜀. The first of the above tables shows that for all values
of 𝑝 mod 8 and 𝑤, the invariant 𝜏8 determines which of the two forms appear. So
the discriminant form is determined by 𝜏8 and 𝑤. Since in this situation the lattice
is up to isometry uniquely determined by its discriminant quadratic form and its
signature, the result follows for 𝑝 odd.
2. For 𝑝 = 2 we argue as follows. From Table 11.2.2 we see that type II forms have
discriminant quadratic forms ⦹𝑤𝑢1 or ⦹𝑤−2𝑢1 ⦹ 𝑣1 with signature mod 8 equal to
0, respectively 4. This shows the assertion for type II forms.

Table 14.6.2 demonstrates that the values of 𝜏8 and 𝑤 determine the equivalence
class of the discriminant quadratic form completely, which shows the claim in this
case as well. □

As to existence, we invoke Theorem 12.4.4 to obtain the following result.

Theorem 14.6.4. Let there be given a pair of two positive integers (𝑟+, 𝑟−), a
non-negative integer 𝑤, an element 𝜏8 ∈ ℤ/8ℤ, and, in case 𝑝 = 2, a “type”
∈ {𝐼, 𝐼𝐼}. Then a (necessarily indefinite) 𝑝-elementary quadratic lattice 𝐿 of rank
𝑟 = 𝑟+ + 𝑟− ≥ 4 and signature (𝑟+, 𝑟−) exists for which 𝐿𝑝 = 𝐿(0) ⦹ 𝐿(1) (𝑝) with 𝐿(0)

and 𝐿(1) unimodular, dim𝐿(1) (𝑝) = 𝑤, if and only if the following conditions hold
simultaneously:
1. 𝑤 ≤ 𝑟, 𝑟+ − 𝑟− ≡ 𝜏8 mod 8;
2a. in case 𝑝 is odd, then

• 𝑟 must be even,
• 𝜏8 has to match one of the two values for 𝑝 as given in Table 14.6.1,
• if 𝑤 = 𝑟 in addition we must have 𝑢 = (−1)𝑟−

2b. in case 𝑝 = 2, then
• the lattice 𝐿 is of type I or of type II,
• 𝜏8 ≡ 0, 4 mod 8 if 𝑤 ≠ 𝑟,
• 𝜏8 ≡ 0 mod 8 if 𝑤 = 𝑟.

Historical and Bibliographical Notes. For Sections 14.1–14.4 on spinor equiva-
lence in relation to genus equivalence and equivalence we have largely followed Chapters
10 and 11 in J. Cassels’s book [36] as well as Kapittel VIII in M. Kneser’s book [122].

As indicated in Remark 14.5.4, surjectivity of the reduction homomorphism 𝑟𝐿 or
failure thereof has been extensively studied in Ch. VIII of the preprint [156] by R. Miranda
and D. Morrison. We only elaborate a simple case ensuring surjectivity.

The applications to 𝑝-elementary lattices are based on V. Nikulin’s approach in [169].



15

Lattice Embeddings

Introduction

In Subsection 1.7.C of Chapter 1 we showed that overlattices of a non-degenerate
lattice correspond bijectively to isotropic submodules of its discriminant form and
that an isometry between two non-degenerate lattices extend to isometries between
overlattices if it induces a homomorphism between the corresponding isotropic
submodules. This chapter is devoted to overlattices of the orthogonal sum of two
non-degenerate lattices 𝑆 ⦹ 𝑇 . In Section 15.1 we show that overlattices of 𝑆 ⦹ 𝑇
exist in which 𝑆 and 𝑇 embed primitively if a certain glueing criterion on the
discriminant forms of 𝑆 and 𝑇 holds. The question whether 𝑆 can be primitively
embedded in a given lattice 𝐿 is harder to decide using these techniques, since we
then should first find a candidate for 𝑇 . For unimodular lattices 𝐿 this problem
is solved in Section 15.2, and, with the help of these results, in Section 15.3 for
non-unimodular lattices. Here we use most of the techniques and results obtained
in previous chapters. In § 15.2.C we apply the results of Section 15.2 to lattice
involutions.

15.1 Primitive Embeddings of Lattices

Recall from Subsection 1.7.C that an overlattice of a non-degenerate symmetric or
quadratic lattice 𝑁 is an integral lattice 𝐿 containing 𝑁 as a finite index sublattice.
Here we consider overlattices 𝐿 of lattices of the form 𝑁 = 𝑆 ⦹ 𝑇 with 𝑆 and 𝑇
proper sublattices. The inclusions 𝐿 ⊂ 𝐿∗ ⊂ 𝑁∗ induce in this case inclusions
𝐿/(𝑆 ⦹ 𝑇 ) ⊂ 𝐿∗/(𝑆 ⦹ 𝑇 ) ⊂ 𝑆∗/𝑆 ⦹ 𝑇 ∗/𝑇 = dg𝑆 ⦹ dg𝑇 such that 𝐿/(𝑆 ⦹ 𝑇 ) is an
isotropic subspace of dg𝑆 ⦹ dg𝑇 . We require also that 𝑆 and 𝑇 embed primitively
in the overlattice 𝐿. By Remark 1.3.2 this is equivalent to 𝑆 = 𝑇 ⊥ and 𝑇 = 𝑆⊥.

We aim to reverse the construction, i.e., given non-degenerate lattices 𝑆 and 𝑇 ,
find a criterion allowing to construct an overlattice 𝐿 of 𝑆 ⦹ 𝑇 in which 𝑆 and 𝑇
embed primitively such that 𝑇 = 𝑆⊥ and 𝑆 = 𝑇 ⊥. Before we do this, we first show
that the compositions of the inclusion 𝐿/(𝑆⦹𝑇 ) ↩→ dg𝑆 ⦹ dg𝑇 with the projections
on the first, respectively the second summand of the right-hand side are injective.
It suffices to verify this for the composition 𝑝 : 𝐿/(𝑆 ⦹ 𝑇 ) → dg𝑇 . To see this, let
𝑥 ∈ 𝐿/(𝑆 ⦹ 𝑇 ), 𝑥 ∈ 𝐿, be in the kernel of 𝑝. Writing 𝑥 as 𝑥1 + 𝑥2 with 𝑥1 ∈ 𝑆∗ and
𝑥2 ∈ 𝑇 ∗, then 𝑝(𝑥) = 0 just means that 𝑥2 ∈ 𝑇 . Then 𝑥 − 𝑥2 = 𝑥1 ∈ 𝑆∗ ∩ 𝐿 = 𝑆. So
𝑥 ∈ 𝑆⦹𝑇 . In other words, we have shown that the image of 𝐿/(𝑆⦹𝑇 ) in dg𝑆 ⦹ dg𝑇
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is the ”graph”1 of an injective homomorphism 𝜓𝑆,𝑇 : H𝑆 ↩→ dg𝑇 where H𝑆 ⊂ dg𝑆
is the first embedded copy of 𝐿/(𝑆 ⦹ 𝑇 ). This is summarized in the commutative
diagram

dg𝑆 ⦹ dg𝑇
OO
� ?

zz ��

𝐿/(𝑆 ⦹ 𝑇 )≃
}} 𝑝 ((

dg𝑆 oo ? _ H𝑆
� �

𝜓𝑆,𝑇

// dg𝑇 .

(15.1)

If 𝐿 is unimodular, using (1.8), Lemma 1.3.1 shows that | dg𝑆 | = | dg𝑇 | = [𝐿 : 𝑆⦹𝑇 ].
Since also [𝐿 : 𝑆 ⦹ 𝑇 ] = |H𝑆 |, we conclude that H𝑆 = dg𝑆 and that 𝜓𝑆,𝑇 maps dg𝑆
isomorphically onto dg𝑇 .

Returning to the general setting, recall from Proposition 1.7.4 that the form
on 𝐿 becomes zero on the quotient 𝐿/(𝑆 ⦹ 𝑇 ) which means that the graph of 𝜓𝑆,𝑇
is an isotropic subgroup of dg𝑆 ⦹ dg𝑇 . Phrasing this differently, one has:

Proposition 15.1.1. Let 𝐿 be a non-degenerate symmetric (respectively quadratic)
lattice, 𝑆 a primitive non-degenerate sublattice and 𝑇 = 𝑆⊥. With the notation of
diagram (15.1), the following equivalent properties hold:

1. on H𝑆 ⊂ dg𝑆 the glueing criterion 𝑏#𝑇 (𝜓𝑆,𝑇−,𝜓𝑆,𝑇−) + 𝑏#𝑆 (−,−) = 0, respec-

tively 𝑞#𝑇 ◦𝜓𝑆,𝑇 + 𝑞#𝑆 = 0 holds;

2. up to a sign the embedding 𝜓𝑆,𝑇 is an isometry of torsion forms;

3. H := graph of 𝜓𝑆,𝑇 ⊂ dg𝑆 ⦹ dg𝑇 is an isotropic subspace.

If 𝐿 is unimodular, then H𝑆 = dg𝑆, 𝜓𝑆,𝑇 is an isomorphism and the glueing condition

becomes 𝑏#𝑆 ≃ −𝑏#𝑇 (respectively 𝑞#𝑆 ≃ −𝑞#𝑇 ).

Example 15.1.2. An example illustrating Proposition 15.1.1 is the following. Let
𝐿 = 𝑈 ⦹𝑈 be the sum of two copies of the hyperbolic plane 𝑈, the first one with
the usual basis 𝑒,𝑓 (so 𝑏(𝑒, 𝑒) = 𝑏(𝑓,𝑓) = 𝑏(𝑒,𝑓) − 1 = 0) and the second one with
similar basis 𝑒′,𝑓′. Take 𝑆 to be the span of 𝑒 + 𝑓, 𝑒′ + 𝑓′ in 𝐿, and let 𝑇 be the
span of 𝑒 − 𝑓, 𝑒′ − 𝑓′ in 𝐿. Then 𝐿 is an even unimodular overlattice of 𝑆⦹ 𝑇 . The
discriminant groups of 𝑆 and 𝑇 are dg𝑆 = 1

2𝑆/𝑆 = ⟨𝑢 = 1
2 (𝑒+𝑓)+𝑆,𝑢

′ = 1
2 (𝑒

′+𝑓′)+𝑆⟩
and dg𝑇 = 1

2𝑇 /𝑇 = ⟨𝑣 = 1
2 (𝑒 − 𝑓) + 𝑇 , 𝑣′ = 1

2 (𝑒
′ − 𝑓′) + 𝑇 ⟩. The image of 𝐿/(𝑆 ⦹ 𝑇 )

in dg𝑆 ⊕ dg𝑇 equals {0, (𝑢, 𝑣), (𝑢′, 𝑣′), (𝑢 + 𝑢′, 𝑣 + 𝑣′)}, which is the graph of the
isomorphism 𝜓𝑆,𝑇 : dg𝑆 → dg𝑇 determined by 𝜓𝑆,𝑇 (𝑢) = 𝑣 and 𝜓𝑆,𝑇 (𝑢′) = 𝑣′. Note

that 𝑏#𝑆 (𝑢,𝑢) = 1
2 + ℤ = −𝑏#𝑇 (𝑣, 𝑣), etc. Also, for the associated quadratic form

𝑞(𝑥) = 1
2𝑏(𝑥,𝑥) we have 𝑞#𝑆 (𝑢) = 1

2 · 1
2 + ℤ = 1

4 + ℤ and 𝑞#𝑇 (𝑣) = 1
2 · − 1

2 + ℤ = − 1
4 + ℤ,

etc.

1Since the map 𝜓𝑆,𝑇 is not defined on all of 𝑆, the correct notion is that of the ”push-out”
of the maps H𝑆 ↩→ dg𝑆 and 𝜓𝑆,𝑇 (modulo some identifications), but we prefer the terminology
”graph” in this situation.
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Now we are ready to reverse the construction starting with two lattices 𝑆 and
𝑇 .

Proposition 15.1.3. Let 𝑆 and 𝑇 be non-degenerate symmetric (respectively quadratic)
lattices, H𝑆 ⊂ dg𝑆 a subgroup, and 𝜓𝑆,𝑇 : H𝑆 ↩→ dg𝑇 an injective homomorphism.
Suppose that the glueing criterion of Proposition (15.1.1) holds. Then, setting
𝑁 := 𝑆 ⦹ 𝑇 , we have

1. The lattice 𝐿 = {𝑦 ∈ 𝑁∗ | 𝑦 mod 𝑁 ∈ H}, where H is the graph of 𝜓𝑆,𝑇 , is a
symmetric (respectively quadratic) overlattice of 𝑁 satisfying [𝐿 : 𝑁] = |H𝑆 |;

2. 𝑆 and 𝑇 embed primitively in 𝐿 and 𝑇 = 𝑆⊥, 𝑆 = 𝑇 ⊥;

3. If H𝑆 = dg𝑆 and 𝜓𝑆,𝑇 is an isomorphism, then 𝐿 is unimodular.

Proof. Item 1 is implied by Proposition 1.7.4. The equality [𝐿 : 𝑁] = |H𝑆 | follows
from the isomorphism 𝐿/(𝑆 ⦹ 𝑇 ) ≃ H𝑆 . Moreover, if H𝑆 = dg𝑆 and 𝜓𝑆,𝑇 is an iso-
morphism, then [𝐿 : 𝑁] = | dg𝑆 | = | disc(𝑆) | = | dg𝑇 | = | disc(𝑇 ) |, and Lemma 1.3.1
implies that 𝐿 is unimodular, proving item 3.

2. The assumptions imply that the composition of the embedding 𝐿/(𝑆 ⦹ 𝑇 ) ≃−→
H ⊂ dg𝑆 ⦹ dg𝑇 with the projection onto either one of the summands of dg𝑆 ⦹ dg𝑇
is injective. We claim that this implies that 𝑆 and 𝑇 are primitive in 𝐿. If for
instance 𝑆 were not primitive in 𝐿, there would exist a vector 𝑥 ∈ 𝐿, 𝑥 ∉ 𝑆, such
that 𝑛𝑥 ∈ 𝑆 for some integer 𝑛 > 1. Since then 𝑥 ∈ 𝑆∗, this would give a non-zero
element in the kernel of the composition 𝐿/(𝑆⦹𝑇 ) ↩→ dg𝑆 ⦹ dg𝑇 → dg𝑇 . As before,
by Remark 1.3.2, then 𝑆 = 𝑇 ⊥. □

Surprisingly, if 𝑆 embeds primitively in an even lattice 𝐿 which is unique in its
genus, also any lattice in the genus of 𝑆 can be embedded primitively in 𝐿:

Corollary 15.1.4. Let 𝐿 be a non-degenerate even lattice with one isometry class
in its genus and suppose that the non-degenerate lattice 𝑆 embeds primitively in 𝐿.
Then any lattice 𝑆′ in the same genus as 𝑆 embeds primitively in 𝐿.

Proof. Let 𝑇 be the orthogonal complement of 𝑆 in 𝐿 and 𝑁 = 𝑆⦹𝑇 . The subgroup
H = 𝐿/𝑁 of dg𝑁 is then isotropic with respect to the discriminant quadratic form.
By Lemma 1.9.4 the discriminant quadratic form of 𝑆 only depends on the genus
of 𝑆 and so 𝑁 and 𝑁′ = 𝑆′ ⦹ 𝑇 have isometric discriminant quadratic forms (with
an isometry respecting the summands). Therefore, the isotropic graph H of 𝜓𝑆,𝑇
(as in Proposition 15.1.3) can be transported to a graph 𝜓𝑆′,𝑇 , which is isotropic
in dg𝑆′ ⦹ dg𝑇 . So by Proposition 1.7.4.3 it determines a unique even overlattice 𝐿′

of 𝑁′. Moreover, by Proposition 1.7.4.2 the discriminant form of 𝐿′ is the same as
that of 𝐿. Lastly, 𝐿 and 𝐿′ have the same signature – as this is the case for 𝑁′ and
𝑁. This shows that 𝐿 and 𝐿′ have the same genus invariants and so they are in the
same genus (cf. Theorem 11.3.1). Hence, by assumption, 𝐿 and 𝐿′ are isometric
and so 𝑆′ also embeds primitively in 𝐿. □
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Example 15.1.5. Here is an example of two non-isometric lattices in the same
genus that embed in the same even unimodular lattice. The lattices 𝐸8⦹𝐸8 and Γ16

are in the same genus, but are not isometric (see Examples 1.5.1 and 11.3.2). The
indefinite unimodular lattices ⦹𝑘𝑈⦹𝐸8⦹𝐸8 and ⦹𝑘𝑈⦹Γ16, 𝑘 = 1, 2, . . ., however,
are both even and have the same signature, and so are isometric by Theorem 2.4.1.
Note that Corollary 15.1.4 applies in this case, but is not needed.

Application: Extending isometries to overlattices. In Subsection 1.7.C we
discussed the problem of extending a lattice isometry 𝑁 → 𝑁′ to an isometry
between overlattices 𝐿 → 𝐿′. Applying this in the situation of overlattices of an
orthogonal direct sum 𝑁 = 𝑆 ⦹ 𝑇 , Proposition 15.1.3 gives a second extension
criterion:

Proposition 15.1.6 (Extending isometries, II). Let 𝑆, 𝑆′, 𝑇 , 𝑇 ′ be non-degenerate

quadratic lattices related by isometries 𝜎 : 𝑆
∼−→ 𝑆′ and 𝜏 : 𝑇

∼−→ 𝑇 ′. Suppose 𝐿, 𝐿′

are quadratic overlattices of 𝑆⦹ 𝑇 , 𝑆′⦹ 𝑇 ′, respectively. Assume that 𝑆 and 𝑇 are
primitively embedded in 𝐿, and similarly for 𝑆′ and 𝑇 ′.

Then the isometry 𝜆 = 𝜎 ⊕ 𝜏 extends to an isometry 𝐿
∼−→ 𝐿′ if and only if

(the map induced by) 𝜆 sends the subgroup 𝐿/(𝑆⦹ 𝑇 ) of dg𝑆 ⦹ dg𝑇 to the subgroup
𝐿′/(𝑆′ ⦹ 𝑇 ′) of dg𝑆′ ⦹ dg𝑇 ′. In other words, using the notation of diagram (15.1),
𝜆 extends if and only if there is a commutative diagram

dg𝑆

𝑟𝑆,𝑆′ (𝜎)
��

oo ? _ H𝑆

��

� �

𝜓𝑆,𝑇

// dg𝑇

𝑟𝑇 ,𝑇 ′ (𝜏)
��

dg𝑆′ oo ? _𝐻𝑆′
� �

𝜓𝑆′,𝑇 ′
// dg𝑇 ′

(15.2)

where 𝑟𝑆,𝑆′ (𝜎) and 𝑟𝑇 ,𝑇 ′ (𝜏) are induced by 𝜎 and 𝜏, respectively. In particular, if
𝐿 (and hence 𝐿′) is unimodular, using Propositions 15.1.1, 15.1.3, this reduces to
the glueing criterion exhibited by the commutative diagram

dg𝑆

𝑟𝑆,𝑆′ (𝜎)
��

𝜓𝑆,𝑇

≃ // dg𝑇

𝑟𝑇 ,𝑇 ′ (𝜏)
��

dg𝑆′ 𝜓𝑆′,𝑇 ′

≃ // dg𝑇 ′

(15.3)

The preceding result for embeddings in the same lattice 𝐿 = 𝐿′ is a version of
Witt’s theorem 7.2.8 and as in that case we speak of equivalent embeddings:

Theorem 15.1.7 (Witt’s extension theorem for lattices). 1. Let 𝐿 be a non-
degenerate even lattice and let 𝑖, 𝑖′ : 𝑆 ↩→ 𝐿 be two primitive embeddings. Then

these embeddings are equivalent if and only if an isometry 𝑇 = 𝑖(𝑆)⊥ ∼−→ 𝑇 ′ = 𝑖′(𝑆)⊥
exists inducing a commutative diagram like (15.2).
2. Suppose in addition that 𝐿 is unimodular, then two primitive embeddings of 𝑆
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in 𝐿 with isometric orthogonal complements are equivalent if the reduction homo-
morphism 𝑟𝑇 : O (𝑇 ) → O (𝑞#𝑇 ) is surjective, where 𝑇 is the orthogonal complement
of an embedded copy of 𝑆.

Proof. The first assertion follows directly from Proposition 15.1.6.
2. Identify 𝑆 with the image under the first embedding, let 𝑆′ be the image of
the second embedding. This yields the isometry 𝜎 : 𝑆 → 𝑆′ which relates the

embeddings. Setting 𝑇 = 𝑆⊥, 𝑇 ′ = 𝑆′⊥, one seeks an isometry 𝜏 : 𝑇
∼−→ 𝑇 ′ such

that 𝜎 ⊕ 𝜏 extends to an isometry of 𝐿. Since 𝐿 is unimodular 𝜓𝑆,𝑇 and 𝜓𝑆′,𝑇 ′ are

isomorphisms by Proposition 15.1.1, hence so is 𝜏 := 𝜓𝑆′,𝑇 ′ ◦𝑟𝑆,𝑆′ (𝜎)◦𝜓−1
𝑆,𝑇 : dg𝑇

∼−→
dg𝑇 ′ . It is even an isometry since 𝜓𝑆,𝑇 and 𝜓𝑆′,𝑇 ′ reverse signs of the discriminant
forms and 𝑟𝑆,𝑆′ (𝜎) is an isometry. Since 𝑇 and 𝑇 ′ are isometric, the assumption that
the reduction homomorphism 𝑟𝑇 is surjective implies that the isometry 𝜏 : dg𝑇 →
dg𝑇 ′ lifts to an isometry 𝜏 : 𝑇

∼−→ 𝑇 ′. By construction the resulting diagram (15.3)
is commutative and then 𝜎 ⊕ 𝜏 extends. □

The weakness of the above result is twofold. First, if 𝑆 is a given lattice we
would like to know if it embeds primitively in 𝐿. Secondly, we are using properties
of 𝑇 , the orthogonal complement of 𝑆. In the next section we arrive at a more
manageable condition in the case of unimodular lattices. In Section 15.3 we treat
the general case.

15.2 Primitive Embeddings into Unimodular Quadratic Lat-
tices

In this section we assume that (𝐿, 𝑞) is a unimodular quadratic lattice.

15.2.A Existence of Embeddings. Suppose now that we are given a non-
degenerate quadratic lattice 𝑆 which we want to embed primitively in a unimodular
quadratic lattice 𝐿. In order to apply the preceding results, we need to find all
candidate orthogonal complements 𝑇 in 𝐿. By Propositions 15.1.1, 15.1.3 we should
in any case have 𝑞#𝑇 ≃ −𝑞#𝑆 . By Theorem 11.3.1 this implies that the genus of such
a lattice 𝑇 is completely determined if, in addition, we know the signature (𝑟+, 𝑟−)
of the resulting overlattice. In other words, to be able to embed 𝑆 primitively in
some unimodular lattice of signature (𝑟+, 𝑟−) there should exist a lattice 𝑇 with
genus invariant g(𝑇 ) = (𝑟+ − 𝑠+, 𝑟− − 𝑠−, [−𝑞#𝑆 ]). There is however an additional
condition since the signature of an even unimodular lattice is divisible by 8 (cf.
Corollary 2.4.3). This leads to the following criterion:

Proposition 15.2.1 ([171, Theorem 1.12.2 & Cor. 1.12.3]). Let (𝑟+, 𝑟−) be a pair
of non-negative integers for which 𝑟+ − 𝑟− ≡ 0 mod 8 and let 𝑆 be a non-degenerate
even lattice of signature (𝑠+, 𝑠−) with 𝑠+ ≤ 𝑟+ and 𝑠− ≤ 𝑟−, discriminant group dg𝑆
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and discriminant quadratic form 𝑞#. Suppose that, moreover, (𝑟+ + 𝑟−) − rank(𝑆) ≥
ℓ(dg𝑆). Then the following conditions are equivalent.

1. 𝑆 can be primitively embedded in some even unimodular lattice 𝐿 of signature
(𝑟+, 𝑟−) (𝐿 is unique up to isometry in case 𝑟+ > 0 and 𝑟− > 0);

2. A (non-degenerate) even lattice 𝑇 of signature (𝑟+ − 𝑠+, 𝑟− − 𝑠−) with discrim-
inant quadratic form −𝑞# exists;

3. A (non-degenerate) even lattice 𝑇 ′ of signature (𝑟− − 𝑠−, 𝑟+ − 𝑠+) with discrim-
inant quadratic form 𝑞# exists;

4. The equality2 disc(𝐿𝑞#𝑝 ) = (−1)𝑟−−𝑠− | dg𝑆 | in D(ℤ𝑝) holds in the following
cases:

• for any prime 𝑝 ≠ 2 for which dg𝑆𝑝 , the 𝑝-primary part of dg𝑆, has
length equal to (𝑟+ + 𝑟−) − rank(𝑆);

• for 𝑝 = 2 in case ℓ(dg𝑆2 ) = (𝑟+ + 𝑟−) − rank(𝑆) and dg𝑆2 does not split
off a cyclic order 2 module.

In particular, all of these these conditions are satisfied if (𝑟++𝑟−)−rank(𝑆) > ℓ(dg𝑆).

Proof. From the discussion so far 1) implies 2), while item 3 is equivalent to item
2 (just reverse the sign of the form). To show that 2) implies 1), first observe that,
assuming 2), there exists an isomorphism from dg𝑆 onto dg𝑇 such that the glueing
condition holds for the quadratic forms. Then Proposition 15.1.3 implies that there
exists an even overlattice 𝐿 of 𝑆 ⦹ 𝑇 such that [𝐿 : 𝑆 ⦹ 𝑇 ] = | dg𝑆 | = | disc(𝑆) | =
| disc(𝑇 ) |. By Lemma 1.3.1 this implies that 𝐿 is unimodular as required.

Item 4 is the existence criterion of Theorem 12.4.4 applied to 𝑇 ′. The penul-
timate assertion follows from Corollary 12.4.6 since the stated condition implies
the existence of an even lattice 𝑇 ′ as in item 3. The seemingly missing condi-
tion on the signature modulo 8 is automatic since 𝑟+ − 𝑟− ≡ 0 mod 8, so that
𝜏8 (𝑞#) ≡ 𝑠+ − 𝑠− ≡ 𝑟− − 𝑠− − (𝑟+ − 𝑠+) ≡ 𝜏(𝑇 ′) mod 8.

Since even indefinite unimodular lattices are determined up to isometry by their
signature as demonstrated in Chapter 2, the lattice 𝐿 in item 1 is unique if 𝑟+ > 0
and 𝑟− > 0. □

Remark 15.2.2. If 𝑆 is definite, the preceding embedding result is less interesting
since the uniqueness of 𝐿 need not hold. For instance 𝐸8 embeds trivially in 𝐸8⦹𝐸8

but does not embed in Γ16.

We apply the preceding results to show embeddability for a large class of lat-
tices.

Theorem 15.2.3 (Universal Embeddability). Let (𝑟+, 𝑟−) be a pair of non-negative
integers for which 𝑟+−𝑟− ≡ 0 mod 8 and let (𝑠+, 𝑠−) be a pair of non-negative integers
with 𝑠+ ≤ 𝑟+ and 𝑠− ≤ 𝑟−.

2Recall that we have shown in Chapter 11 that every 𝑝-primary quadratic torsion form (𝐺, 𝑞#)
comes from a unique 𝑝-adic lattice 𝐿𝑞# of rank ℓ(𝐺) in case 𝑝 is odd, or if 𝑝 = 2 and 𝐺 does not
split off a cyclic group of order 2.
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Then every even non-degenerate lattice 𝑆 of signature (𝑠+, 𝑠−) satisfing 𝑟+ + 𝑟− −
rank(𝑆) ≥ ℓ(dg𝑆) can be primitively embedded in some even unimodular lattice 𝐿
of signature (𝑟+, 𝑟−) if

𝑠+ + 𝑠− ≤ 1

2
rank(𝐿). (15.4)

In case 𝑟+ > 0 and 𝑟− > 0, the unimodular lattice 𝐿 is unique up to isometry.

Proof. Assume we have an even non-degenerate lattice 𝑆 of signature (𝑠+, 𝑠−) with
discriminant form 𝑞# for which (15.4) holds. We want to show that 𝑆 embeds
in some (non-specified) unimodular even lattice 𝐿 of signature (𝑟+, 𝑟−). Again,
by Theorem 12.4.4.2 we have rank(𝑆) = 𝑠+ + 𝑠− ≥ ℓ(dg𝑆) and hence, using the
assumption (15.4),

rank(𝐿) − rank(𝑆) ≥ rank(𝑆) ≥ ℓ(dg𝑆).

If one of these inequalities is strict, 𝑆 can be embedded primitively in such a lattice
𝐿 as follows from Proposition 15.2.1. It remains to consider the situation where
one has equality everywhere, that is,

rank(𝑆) = 1

2
rank(𝐿) = ℓ(dg𝑆). (15.5)

To show that 𝑆 embeds in 𝐿, by Proposition 15.2.1.3 it suffices to show that a
lattice 𝑇 ′ with signature (𝑟−− 𝑠−, 𝑟+− 𝑠+) and quadratic torsion group (𝐺 = dg𝑆 , 𝑞

#)
exists. We want to apply the existence criterion of Theorem 12.4.4.

• First of all, condition (1) on the signature holds since (𝑟− − 𝑟+) − (𝑠− − 𝑠+) ≡
𝑠+ − 𝑠− mod 8 ≡ 𝜏8 (𝑞#) mod 8 (since 𝑞# is the discriminant form of 𝑆).

• Equality (15.5) implies that rank(𝐿) − rank(𝑆) = rank(𝑆) ≥ ℓ(𝐺𝑝) for all
primes 𝑝 so that condition 2 holds.

• The verification of the remaining condition is more involved. First observe
that equality (15.5) yields

𝑟+ − 𝑠+ = 𝑟+ − (𝑠+ + 𝑠−) + 𝑠−

= 𝑟+ −
1

2
(𝑟+ + 𝑟−) + 𝑠−

=
1

2
(𝑟+ − 𝑟−) + 𝑠−,

and since by assumption 𝑟+−𝑟− is divisible by 8, we have 𝑟+−𝑠+ ≡ 𝑠− (mod 2)
and so

(−1)𝑠− = (−1)𝑟+−𝑠+ . (15.6)

Let 𝑝 be a prime for which ℓ(𝐺) = ℓ(𝐺𝑝). Then (15.5) gives rank(𝑆) = ℓ(𝐺𝑝).
We invoke item 3 of Theorem 12.4.4 applied to 𝑆 and 𝐺, and use (15.6) which
leads to the equality

(−1)𝑟+−𝑠+ · |𝐺 | = disc(𝐿𝑞#𝑝 ) in D(ℤ𝑝),
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which is valid for odd 𝑝 and for 𝑝 = 2 if no cyclic summand of order two splits
off from 𝐺2. Hence, also the remaining condition for the existence of 𝑇 ′ is
satisfied, and so in the case where (15.5) holds 𝑆 can also be embedded. □

We tie this in with the embedding criterion we found in Section 1.8 and its
generalization, Proposition 6.3.12. Recall that it states that any even lattice 𝑆 of
rank 𝑠 can be embedded in ⦹𝑠𝑈 with 𝑆⊥ ≃ 𝑆 (−1). This can be used to embed 𝑆 in
an arbitrary even unimodular lattice 𝐿 whose Witt-index is at least 𝑠. Indeed, by
the classification theorem 2.4.1 an indefinite even unimodular lattice is isometric
to an orthogonal sum of say 𝑡 hyperbolic planes and a number of copies of 𝐸8 or
𝐸8 (−1). The number 𝑡 is the Witt index. So, clearly, 𝑆 embeds in such a lattice
which leads to rephrase the result as follows:

Lemma 15.2.4. An even lattice 𝑆 can be embedded in an indefinite even unimod-
ular lattice 𝐿 if the Witt index of 𝐿 is ≥ rank(𝑆). In particular, 𝑆 embeds in ⦹𝑠𝑈,
𝑠 = rank(𝑆), with 𝑆⊥ ≃ 𝑆 (−1).

We see that in case 𝑆 is non-degenerate Theorem 15.2.3 states that 𝑆 can be
primitively embedded in 𝐿 = ⦹𝑎𝑈 ⦹ ⦹𝑏𝐸8 (±1) if rank(𝑆) ≤ 1

2 rank(𝐿) = 𝑎 + 4𝑏,
while Lemma 15.2.4 just provides the condition rank(𝑆) ≤ 𝑎 .

Example 15.2.5. We discuss under what condition an even non-degenerate lattice
𝑇 of rank 𝑎 +𝑒 with 𝑒 > 0 can be embedded in the hyperbolic lattice ⦹𝑎𝑈. Clearly,
if 𝑒 copies of 𝑈 can be split off, say 𝑇 = ⦹𝑒𝑈 ⦹ 𝑆′, then the lattice 𝑆′ – which has
rank 𝑎−𝑒 – can be primitively embedded in ⦹𝑎−𝑒𝑈 and hence 𝑇 embeds primitively
in ⦹𝑎𝑈.

We claim that the converse holds. To see this, let the signature of 𝑇 be (𝑘, 𝑎 +
𝑒−𝑘). Assume that 𝑇 embeds primitively in ⦹𝑎𝑈. Then 𝑎 ≥ 𝑎 +𝑒−𝑘 so that 𝑘 ≥ 𝑒
and 𝑆 := 𝑇 ⊥ has signature (𝑎−𝑘, 𝑘−𝑒) and index 𝑎+𝑒−2𝑘. The lattice ⦹𝑒𝑈⦹𝑆 (−1)
has index 2𝑘 − 𝑎 − 𝑒 and rank 𝑎 + 𝑒, just as 𝑇 , and since 𝑞#𝑆 = −𝑞#𝑇 , it has also the
same discriminant form. It follows that ⦹𝑒𝑈⦹ 𝑆 (−1) and 𝑇 are in the same genus
by Theorem 11.3.1. Since ℓ(dg𝑇 ) = ℓ(dg𝑆) ≤ rank(𝑇 ) − 2𝑒, Corollary 14.4.3 implies
that 𝑇 and ⦹𝑒𝑈 ⦹ 𝑆 (−1) are isometric. So we conclude that indeed 𝑇 embeds
primitively in ⦹𝑎𝑈 if and only if ⦹𝑒𝑈 is an orthogonal direct summand of 𝑇 .

15.2.B Uniqueness of Embeddings. While up to now we only invoked Nikulin’s
existence results 12.4.4, we can say more using Nikulin’s theorems about unique-
ness of the isometry class in a genus as we now explain. More precisely, we shall
use Corollary 14.4.3 stating that a non-degenerate indefinite quadratic lattice 𝑆 is
unique in its genus if ℓ(dg𝑆) ≤ rank(𝑆) − 2, and Theorem 14.5.5 which asserts that

under this condition the reduction map 𝑟𝑆 : O (𝑆) → O (𝑞#𝑆 ) is surjective. Proposi-
tion 15.2.1 can be paraphrased by saying that 𝑆 embeds primitively in an indefinite
unimodular quadratic lattice 𝐿 with 𝑇 = 𝑆⊥ if ℓ(dg𝑆) < rank(𝑇 ). Replacing this
condition with ℓ(dg𝑆) ≤ rank(𝑇 ) − 2 the just stated results imply the following:

Theorem 15.2.6. Let 𝐿 be an indefinite even unimodular lattice and (𝑆, 𝑞) a non-
degenerate quadratic lattice with ℓ(dg𝑆) ≤ rank(𝐿) − rank(𝑆) − 2. Let 𝐿 and 𝑆 have
signature (𝑟+, 𝑟−), (𝑠+, 𝑠−), respectively, and assume that 𝑟+ > 𝑠+, 𝑟− > 𝑠−. Then
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1. the orthogonal complement of a primitively embedded 𝑆 ↩→ 𝐿 has genus in-
variant (𝑟+ − 𝑠+, 𝑟− − 𝑠−,−[𝑞#𝑆 ]);

2. 𝑆 admits a primitive embedding in 𝐿 and such primitive embeddings are
unique up to equivalence, i.e., O (𝐿) acts transitively on primitive embeddings
of 𝑆 in 𝐿.

Proof. Let g(𝑆) = (𝑠+, 𝑠−, 𝑞#𝑆 ). As observed just before the statement of this the-
orem, Proposition 15.2.1 shows that there exists an isometry class of a lattice 𝑇
with genus invariant g(𝑇 ) = (𝑟+ − 𝑠+, 𝑟− − 𝑠−, [−𝑞#𝑆 ]). Theorem 14.5.5 shows that

the reduction map 𝑟𝑇 : O (𝑇 ) → O (𝑞#𝑇 ) is surjective. Hence Theorem 15.1.7 implies
unicity of the embedding 𝑆 ↩→ 𝐿. Moreover, since 𝑆⊥ has the same genus invariant
as 𝑇 , the two are isometric. □

Since ℓ(dg𝑆) ≤ rank(𝑆), Theorem 15.2.6 implies:

Corollary 15.2.7. Let 𝐿 be an indefinite even unimodular lattice of rank ≥ 4, and
signature (𝑟+, 𝑟−). A non-degenerate even lattice 𝑆 of signature (𝑠+, 𝑠−), (𝑠± ≤ 𝑟±),
admits a primitive embedding in 𝐿 which is unique up to equivalence if rank(𝑆) ≤
1
2 rank(𝐿) − 1,

Examples 15.2.8. 1 . Let 𝐿 = ΛK3 = 𝑈⦹𝑈⦹𝑈⦹𝐸8 (−1)⦹𝐸8 (−1), the K3-lattice.
Then any non-degenerate even lattice of rank ≤ 2 can be embedded uniquely as
a primitive lattice in ΛK3. This holds more generally for any non-degenerate even
lattice of rank 𝑟 ≤ 10 which has signature (0, 𝑟), (1, 𝑟−1) or (2, 𝑟−2). For the same
reason, if 𝐿 = 𝑈⦹𝑎 ⦹ 𝐸8 (−1)⦹𝑏, then any non-degenerate lattice of rank ≤ 𝑎 − 1 or
of rank 𝑟 ≤ 𝑎 + 4𝑏 − 1 and signature (𝑠, 𝑟 − 𝑠), 𝑠 ≤ 𝑎 − 1 can be embedded uniquely
in 𝐿 as a primitive lattice.
2. Again 𝐿 = ΛK3 but now 𝑆 = 𝐴𝑘1 (−1) ⦹ 𝐴𝑘2 (−1) ⦹ · · · ⦹ 𝐴𝑘ℓ (−1). If

∑
𝑘𝑗 ≤ 10

conditions 1 and 2 hold.

15.2.C Applications. We first give an application to the group of isometries of
a unimodular lattice 𝐿 that preserve a given sublattice 𝑆.

Proposition 15.2.9. Let 𝐿 be a quadratic unimodular lattice, 𝑆 ⊂ 𝐿 a primitive
non-degenerate sublattice, 𝑇 = 𝑆⊥ and 𝜎 ∈ O# (𝑆).

The isometry 𝜎⊕id𝑇 of 𝑆⦹𝑇 extends to an isometry 𝑒𝑆 (𝜎) of 𝐿. The assignment
𝜎 ↦→ 𝑒𝑆 (𝜎) defines an injective homomorphism 𝑒𝑆 : O# (𝑆) → O (𝐿) with image
contained in the subgroup O# (𝐿)𝑆 of the stabilizer O (𝐿)𝑆 of 𝑆 in O (𝐿) given by

O# (𝐿)𝑆 := {𝛾 ∈ O (𝐿)𝑆 | 𝑟𝑆 (𝛾) = 𝑟𝑇 (𝛾)}.

In other words, there is an exact sequence

1 → O# (𝑆) 𝑒𝑆−→ O# (𝐿)𝑆
𝜌𝑇−−→ O (𝑇 ),

where 𝜌𝑇 is the restriction map. If the reduction map 𝑟𝑆 : O (𝑆) → O (𝑞#𝑆 ) is
surjective, then also 𝜌𝑇 is surjective.
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Proof. If 𝜎 ∈ O# (𝑆), then 𝜎 ⊕ id𝑇 induces the identity on dg𝑆 ⦹ dg𝑇 and hence
preserves its subspace 𝐿/𝑆⦹𝑇 and so it extends to 𝐿 by Proposition 15.1.6. Clearly
this gives an injective homomorphism 𝑒𝑆 and 𝑒𝑆 (𝜎) preserves 𝑆. Since 𝑒𝑆 (𝜎) is the
identity on 𝑇 , we have 𝜌𝑇 ◦𝑒𝑆 (𝜎) = id𝑇 .

The kernel of the map 𝜌𝑇 consists of isometries inducing the identity on 𝑇 .
These isometries act trivially on dg𝑇 ≃ dg𝑆 and so their restrictions to 𝑆 by defi-
nition belong to O# (𝑆). Finally, if 𝑟𝑆 is surjective, then for any 𝜓 ∈ O (𝑇 ), some
𝜑 ∈ O (𝑆) exists with 𝑟𝑆 (𝜑) = 𝑟𝑇 (𝜓) since O (𝑞#𝑆 ) ≃ O (𝑞#𝑇 ). So, by the glueing condi-
tion (Proposition 15.1.6), 𝜑 ⊕ 𝜓 extends as an isometry of 𝐿 which by construction
preserves 𝑆 and 𝑇 and by construction belongs to O# (𝐿)𝑆 . □

Next, we give an application to lattice involutions, making use of the invariant
lattice.

Proposition 15.2.10 (Comparing lattice involutions). Let 𝐿 and 𝐿′ be isometric
indefinite quadratic unimodular lattices admitting lattice involutions 𝑖, respectively
𝑖′. Suppose that

• the corresponding invariant lattices 𝑆, 𝑆′ are isometric,

• 𝑇 = 𝑆⊥, 𝑇 ′ = 𝑆′⊥ are indefinite and have rank ≥ 4.

hen there is an isometry 𝜆 : 𝐿
≃−→ 𝐿′ intertwining 𝑖 and 𝑖′, that is, there is a

commutative diagram

𝐿
𝜆

≃ //

𝑖

��

𝐿′

𝑖′

��
𝐿

𝜆

≃ // 𝐿′.

Proof. Since 𝑆 and 𝑆′ are invariant lattices, they are also non-degenerate (see
Example 1.7.3), and then so are 𝑇 and 𝑇 ′. By the same example these four lattices
are 2-elementary. Also the lattices 𝑇 and 𝑇 ′ are isometric since first of all they
have the same genus by Theorem 11.3.1 (their signatures are the same and 𝑞#𝑇 �

𝑞#𝑆 (−1) � 𝑞#𝑆′ (−1) � 𝑞#𝑇 ′), and, secondly, by Corollary 14.6.2, 2-elementary lattices
of rank ≥ 4 in the same genus are isometric.

Let 𝜎 : 𝑆 → 𝑆′ be an isometry. We will construct an isometry 𝜏 : 𝑇 → 𝑇 ′

such that 𝜎 ⊕ 𝜏 extends to a global isometry 𝜆 : 𝐿 → 𝐿′. Since 𝜆 commutes with 𝑖
and 𝑖′ on the finite index sublattice 𝑆 ⦹ 𝑇 , it does so on 𝐿. By Proposition 15.1.6
the desired isometry 𝜏 should satisfy 𝑟𝑇 ,𝑇 ′ (𝜏) = 𝜓𝑆,𝑇 ◦𝑟𝑆,𝑆′ (𝜎)◦𝜓−1

𝑆,𝑇 . The right-hand

side is an isometry (see the proof of Theorem 15.1.7) and if the reduction map

𝑟𝑇 : O (𝑇 ) → O (𝑞#𝑇 ) is surjective, then as in loc. cit. an isometry 𝜏 as desired
exists.

To show that 𝑟𝑇 is surjective, note that, using the notation of Lemma 14.6.1
and observing that 𝑇 is 2-elementary, we can write 𝑇2 = 𝑇 (0) ⊕ 𝑇 (1) (2), where 𝑇 (0)

and 𝑇 (1) are unimodular. Since rank(𝑇 ) ≥ 4 at least one of the two summands has
rank ≥ 2 and surjectivity of 𝑟𝑇 follows from Theorem 14.5.5. □
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15.3 Primitive Embeddings Into Non-Unimodular Quadratic
Lattices

Let 𝑆,𝑀 be non-degenerate quadratic lattices. We aim to find a criterion to embed
𝑆 primitively in 𝑀. If 𝑀 is unimodular, we have made use of the isometry 𝑞#𝑆 =

−𝑞#𝐾 , where 𝐾 = 𝑆⊥ ⊂ 𝑀, but it is not immediate how to determine 𝑞#𝐾 from the
discriminant quadratic forms of 𝑆 and 𝑀 in general. Making use of a suitable
unimodular lattice in which 𝑀 embeds, we show how the isometry classes of all
possible 𝑞#𝐾 can be calculated. At the same time this provides a criterion:

Proposition 15.3.1. Let 𝑆 and 𝑀 be non-degenerate quadratic lattices with genus
invariants g(𝑆) = (𝑠+, 𝑠−, [𝑞#𝑆 ]), g(𝑀) = (𝑚+,𝑚−, [𝑞#𝑀]), and satisfying 𝑠± ≤ 𝑚±.

Primitive embeddings 𝑆 ↩→ 𝑀 are determined by quadruples (𝐻𝑆 ,𝜓,𝐾, 𝛾
𝜓
𝐾), where

• 𝐻𝑆 ⊂ dg𝑆 is a subgroup, 𝜓 : 𝐻𝑆 ↩→ dg𝑀 an embedding of quadratic torsion

groups, that is, 𝜓(𝐻𝑆) is a subgroup of dg𝑀 and 𝑞#𝑆 (𝑥) = 𝑞#𝑀 (𝜓(𝑥)) for all
𝑥 ∈ 𝐻𝑆;

• 𝐾 is a quadratic lattice with genus-invariant (𝑚+ − 𝑠+,𝑚− − 𝑠−, [−𝜅𝜓]), 𝜅𝜓 :=
Γ𝜓

⊥/Γ𝜓, where Γ𝜓 ⊂ dg𝑆 ⦹ dg𝑀 is the graph of 𝜓 and Γ⊥
𝜓

its orthogonal

complement with respect to the polar form of 𝑞#𝑆 ⦹ 𝑞#𝑀;

• 𝛾
𝜓
𝐾 : 𝑞#𝐾

∼−→ −𝜅𝜓 is an isometry.

The orthogonal complement of 𝑆 in 𝑀 in this embedding is isometric to 𝐾.

Two embeddings 𝑖 : 𝑆 ↩→ 𝑀 and 𝑖′ : 𝑆 ↩→ 𝑀 given by (𝐻𝑆 ,𝜓,𝐾, 𝛾) and
(𝐻′

𝑆 ,𝜓
′,𝐾′, 𝛾′) are equivalent if and only if the following two conditions hold si-

multaneously:

• 𝐻𝑆 = 𝐻′
𝑆 and there exists an isometry 𝜆 of dg𝑀 such that 𝜆◦𝜓 = 𝜓′;

• there is an isometry 𝜑 : 𝐾
∼−→ 𝐾′ such that dg𝜑 ◦𝛾 = 𝛾′◦𝜆′, where the isometry

𝜆′ : −𝜅𝜓 ∼−→ −𝜅𝜓′
is induced by 𝜆.

Proof. As we just explained, we look first for a suitable even unimodular lattice 𝐿
in which 𝑀 embeds primitively. By Theorem 15.2.6 there exist even unimodular
lattices 𝐿 in which 𝑀 embeds primitively. Such a lattice then has signature (𝑚+ +
𝑡+,𝑚−+𝑡−) for some non-negative integers 𝑡+ and 𝑡−. The pair (𝑡+, 𝑡−) is the signature
of 𝑇 = 𝑀⊥ in 𝐿 and its discriminant quadratic form is the one of 𝑀 with a minus
sign.

By the existence criterion, Theorem 12.4.4, a lattice 𝑇 in the genus of 𝑀⊥ with
𝑡++𝑡− ≥ ℓ(dg𝑀)+2 and where the condition on the index is satisfied exists, provided
we replace (𝑡+, 𝑡−) by (𝑡++𝑘, 𝑡−+𝑘) for large enough 𝑘. Then Theorem 14.5.5 implies

the class number of 𝑇 is one,

𝑟𝑇 : O (𝑇 ) → O (𝑞#𝑇 ) is onto

}
. (15.7)
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This then implies that all primitive embeddings of 𝑇 in 𝐿 are equivalent and in
particular that

𝑀 ≃ 𝑇 ⊥. (15.8)

Now giving a primitive embedding 𝑆 ↩→ 𝑀 is equivalent to giving a primitive
embedding 𝑆 ⦹ 𝑇 ↩→ 𝐿 . Here 𝑖 : 𝑆 ↩→ 𝑀 and 𝑖′ : 𝑆 ↩→ 𝑀 are considered as
isomorphic if they are related by an isometry of 𝐿.

Embeddings 𝑆 ↩→ 𝑀 can thus be obtained in two stages. To ensure that 𝑆⦹ 𝑇
is primitively embedded in 𝑀 ⦹ 𝑇 we shall consider the primitive closure 𝑉′ of
𝑆 ⦹ 𝑇 in 𝑀 ⦹ 𝑇 and then embed 𝑉′ primitively in 𝐿. To capture 𝑉′ we shall list
all overlattices 𝑉 of 𝑆⦹ 𝑇 such that 𝑆 and 𝑇 are primitively embedded in 𝑉 up to
isometries of 𝑇 . Next, we shall list the primitive embeddings of such a 𝑉 in 𝐿 up
to isometries of 𝑉 and 𝐿. Note that some of those 𝑉 may not be embeddable in 𝐿.
To ensure this we use the supplementary assumptions.

By Proposition 15.1.3 an overlattice 𝑉 of 𝑆 ⦹ 𝑇 is determined by a subgroup
𝐻𝑆 ⊂ dg𝑆 and an injection 𝜓 : 𝐻𝑆 ↩→ dg𝑇 satisfying the glueing condition. Because
of (15.8), dg𝑇 ≃ dg𝑀 with opposite forms and so we consider the graph Γ𝜓 ⊂
dg𝑆 ⦹ dg𝑇 of 𝜓 as a subgroup of dg𝑆 ⦹ dg𝑇 equipped with the form 𝑞#𝑆 ⦹ −𝑞#𝑀 . In

fact, this subgroup is isotropic and Proposition 1.7.4 tells us that 𝜅𝜓 = Γ⊥
𝜓
/Γ𝜓 is

the discriminant quadratic form of the overlattice 𝑉.
Next, we note that by Proposition 15.2.1 the lattice 𝑉 embeds primitively in

𝐿 if and only if a lattice with genus-invariant (𝑚+ − 𝑠+,𝑚− − 𝑠−, [−𝑞#𝑉 ]) exists. By
assumption, one has an isometry 𝛾

𝜓
𝐾 : 𝑞#𝐾

∼−→ −Γ⊥
𝜓
/Γ𝜓 = −𝜅𝜓 and so 𝐾 has the

required genus invariant. Consequently, a primitive embedding 𝑗 : 𝑉 ↩→ 𝐿 exists
and under this embedding 𝑉⊥ and 𝐾 are isometric. As to unicity of the embedding
𝑗, observe that since 𝑡+ + 𝑡− ≥ ℓ(dg𝑀) + 2 = ℓ(dg𝑇 ) + 2, one has

ℓ(dg𝑉) ≤ ℓ(dg𝑆) + ℓ(dg𝑇 )
≤ rank(𝑆) + rank(𝑇 ) + 2

= rank(𝑉) + 2,

and so by Proposition 15.1.6 the lattice 𝑉 uniquely embeds in 𝐿 up to isometries
of 𝐿. Moreover, since we have chosen 𝑇 in such a way that 𝑇 is unique in its genus
and such that 𝑟𝑇 : O (𝑇 ) → O (𝑞#𝑇 ) is onto, this proposition also implies that the
embedding 𝑆 ⦹ 𝑇 ↩→ 𝑉 is unique up to isometries of 𝑇 .

Observe that this procedure shows that the orthogonal complement of 𝑆 in 𝑀
in this embedding is as claimed, since 𝐾 ≃ 𝑉⊥ (in 𝐿) = 𝑆⊥ (in 𝑀).

Next, we compare two primitive embeddings. Clearly, if two primitive embed-
dings of 𝑆 in 𝑀 are equivalent, the comparison conditions hold. For the converse,
observe first that Proposition 1.7.4 implies that 𝜅𝜓 is isometric to the discriminant
quadratic form of 𝑀 since 𝑀 is the overlattice of 𝑆 ⦹ 𝐾 given by the embedding
𝜓. The glueing criterion for (𝑆,𝐾 = 𝑆⊥) in 𝑀 is equivalent to the existence of the
isometry 𝛾𝐾 . If (𝑆′,𝐾′ = (𝑆′)⊥) is coming from another primitive embedding of 𝑆 in
𝑀, the compatibility of the glueing data given by the diagram (15.2) is equivalent



288 15 Lattice Embeddings

to the existence of a commutative diagram

−𝜅𝜓
𝛾−1𝐾

∼ //

𝜆′

��

𝑞#𝐾

dg𝜑
��

−𝜅𝜓′
𝛾−1
𝐾′

∼ // 𝑞#𝐾′ ,

(15.9)

where the meaning of 𝜑 and 𝜆′ is as stated in the comparison criterion. Since
this is assumed to hold, Proposition 15.1.6 implies that the two embeddings are
equivalent.

□

Remark 15.3.2. 1. The case 𝐻𝑆 = 0 is allowed and serves for instance to cover
unimodular lattices 𝑀. Similarly, if 𝑀 = 𝐿 ⦹ 𝑀′, where 𝐿 is unimodular and 𝑆
embeds primitively in 𝐿, then 𝐻𝑆 = 0.
2. If other lattices genus equivalent to 𝐾 exist, these give rise to non-isomorphic
embeddings of 𝑆 in 𝑀. Moreover, different subgroups of dg𝑆 may embed in dg𝑀
and a given subgroup 𝐻𝑆 ⊂ dg𝑆 may embed in non-isomorphic ways in dg𝑀 . These
all give rise to non-isomorphic embeddings of 𝑆 in 𝑀.

Corollary 15.3.3. Let 𝑆,𝑀 be non-degenerate quadratic lattices and 𝐻 a subgroup
of dg𝑆. Primitive embeddings of 𝑆 in 𝑀 determined by isometric embeddings 𝜓,𝜓′ :
𝐻 ↩→ dg𝑀 are equivalent, i.e., they are related by an isometry of 𝑀, in case the
following conditions hold simultaneously:

1. The isometric embeddings 𝜓,𝜓′ : 𝐻 ↩→ dg𝑀 are related by an isometry 𝜆 of
dg𝑀;

2. Up to isometry there is a unique lattice 𝐾 with genus-invariant (𝑚+−𝑠+,𝑚−−
𝑠−, [−Γ⊥

𝜓
/Γ𝜓]).

3. For every primitive embedding of 𝑆 in 𝑀, 𝑆⊥ is isometric to 𝐾; identifying
𝑆⊥ with 𝐾, the reduction map 𝑟𝐾 : O (𝐾) → O (𝑞#𝐾 ), 𝐾 = 𝑆⊥, is surjective.

Conditions 2 and 3 hold if rank(𝐾) ≥ 3, 𝐾 is indefinite and the conditions of
Theorem 14.5.5 hold, e.g., if ℓ(dg𝐾) ≤ rank(𝐾) − 2 = rank(𝑀) − rank(𝑆) − 2.

Proof. We compare the two primitive embeddings 𝑖, 𝑖′ : 𝑆 ↩→ 𝑀 with 𝑖(𝑆)⊥ = 𝐾,
𝑖′(𝑆)⊥ = 𝐾′ ≃ 𝐾 induced by 𝜓,𝜓′ : 𝐻 → dg𝑀 . These give rise to a diagram such as

(15.9) where 𝜆′ : dg𝐾
≃−→ dg𝐾′ is the isometry induced by 𝜆. The rightmost vertical

isometry, 𝛾−1𝐾′ ◦𝜆′◦𝛾𝐾 , making the diagram commutative, comes from an isometry
𝐾≃𝐾′. So the comparison conditions of Proposition 15.3.1 are fulfilled. □

Remark 15.3.4. Observe that for a non-degenerate quadratic lattice 𝑆, and 𝐿 uni-
modular, taking 𝐻𝑆 = 0, Theorem 15.2.6 and Corollary 15.3.3 give identical condi-
tions.
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Examples 15.3.5. 1. Consider the action of O (𝑀) on vectors 𝑥 ∈ 𝑀 of given
length, say 𝑞(𝑥) = 𝑝𝑘 where 𝑝 is an odd prime. In this case 𝑆 = ⟨2𝑝𝑘⟩ and
dg𝑆 ≃ ℤ/2ℤ ⦹ ℤ/𝑝𝑘ℤ. If the Sylow-decomposition of dg𝑀 does not contain 2-
primary or 𝑝-primary components, the only possiblity for 𝐻𝑆 is the trivial group
and then dg𝐾 = − dg𝑀 . The two conditions of Corollary 15.3.3 hold if for instance
ℓ(dg𝑀) ≤ rank(𝑀) − 3.
2. Let 𝑀 = 𝐿 ⦹ 𝐿′(−2) with 𝐿 and 𝐿′ indefinite unimodular quadratic lattices.
Consider the O (𝑀)-orbits of vectors 𝑥 ∈ 𝑀 with 𝑞(𝑥) = −2. Then 𝑆 = ⟨−4⟩ and
hence dg𝑆 = 1

4ℤ/ℤ ≃ ℤ/4ℤ. So 𝐻𝑆 = 0 or 𝐻𝑆 = ℤ/2ℤ. By the classification of
even indefinite unimodular forms as given in Section 2.4, the lattice 𝑀 splits off
𝑈 ⦹ 𝑈 (−2), and so the lattice 𝐾 = 𝑆⊥ is indefinite of rank ≥ 3. As follows from
Example 1.6.8.2 and 11.2.5.3, the discriminant quadratic form of 𝐿′(2) is isometric
to a number of copies of 𝑢1, say ⦹𝑚𝑢1, where 2𝑚 = rank(𝐿′).

If 𝐻𝑆 = 0, 𝑞#𝐾 = 𝑞#
𝐿′(2) which splits off a copy of 𝑢1 and hence Theorem 14.5.5

shows that conditions 2 and 3 are satisfied. Condition 1 being trivially satisfied,
the preceding theorem shows that there is a unique orbit of 𝑥 of this type. Since 𝐿
contains a copy of 𝑈, the orbit contains 𝑒 − 2𝑓, where {𝑒,𝑓} is the standard basis
of 𝑈. This deals with the case 𝐻𝑆 = 0.

Assume now that 𝐻𝑆 = ℤ/2ℤ. We can view dg𝑀 as a symplectic 𝔽2-space and
so by an argument as in the proof of Proposition A.5.2 we may assume that 𝐻𝑆

embeds in the first copy of 𝑢1 as ⟨𝑒 + 𝑓⟩, where {𝑒,𝑓} is the standard basis of 𝑢1.
Then 𝑞#𝐾 ≃ ⟨2−1⟩ ⦹𝑚−1 𝑢1. In this case

ℓ(dg𝐾) = rank(𝐿′) − 1 = rank(𝑀) − rank(𝐿) − 1 ≤ rank(𝑀) − 3,

and hence conditions 2 and 3 are satisfied.
Note that the two types of orbits of 𝑥 can be characterized as follows: for

𝐻𝑆 = 0 one must have 𝑥 ·𝑀 = ℤ (since 𝑥 can be assumed to be in the unimodular
lattice 𝐿). For 𝐻𝑆 = ℤ/2ℤ for similar reasons one must have 𝑥 ·𝑀 = 2ℤ.

15.4 On Embeddings into Odd Unimodular Lattices

Let 𝑆 be a non-degenerate symmetric lattice of signature (𝑠+, 𝑠−). We want to in-
vestigate whether 𝑆 can be primitively embedded in some odd unimodular lattice
𝐿, say of signature (𝑟+, 𝑟−). As in the even case, a necessary condition is 𝑠± ≤ 𝑟±.
We consider two cases:
Case 1: 𝑆 or 𝑇 = 𝑆⊥ is odd, where 𝑆 is assumed to be primitively em-
bedded in some odd unimodular lattice 𝐿. For the sake of the argument,
we assume that 𝑆 is odd and search for conditions that 𝑇 be odd, respectively
even. Taking into account that, by Proposition 15.1.1, 𝑏#𝑆 ≃ −𝑏#𝑇 , one sees that
the following analog of Proposition 15.2.1 holds (with analogous proof, but now
also invoking Corollary 12.5.14):

Proposition 15.4.1. Let (𝑟+, 𝑟−) be a pair of non-negative integers and let 𝑆 be
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a non-degenerate odd lattice of signature (𝑠+, 𝑠−) with 𝑠+ ≤ 𝑟+ and 𝑠− ≤ 𝑟− and
discriminant bilinear form 𝑏#. The following conditions are equivalent.

1. 𝑆 can be primitively embedded in some odd unimodular lattice 𝐿 of signature
(𝑟+, 𝑟−) and such that 𝑇 = 𝑆⊥ is odd, respectively even;

2. A (non-degenerate) odd, respectively even lattice 𝑇 of signature (𝑟+−𝑠+, 𝑟−−𝑠−)
with discriminant form −𝑏#;

3. A (non-degenerate) odd respectively even lattice 𝑇 ′ of signature (𝑟−−𝑠−, 𝑟+−𝑠+)
with discriminant form 𝑏# exists.

If, moreover, both 𝑟+ > 0 and 𝑟− > 0, the unimodular lattice 𝐿 is unique up to
isometry.

These conditions hold in particular if ℓ(dg𝑆) ≤ rank(𝐿) − rank(𝑆) − 3.

Case 2: 𝑆 and 𝑇 are both even. Proposition 15.1.1 in addition forces the

existence of an isomorphism 𝜃 : dg𝑆
∼−→ dg𝑇 with 𝑏#𝑆 ◦𝜃(−,−) = −𝑏#𝑇 (−,−), but for

which 𝑞#𝑆 ◦𝜃 ≠ −𝑞#𝑇 , since otherwise 𝐿 would be even. This implies that we need

the inclusion O (𝑞#𝑆 ) ↩→ O (𝑏#𝑆 ) to be strict. These considerations then imply:

Proposition 15.4.2. Let (𝑟+, 𝑟−) be a pair of non-negative integers and let 𝑆 be
a non-degenerate even lattice of signature (𝑠+, 𝑠−) with 𝑠+ ≤ 𝑟+ and 𝑠− ≤ 𝑟−, dis-
criminant quadratic form 𝑞# with polar form 𝑏#. The following conditions are
equivalent.

1. 𝑆 can be primitively embedded in some odd unimodular lattice 𝐿 of signature
(𝑟+, 𝑟−) and such that 𝑇 = 𝑆⊥ is even;

2. Either 𝑟+ − 𝑟− . 0 mod 8, or else, O (𝑞#) is properly included in O (𝑏#) and a
(non-degenerate) even lattice 𝑇 of signature (𝑟+−𝑠+, 𝑟−−𝑠−) with discriminant
form −𝑏# exists;

3. Either 𝑟+ − 𝑟− . 0 mod 8, or else, O (𝑞#) is properly included in O (𝑏#) and a
(non-degenerate) even lattice 𝑇 ′ of signature (𝑟−−𝑠−, 𝑟+−𝑠+) with discriminant
form 𝑏# exists.

If, moreover, both 𝑟+ > 0 and 𝑟− > 0, the unimodular lattice 𝐿 is unique up to
isometry.

These conditions hold if ℓ(dg𝑆) ≤ rank(𝐿) − rank(𝑆) − 3 and either 𝜏(𝐿) is not

divisible by 8 or O (𝑞#𝑆 ) is properly included in O (𝑏#𝑆 )

Examples 15.4.3. 1. 𝐿 = ⦹𝑎+𝑏⟨1⟩ ⦹ ⦹𝑏+𝑐⟨−1⟩, where 𝑎 , 𝑏, 𝑐 > 0 and let 𝑆 =

⦹𝑎 ⟨1⟩⦹⦹𝑏⟨𝐴1 (−2)⟩. Then rank(𝐿) − rank(𝑆) = 𝑏 + 𝑐 = ℓ(dg𝑆) + 𝑐 and so, if 𝑐 ≥ 3,
𝑆 can be primitively embedded in 𝐿 with 𝑆⊥ odd or even.
2. Let 𝐿 = ⦹𝑎+𝑏⟨1⟩ ⦹ ⦹𝑏+𝑐⟨−1⟩, 𝑎 , 𝑏, 𝑐 > 0 with 𝑎 ≡ 𝑐 mod 8. Let 𝑆 be an even
unimodular lattice of signature (𝑎 , 𝑐). Then 𝑆 cannot be embedded in 𝐿 with
even orthogonal complement, but if 𝑎 + 𝑐 ≥ 3 the lattice 𝑆 can be embedded
in 𝐿 with 𝑆⊥ = ⦹𝑏⟨1⟩ ⦹ ⦹𝑏⟨−1⟩. If instead 𝑆 = ⦹𝑏𝑈 (2), then 𝑏#𝑆 ≃ ⦹𝑏𝑢1 is
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isometric to a symplectic form 𝑏𝑞 on an 𝔽2-vector space of rank 2𝑏 and hence O (𝑞)
is strictly contained in O (𝑏𝑞). Such 𝑆 can be embedded in 𝐿 with even orthogonal
complement as soon as 2𝑏 ≤ 𝑎 + 𝑐 − 3.

Recall that using Theorem 14.5.5, the existence criterion Corollary 12.4.6 for
even lattices yields Theorem 15.2.6, which is a version of Witt’s extension theorem
for embeddings in even unimodular lattices. Similarly, using the above existence
criterion for odd lattices one deduces a version of Witt’s theorem for embeddings
of odd or even lattices 𝑆 in indefinite odd unimodular lattices. We only state the
version for 𝑆 odd, leaving the even case to the reader:

Theorem 15.4.4. Let 𝐿 be an indefinite odd unimodular lattice and 𝑆 a non-
degenerate odd lattice with ℓ(dg𝑆) ≤ rank(𝐿) − rank(𝑆) − 3. Then 𝑆 admits a
primitive embedding into 𝐿 and such primitive embeddings are unique up to equiv-
alence, i.e., O (𝐿) acts transitively on primitive embeddings of 𝑆 in 𝐿. Furthermore,
for each primitive embedding of 𝑆 with 𝑇 = 𝑆⊥ odd, respectively even, 𝑇 has genus
invariant (𝑟+−𝑠+, 𝑟−−𝑠−, [−𝑏#𝑆 ]), respectively (𝑟+−𝑠+, 𝑟−−𝑠−, [−𝑞#𝑆 ]), where (𝑟+, 𝑟−),
(𝑠+, 𝑠−) are the signatures of 𝐿 and 𝑆, respectively.

Historical and Bibliographical Notes. The material of this chapter is largely

based on V. Nikulin’s results from [171]. The embedding results are generalizations of

much older results of C.T.C. Wall [244] and of D.G. James [109].



16

The Structure of Orthogonal Groups I, Vector
spaces

Introduction

The first three sections of this chapter are devoted to isometries of vector spaces.
In Section 16.1 sign structures are considered in relation to the spinor norm. In
Section 16.2 special attention is given to characteristic 2 where a proper definition
of a rotation is given with the help of the Dickson invariant. We determine the size
of the orthogonal groups over finite fields in Section 16.3 along the lines of [122,
§13].

In Section 16.4 we give an application of the Arf invariant to the classical
subject of theta characteristics. These have been widely studied in relation to
theta functions. We give a very short synopsis of this vast subject. We discuss
also the connection with the 28 bitangents of a plane quartic curve.

16.1 Vector Space Isometries and Sign Structures

Let (𝑉, 𝑏) be a real inner product space and write 𝑞(𝑥) = 1
2𝑏(𝑥,𝑥) so that 𝑏 is

the polar form of 𝑞. Recall (cf. Section 7.1) that by definition rotations have
determinant 1 and constitute the group SO (𝑉), while an isometry 𝑔 ∈ O (𝑉) with
det(𝑔) = −1 is called a reflection. Special examples of reflections are the hyperplane
reflections 𝜎𝑥 given by

𝑣
𝜎𝑥−−→ 𝑣 − 𝑏(𝑥, 𝑣)

𝑞(𝑥) 𝑥, 𝑞(𝑥) ≠ 0.

We come back to the reduced orthogonal group, i.e., the kernel of the real
spinor norm,

O+ (𝑉) = {𝑔 ∈ O (𝑉) | Nmspin 𝑔 = 1}.

Recall that Nmspin 𝑔 can be calculated upon writing 𝑔 = 𝜎𝑥1 ◦ · · · ◦𝜎𝑥𝑟 as a product
of hyperplane reflections (see (13.12)) and then Nmspin 𝑔 = 𝑞(𝑥1) · · · 𝑞(𝑥𝑟) up to
squares. So the real spinor norm only takes at most two values which for brevity
are identified with the real numbers 1 and −1 which represent their classes.

A signed variant of the spinor norm turns out to be useful. The real spinor
norm of 𝑔 = 𝜎𝑥1 ◦ · · · ◦𝜎𝑥𝑟 is 1 precisely if 𝑞(𝑥𝑗) < 0 for an even number of indices.
Note that for rotations 𝑔 then also 𝑞(𝑥𝑗) > 0 for an even number of indices, but for
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reflections there is a difference which leads to a useful distinction: one can impose
that the number of indices 𝑗 for which 𝑞(𝑥𝑗) < 0 is even or that the number of
indices 𝑗 for which 𝑞(𝑥𝑗) > 0 is even. This leads to the signed spinor norm ,
also called 𝜖-spinor norm , where 𝜖 ∈ {+1,−1}:

Nm𝜖
spin (𝜎𝑥1 ◦ · · · ◦𝜎𝑥𝑟 ) =

{
1 if #{𝑗 ∈ {1, . . . , 𝑟} | 𝜖𝑞(𝑥𝑗) < 0} is even

−1 otherwise.
(16.1)

So, for rotations 𝑔 we have N𝑚+
spin (𝑔) = N𝑚−

spin (𝑔) and for reflection N𝑚+
spin (𝑔) =

−N𝑚−
spin (𝑔). Since these cardinalities depend only on the determinant and the

ordinary spinor norm, this definition is independent of the way 𝑔 is decomposed
into hyperplane reflections. We immediately deduce:

Lemma 16.1.1. Let (𝑉, 𝑞) be a quadratic vector space and let 𝑥 ∈ 𝑉 and 𝜖 ∈
{1,−1} be such that the sign of 𝑞(𝑥) equals 𝜖. Then Nm𝜖

spin (𝜎𝑥) = 1.

The signed spinor norm is a homomorphism, as can be easily seen from the
definition, and so its kernel is a group

O𝜖 (𝑉) := {𝑔 ∈ O (𝑉) | Nm𝜖
spin (𝑔) = 1}.

This notation is consistent with the previous definition of the spinor norm (cf.
(13.11)) since for 𝜀 = +1, one has Nm𝜖

spin (𝑔) = Nmspin (𝑔) and hence O+ (𝑉) has the
same meaning as in Equation (13.12).

By convention we shall use Nm𝜖
spin if 𝑞 is an 𝜖-definite form, that is, if 𝑞(𝜖) is

positive definite. Hence the 𝜖-spinor norm is equal to 1 for isometries of 𝜖-definite
forms.

For indefinite forms Nm𝜖
spin makes it possible to focus solely on the contribution

of “positive” reflections 𝜎𝑥, that is, for which 𝑞(𝑥) > 0, by switching between 𝑉
and 𝑉 (−1). Indeed, automorphisms of 𝑉 that preserve 𝑞 also preserve 𝑞(−1) but
the +1-spinor norm for 𝑞 corresponds to the (−1)-spinor norm for 𝑞(−1). This is
especially useful when dealing with Picard–Lefschetz reflections (see Section 18.2).

Next, in the case of indefinite forms, we shall give an alternative way to describe
the above subgroups using 𝑞±-orientations, also called sign structures. To define
these, recall that all maximal subspaces of 𝑉 on which 𝑞 > 0 or 𝑞 < 0 have the
same dimension, say 𝑛+ > 0, respectively 𝑛− > 0 (Sylvester’s law, Corollary 8.1.3).
The relevant Grassmann variety

G(𝑉) = {𝑊 ⊂ 𝑉 | dim𝑊 = 𝑛+, 𝑞 |𝑊 > 0} ≃ {𝑊′ ⊂ 𝑉 | dim𝑊′ = 𝑛−, 𝑞 |𝑊′ < 0},

is a differentiable manifold. To see this, remark that G(𝑉) is homogeneous under
the Lie group 𝐺 = O (𝑉, 𝑞) ≃ O (𝑛+,𝑛−) with isotropy group (isomorphic to) O (𝑛+)×
O (𝑛−). This manifold is connected since by Proposition 13.3.7 the group O (𝑛+,𝑛−)
has four components each containing one of the four components of O (𝑛+) ×O (𝑛−).
We use this to explain the notions of a 𝑞+- and 𝑞−-orientation. Recall that an
orientation of a vector space 𝑊 is an equivalence class of ordered bases of 𝑊
where two ordered bases define the same orientation if and only if they are related
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by a linear transformation with positive determinant. A vector space of dimension
> 0 has two orientations. Choosing an orientation for a maximal subspace on
which 𝑞 > 0 induces an orientation on all such subspaces since G(𝑉) is connected.
A choice of such a coherent system of orientations is called a 𝑞+-orientation .
Switching to the second description for the Grassmann variety G(𝑉), one obtains
the definition of a 𝑞−-orientation .

Figure 16.1.1

Nmspin = det = 1

𝐼

Nmspin = det = −1
𝐼𝐼𝐼

Nmspin = 1,det = −1
𝐼𝐼

𝐼𝑉

Nmspin = −1,det = 1

Giving 𝑉 both a 𝑞+- and a 𝑞−-orientation amounts to giving 𝑉 an orienta-
tion. The four components of O (𝑛+,𝑛−) can be described using the homomorphism
(Nmspin,det) on O (𝑛+,𝑛−) as in Figure 16.1.1. The corresponding subgroups of
O (𝑛+,𝑛−) all contain the connected component of the identity which is component
𝐼. The subgroup of rotations is the union of components 𝐼 and 𝐼𝑉. A further
description of the components is as follows.

Lemma 16.1.2. Let 𝑛± be positive (i.e., the form is indefinite).

1. The connected component of O (𝑛+,𝑛−) is the group SO+ (𝑛+,𝑛−). It is the
subgroup of O (𝑛+,𝑛−) preserving a given 𝑞+-orientation as well as a given
𝑞−-orientation.

2. The group O+ (𝑛+,𝑛−) of spinor norm 1 elements is the subgroup of O (𝑛+,𝑛−)
preserving a given 𝑞−-orientation. It is the union of the components I and II
in Figure 16.1.1.

3. The subgroup of elements with N𝑚−
spin = 1 is the subgroup of O (𝑛+,𝑛−) pre-

serving a given 𝑞+-orientation. It is the union of the components I and III.

Proof. 1. Since O (𝑛+,𝑛−) has four components and since by Remark 13.3.6.2
the map (Nmspin,det) is continuous, its kernel is connected. This is precisely
SO+ (𝑛+,𝑛−). The second assertion of item 1 will be shown after we investigate the
relation with the 𝑞±- orientations.
2 and 3. Consider a vector 𝑥 belonging to a maximal subspace 𝑊 on which 𝑞 > 0.
Since 𝜎𝑥 changes the orientation of 𝑊, we see that 𝜎𝑥 switches the two distinct
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𝑞+-orientations. The hyperplane orthogonal to 𝑥 contains some maximal subspace
𝑊′ with 𝑞 |𝑊′ < 0 and so 𝜎𝑥 preserves the orientation of 𝑊′, i.e., 𝜎𝑥 preserves
𝑞−-orientations. Similarly, if 𝑞(𝑦) < 0 the reflection 𝜎𝑦 switches 𝑞−-orientations
and preserves the 𝑞+-orientations.

An isometry 𝑔 ∈ O (𝑛+,𝑛−) preserves 𝑞−-orientations if and only if 𝑔 is a product
of an even number of reflections 𝜎𝑥 with 𝑞(𝑥) < 0, which is equivalent to Nmspin 𝑔 =

1. This completes the proof of 2.
Using Nm−

spin a similar assertion holds for isometries preserving 𝑞+-orientations,
showing item 3.

Since SO+ (𝑛+,𝑛−) is the intersection of the groups described in items 2 and 3,
this entails the remaining assertion of 1. □

Let us consider the special case of a hyperbolic vector space whose definition
we recall. Suppose 𝑉 has a basis {𝑒0, 𝑒1, . . . , 𝑒𝑛} such that the polarization of the
quadratic form is given by

𝑥 · 𝑦 = 𝑥0𝑦0 −
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 , 𝑥 =

𝑛∑︁
𝑖=0

𝑥𝑖𝑒𝑖 , 𝑦 =

𝑛∑︁
𝑖=0

𝑦𝑖𝑒𝑖 .

We call 𝑉 with this inner product a hyperbolic vector space .

Lemma 16.1.3. Let 𝑉 be a hyperbolic vector space. The “light cone” {𝑥 ∈ 𝑉 |
𝑥 · 𝑥 > 0} is a disjoint union C𝑉 ∪ −C𝑉 of two convex cones where C𝑉 is contained
in the half space 𝑥0 > 0. For points 𝑥, 𝑦 in the light cone we have:

𝑥 · 𝑦 > 0 ⇐⇒ 𝑥, 𝑦 ∈ C𝑉 or 𝑥, 𝑦 ∈ −C𝑉 . (16.2)

If 𝑥 ≠ 0 and 𝑥 ∈ C𝑉 , 𝑦 ∈ C𝑉 , then we still have 𝑥 · 𝑦 > 0.

Proof. To prove (16.2), it suffices to prove the ”if”-part. We use that 𝑥0 >√︃
𝑥2
1 + · · · + 𝑥2

𝑛 for 𝑥 ∈ C𝑉 . Then combine this with the Cauchy-Schwarz in-

equality
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 ≤
√︃
𝑥2
1 + · · · + 𝑥2

𝑛 ·
√︃
𝑦21 + · · · + 𝑦2𝑛 . If 𝑥 ≠ 0 and 𝑥 ∈ C𝑉 , then

0 < 𝑥0 =

√︃
𝑥2
1 + · · · + 𝑥2

𝑛. From 𝑦0 >

√︃
𝑦21 + · · · + 𝑦2𝑛 we then infer 𝑥 · 𝑦 > 0 in this

case as well.
Using the equivalence (16.2), convexity of C𝑉 follows from a straightforward

computation involving (𝑡𝑥 + (1 − 𝑡)𝑦)) · (𝑡𝑥 + (1 − 𝑡)𝑦)) and 𝑡𝑥0 + (1 − 𝑡)𝑦0 > 0,
0 ≤ 𝑡 ≤ 1. □

Observe that positive lines, i.e., lines on which the form is positive definite, are
exactly those lines that, apart from the origin, belong to the light cone. Hence the
subgroup of the Lorentz group O (1,𝑛) preserving the components of the light cone
is the subgroup preserving a fixed orientation of such lines, that is the subgroup
of isometries with N𝑚−

spin = 1:

O− (𝑉) = {𝑔 ∈ O (𝑉) | 𝑔 (C𝑉) ⊂ C𝑉}. (16.3)
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16.2 Orthogonal Groups in Characteristic Two

Let (𝑉, 𝑞) be a quadratic space over a field 𝑘 of characteristic 2. Non-degeneracy
of 𝑞 means that 𝑏𝑞 has zero radical and so 𝑏𝑞 is a non-degenerate symplectic form
which implies that dim𝑉 is even, say dim𝑉 = 2𝑛 (see also Section 8.2). Let the
corresponding symplectic basis be 𝑬 = {𝑒1, . . . , 𝑒2𝑛} and let the quadratic form in
this basis be 𝑞 =

∑𝑛
𝑗=1 𝑥𝑗𝑥𝑛+𝑗+

∑2𝑛
𝑗=1 𝑎𝑗𝑥

2
𝑗 . Proposition 13.1.5 implies that the vector

𝒛𝑬 = 𝑒1𝑒𝑛+1 + · · · + 𝑒𝑛𝑒2𝑛 ∈ C0 (𝑞)

together with 1 spans the center of the even Clifford algebra C0 (𝑞). Moreover, we
established in Proposition 13.1.5 a relation involving the Arf invariant:

𝒛2𝑬 + 𝒛𝑬 = arf (𝑞), where arf (𝑞) ≡
𝑛∑︁
𝑖=1

𝑎𝑖𝑎𝑛+𝑖 mod ℘(𝑘). (16.4)

Recall that C(𝑞) is generated by 1 and the vector space basis 𝑬, with relations
𝑒2𝑖 = 𝑎𝑖 , 𝑖 = 1, . . . , 2𝑛
𝑒𝑖𝑒𝑗 = 𝑒𝑗𝑒𝑖 , 𝑒𝑖+𝑛𝑒𝑗+𝑛 = 𝑒𝑗+𝑛𝑒𝑖+𝑛, 𝑖, 𝑗 = 1, . . . ,𝑛

𝑒𝑖𝑒𝑛+𝑗 + 𝑒𝑛+𝑖𝑒𝑗 = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, . . . ,𝑛.
(16.5)

We shall aim at finding a criterion for a symplectic transformation 𝑠 to preserve
𝑞. Since 𝑠 preserves symplectic bases for 𝑉, the elements 𝑠(𝑒𝑖), 𝑖 = 1, . . . , 2𝑛, form
a system of generators for the Clifford algebra C0 (𝑞) but with the relations (16.5)
with respect to the transformed quadratic form 𝑥 ↦→ 𝑞(𝑠𝑥). The corresponding
element

𝒛𝑠𝑬 = 𝑠(𝑒1)𝑠(𝑒𝑛+1) + · · · + 𝑠(𝑒𝑛)𝑠(𝑒2𝑛)
belongs to the center of C0 (𝑞) as well and hence it can be expressed as a 𝑘-linear
combination of the generators 1 and 𝒛𝑬 , say

𝒛𝑠𝑬 = 𝑝(𝑠) + 𝑟(𝑠) · 𝒛𝑬 . (16.6)

To determine the coefficients in this linear combination, write

𝑠(𝑒𝑖) =
𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑒𝑗 +
𝑛∑︁
𝑗=1

𝑏𝑖𝑗𝑒𝑗+𝑛, 𝑠(𝑒𝑖+𝑛) =
𝑛∑︁
𝑗=1

𝑐𝑖𝑗𝑒𝑗 +
𝑛∑︁
𝑗=1

𝑑𝑖𝑗𝑒𝑗+𝑛.

In the first expression for 𝒛𝑠𝑬 observe that only the combinations 𝑒2𝑖 , 𝑒𝑖𝑒𝑖+𝑛, 𝑒𝑛+𝑖𝑒𝑖,
𝑖 = 1, . . . ,𝑛, can occur. The relations (16.5) can be used to rewrite 𝒛𝑠𝑬 as an
expression involving 1 and the monomials 𝑒2𝑖 , 𝑒𝑖𝑒𝑛+𝑖. Taking all of this into account,
this yields the searched for coefficients in the relation 16.6:

𝑝(𝑠) =
∑︁

1≤𝑖,𝑗≤𝑛
𝑎𝑗𝑎𝑖𝑗𝑐𝑖𝑗 +

∑︁
1≤𝑖,𝑗≤𝑛

𝑎𝑗+𝑛𝑏𝑖𝑗𝑑𝑖𝑗 +
∑︁

1≤𝑖,𝑗≤𝑛
𝑏𝑖𝑗𝑐𝑖𝑗 , 𝑎𝑖 = 𝑞(𝑒𝑖).

𝑟(𝑠) =
𝑛∑︁
𝑖=1

𝑎𝑖1𝑑𝑖1 + 𝑏𝑖1𝑐𝑖1 = · · · =
𝑛∑︁
𝑖=1

𝑎𝑖𝑛𝑑𝑖𝑛 + 𝑏𝑖𝑛𝑐𝑖𝑛.
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On the other hand, 𝑠 being symplectic implies that 1 = 𝑏(𝑠(𝑒𝑖), 𝑠(𝑒𝑖+𝑛)), where 𝑏 is
the standard symplectic form. Writing this out gives 1 =

∑𝑛
𝑖=𝑗 (𝑎𝑖𝑗𝑑𝑖𝑗 + 𝑏𝑖𝑗𝑐𝑖𝑗) = 𝑟(𝑠)

and so

𝒛𝑠𝑬 − 𝒛𝑬 = 𝑝(𝑠) =
∑︁

1≤𝑖,𝑗≤𝑛
𝑎𝑗𝑎𝑖𝑗𝑐𝑖𝑗 +

∑︁
1≤𝑖,𝑗≤𝑛

𝑎𝑗+𝑛𝑏𝑖𝑗𝑑𝑖𝑗 +
∑︁

1≤𝑖,𝑗≤𝑛
𝑏𝑖𝑗𝑐𝑖𝑗 . (16.7)

This motivates the following definition.

Definition 16.2.1. Let 𝑠 be a symplectic transformation whose matrix with re-
spect to 𝑬 is given by (

(𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 (𝑐𝑖𝑗)1≤𝑖,𝑗≤𝑛
(𝑏𝑖𝑗)1≤𝑖,𝑗≤𝑛 (𝑑𝑖𝑗)1≤𝑖,𝑗≤𝑛

)
∈ Sp(𝑛).

Then the Dickson invariant of the triple (𝑞, 𝑠,𝑬) is the element in the field 𝑘
given by

𝐷(𝑞, 𝑠,𝑬) = 𝒛𝑠𝑬 − 𝒛𝑬 = 𝑝(𝑠) =
∑︁

1≤𝑖,𝑗≤𝑛
𝑎𝑗𝑎𝑖𝑗𝑐𝑖𝑗 +

∑︁
1≤𝑖,𝑗≤𝑛

𝑎𝑗+𝑛𝑏𝑖𝑗𝑑𝑖𝑗 +
∑︁

1≤𝑖,𝑗≤𝑛
𝑏𝑖𝑗𝑐𝑖𝑗 .

Observe that (16.7) implies

℘(𝐷(𝑞, 𝑠,𝑬)) = ℘(𝑝(𝑠)) = 𝒛2𝑠𝑬 + 𝒛𝑠𝑬 − 𝒛2𝑬 − 𝒛𝑬

≡ arf (𝑞(𝑠)) − arf (𝑞), 𝑞(𝑠) (𝑥) := 𝑞(𝑠𝑥),

which gives another proof that the Arf invariant is independent of the choice of a
symplectic basis. Moreover, since ℘(𝑝(𝑠)) = 0 if and only if 𝑝(𝑠) = 0 or 𝑝(𝑠) = 1,
applying this when 𝑞(𝑠) = 𝑞, we obtain:

Corollary 16.2.2. An isometry of the quadratic form 𝑞 has Dickson invariant 0
or 1.

Example 16.2.3. Let 𝜀 = 𝑡𝑢,𝑎 be a transvection where 𝑢 =
∑
𝑢𝑖𝑒𝑖. Comparing

with (8.5) we find

𝐷(𝑞, 𝜀,𝑬) = 𝑎 ·
[
𝑞(𝑢) + (𝑎𝑞(𝑢) + 1) ·

𝑛∑︁
𝑖=1

𝑢𝑖𝑢𝑖+𝑛
]
.

Of course this can also be found by direct calculation. Observe that 𝜀 preserves the
quadratic form 𝑞 if and only if 𝑞(𝑢) = 𝑎−1, and if so, its Dickson invariant equals
1. Such transvections are the orthogonal reflections.

We cannot expect the Dickson invariant to be additive on the entire symplectic
group. In fact, writing as before 𝑞(𝑠) for the quadratic form 𝑥 ↦→ 𝑞(𝑠𝑥), we have

𝐷(𝑞, 𝑡◦𝑠,𝑬) = 𝐷(𝑞, 𝑠,𝑬) + 𝐷(𝑞(𝑠) , 𝑡, 𝑠𝑬). (16.8)
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To see this, we use the transformation law (16.7) for 𝑡◦𝑠 which gives 𝒛𝑡𝑠(𝑬) + 𝒛𝑬 =

𝐷(𝑞, 𝑡◦𝑠,𝑬), but since 𝐷(𝑞, 𝑡, 𝑠𝑬) = 𝒛𝑡𝑠(𝑬) + 𝒛𝑠𝑬 , one gets

𝐷(𝑞, 𝑠,𝑬) + 𝐷(𝑞(𝑠) , 𝑡, 𝑠𝑬) = 𝒛𝑠𝑬 + 𝒛𝑬 + 𝒛𝑡𝑠(𝑬) + 𝒛𝑠𝑬

= 𝒛𝑬 + 𝒛𝑡𝑠(𝑬)

= 𝐷(𝑞, 𝑡◦𝑠,𝑬).

Suppose now that 𝑠 is 𝑞-orthogonal. Then 𝑞(𝑠) = 𝑞. The matrix of 𝑡 with re-
spect to the basis 𝑠𝑬 is the same as the matrix of 𝑠−1𝑡𝑠 with respect to 𝑬 and so
𝐷(𝑞(𝑠) , 𝑡, 𝑠𝑬) = 𝐷(𝑞, 𝑠−1𝑡𝑠,𝑬). So, if we replace 𝑡 with 𝑠𝑡𝑠−1 in the formula (16.8),
we obtain

𝐷(𝑞, 𝑠◦𝑡,𝑬) = 𝐷(𝑞, 𝑠,𝑬) + 𝐷(𝑞, 𝑡,𝑬).
So on transformations that preserve 𝑞 the Dickson invariant gives an additive
homomorphism O (𝑞) → {0, 1} = 𝔽2. The kernel of this homomorphism then is a
subgroup of O (𝑞) of index 2, by definition the subgroup of rotations:

Definition 16.2.4. Let (𝑉, 𝑞) be a quadratic space over a field of characteristic
2. A rotation is an orthogonal transformation with Dickson invariant 0.

Examples 16.2.5. 1. Since an orthogonal transvection is just a reflection and
has Dickson invariant 1, an even product of reflections is a rotation.
2. Consider the hyperbolic plane 𝑈. We have seen in Example 6.5.5.2 that the
only isometries are 𝑖𝑎 and 𝑗𝑏. These have Dickson invariant 0, respectively 1. Since
𝑗1◦𝑗𝑏 = 𝑖𝑏, a rotation is a product of two reflections.
3. As we observed before (cf. Remark 7.2.6), almost all quadratic spaces have
the property that orthogonal transformations are products of reflections and for
those spaces rotations are even products of reflections. This leads to an alternative
interpretation of the Dickson invariant 𝐷(𝑞, 𝑠,𝑬) for orthogonal transformations 𝑠,
namely 𝐷(𝑞, 𝑠,𝑬) = dim(Im(𝑠− id)) mod 2 (see [223, p. 160]). Indeed, the Dickson
invariant being a homomorphism, it suffices to observe that a reflection hyperplane
in a (non-degenerate) symplectic space has odd dimension.

The exceptional quadratic space is 𝑁 ⦹ 𝑁 where 𝑁 = 𝔽2
2 with quadratic form

𝑥2 + 𝑥𝑦 + 𝑦2. The isometry 𝑠 exchanging the two copies of 𝑁 is not a product of
two reflections. Its Dickson invariant is 0 but here again dim(Im(𝑠 − id)) is even,
so the above interpretation of the Dickson invariant is uniformly valid.
4. Let 𝑘 = 𝔽2 and 𝐾 = 𝑘(𝜉) the unique separable quadratic extension of 𝑘. Then
𝜉2 + 𝜉 + 1 = 0 and the norm form N𝐾/𝑘 is the quadratic form 𝑥2 + 𝑥𝑦 + 𝑦2 on 𝑘2.
As we saw in § 6.3.B, example 6, multiplication with a norm 1 element 𝑎 + 𝑏𝜉

in 𝐾 gives an isometry with matrix 𝑀𝑎 ,𝑏 =

(
𝑎 𝑏
𝑏 𝑎 + 𝑏

)
and the Dickson invariant

equals 𝑎𝑏 + 𝑏(𝑎 + 𝑏) + 𝑏2 = 0. Hence this is a rotation. We also saw that all other

orthogonal transformations have matrix 𝑀′
𝑎 ,𝑏

=

(
𝑎 𝑎 + 𝑏
𝑏 𝑎

)
and those have Dickson

invariant equal to 𝑎𝑏 + 𝑎 (𝑎 + 𝑏) + 𝑏(𝑎 + 𝑏) = 𝑎2 + 𝑎𝑏 + 𝑏2 = 1. So half the orthogonal
transformations are rotations and the other half are not. Since 𝑀′

𝑎 ,𝑏
◦𝑀′

1,0 = 𝑀𝑎 ,𝑏,
also in this example all rotations are products of two reflections.
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16.3 Orthogonal Groups of Quadratic Spaces over Finite Fields

We consider quadratic forms (𝑉, 𝑞𝑉) with rad(𝑞𝑉) = 0 over finite fields 𝑘, refer-
ring for odd characteristics to Theorem 8.3.3 (then 𝑞𝑉 is unimodular) and for
characteristic 2 to Proposition 8.2.5 (then 𝑞𝑉 is unimodular or semi-unimodular).
Isometry classes of such forms are collected in Table 16.3.1 together with the
number 𝑠(𝑉) of isotropic vectors in the quadratic space 𝑉 as well as the number
𝑠𝛼 (𝑉) = {𝑣 ∈ 𝑉 | 𝑞𝑉 (𝑣) = 𝛼} for 𝛼 ≠ 0. The number 𝑠(𝑉) will be computed below
and turns out to be an essential ingredient in the determination of the size of the
orthogonal groups.

Table 16.3.1: Types of quadratic spaces

Type isometry class 𝑠(𝑉) = 𝑠0 (𝑉) − 1 𝑠𝛼 (𝑉),𝛼 ≠ 0
I 𝑈⦹𝑚 (𝑞𝑚 − 1) (𝑞𝑚−1 + 1) 𝑞2𝑚−1 − 𝑞𝑚−1

II 𝑈⦹𝑚−1 ⦹ N𝐾/𝑘 (𝑞𝑚 + 1) (𝑞𝑚−1 − 1) 𝑞2𝑚−1 + 𝑞𝑚−1

III 𝑈⦹𝑚 ⦹ [𝑎] 𝑞2𝑚 − 1 𝑞2𝑚

char(𝑘) = 2 semi-unimodular
III 𝑈⦹𝑚 ⦹ [𝑎] 𝑞2𝑚 − 1 𝑞2𝑚 + 𝑞𝑚, 𝑎−1𝛼 ∈ (𝑘×)2

char(𝑘) ≠ 2 unimodular
𝑞2𝑚 − 𝑞𝑚, 𝑎−1𝛼 ∉ (𝑘×)2

We set apart the values for 𝑠1 (𝑉) and 𝑠0 (𝑉) for the case 𝑘 = 𝔽2 in Table 16.3.2.

Table 16.3.2: Values of 𝑠0, 𝑠1 if 𝑞 = 2

Type Arf invariant 𝑠0 (𝑉) 𝑠1 (𝑉)
I 0 2𝑚−1 (2𝑚 + 1) 2𝑚−1 (2𝑚 − 1)
II 1 2𝑚−1 (2𝑚 − 1) 2𝑚−1 (2𝑚 + 1)

This table shows an amusing consequence, first noted by F. Browder [31], namely
it gives an alternative definition of the Arf invariant for non-degenerate quadratic
forms 𝑞𝑉 over 𝔽2: the Arf invariant is the value 𝑞𝑉 takes on for most points of 𝑉.
Therefore the Arf invariant is also called the democratic invariant of 𝑞𝑉 .

The calculation of 𝑠(𝑉) is performed by induction. So suppose 𝑉 = 𝑈⦹𝑊 with
dim𝑊 = 𝑛. Let {𝑒,𝑓} be the standard basis of 𝑈 and write an isotropic vector in
𝑉 as 𝑥 · 𝑒 + 𝑦 · 𝑓 + 𝑤, 𝑤 ∈ 𝑊. We have the following possibilities:

• 𝑞𝑊 (𝑤) = 0,𝑥𝑦 = 0 which gives 2𝑞 − 1 possibilities with 𝑤 ≠ 0 leading to
(2𝑞 − 1)𝑠(𝑊) possible vectors, and 2𝑞 − 2 in the case that 𝑤 = 0;

• 𝑞𝑊 (𝑤) ≠ 0 and 𝑥𝑦 = 𝑞𝑊 (𝑤). This gives (𝑞𝑛 − 𝑠(𝑊) − 1) (𝑞 − 1) possibilities
since 𝑥 ∈ 𝔽×

𝑞 together with each of the (𝑞𝑛 − 1) − 𝑠(𝑊) possible vectors 𝑤
determine 𝑦.

This sums up to give 𝑠(𝑈 ⦹𝑊) = 𝑞 · 𝑠(𝑊) + (𝑞𝑛 + 1) (𝑞 − 1). From this one finds
𝑠(𝑈⦹𝑚) by induction. Applying it to type II we find for 𝑚 = 1 the stated number
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(𝑞2 + 1) (𝑞 − 1), and then for arbitrary 𝑚 it follows by induction. For type III the
proof proceeds in the same way with induction starting from 𝑚 = 1 with 𝑞2 − 1.

The value of 𝑠(𝑉) also gives the value 𝑠𝛼 (𝑉), 𝛼 ∈ 𝑘×, the number of vectors
𝑥 in 𝑉 with 𝑞(𝑥) = 𝛼. In the cases I, II, and in case III for characteristic 2, this
follows since then 𝑉 (𝛼) ≃ 𝑉 if 𝛼 ≠ 0. This is easily verified for 𝑈 – and hence
for ⦹𝑚𝑈 – using the bijective map 𝑥𝑒 + 𝑦𝑓 ↦→ 𝑥𝑒 + 𝑦𝛼𝑓; for the surjective norm
map 𝑁𝐾/𝑘 : 𝐾∗ → 𝑘∗ use that the cosets of the kernel have equal size; for [𝑎] in
characteristic 2 use that 𝛼 is a square in 𝑘. It follows that 𝑠1 (𝑉) = 𝑠𝛼 (𝑉) for all
𝛼 ≠ 0. Hence, if 𝑛 = dim𝑉, we have

𝑠𝛼 (𝑉) =
𝑞𝑛 − 𝑠0 (𝑉)

𝑞 − 1
=
𝑞𝑛 − 1 − 𝑠(𝑉)

𝑞 − 1
, 𝛼 ≠ 0.

For case III, characteristic 𝑝 ≠ 2, this is slightly more involved since the result
depends on whether 𝑎−1𝛼 is a square or a non-square. The square case is as
before, but for the non-square case the calculation is a bit different. See [122, §13]
for details.

We next calculate O (𝑉) for the various types, again using the method of split-
ting off a hyperbolic plane. By Remark 7.2.9.2 the Witt extension theorem holds
for isotropic vectors and so O (𝑉) acts transitively on these. Suppose as before that
𝑉 = 𝑈 ⦹𝑊 with dim𝑊 = 𝑛 and {𝑒,𝑓} the standard basis of 𝑈. It follows that

|O (𝑉) | = 𝑠(𝑉) · |O𝑒 (𝑉) |.

Decompose 𝛾 ∈ O𝑒 (𝑉) according to 𝑈 ⦹𝑊 (here we also use the polar form):

𝛾 =
©«
1 −𝑞(𝒘) 𝜙T𝒘
0 1 0
0 𝒘 𝜙

ª®¬ , 𝒘 ∈ 𝑊,𝜙 ∈ O (𝑊).

Hence |O𝑒 (𝑉) | = 𝑞𝑛 · |O (𝑊) |. To start the induction we have to calculate the
number of elements in O (𝑊) for 𝑊 = N𝐾/𝑘 and for [𝑎]. For the norm form we
do this separately for even and odd characteristics using the remarks in § 6.3.B,
example 4, respectively Examples 16.2.5.

Case 1: 𝑝 odd. The rotations correspond precisely to the elements of norm 1.
There are exactly (𝑞2 − 1)/(𝑞 − 1) = 𝑞 + 1 of those and so |O (N𝐾/𝑘) | = 2(𝑞 + 1).

Case 2: 𝑝 = 2. Here rotations have Dickson invariant 0 and form a subgroup
of index 2 in the group of all orthogonal transformations and so the same result
holds.
For one-dimensional spaces the isometries are just multiplication by ±1 which
explains the difference in the results for odd and even characteristics in the next
table. The results in this table are calculated inductively as before.

isometry class 𝑉 |O (𝑉) |
𝑈⦹𝑚 2𝑞𝑚(𝑚−1) (𝑞𝑚 − 1)∏𝑖<𝑚 (𝑞2𝑖 − 1)

𝑈⦹𝑚−1 ⦹ N𝐾/𝑘 2𝑞𝑚(𝑚−1) (𝑞𝑚 + 1)∏𝑖<𝑚 (𝑞2𝑖 − 1)

𝑈⦹𝑚 ⦹ [𝑎] 𝑞𝑚
2 ∏

𝑖≤𝑚 (𝑞2𝑖 − 1) ·
{
2 if char(𝑘) ≠ 2

1 if char(𝑘) = 2.
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16.4 Application: Theta Characteristics

This section comprises some preliminaries on curves, divisors and theta functions
before, in Subsection 16.4.D, we apply the theory of quadratic forms over the field
𝔽2. For background on curves the reader may consult e.g. [2, Ch. 1], [88, Ch. 2].

16.4.A Curves and divisors. We start by recalling some basic properties of
divisors on smooth curves. On a smooth curve 𝐶, a divisor is just a formal finite
sum 𝐷 =

∑
𝑛𝑥𝑥, 𝑛𝑥 ∈ ℤ, 𝑥 ∈ 𝐶. The union of all points 𝑥 ∈ 𝐶 for which 𝑛𝑥 ≠ 0 is

called the support of 𝐷, the sum,
∑
𝑛𝑥 its degree. The set of divisors admits an

obvious addition, making it into an abelian group. A non-zero rational function 𝑓
on 𝐶 defines a divisor div(𝑓) = (𝑓)0 − (𝑓)∞, where (𝑓)0, (𝑓)∞ is the zero divisor,
respectively the pole divisor of 𝑓. Such a divisor has degree 0. Two divisors
𝐷1,𝐷2 are linearly equivalent if 𝐷1 − 𝐷2 = div(𝑓) for some rational function 𝑓.
This is indeed an equivalence relation. The Picard group of 𝐶 is the group of
divisors modulo linear equivalence. The equivalence class of the divisor 𝐷 is usually
denoted by [𝐷]. Classes of degree 𝑑 divisors make up the subset Pic𝑑 (𝐶) of the
Picard group. This is not a subgroup, unless 𝑑 = 0, but a principal homogeneous
space under Pic0 (𝐶), since, fixing any degree 𝑑 divisor 𝐷0, we have Pic𝑑 (𝐶) =

[𝐷0] + Pic0 (𝐶). The group Pic0 (𝐶) is called the Picard variety . It is known to
be an abelian variety of dimension equal to the genus of 𝐶 as we shall explain in
Subsection 16.4.B.

For a rational function 𝑓 on 𝐶 with support disjoint from the support of 𝐷 we
define

𝑓(𝐷) :=
∏

𝑥∈ support 𝐷

𝑓(𝑥)𝑛𝑥 ∈ ℂ×.

This is well behaved under morphisms: if 𝜑 : 𝐶 → 𝐶′ is a morphism and 𝑓 :
𝐶′ → ℙ1 a non-constant rational function on 𝐶′, 𝐷 a divisor on 𝐶, then 𝑓◦𝜑(𝐷) =
𝑓(𝜑∗ (𝐷)) whenever this makes sense. Here 𝜑∗ is the push forward of divisors on 𝐶
to divisors on 𝐶′. Weil reciprocity follows from this: for all rational functions 𝑓
and 𝑔 whose supports are disjoint,

𝑓(div(𝑔)) = 𝑔(div(𝑓)),

since on ℙ1 this is obvious and every curve maps to ℙ1.

16.4.B The jacobian. The Picard variety is an abelian variety. Let us sketch
how this can be shown. One first introduces 𝐽 (𝐶), the jacobian of 𝐶, which is
defined in a Hodge theoretic manner: One sets

𝐽 (𝐶) = 𝐻0 (𝐶,Ω1
𝐶)

∗/𝜄(𝐻1 (𝐶,ℤ)),

where 𝜄 send a class of a one-cycle 𝛾 to the functional on holomorphic one-forms
𝜔 given by integration, i.e. 𝜔 ↦→

∫
𝛾
𝜔. This is well defined (Stokes’ theorem)

and it turns out that the image of 𝜄 is a discrete subgroup of rank 2𝑔 of the 𝑔-
dimensional complex vector space 𝐻0 (𝐶,Ω1

𝐶)
∗, where 𝑔 is the genus of 𝐶. Hence
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𝐽 (𝐶) is indeed a torus. Using a symplectic basis {𝛾1, . . . , 𝛾2𝑔} for 𝐻1 (𝐶,ℤ), a basis
{𝜔1, . . . ,𝜔𝑔} for 𝐻0 (𝐶,Ω1

𝐶) exists so that the matrix of periods (𝜔𝑖𝑗), 𝜔𝑖𝑗 =
∫
𝛾𝑗
𝜔𝑖,

𝑖 = 1, . . . , 𝑔, 𝑗 = 1, . . . , 2𝑔, has the shape (1𝑔,𝑍) with 𝑍 symmetric and Im(𝑍)
positive definite.

Divisors on tori such as 𝐽 (𝐶) come from holomorphic functions 𝑓 on ℂ𝑔 which
are quasi-periodic with respect to the lattice Γ defining the torus, that is, for all
𝛾 ∈ Γ and 𝒛 ∈ ℂ𝑔, one has 𝑓(𝒛+𝛾) = 𝜑𝛾 (𝒛)𝑓(𝒛) for some non-vanishing holomorphic
function 𝜑𝛾 . The classical theta functions give an abundance of such functions.
The simplest is Riemann’s theta function 𝜃𝑍 , a quasi-periodic function on ℂ𝑔

defined by the everywhere convergent series

𝜃𝑍 (𝒛) =
∑︁
𝒙∈ℤ𝑔

exp 2𝜋𝒊
[
𝒙 · (𝒛 + 1

2𝑍𝒙)
]
, 𝒛 ∈ ℂ𝑔, (16.9)

where the standard dot product on ℂ𝑔 has been used. We shall also be using a
variant, the theta functions with characteristics 𝜀1, 𝜀2 ∈ ℝ𝑔 which are obtained
from Riemann’s theta function (16.9) by replacing 𝒙 with 𝒙 + 𝜀1 and 𝒛 with 𝒛 + 𝜀2:

𝜃𝑍
[
𝜀1
𝜀2

]
(𝒛) = ∑

𝒙∈ℤ𝑔 exp 2𝜋𝒊
[
(𝒙 + 𝜀1) · (𝒛 + 𝜀2 + 1

2𝑍 (𝒙 + 𝜀1))
]
, 𝒛 ∈ ℂ𝑔. (16.10)

We state some basic properties we need:

Properties 16.4.1. 1. 𝜃𝑍
[
𝜀1
𝜀2

]
is the translate of Riemann’s theta function by

the vector 𝑍𝜀1 + 𝜀2 up to a multiplicative factor which is a function of 𝒛.

2. If 𝑘1, 𝑘2 ∈ ℤ𝑔, then 𝜃𝑍
[
𝜀1+𝑘1
𝜀2+𝑘2

]
= 𝜃𝑍

[
𝜀1
𝜀2

]
.

3. One has the symmetry relation 𝜃𝑍
[
𝜀1
𝜀2

]
(−𝒛) = exp 4𝜋𝒊[𝜀1 · 𝜀2] · 𝜃𝑍

[
𝜀1
𝜀2

]
(𝒛). If

𝜀1, 𝜀2 ∈ 1
2ℤ

𝑔, then exp 4𝜋𝒊[𝜀1 · 𝜀2] ∈ {1,−1}. In particular, 𝜃𝑍 (𝒛) = 𝜃𝑍 (−𝒛).

Proof. 1. This follows by comparing the expressions for 𝜃𝑍
[
𝜀1
𝜀2

]
(𝒛) and for 𝜃𝑍 (𝒛 +

𝑍𝜀1 + 𝜀2).
2. Replacing the summation over 𝒙 ∈ ℤ𝑔 with 𝒙 + 𝑘1 takes care of the first charac-
teristic while exp 2𝜋𝒊𝑘2 = 1 takes care of the second.
3. From the expression (16.10) one sees that replacing 𝒛 with −𝒛 can be coun-
teracted if we replace 𝒙 + 𝜀1 with −𝒙 − 𝜀1 except that the factor exp 2𝜋𝒊[−𝜀1 · 𝜀2]
comes up which differs from the factor we started with, exp 2𝜋𝒊[𝜀1 · 𝜀2]. The factor
exp 4𝜋𝒊[𝜀1 ·𝜀2] corrects this. If 𝜀1 and 𝜀2 are half integral vectors, their dot product
takes values in 1

4ℤ which means that the factor exp 4𝜋𝒊[𝜀1 · 𝜀2] gives a sign. □

The zero locus on 𝐽 (𝐶) of Riemann’s theta function is the so-called theta
divisor Θ. Referring to [88, Ch. II.7] for proofs, we state some of its properties:1

• ℎ0 (O𝐽 (𝐶) (Θ)) = 1, i.e., up to a multiplicative constant 𝜃𝑍 is the unique section
of the line bundle O𝐽 (𝐶) (Θ).

• 𝜃𝑍 (0) ≠ 0.

1We use the standard convention that ℎ𝑖 (𝑉) stands for dim𝐻 𝑖 (𝑉).
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• Θ is an ample divisor, and so 𝐽 (𝐶) is indeed a projective torus, i.e. an abelian
variety.

The two tori Pic0 (𝐶) and 𝐽 (𝐶) are related through the Abel–Jacobi map
𝛼 : 𝐶 → 𝐽 (𝐶) defined by integration over paths starting from a fixed point 𝑥0 ∈ 𝐶,
i.e., 𝛼(𝑥) (𝜔) =

∫ 𝑥

𝑥0
𝜔. The definition of the jacobian shows that this is well defined.

This map can be linearly extended to divisors on 𝐶 by setting 𝛼 : Pic𝑑𝐶 → 𝐽 (𝐶),
𝛼(𝑥1 + · · · + 𝑥𝑑) =

∑
𝑗 𝛼(𝑥𝑗), where the second sum is addition on the jacobian.

This is known to be injective (Abel’s theorem) and surjective if 𝑑 = 𝑔 (Jacobi

inversion). In degree 0 this gives a group isomorphism Pic0 (𝐶) ∼−→
𝛼

𝐽 (𝐶), which
is independent of the choice of 𝑥0 and hence Pic0 (𝐶) has indeed the structure of
an abelian variety.

The theta divisor can be identified with a translate of a geometrically defined
divisor 𝑊𝑔−1, the Abel–Jacobi image of the set of all effective divisors of degree
𝑔 − 1 on 𝐶. This is the content of Riemann’s theorem :

𝑊𝑔−1 = Θ + 𝜅, 2𝜅 = 𝛼[𝐾𝐶].

Here [𝐾𝐶] is the class of a canonical divisor 𝐾𝐶 on 𝐶, i.e., the divisor of a holomor-
phic 1-form on 𝐶. Recall that this divisor has degree 2𝑔 − 2 and so 𝜅 = 𝛼( [𝜗0]),
where 𝜗0 is a degree 𝑔 − 1 divisor such that 2𝜗0 is linearly equivalent to 𝐾𝐶 , also
called a half-canonical divisor or a theta characteristic. The particular 𝜅 we
found here is called the Riemann constant .

In the remainder of this section we use the shorthand notation ℎ0 (𝐶,𝐷) in place
of ℎ0 (O𝐶 (𝐷)). We say that a theta characteristic 𝜗 is even , respectively odd , if
ℎ0 (𝐶,𝜗) is even or odd. Riemann’s constant is an even theta characteristic. This
follows from Riemann’s singularity theorem stating that for a degree 𝑔 − 1
divisor 𝐷, ℎ0 (𝐶,𝐷) equals the multiplicity 𝜇𝑃 (Θ) of the point 𝑃 = 𝛼(𝐷) − 𝜅 on the
theta divisor:

𝜇𝑃 (Θ) = ℎ0 (𝐶,𝐷), 𝑃 = 𝛼(𝐷) − 𝜅 = 𝛼(𝐷 − 𝜗0).

Hence, taking for 𝐷 the pre-image of the Riemann constant, we get 𝜇0 (Θ) = 0 since
𝜃𝑍 (0) ≠ 0, confirming that 𝜅 is even.

A theta characteristic can be given as 𝜗 = 𝜗0 + 𝜀 where 𝛼(𝜀) ∈ 𝐽2 (𝐶), the group
of 2-torsion points of 𝐽 (𝐶). In terms of the period matrix 𝑍, two-torsion points
on 𝐽 (𝐶) can be written as 𝜀 = 1

2 (𝜀′′ + 𝑍𝜀′), 𝜀′, 𝜀′′ ∈ ℤ𝑔/2ℤ𝑔 ≃ 𝔽
𝑔
2. Using Prop-

erty 16.4.1.1, the theta divisor belonging to the theta function with characteristics
𝜀1 = 1

2 𝜀
′, 𝜀2 = 1

2 𝜀
′′ is a translate of the Riemann theta divisor by the two-torsion

point 𝜀 which we denote 𝑡∗𝜀Θ. Hence, applying Riemann’s singularity theorem, we
find for the multiplicity at 0 of the translated theta-divisor

𝜇0 (𝑡∗𝜀Θ) = 𝜇0div
(
𝜃𝑍

[
𝜀′

𝜀′′
] )

= ℎ0 (O𝐶 (𝜗)).

To calculate this number, we make use of the symmetry relation 16.4.1.3 which in
this case reads

𝜃𝑍
[ 1

2
𝜀′

1
2
𝜀′′

]
(−𝒛) = (−1) (𝜀′·𝜀′′)𝜃𝑍

[ 1
2
𝜀′

1
2
𝜀′′

]
(𝒛).
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This implies that all partial derivatives of this theta function vanish up to even,
respectively odd order, if 𝜀′ · 𝜀′′ is even, respectively odd. But this means precisely
that the parity of the multiplicity at zero of the corresponding theta divisor equals
𝜀′ · 𝜀′′. Summarizing:

Lemma 16.4.2. Let 𝜗0 be the theta characteristic corresponding to the Riemann
constant. Using the dot product on 𝔽

𝑔
2, the theta characteristic 𝜗 = 𝜗0+𝜀 has parity

𝜀′ · 𝜀′′, where we write 𝜀 = 1
2 𝜀

′′ + 1
2𝑍𝜀

′, 𝜀′, 𝜀′′ ∈ ℤ𝑔/2ℤ𝑔 ≃ 𝔽
𝑔
2.

As an example, consider 𝑔 = 1. Then 𝜃0 is itself a 2-torsion point which can
be taken as the zero on the elliptic curve. This function has 3 zeros at the non-
zero torsion points. There are 3 other theta characteristics corresponding to the
functions 𝜃𝑍

[
0
1

]
, 𝜃𝑍

[
1
0

]
(even theta characteristic) and the function 𝜃𝑍

[
1
1

]
which has

odd theta characteristic. So we have 3 even ones and 1 odd one.
We shall also be interested in the case 𝑔 = 3. A similar argument shows that

there are 28 odd theta characteristics and 36 even ones. This has a nice (classical)
geometric interpretation for smooth plane curves 𝐶 of degree 4. Since 𝐾𝐶 is the
hyperplane bundle, odd theta characteristics are precisely of the form O𝐶 (𝑃 + 𝑄),
with 2𝑃 + 2𝑄 = 𝐿 · 𝐶 for some line 𝐿. In other words, these are the bitangents.
We shall see below (cf. Theorem 16.4.4) that there are 2𝑔−1 (2𝑔 − 1) odd theta
characteristics and 22 (23 − 1) = 28. This shows, as is well known, that 𝐶 has 28
bitangents.

16.4.C Weil pairing on torsion points of 𝑱 (𝑪). Suppose that 𝐷1,𝐷2 are
two degree 0 divisors on the curve 𝐶 with 𝛼(𝐷𝑗), 𝑗 = 1, 2, a 𝑘-torsion point. Then
𝑘𝐷𝑗 = div(𝑓𝑗) for some non-zero rational functions 𝑓1,𝑓2. If 𝐷1 and 𝐷2 have disjoint
supports, then so have 𝑓1 and 𝐷2 as well as 𝑓2 and 𝐷1. Hence we can define

𝑒𝑘 (𝐷1,𝐷2) := 𝑓1 (𝐷2)/𝑓2 (𝐷1), div(𝑓𝑗) = 𝑘𝐷𝑗 .

Observe that interchanging (𝐷1,𝑓1) and (𝐷2,𝑓2) replaces the right-hand side by its
reciprocal, so log(𝑒𝑘) gives a skew symmetric form. A priori 𝑒𝑘 (𝐷1,𝐷2) is only a
non-zero number, but it is actually a 𝑘-th root of unity. This is the case because
of Weil reciprocity:

𝑓𝑘1 (𝐷2)
𝑓𝑘2 (𝐷1)

=
𝑓1 (𝑘𝐷2)
𝑓2 (𝑘𝐷1)

=
𝑓1 (div(𝑓2))
𝑓2 (div(𝑓1))

= 1.

Moreover, adding the divisor of a function to 𝐷1 or 𝐷2 is easily seen to leave
the number 𝑒𝑘 (𝐷1,𝐷2) unchanged. This gives the Weil pairing on the 𝑘-torsion
points 𝐽𝑘 (𝐶) of 𝐽 (𝐶):

𝑒𝑘 : 𝐽𝑘 (𝐶) × 𝐽𝑘 (𝐶) → 𝝁𝑘 := {𝑧 ∈ ℂ | 𝑧𝑘 = 1}.

In the remainder of this section we take 𝑘 = 2, that is, we consider only two-torsion,
but we shall instead use the additive version of this pairing upon writing

𝑒2 (𝜀1, 𝜀2) = (−1)𝑏(𝜀1,𝜀2) .
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This gives 𝐽2 (𝐶) the structure of a symplectic space over 𝔽2. We shall next explain
that theta characteristics define quadratic forms whose polarization is the given
symplectic form. To start, let 𝐿 ∈ Pic𝑔−1 (𝐶) be a half-canonical divisor and 𝜗 =

O𝐶 (𝐿) the corresponding line bundle. First, recall that, using the Abel–Jacobi
map we have identified 𝜀 ∈ 𝐽2 (𝐶) with a line bundle whose divisor class in Pic0 (𝐶)
corresponds to 𝜀 ∈ 𝐽 (𝐶) so that it makes sense to set

𝑞𝜗 (𝜀) = ℎ0 (𝐶,𝜗) + ℎ0 (𝐶,𝜗 ⊗ 𝜀) mod 2, 𝜀 ∈ 𝐽2 (𝐶). (16.11)

That the polar form of 𝑞 is the additive Weil pairing is a direct consequence of the
Riemann–Mumford relation (cf. [92, 164]):

ℎ0 (𝐶,𝜗 ⊗ 𝜀1 ⊗ 𝜀2) + ℎ0 (𝐶,𝜗 ⊗ 𝜀1) + ℎ0 (𝐶,𝜗 ⊗ 𝜀2) + ℎ0 (𝐶,𝜗) ≡ 𝑏(𝜀1, 𝜀2) mod 2.

Since there are as many quadratic forms on the 𝔽2-vector space 𝐽2 (𝐶) as 2-torsion
points on the jacobian, every quadratic form 𝑞 whose polarization is the (additive)
Weil pairing is of the form 𝑞 = 𝑞𝜗.

16.4.D Quadratic forms over 𝔽2. We have studied quadratic vector spaces
(𝑉, 𝑞) over fields of characteristic 2 in Section 8.2 and showed that the polar form
of 𝑞 is a symplectic form and that there is a family of non-isometric quadratic
forms with the same polar form. The isometry classes are determined by the Arf
invariant arf (𝑞) of 𝑞. If the field is 𝔽2 the theory simplifies considerably since the
Arf invariant assumes only two values, 0 or 1.

From now on assume that (𝑉, 𝐽) is a symplectic space over 𝔽2 of dimension 2𝑔
and let

𝑄(𝑉) := {quadratic forms 𝑞 : 𝑉 → 𝑘 | 𝑏𝑞 = 𝐽}.
Observe that 𝑥2 = 𝑥 in the field 𝔽2 and so a linear form on 𝑉 is the same as a
quadratic form which in every basis is diagonal and hence has zero polar form.
Every linear form on 𝑉 is of the form 𝑥 ↦→ 𝐽 (𝑥, 𝑦) for some 𝑦 ∈ 𝑉 and adding
such a form to 𝑞 ∈ 𝑄(𝑉) defines an action of 𝑉 on 𝑄(𝑉) which is denoted as
𝑡𝑣 (𝑞) (𝑥) := 𝑞(𝑥) + 𝐽 (𝑥, 𝑣). To calculate its Arf invariant, write 𝑞(𝑥) = ∑2𝑔

𝑖=1 𝑎𝑖𝑥
2
𝑖 +

𝑞0 (𝑥), 𝑞0 (𝑥) =
∑𝑔

𝑖=1 𝑥𝑖𝑥𝑖+𝑔 and 𝑣 = (𝑣1, . . . , 𝑣2𝑔). We find

𝑞𝑣 (𝑥) =
2𝑔∑︁
𝑖=1

𝑎𝑖𝑥
2
𝑖 +

𝑔∑︁
𝑖=1

𝑥𝑖𝑣𝑖+𝑔 +
𝑔∑︁
𝑖=1

𝑥𝑖+𝑔𝑣𝑖 + 𝑞0 (𝑥)

=

𝑔∑︁
𝑖=1

(𝑎𝑖 + 𝑣𝑖+𝑔)𝑥2
𝑖 +

𝑔∑︁
𝑖=1

(𝑎𝑖+𝑔 + 𝑣𝑖)𝑥2
𝑖+𝑔 + 𝑞0 (𝑥).

It follows that arf (𝑡𝑣 (𝑞)) =
∑𝑔

𝑖=1 (𝑎𝑖 + 𝑣𝑖+𝑔) (𝑎𝑖+𝑔 + 𝑣𝑖) = arf (𝑞) +∑2𝑔
𝑖=1 𝑎𝑖𝑣𝑖 +

∑𝑔
𝑖=1 𝑣𝑖𝑣𝑖+𝑔

and, since 𝑣𝑖 = 𝑣2𝑖 , we find

arf (𝑡𝑣 (𝑞)) = arf (𝑞) + 𝑞(𝑣). (16.12)

On the other hand, a sum 𝑞 + 𝑞′ of two quadratic forms in 𝑄(𝑉) is a linear form,
and hence has the shape 𝑥 ↦→ 𝐽 (𝑥, 𝑣) for a vector 𝑣 = 𝑣(𝑞, 𝑞′) uniquely determined
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by 𝑞 and 𝑞′. So adding two quadratic forms 𝑞 and 𝑞′ defines a unique vector in
𝑉. The set 𝑄(𝑉) is not a vector space, since it has no zero, but the disjoint union
of 𝑉 and 𝑄(𝑉) is a vector space of dimension 2𝑛 + 1 if we take the original vector
space structure on 𝑉, we use the 𝑡-action on 𝑄(𝑉) for addition of vectors 𝑣 ∈ 𝑉
and 𝑞 ∈ 𝑄(𝑉), and, finally, we define 𝑞 + 𝑞′ = 𝑣(𝑞, 𝑞′) whenever 𝑞, 𝑞′ ∈ 𝑄(𝑉).

The symplectic group has two orbits in 𝑄(𝑉), 𝑄0 (𝑉) consisting of those quadratic
forms with Arf invariant 0 and 𝑄1 (𝑉) assembles those of Arf invariant 1.

Proposition 16.4.3. There are 2𝑔−1 (2𝑔 + 1) forms with Arf invariant 0 and
2𝑔−1 (2𝑔 − 1) with Arf invariant 1.

Proof. The quadratic form 𝑞0 (𝑥) =
∑𝑔

𝑖=1 𝑥𝑖𝑥𝑔+𝑖 of Arf invariant 0 has 2𝑔−1 (2𝑔 + 1)
zeros in 𝑉. This follows from our ”democratic” count which gave Table 16.3.2.
Because of equation (16.12), the forms 𝑣 + 𝑞0 have Arf invariant 𝑞0 (𝑣) and so one
has 2𝑔−1 (2𝑔 + 1) forms with Arf invariant 0 and the remaining 2𝑔−1 (2𝑔 − 1) must
have Arf invariant 1. □

16.4.E Relation with theta characteristics. We explained that a theta char-
acteristic 𝜗 defines a quadratic form 𝑞𝜗 on 𝐽2 (𝐶) and, conversely, that every
quadratic form on 𝐽2 (𝐶) whose polar form is a non-degenerate symplectic form
can be written in this way. The group 𝐽2 (𝐶) acts transitively on such quadratic
forms. The Riemann constant is an even theta characteristic. It comes from the
theta divisor Θ and is associated to a quadratic form 𝑞0 with Arf invariant 0. Then,
by the transitivity of the action of 𝐽2 (𝐶), we have 𝑞𝜗 = 𝑞0 + 𝜀 and by (16.12) the
Arf invariant of 𝑞𝜗 equals 𝑞0 (𝜀). Since (16.11) implies that 𝑞0 (𝜀) ≡ ℎ0 (𝜗) mod 2,
applying Proposition 16.4.3 we arrive at the main result of this section:

Theorem 16.4.4. Let 𝐶 be a smooth complex algebraic curve of genus 𝑔 ≥ 1.
Then 𝐶 has 2𝑔−1 (2𝑔 + 1) even and 2𝑔−1 (2𝑔 − 1) odd theta characteristics. The even
theta characteristics correspond to quadratic forms with Arf invariant 0 and the
odd ones to quadratic forms with Arf invariant 1.

Remark. In [164] D. Mumford gave a geometric argument proving this result. His
argument is valid for curves in all characteristics different from 2.

Historical and Bibliographical Notes. Sign structures have been introduced by
R. Miranda and D. Morrison in Ch. 1.11 of [156]. The treatment of the Dickson invariant
given in Section 16.2 is due to J. Dieudonné, c.f. [48]. The determination of the size of
the orthogonal groups over finite fields in Section 16.3 follows the calculation in §13 of
M. Kneser’s book [122].

The material in Section 16.4 is classical and goes back to B. Riemann [194, 195] and
A. Coble [40]. Modern expositions can be found in the books [2, 88].
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The Structure of Orthogonal Groups II, Lattices

Introduction

In Section 17.1 we mainly investigate some groups of isometries preserving a lattice
such as reflection groups, reduced orthogonal groups and groups acting trivially
on the discriminant group.

Root lattices and their reflection groups are treated in the next section. Ac-
cording to the signature of the lattice these are either almost always of finite index
in the full isometry group, such as for the definite lattices or those of signature (𝑟, 𝑠)
with 𝑟, 𝑠 ≥ 2, or this holds sparingly such as for the Lorentz type lattices. This sec-
tion is somewhat cursory in that the reader is mostly referred to the literature for
full proofs. This is compensated by giving several illustrative examples such as the
classical root lattices, the 𝑇𝑝,𝑞,𝑟-lattices, the Leech lattice and the Borcherds lattice.
Special attention is given in Subsection 17.2.C to a result due to M. Kneser which
describes the Weyl group of lattices of Witt index ≥ 2 (these are not hyperbolic)
since this result is going to play a decisive role in Chapter 18.

By contrast, the subject of Eichler–Siegel transformations is discussed at length
in Section 17.3, since these are going to play a major role in the study of isometries
of certain hyperbolic type lattices as well as in W. Ebeling’s results on vanishing
lattices which we treat in the next chapter.

In this chapter (𝐿, 𝑏) is assumed to be a non-degenerate symmetric lattice embedded

in 𝑉 = 𝐿ℚ. The ℚ-bilinear extension of 𝑏 to 𝑉 is also denoted 𝑏. One sets 𝑞(𝑥) =
1
2𝑏(𝑥,𝑥) ∈

1
2ℤ. For the signed spinor norms one has 𝜖 ∈ {+,−}.

17.1 An Overview of Lattice Isometries

The case where 𝐿 is a free module of finite rank over an integral domain 𝑅 has
been briefly discussed in Section 6.5. Here we consider the case 𝑅 = ℤ and consider
the orthogonal group O (𝐿) of 𝐿 as the group of isometries of 𝑉 = 𝐿ℚ that preserve
the lattice 𝐿.

We discuss first which of the standard vector space isometries of 𝑉 preserve 𝐿.
1. Reflections. Recall from Section 1.5 that a vector space reflection 𝜎𝑥 in the
hyperplane orthogonal to a non-isotropic vector 𝑥 ∈ 𝐿 preserves the lattice 𝐿 if and
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only if
𝑏(𝑥, 𝑦)
𝑞(𝑥) · 𝑥 ∈ 𝐿 for all 𝑦 ∈ 𝐿.

We also saw that we may assume that 𝑥 is primitive since the above condition
is insensitive under scaling of 𝑥. The resulting vector is unique up to sign and
so 𝑘 := 2𝑞(𝑥) ∈ ℤ is an invariant of the reflection, and 𝑥 is called the 𝑘-root
associated to the reflection and the reflection is called a reflection in a 𝑘-
root . Note that 𝑘 is even for quadratic lattices but for odd lattices it might be
odd. Since 𝑥 is primitive, the function on 𝐿 given by 𝑦 ↦→ 2𝑏(𝑥, 𝑦)/𝑘 is integral
valued and defines an element in the discriminant group dg𝐿. It is torsion of order
1
2 |𝑘 | or |𝑘 | according to whether 𝑘 is even or odd respectively. In particular, for
a unimodular integral lattice one can only have 𝑘 = ±1 or 𝑘 = ±2. The sublattice
of 𝐿 generated by all 𝑘-roots for varying 𝑘 is called its root sublattice , and the
group generated by reflections in the roots, the reflection group of 𝐿. If 𝐿 is
spanned by its roots, it is called a root lattice . Since roots play such a central
role, it is crucial to know for which lattices there are many roots, a special case of
Corollary A.3.7 from the Appendix gives an instance where this is the case:

Proposition 17.1.1. Suppose 𝐿 is an indefinite lattice of rank ≥ 4. If 𝐿 contains
a 𝑘-root, it contains infinitely many 𝑘-roots.

The set of 𝜖-roots in a lattice 𝐿 is the collection of roots

∆𝜖 (𝐿) = {𝑟 ∈ 𝐿 | 𝑏(𝑟, 𝑟) = 𝜖2}, 𝜖 ∈ {+,−},

spanning the 𝜖-root sublattice

𝐿𝜖-root =
∑︁

𝑥∈∆𝜖 (𝐿)
ℤ𝑥 ⊂ 𝐿. (17.1)

The group of the reflections in the 𝜖-roots is the Weyl group

W𝜖 (𝐿) = group generated by 𝜎𝑟, 𝑟 ∈ ∆𝜖 (𝐿).

We will mostly use this set-up in the setting of even lattices. In that case the
relevant quadratic form 𝑞 satisfies 𝑞(𝑟) = 𝜖1.
2. Groups induced by the groups from § 16.1. These are

O𝜖 (𝐿) = {𝑔 ∈ O (𝐿) | Nm𝜖
spin 𝑔ℝ = 1},

SO (𝐿) = {𝑔 ∈ O (𝐿) | det 𝑔 = 1},
SO+ (𝐿) = {𝑔 ∈ SO (𝐿) | Nmspin 𝑔ℝ = 1}.

Then there are groups that only make sense for lattices:
3. Orthogonal transformations inducing the identity on the discriminant
group. These form the group

O# (𝐿) = {𝑔 ∈ O (𝐿) | 𝑔 induces id on dg𝐿}.
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The criterion of Lemma 7.1.1 implies that a reflection 𝜎𝑥 with 𝑏(𝑥,𝑥)) = ±2 induces
the identity on the discriminant group. Introducing the group

O𝜖,# (𝐿) = O𝜖 (𝐿) ∩ O# (𝐿) (17.2)

we thus have an inclusion

W𝜖 (𝐿) ⊂ O𝜖,# (𝐿),

since theWeyl group W𝜖 (𝐿) is the subgroup of O (𝐿) generated by the 𝜖-reflections.
Proposition 17.1.1 implies that W𝜖 (𝐿) is infinite as soon as 𝐿 is indefinite of

rank ≥ 4 and contains at least one 𝜖-root. This is the case since a root (up to sign)
and the corresponding reflection determine each other uniquely.
4. The level 𝑛 congruence subgroups O (𝐿) [𝑛]. The quotient map 𝐿 → 𝐿/𝑛𝐿
induces a group homomorphism 𝜌𝑛 : O (𝐿) → Aut(𝐿/𝑛𝐿), the mod 𝑛-reduction
map. Its kernel

O (𝐿) [𝑛] = ker (𝜌𝑛) = {𝛾 ∈ O (𝐿) | 𝛾 ≡ id mod 𝑛} (17.3)

is the level 𝑛 congruence subgroup. If 𝑛 = 𝑝 is a prime number, the symmetric
form 𝑏 on 𝐿 induces a symmetric form 𝑏 on the 𝔽𝑝-vector space 𝐿 = 𝐿/𝑝𝐿 given by

𝑏(𝑥 + 𝑝𝐿, 𝑦 + 𝑝𝐿) = 𝑏(𝑥, 𝑦) mod 𝑝. (17.4)

This form is 𝔽𝑝-valued and disc(𝑏) ≡ disc(𝑏) (mod 𝑝). In particular, 𝑏 is unimod-
ular if and only if disc(𝑏) is prime to 𝑝. The mod 𝑝-reduction map 𝜌𝑝 sends an

isometry of (𝐿, 𝑏) to an isometry of (𝐿, 𝑏).
As we have seen in Examples 1.6.8.2, for any unimodular lattice (𝐿, 𝑏), the mod

𝑝-reduction is related to the discriminant group of 𝐿(𝑝). Indeed, 𝐿(𝑝)∗ = 𝑝−1𝐿 and
so dg𝐿(𝑝) = 𝑝−1𝐿/𝐿 ≃ 𝐿/𝑝𝐿. The discriminant form of 𝐿(𝑝) is 𝑝−1ℤ/ℤ ≃ 𝔽𝑝-valued

and after the identifications becomes the form 𝑏 on 𝐿/𝑝𝐿.
Let us look at some examples.

Examples 17.1.2. 1. Rank one lattices. For symmetric lattices ⟨𝑎⟩ over an
integral domain, see Example 6.5.5.1. Here 𝑅 = ℤ and the only isometries are ±id.
If 𝑘 ∈ ℤ, 𝑘 ≠ 0, we have SO+ (⟨𝑘⟩) = SO (⟨𝑘⟩) = {1} and O+ (⟨𝑘⟩) = {1} if 𝑘 < 0 and
O+ (⟨𝑘⟩) = {1,−1} otherwise.
2. Hyperbolic lattice 𝑈 over ℤ. Hyperbolic lattices over integral domains
have been discussed in § 6.3.B, example 6. In the present case, there are only 4

isometries, ±id and the reflections 𝑗1 = 𝜎𝑒−𝑓 with matrix =

(
0 1
1 0

)
and −𝑗1 = 𝜎𝑒+𝑓

Their properties are assembled in the following table.

element det Nm𝜖
spin

id 1 1
−id 1 −1
𝑗1 −1 −𝜖
−𝑗1 −1 𝜖
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One has O± (𝑈) = ⟨∓𝑗1⟩, SO+ (𝑈) = {id} and SO− (𝑈) = ⟨−id⟩. We also see that 𝑈
is not a root lattice. In fact ℤ(𝑒 + 𝜀𝑓) is the lattice spanned by the 𝜀-roots and the
full root sublattice is isometric to ⟨2⟩ ⦹ ⟨−2⟩.
3. Reduction mod 2. We consider the A-D-E root lattices. We have assembled
their discriminants in Table 4.1.1. So the reductions mod 2 give unimodular lattices
for 𝐴𝑛, 𝑛 even, 𝐸6 and 𝐸8. The other root lattices have null-spaces. The quadratic
form for 𝐴2𝑚/2𝐴2𝑚 has the standard symplectic form as its polar form and has Arf
invariant 1 as one can show inductively. One can also show that 𝐴2𝑚+1/2𝐴2𝑚+1 =

𝐴2𝑚/2𝐴2𝑚⦹⟨0⟩. The form 𝐸8 is unimodular and so the reduction mod 2 is isometric
to the discriminant form for 𝐸8 (2) which we calculated before in Example 11.2.5.4.
It is the 8-dimensional quadratic 𝔽2-space with Arf invariant 0. For 𝐸6 one finds
the 6-dimensional quadratic 𝔽2-space with Arf invariant 1 since there are 72 = 2 ·36
roots. We leave the determination of the mod 2 reduction of the other root lattices
as an exercise.

17.2 Root Lattices and Reflection Groups

In this section we shall discuss the size of the Weyl group of a lattice in relation to
its signature. Of course, a lattice may be devoid of roots and then the Weyl group
is just the identity. At the other extreme we have the root lattices, by definition
spanned by their roots. The Weyl group may not be of finite index in the full
orthogonal group as we shall see in this section. This motivates the following
terminology.

Definition 17.2.1. A lattice 𝐿 is called 𝑘-reflective, respectively reflective,
if the group generated by the reflections in 𝑘-roots for fixed 𝑘, respectively for all
𝑘, has finite index in the group O (𝐿).

17.2.A Definite lattices. Here is a classical result describing the finite reflection
groups for a definite root lattice. These results imply that all (positive) definite
root lattices are 2-reflective.

Lemma 17.2.2. The isometry group of a positive definite irreducible quadratic
2-root lattice Γ (that is Γ = 𝐴𝑛, 𝐷𝑛 or 𝐸𝑛) is a direct product of its Weyl group and
the group of symmetries of the Dynkin diagram. Explicitly

• O (Γ) = W+ (Γ) for Γ = 𝐴1,𝐸7, 𝐸8.

• O (Γ) = W+ (Γ) × {±id} for Γ = 𝐴𝑛,𝑛 ≥ 2, 𝐷𝑛,𝑛 ≥ 5, and for 𝐸6.

• O (Γ) = W+ (Γ) × 𝔖3 for Γ = 𝐷4, where 𝔖𝑛 is the permutation group in 𝑛
letters.

We refer to [26, Planches I, II–VII] where 𝐴(𝑅) stands for the full orthogonal
group of the lattice generated by an abstract system of roots 𝑅, and 𝑊 (𝑅) denotes
its Weyl group. Comparing this with the calculations in Section 4.1.D we find:
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Corollary 17.2.3. We have

• O+,# (𝐴𝑛) = W+ (𝐴𝑛).
• O+,# (𝐷𝑛) = W+ (𝐷𝑛) for 𝑛 ≥ 5, O+,# (𝐷4) = W+ (𝐷4) × ℤ/3ℤ.
• O+,# (𝐸𝑛) = W+ (𝐸𝑛), 𝑛 = 6, 7, 8.

Proof. Observe that the discriminant group of 𝐴𝑛 is cyclic of order 𝑛 + 1 and only
has non-trivial automorphisms if 𝑛 ≠ 1. By Lemma 17.2.2 there is only one non-
trivial automorphism in this case, −id, which only belongs to the Weyl group if
𝑛 = 1. In that case the orthogonal group is generated by one reflection in a root.
It follows that in all cases O+,# (𝐴𝑛) coincides with the Weyl group.

For the lattices 𝐷𝑛, 𝑛 ≥ 4, and for 𝐸6 the isometry group of the discriminant
form is induced by −id, those of 𝐸7 and 𝐸8 are trivial. In these cases the Weyl
group coincides with the subgroup of the orthogonal group consisting of elements
acting as the identity on the discriminant group. For 𝑛 = 4 the Weyl group has
index 3 in the latter group. □

Remark 17.2.4. We saw some other classical reflection groups in Examples 4.2.3
where 𝑘-roots come up for 𝑘 ≠ ±2.

Occasionally we use some standard results on the classical reflection groups for
the definite 2-roots lattices 𝐴𝑛,𝐵𝑛,𝐶𝑛,𝐸𝑛, or the lattices 𝐷𝑛,𝐹4,𝐺3 with roots of
other lengths. We refer to [26], [103, Chapter III] for details of what follows.

To set the stage, let 𝐿 be one of these lattices and let W (𝐿) be its Weyl group.
A component of the complement of all reflection hyperplanes is called a Weyl
chamber . The roots forming the vertices of the Dynkin diagram give a basis
𝑬 = {𝛼1, . . . ,𝛼𝑛} for the vector space 𝐿ℝ. This basis is a so-called root basis, by
definition a basis such that every root in 𝐿 is an all non-negative or an all non-
positive integral linear combination of the 𝛼𝑗 . Root bases and Weyl chambers are
in one-to-one correspondence:

Proposition 17.2.5. The closure of a Weyl chamber is a fundamental domain
for the action of the Weyl group W (𝐿) on 𝐿ℝ.

1. Let C be a Weyl chamber. The set of roots ∆C = {𝑟 ∈ ∆(𝐿) | 𝑏(𝑥, 𝑟) >

0 for all 𝑥 ∈ C} has the property that ∆(𝐿) = ∆C∪ −∆C. There are precisely
𝑛 roots in ∆C that form a root basis and these give a Dynkin diagram whose
root lattice is 𝐿.

2. Conversely, let ∆(𝐿) = ∆ ∪ −∆ be a partition of the set ∆(𝐿) such that ∆ is
closed under taking sums, i.e., any non-negative integral linear combination
of roots in ∆ belongs to ∆. Then {𝑥 ∈ (C𝐿ℝ | 𝑏(𝑥, 𝑟) > 0 for all 𝑟 ∈ ∆} is a
Weyl chamber.

3. W (𝐿) acts simply transitively on root bases and on Weyl chambers.

4. The roots of given length form one orbit under W (𝐿).
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17.2.B Lorentzian Lattices. The lattice 𝐿 is of Lorentzian type if it has sig-
nature (1,𝑛), 𝑛 ≥ 2. We consider it as a sublattice of 𝑉ℝ = 𝐿ℝ, so that 𝑉ℝ is a
hyperbolic vector space. The Lorentzian signature implies that only the hyper-
planes in 𝑉ℝ orthogonal to a 𝑘-root, 𝑘 < 0, meet the light cone. We only consider
this type of roots and the spinor norm Nm𝜖

spin with 𝜀 = −. This leads to the
following

Observation. Reflections in 𝑘-roots with 𝑘 < 0 preserve the components of the
light cone.

By (16.3) the subgroup of isometries of 𝐿 preserving the two components of the
light cone is O− (𝐿). In particular it contains the reflections in 𝑘-roots, 𝑘 < 0,
since these have signed spinor norm 1. The corresponding Weyl group W− (𝐿) is a
normal subgroup of O− (𝐿).

We recall some well-known properties of groups generated by reflections in the
vector space 𝑉ℝ. See e.g. [172, §1.1]. A connected component of the complement of
the union of all reflection hyperplanes in C𝑉ℝ is called a Weyl chamber . We just
observed that reflections preserve the light cone. In other words, the Weyl group
preserves the light cone. This is analogous to the positive definite case, where the
role of the light cone is played by 𝐿ℝ. Moreover, Proposition 17.2.5 has a direct
analog:

Proposition 17.2.6. Let ∆(𝐿) be the set of roots 𝑟 ∈ 𝐿 with 𝑏(𝑟, 𝑟) < 0. The
closure of a Weyl chamber is a fundamental domain for the action of the Weyl
group W− (𝐿) on C𝑉ℝ .

1. Let C be a Weyl chamber. The set of roots ∆C = {𝑟 ∈ ∆(𝐿) | 𝑏(𝑥, 𝑟) >

0 for all 𝑥 ∈ C} has the property that ∆(𝐿) = ∆C ∪ −∆C.

2. Conversely, let ∆(𝐿) = ∆ ∪ −∆ be a partition of the set ∆(𝐿) such that ∆ is
closed under taking sums, i.e., any non-negative integral linear combination
of roots in ∆ belongs to ∆. Then {𝑥 ∈ C𝑉ℝ | 𝑏(𝑥, 𝑟) > 0 for all 𝑟 ∈ ∆} is a
Weyl chamber.

Corollary 17.2.7. The group O− (𝐿) of isometries preserving the light cone is
the semi-direct product of W− (𝐿) and the stabilizer in O− (𝐿) of a Weyl chamber.
Consequently, the latter group is isomorphic to O− (𝐿)/W− (𝐿).

Remark 17.2.8. By item 2, the Weyl group W− (𝐿) is generated by those roots
in ∆C which cannot be written as a non-trivial sum of roots in ∆C. As in the
positive definite case such roots are called indecomposable . For two different
indecomposable roots 𝑟, 𝑠 ∈ ∆ we have 𝑟 · 𝑠 ≥ 0.

Reflective Lorentzian root lattices can only have relatively small rank:

Theorem 17.2.9 ([239, 240, 172, 72]). A root lattice of signature (1,𝑛) is reflective
if and only if 𝑛 ∈ {1, . . . , 19, 21}. If 𝑛 = 21 such a lattice is even: it is the unique
reflective Lorentzian lattice of rank 22 (see Example 17.2.10.5 below). In particular
there are no odd reflective Lorentzian lattices of rank 22.
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We skip the elaborate proofs. We only give some examples stating which of
those are reflective and which are not, again referring to the cited works above for
full details.

Examples 17.2.10. 1. The Lorentz lattice ℤ1,𝑛, 𝑛 ≥ 2, is a root lattice. Indeed,
using, as before, the standard basis {𝑒0, . . . , 𝑒𝑛} for ℝ𝑛+1 it has a new basis

𝛼0 = (1,−1,−1,−1, 0, . . . , 0), for 𝑛 ≥ 3, = (1,−1,−1) for 𝑛 = 2,

𝛼𝑗 = 𝑒𝑗 − 𝑒𝑗+1, 𝑗 = 1, . . . ,𝑛 − 1,

𝛼𝑛 = 𝑒𝑛.

The vectors 𝛼𝑗 , 𝑗 = 1, . . . ,𝑛 − 1, are (−2)-roots, 𝛼𝑛 is a (−1)-root and 𝛼0 is a
(−2)-root for 𝑛 ≥ 3, but a (−1)-root for 𝑛 = 2.

Although the Lorentz lattice has a basis of roots, the corresponding reflections
might not generate the full reflection group. E. Vinberg developed an algorithm
which terminates if a finite set of roots exists such that the corresponding reflection
group has finite index in O (ℤ1,𝑛).1 Termination occurs if and only if 𝑛 ≤ 19 and
so precisely then ℤ1,𝑛 is reflective. For a proof which is more in the spirit of
lattice theory see [24, §6, especially Cor. 6.3 and Lemma 6.5]. These results
show in particular that for 2 ≤ 𝑛 ≤ 9 the above root basis suffices to generate
the full reflection group. The corresponding graphs resemble the graphs 𝐸𝑛+1 (−1)
(cf. Eqn. (4.4)):

• • • • • • • •

•

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼𝑛−2

−2 −2 −2 −2 −2 −2 −2

𝛼0
−2

◦
𝛼𝑛−1 𝛼𝑛

−2 −1

4 ≤ 𝑛 ≤ 9

• ◦ ◦
−2 −1 −1

𝛼0𝛼2𝛼1
• • •◦
−2 −2 −1 −2

𝛼0𝛼3𝛼2𝛼1

𝑛 = 2, 3

Here we denote the self-intersections of the roots below the vertices: among the
depicted roots the black ones are (−2)-roots and the white ones are (−1)-roots. As
mentioned before, for 2 ≤ 𝑛 ≤ 19 the lattices ℤ1,𝑛 are reflective, but they might not
be (−2)-reflective because of the presence of (−1)-roots in the basis. For 2 ≤ 𝑛 ≤ 9
we shall show below in Example 17.3.8 that ℤ1,𝑛 is not (−2)-reflective.
2. Those of the lattices 𝑇2,3,𝑛−2 = 𝐸𝑛 (−1) ⊂ ℤ1,𝑛 (−1) which are Lorentzian , that
is, for which 𝑛 ≥ 10, have been investigated in Subsection 4.1.C, where it was
shown that they are even root lattices (of rank 𝑛). For 𝑛 = 10 we get the Enriques
lattice. For 𝑛 = 10, 11, 12, 13 these are reflective by [172], but for 𝑛 > 13 these are
not reflective.

1This is equivalent to finding a Weyl chamber having finite volume in the hyperbolic space
ℝ1,𝑛. This explains E. Vinberg’s use of hyperbolic geometry to construct such a set of roots.
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3. The hyperbolic 𝑇 -shaped lattices from Section 4.1. Recall that the lattices
𝑇𝑝,𝑞,𝑟 are even root lattices which for 𝑝−1 + 𝑞−1 + 𝑟−1 < 1 are all Lorentzian. Apart
from the lattices with (𝑝, 𝑞, 𝑟) = (2, 3, 𝑟), 𝑟 = 7, 8, 9, from Example 2, only the
lattices with (𝑝, 𝑞, 𝑟) = (2, 4, 𝑟) with 𝑟 = 5, 6, 7 and (𝑝, 𝑞, 𝑟) = (3, 3, 𝑟) with 𝑟 = 4, 5, 6
are reflective. The roots corresponding to the vertices give a root basis only for
(𝑝, 𝑞, 𝑟) = (2, 3, 7), (3, 3, 4), (2, 4, 5). To obtain a generating set of roots for the other
root lattices, some roots have to be added to a basis. See [172] for details. Here is
an example where 𝛼12 needs to be added:

• • • • • • • • • • • •

•

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12

−2 −2 −2 −2 −2 −2 −2

𝛼0
−2

−2 −2 −2 −2 −2∞

The graph for the root lattice of 𝑇2,3,8

Recall (cf. Table 4.2.1) that the label ∞ on the extreme right edge means that
the angle between the roots 𝛼11 and 𝛼12 is 𝜋. In the present situation the two
corresponding reflection hyperplanes are parallel in the sense that they meet on
the boundary of the light cone2). In our case this is equivalent to 𝑏(𝛼11,𝛼12) = −2.
4. Reflection groups related to the Leech lattice Γ24. Recall (Section 5.1)
that the Leech lattice is a positive definite rank 24 unimodular lattice, the unique
Niemeier lattice without roots. The even unimodular Lorentzian lattice

𝐼𝐼1,25 := 𝑈 ⦹ Γ24(−1)

is by classification (cf. Corollary 2.4.3) isometric to 𝑈⦹𝐸⦹3
8 (−1). Since 𝑈⦹𝐸8 (−1)

and 𝐸8 (−1) are spanned by their roots (see § 4.1.C) so is 𝐼𝐼1,25. The group generated
by the reflections in these roots has a fundamental domain 𝑃 described in [42] whose
bounding hyperplanes are orthogonal to roots of the form 𝑒− (1+ 𝑞(𝑣))𝑓 + 𝑣 where
𝑣 ∈ Γ24 (−1) and {𝑒,𝑓} is the standard basis of 𝑈. Those roots are called the Leech
roots. The lattice 𝐼𝐼1,25 is not reflective: the symmetry group of 𝑃 turns out to
be isomorphic to Γ24 ⊳ O (Γ24), an infinite group isomorphic to O− (𝐿)/W− (𝐿).
5. The Borcherds lattice [24]. The sublattice 𝐿1,21 ⊂ 𝐸21 (−1) consisting of
vectors

∑
𝑥𝑖𝑒𝑖 with

∑
𝑥𝑖 even defines an even lattice. It is isometric to 𝑈⦹𝐷20 (−1)

and turns out to be a reflective root lattice having a generating set of 210 roots.
Moreover, the quotient O− (𝐿1,21)/W− (𝐿1,21) is isomorphic to a finite group of order
28 · 33 · 5 · 7. It is the reflective Lorentzian lattice of maximal possible rank. We
shall encounter this lattice again as an example of a supersingular K3 lattice (see
Remark 19.5.3).

17.2.C Lattices with (real) Witt index ≥ 2. One has W− (𝐿) = O−,# (𝐿) for
”most” lattices having roots provided the (real) Witt index of 𝐿 is 2 or more, for
instance if in addition the discriminant is prime to 6. This can be derived from a
result due to M. Kneser which deals with W+ (𝐿) and which we first discuss:

2The light cone is introduced in Lemma 16.1.3.
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Theorem 17.2.11 ([121, Satz 4]). Let (𝐿, 𝑞) be an integral quadratic lattice with
real Witt index ≥ 2, that is min(𝑟, 𝑠) ≥ 2, where (𝑟, 𝑠) is the signature of 𝐿. Assume
that the following conditions on 𝐿 hold simultaneously:

• 𝐿 contains at least one root 𝑥 with 𝑞(𝑥) = 1;
• 𝐿 contains a sublattice 𝐿1 of rank ≥ 5 with disc(𝐿1) not divisible by 3;
• 𝐿 contains a sublattice 𝐿2 of rank ≥ 6 with disc(𝐿2) odd.

Then W+ (𝐿) ∩ SO+ (𝐿) = SO+ (𝐿) ∩ O# (𝐿).

Sketch of the proof. The spinor group and spinor norm make use of ℚ-vector space
isometries 𝜎𝑥 with 𝑞(𝑥) ∈ ℚ× and these need not preserve the lattice. Indeed,
SO+ (𝐿) ∩O# (𝐿) might be strictly larger than the subgroup of rotations generated
by lattice-preserving reflections 𝜎𝑥 in 2-roots 𝑥. The strategy of the proof is to
localize the situation and show that for most primes 𝑝 this does not happen and
so the two groups locally coincide for such primes 𝑝. This is the first step of the
proof:
Step 1. Except for some 2-adic and 3-adic lattices, one has O# (𝐿𝑝) =

W+ (𝐿𝑝) ∩ SO+ (𝐿). The exceptions are
• either 𝑝 = 2 and dim𝔽2

𝐿/2𝐿 = 1, . . . , 5,
• or 𝑝 = 3 and dim𝔽3

𝐿/3𝐿 = 2, 3, 4.
The proof is a consequence of a detailed study of the local reflection groups. It
combines three results whose assertions involve the induced bilinear form on 𝐿/𝑝𝐿 ≃
𝐿𝑝/𝑝𝐿𝑝 which as in (17.4) is given by 𝑏(𝑥, 𝑦) = 𝑏(𝑥, 𝑦) mod 𝑝.

1. ”Satz 2” from [121] states that O# (𝐿𝑝) is generated by all reflections un-
less 𝑝 = 2 and 𝑞 is a hyperbolic plane or an orthogonal direct sum of two
hyperbolic planes.

2. ”Lemma 1” from loc. cit. states that – unless 𝑝 = 2 and 𝐿/𝑝𝐿 has rank
1, 3, 5 – the group W+ (𝐿𝑝) ∩ SO (𝐿) is generated by “good” products of two
reflections, i.e., products 𝜎𝑥◦𝜎𝑦 with 𝑞(𝑥) = 𝑞(𝑦) a unit and 𝑥, 𝑦 not in the
null-space of 𝑏.

3. ”Lemma 2” from loc. cit. states thatW+ (𝐿𝑝)∩SO (𝐿) contains all of the“good”
products except for the above exceptions for 𝑝 = 2 and some new exceptions
for 𝑝 = 3 where 𝐿/𝑝𝐿 has rank 2, 3, 4.

To reduce to this local situation, one introduces the globally defined group

𝑆′(𝐿) = {subgroup of Clif0 (𝑞) generated by 𝑥𝑦 | 𝑥, 𝑦 ∈ 𝐿, 𝑞(𝑥) = 𝑞(𝑦) = 1} ⊂ Spin(𝐿),

as well as the obvious local version 𝑆′(𝐿𝑝) ⊂ Spin(𝐿𝑝).
We first discuss a crucial property of the global group 𝑆′(𝐿) which makes re-

duction to the local situation possible:
Step 2. The group 𝑆′(𝐿) is a congruence subgroup of Spin(𝐿). This uses a
deep result proven in [120]:

Theorem. If the real Witt index of 𝐿 is at least 2 and a normal subgroup 𝑁 of
Spin(𝐿) is not contained in the center of Spin(𝐿), then 𝑁 is a congruence subgroup.

This result applies to 𝑆′(𝐿) since, first of all, it is a normal subgroup of Spin(𝐿):
an element 𝑤 ∈ Clif0 (𝑞) is an even product of vectors 𝑥 ∈ 𝐿 and conjugation with 𝑤
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on 𝐿 acts as the product of the corresponding reflections 𝜎𝑥 (see formula (13.2)) and
so preserves norms. Conjugation with 𝑤 sends a product of two elements 𝑥, 𝑦 ∈ 𝐿 to
𝑤𝑥𝑤−1 ·𝑤𝑦𝑤−1 and so is a generator of 𝑆′(𝐿). Secondly, 𝑆′(𝐿) cannot be contained
in the (finite) center of Spin(𝐿). This is the case since by our assumptions (𝐿 is
indefinite and rank(𝐿) ≥ 4) we can apply Proposition 17.1.1 stating that there are
infinitely many roots as soon as the lattice contains at least one root.

To prepare for the next step of the proof, note that a reflection 𝜎𝑥 with 𝑥 ∈ 𝐿
and 𝑞(𝑥) = 1 preserves the lattice 𝐿 and so by (13.2) we have a natural map

𝜙 : 𝑆′(𝐿) → SO+ (𝐿), 𝑥𝑦 ↦→ Ad𝑥𝑦 |𝐿 = 𝜎𝑥◦𝜎𝑦 .

Now we can make the reduction to the local situation:
Step 3. A local-global principle [121, Satz 1].

W+ (𝐿) ∩ SO+ (𝐿) = 𝜙(𝑆′(𝐿)) = ⋂
𝑝 prime 𝜙(𝑆′(𝐿𝑝)) ∩ SO+ (𝐿)

=
⋂

𝑝 prime W
+ (𝐿𝑝) ∩ SO+ (𝐿). (17.5)

Applying an appropriate approximation theorem, we show that this follows from
the congruence property. First observe that the left-hand side is clearly contained
in the right-hand side and so it suffices to show that every 𝑢 ∈ SO+ (𝐿) with
the property that it belongs to 𝜛(𝑆′(𝐿𝑝)) for all primes 𝑝, must be of the form
𝑢 = 𝜙(𝑣) with 𝑣 ∈ 𝑆′(𝐿). We claim that by Step 1 we may restrict our attention
to a finite set of primes. Indeed, since 𝑆′(𝐿) is a congruence 𝑚 subgroup of the
spinor group, for all primes not belonging to the finite set 𝑆 of primes dividing 𝑚
we have 𝑆′(𝐿𝑝) = Spin(𝐿𝑝). Moreover, for any prime 𝑝, 𝑆′(𝐿𝑝) is an open subgroup
of Spin(𝐿𝑝).

By assumption, if 𝑝 ∈ 𝑆, we can write 𝑢 = 𝜙(𝑣𝑝) with 𝑣𝑝 ∈ 𝑆′(𝐿𝑝) and, adding
trivial products 𝑟 · 𝑟 (or (−𝑟) · (−𝑟)) we may assume that

𝑣𝑝 = 𝑟(1)𝑝 𝑠(1)𝑝 𝑟(2)𝑝 𝑠(2)𝑝 · · · 𝑟(𝑁)
𝑝 𝑠(𝑁)

𝑝 , 𝑞(𝑟(𝑖)𝑝 ) = 𝑞(𝑠(𝑖)𝑝 ) = 1, 𝑖 = 1, . . . ,𝑁,

where 𝑁 is the same for all 𝑝 ∈ 𝑆. Now apply Theorem A.3.6 which states that the

local roots 𝑟(𝑖)𝑝 , 𝑠(𝑖)𝑝 can be approximated (in the 𝑝-adic norm) as good as we want by

roots 𝑟(𝑖) , 𝑠(𝑖) ∈ 𝐿, 𝑖 = 1, . . . ,𝑁. The corresponding product 𝑣 =
∏𝑁

𝑖=1 𝑟
(𝑖)𝑠(𝑖) belongs

then to 𝑆′(𝐿). Since 𝑆′(𝐿𝑝) is an open subgroup of Spin(𝐿𝑝), we may choose the

roots 𝑟(𝑖) , 𝑠(𝑖) close enough to the 𝑟(𝑖)𝑝 , 𝑠(𝑖)𝑝 so that 𝑤 := 𝑣𝑣−1𝑝 ∈ 𝑆′(𝐿)𝑝 for all 𝑝 ∈ 𝑆.
But for primes 𝑝 ∉ 𝑆 one has 𝑣𝑝 ∈ 𝑆 (𝐿𝑝) = 𝑆′(𝐿𝑝) and so 𝑤 ∈ 𝑆′(𝐿𝑝) for all primes
𝑝. In other words, 𝑤 belongs to 𝑆′(𝐿). Consequently, 𝑢 = 𝜙(𝑣𝑝) = 𝜙(𝑣 · 𝑤−1) ∈
𝜙(𝑆′(𝐿)).
Concluding argument. The conditions on 𝐿 imply that dim𝔽2

𝐿/2𝐿 ≥ 6 and
dim𝔽3

𝐿/3𝐿 ≥ 5 so that the exceptions in Step 1 do not occur and thus

W+ (𝐿) ∩ SO (𝐿) =
⋂
𝑝

W+ (𝐿𝑝) ∩ SO+ (𝐿) (Step 3)

=
⋂
𝑝

O# (𝐿𝑝) ∩ SO+ (𝐿) (Step 1)

= O# (𝐿) ∩ SO+ (𝐿). □
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This result equally applies to W− (𝐿):

Corollary 17.2.12. Under the same conditions on (𝐿, 𝑞), one has W𝜖 (𝐿) = O𝜖,# (𝐿).

Proof. By the (proof of) Theorem 17.2.11, the group W+ (𝐿) ∩ SO (𝐿) is generated
by products 𝑢 = 𝜎𝑥𝜎𝑦 of two reflections in roots 𝑥, 𝑦 with 𝑞(𝑥) = 𝑞(𝑦) = 1 (and
so Nmspin 𝑢 = 1). Since W+ (𝐿) = W+ (𝐿) ∩ SO (𝐿) ∪ 𝜎𝑥 · [W+ (𝐿) ∩ SO (𝐿)], one has
W+ (𝐿) = O+,# (𝐿). Replace 𝐿 with 𝐿(−1). The assumptions hold equally well for
the lattice 𝐿(−1). The same argument with the (−)-spinor norm gives the result
for 𝜖 = −1. □

Remark 17.2.13. The condition on the signature is necessary as we see from The-
orem 17.2.9 which demonstrates that the Weyl group in a Lorentzian lattice is
rarely of finite index in the full orthogonal group. See also Theorem 17.3.7 below.

17.3 Eichler–Siegel Transformations

17.3.A Basic properties. Before considering lattices, we first consider rational
inner product spaces (𝑉, 𝑏), where 𝑏 is the polar form of a quadratic form 𝑞.

Definition 17.3.1. Given a pair of vectors {𝑓, 𝑦} in 𝑉 where 𝑓 is isotropic and
𝑏(𝑓, 𝑦) = 0, the Eichler–Siegel transformation with respect to {𝑓, 𝑦} is given
by

𝜓𝑓,𝑦 : 𝑉 −−−−−→ 𝑉

𝑥 ↦−→ 𝑥 + 𝑏(𝑥, 𝑦)𝑓 − 𝑏(𝑥,𝑓)𝑦 − 𝑏(𝑥,𝑓)𝑞(𝑦)𝑓. (17.6)

The linear map 𝜓𝑓,𝑦 is an isometry (by direct computation) with inverse 𝜓𝑓,−𝑦 (see
Lemma 17.3.3). If 𝑦 and 𝑓 are linearly dependent, then 𝜓𝑓,𝑦 is simply the identity.

Lemma 17.3.2. Assume that 𝑞(𝑦) ≠ 0. Then the Eichler–Siegel transformation
𝜓𝑓,𝑦 is the unique isometry of 𝑉 which satisfies

𝜓𝑓,𝑦𝑧 = 𝑧 + 𝑏(𝑧, 𝑦)𝑓 ∀𝑧 ∈ ℝ𝑓⊥.

In particular, 𝜓𝑓,𝑦𝑓 = 𝑓.

Proof. Since 𝑏 is non-degenerate dim𝑉 ≥ 3, and so there exists a vector 𝑔 with
𝑏(𝑓, 𝑔) = 1 and 𝑏(𝑔, 𝑦) = 0. The vectors 𝑓, 𝑔, 𝑦 span a three-dimensional space 𝑊,
and 𝑔 and 𝑓⊥ span 𝑉. Let 𝜓 : 𝑉 → 𝑉 be an isometry which acts on 𝑓⊥ in the
same way as 𝜓𝑓,𝑦. Then we need to verify that 𝜓(𝑔) = 𝜓𝑓,𝑦 (𝑔) = 𝑔 − 𝑞(𝑦)𝑓 − 𝑦.
Since 𝑊⊥ ⊂ 𝑓⊥ and 𝜓𝑓,𝑦 |𝑊⊥ = id, we have 𝜓 |𝑊⊥ = id and so 𝜓(𝑊) ⊂ 𝑊 (here we
use that (𝑊⊥)⊥ = 𝑊, see Lemma 1.1.3). Now let 𝜓(𝑔) = 𝛼𝑔 + 𝛽𝑓 + 𝛾𝑦. Expanding
the equations

1 = 𝑏(𝜓(𝑔),𝜓(𝑓))
0 = 𝑏(𝜓(𝑔),𝜓(𝑦))

𝑏(𝑔, 𝑔) = 𝑏(𝜓(𝑔),𝜓(𝑔)),
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yields 𝛼 = 1, 𝛾 = −1 (here we use 𝑞(𝑦) ≠ 0), and 𝛽 = −𝑞(𝑦). □

From now on, we again suppose that 𝐿 is a non-degenerate symmetric lattice
and 𝑉 = 𝐿ℚ. Observe that the defining equation (17.6) shows that the Eichler–
Siegel transformation 𝜓𝑓,𝑦 of 𝑉 preserves 𝐿 provided 𝑓 and 𝑦 belong to 𝐿 and
𝑞(𝑦) ∈ ℤ. We can say more:

Lemma 17.3.3. Suppose 𝑓 ∈ 𝐿 is a primitive isotropic vector and suppose 𝑦 ∈ 𝐿
satisfies 𝑏(𝑦, 𝑦) even and 𝑏(𝑓, 𝑦) = 0. Then 𝜓𝑓,𝑦 induces a lattice isometry of 𝐿
with the following properties.

1. 𝜓𝑓,𝑦 ∈ O𝜖 (𝐿) for 𝜖 = − as well as for 𝜖 = +.

2. 𝜓𝑓,𝑦 induces the identity on the discriminant group.

3. One has 𝜓𝑓,𝑦 = 𝜓𝑓,𝑦+𝑓 and the map

𝐿𝑓 = 𝑓⊥/ℤ𝑓
𝜓𝑓−−→ O (𝐿)

𝑦 + ℤ𝑓 ↦−→ 𝜓𝑓,𝑦

is a well-defined injective group homomorphism. In particular 𝜓𝑓 (𝐿𝑓) is an
abelian subgroup of O (𝐿) whose rank equals rank(𝐿𝑓).

4. 𝜓𝑓 (𝐿𝑓) is a normal subgroup of O𝑓 (𝐿), the stabilizer of 𝑓.

Proof. 1. The spinor norm is continuous on O (𝑉ℝ) (see Remark 13.3.6.2) and
the path 𝑡 ↦→ 𝜓𝑡𝑓,𝑦 belonging to O (𝑉ℝ) connects 𝜓𝑓,𝑦 to the identity and so
Nm𝜖

spin 𝜓𝑓,𝑦 = 1.
2. Let 𝑢 ∈ 𝐿∗, then, since 𝑏(𝑢, 𝑦), 𝑏(𝑢,𝑓) and 𝑞(𝑦) are integers, (17.6) shows that
𝜓𝑓,𝑦𝑢 ≡ 𝑢 mod 𝐿 which means precisely that 𝜓𝑓,𝑦 induces the identity on dg𝐿.
3. Note that 𝑞(𝑦 + 𝑓) = 𝑞(𝑦) + 𝑞(𝑓) + 𝑏(𝑦,𝑓) = 𝑞(𝑦). Using this, the first assertion
and the well-definedness of 𝜓𝑓 follow from

𝜓𝑓,𝑦+𝑓 (𝑥) = 𝑥 + 𝑏(𝑥, 𝑦 + 𝑓)𝑓 − 𝑏(𝑥,𝑓) (𝑦 + 𝑓) − 𝑏(𝑥,𝑓)𝑞(𝑦 + 𝑓)𝑓
= 𝑥 + 𝑏(𝑥, 𝑦)𝑓 + 𝑏(𝑥,𝑓)𝑓 − 𝑏(𝑥,𝑓)𝑦 − 𝑏(𝑥,𝑓)𝑓 − 𝑏(𝑥,𝑓)𝑞(𝑦)𝑓
= 𝑥 + 𝑏(𝑥, 𝑦)𝑓 − 𝑏(𝑥,𝑓)𝑦 − 𝑏(𝑥,𝑓)𝑞(𝑦)𝑓
= 𝜓𝑓,𝑦 (𝑥).

The second assertion follows from

𝜓𝑓,𝑦′ ◦𝜓𝑓,𝑦 (𝑥) = 𝜓𝑓,𝑦′ (𝑥 + 𝑏(𝑥, 𝑦)𝑓 − 𝑏(𝑥,𝑓)𝑦 − 𝑏(𝑥,𝑓)𝑞(𝑦)𝑓)
= 𝑥 + 𝑏(𝑥, 𝑦′)𝑓 − 𝑏(𝑥,𝑓)𝑦′ − 𝑏(𝑥,𝑓)𝑞(𝑦′)𝑓

+ 𝑏(𝑥, 𝑦)𝑓 − 𝑏(𝑥,𝑓)𝑦 − 𝑏(𝑥,𝑓)𝑏(𝑦, 𝑦′)𝑓
− 𝑏(𝑥,𝑓)𝑞(𝑦)𝑓

= 𝑥 + 𝑏(𝑥, 𝑦 + 𝑦′)𝑓 − 𝑏(𝑥,𝑓) (𝑦 + 𝑦′) − 𝑏(𝑥,𝑓)𝑞(𝑦 + 𝑦′)𝑓
= 𝜓𝑓,𝑦+𝑦′ (𝑥),
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where we have used

𝜓𝑓,𝑦′ (𝑓) = 𝑓,

𝜓𝑓,𝑦′ (𝑦) = 𝑦 + 𝑏(𝑦, 𝑦′)𝑓.

That we get an injection follows since if 𝜓𝑓,𝑦 = id, then either 𝑦 and 𝑓 are dependent
or 𝑏(𝑥,𝑓)𝑦 = 0 for all 𝑥 ∈ 𝐿 in which case 𝑦 = 0 since 𝑏 is non-degenerate.
4. This is because for all 𝑔 ∈ O𝑓 (𝐿) we have 𝑔◦𝜓𝑓,𝑦◦𝑔−1 = 𝜓𝑔𝑓, 𝑔𝑦 = 𝜓𝑓, 𝑔𝑦. □

Property 3 shows that a non-degenerate lattice of rank ≥ 3 containing isotropic
vectors and at least one vector 𝑦 ∈ 𝑓⊥ − ℤ · 𝑓 with 𝑏(𝑦, 𝑦) even has an infinite
isometry group. The existence of such a 𝑦 with 𝑏(𝑦, 𝑦) even can be circumvented
by replacing 𝐿 with 𝐿(2) which has the same isometry group as 𝐿. Hence we have
shown:

Proposition 17.3.4. Let 𝐿 be a non-degenerate lattice of rank 𝑛 ≥ 3 containing
an isotropic vector. Then O (𝐿) contains a free abelian group of rank 𝑛 − 2. In
particular, 𝐿 has infinitely many isometries.

Corollary 17.3.5. Let 𝐿 be a non-degenerate indefinite lattice of rank ≥ 5, then
O (𝐿) is infinite.

Proof. By Meyer’s theorem 3.3.4, the rational space 𝐿ℚ has an isotropic vector and
hence this is also the case for 𝐿. □

Eichler–Siegel transformations of the form 𝜓𝑓,𝑟 with 𝑟 a (−2)-root are compo-
sitions of reflections. More is true:

Proposition 17.3.6. Let 𝐿 be a non-degenerate lattice of rank 𝑛 containing a
primitive isotropic vector 𝑓 and a (−2)-root 𝑟 ∈ 𝑓⊥. Then

1. 𝜓𝑓,𝑟 = 𝜎𝑓−𝑟◦𝜎𝑟.

2. The image of the (−2)-root lattice of 𝐿𝑓 under 𝜓𝑓 : 𝐿𝑓 → O (𝐿) is contained
in the Weyl group W− (𝑓⊥) considered as the subgroup of W− (𝐿) generated by
reflections in (−2)-roots of 𝑓⊥ (and hence preserving 𝑓).

3. If 𝑦 ∈ 𝐿𝑓 is orthogonal to the (−2)-root lattice 𝐿𝑓,root of 𝐿𝑓, then 𝜓𝑓 (𝑦)
restricts to the identity on the (−2)-root lattice of 𝑓⊥. In particular, W− (𝑓⊥)∩
𝜓𝑓 (𝐿⊥𝑓,root) = {id}.

Proof. 1. Given two (−2)-roots 𝑟, 𝑟′ in a lattice (𝐿, 𝑏), one has

𝜎𝑟′ ◦𝜎𝑟 (𝑥) = 𝜎𝑟 (𝑥) + 𝑏(𝑟′,𝜎𝑟 (𝑥))𝑟′ = 𝑥 + 𝑏(𝑥, 𝑟)𝑟 + 𝑏(𝑥, 𝑟′)𝑟′ + 𝑏(𝑟, 𝑟′)𝑏(𝑥, 𝑟)𝑟′, 𝑥 ∈ 𝐿.

Substituting 𝑟′ = 𝑓 − 𝑟, one gets 𝜎𝑟−𝑓◦𝜎𝑟 (𝑥) = 𝑥 + 𝑏(𝑥, 𝑟)𝑓 − 𝑏(𝑥,𝑓)𝑟 + 𝑏(𝑥,𝑓)𝑓 =

𝜓𝑓,𝑟 (𝑥).
2. From 1 we infer that if 𝑦 =

∑
𝑎𝑗𝑟𝑗 , a ℤ-linear combination of roots in 𝑓⊥, then

𝜓𝑓,𝑦 =
∏

𝑗 (𝜎𝑓−𝑟𝑗 ◦𝜎𝑟𝑗 )𝑎𝑗 ∈ W− (𝑓⊥).
3. In this situation 𝜓𝑓,𝑦 (𝑥) = 𝑥+𝑏(𝑥, 𝑦)𝑓. Hence, if the class of 𝑦 belongs to 𝐿⊥

𝑓,root
,
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then 𝜓𝑓,𝑦 is clearly the identity on the (−2)-root lattice of 𝑓⊥.
Finally, suppose that 𝛾 ∈ W− (𝑓⊥) ∩ 𝜓𝑓 (𝐿⊥𝑓,root). Then 𝛾 is a composition of reflec-

tions in (−2)-roots of 𝑓⊥ inducing the identity on the lattice 𝑀 := 𝑓⊥
root spanned

by all such (−2)-roots 𝑟. But then 𝛾 = id𝐿 since it is the identity on the orthogonal
complement of 𝑀 in 𝐿, because this is the intersection of the reflection hyperplanes
for the 𝜎𝑟 ∈ 𝑀. □

17.3.B Application to Lorentzian lattices. The aim is to find a criterion
which ensures that a Lorentzian lattice 𝐿 is not (−2)-reflective, i.e., a lattice for
which the reflection group generated by reflections in (−2)-roots is not of finite
index in O (𝐿). We start with a technical result.

Lemma. Suppose that a Lorentzian lattice 𝐿 contains a (primitive) isotropic vector
𝑓. Then

W−
𝑓𝐿 = W− (𝑓⊥), (17.7)

where we recall that W−
𝑓
𝐿 is the subgroup of the Weyl group of 𝐿 fixing 𝑓, and

the right-hand side, W− (𝑓⊥), is identified with the subgroup of W− (𝐿) generated by
reflections in (−2)-roots of 𝑓⊥ (and hence preserving 𝑓).

Proof. We first construct a partitioning of the (−2)-roots in 𝐿 using that a root 𝑟
either is contained in 𝑓⊥, or else 𝑏(𝑟,𝑓) ≠ 0. Choosing 𝑧 ∈ 𝑓⊥ ⊗ ℝ not belonging
to the hyperplanes orthogonal to roots in 𝑓⊥, the former can be partitioned into
∆+
1 ∪−∆+

1 where each root 𝑟 ∈ ∆+
1 satisfies 𝑏(𝑟, 𝑧) > 0. A root with 𝑏(𝑟,𝑓) ≠ 0 either

satisfies 𝑏(𝑟,𝑓) > 0; such roots form a set ∆+
2. Or one has 𝑏(𝑟,𝑓) < 0 and such

roots form −∆+
2. Combining the two gives a partition ∆+ ∪ −∆+, ∆+ = ∆+

1 ∪ ∆+
2 of

the roots in 𝐿. This partition is closed under taking sums: a root which is a sum
of roots from ∆+ belongs to ∆+. Hence, by Proposition 17.2.6 it defines a Weyl
chamber and Remark 17.2.8 implies that the Weyl group is generated by reflections
in indecomposable roots.

To continue, note first that W− (𝑓⊥) ⊂ W−
𝑓
𝐿. Conversely, assume that 𝑔 ∈ W−

𝑓
𝐿

and write 𝑔 as a product of reflections from ∆+
1 and ∆+

2. If 𝑔 ∉ W− (𝑓⊥) at least
one reflection 𝜎𝑟, 𝑟 ∈ ∆+

2, must appear in the product and then 𝑏(𝜎𝑟 (𝑓),𝑓) >

0. Products of reflections in roots from ∆+
1 do not alter this number. So we

may assume that 𝑔 = 𝜎𝑟𝑘 ◦ · · · ◦𝜎𝑟1 with indecomposable roots 𝑟𝑗 ∈ ∆+
2. Since the

number 𝑏(𝑔(𝑓),𝑓) does not depend on the order of the roots 𝑟𝑗 in the expression
for 𝑔, we may assume that each root appears at most once. For two different
indecomposable roots 𝑟𝑖 , 𝑟𝑗 we have 𝑏(𝑟𝑖 , 𝑟𝑗) ≥ 0. It then follows inductively that for
any finite product 𝑔 of different indecomposable roots in ∆+

2 one has 𝑏(𝑔(𝑓),𝑓) > 0
contradicting our assumption that 𝑔(𝑓) = 𝑓. □

This result yields the criterion we are after:

Proposition 17.3.7 (compare [172, Prop. 1.3.1]). For a Lorentzian type lattice
𝐿 of rank ≥ 3 containing a primitive isotropic vector 𝑓 and associated negative
definite lattice 𝐿𝑓 = 𝑓⊥/ℤ𝑓, let 𝛿𝑓 = rank(𝐿𝑓) − rank(𝐿𝑓,root). Then O (𝐿)/W− (𝐿)
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contains a normal abelian subgroup of rank 𝛿𝑓. In particular, if 𝐿𝑓 is not spanned
by its roots, the group O (𝐿)/W− (𝐿) is infinite.

Proof. By Proposition 17.3.6 and (17.7) we have W−
𝑓
(𝐿) ∩𝜓𝑓 (𝐿⊥𝑓,root) = {id}. Since

Im(𝜓𝑓) ⊂ O𝑓 (𝐿), the intersection W−
𝑓
(𝐿) ∩ Im(𝜓𝑓) coincides with the intersection

W− (𝐿) ∩ Im(𝜓𝑓). Consequently, 𝜓𝑓 (𝐿⊥𝑓,root) ⊂ O (𝐿)/W− (𝐿). By Lemma 17.3.3,

the Eichler–Siegel transformations 𝜓𝑓,𝑦, 𝑦 ∈ 𝜓𝑓 (𝐿𝑓), form an abelian subgroup
𝜓𝑓 (𝐿𝑓) of the stabilizer of 𝑓 in O− (𝐿). Since rank(𝜓𝑓𝐿𝑓) = rank(𝐿𝑓), it follows that
𝜓𝑓 (𝐿𝑓)/W− (𝐿) contains an abelian group of rank 𝛿𝑓. □

Example 17.3.8. Consider the root lattice of the Lorentz lattices 𝐸1,𝑛 of Exam-
ples 17.2.10.1. If 𝑛 = 2, the lattice is spanned by 𝛼0 = (1,−1,−1), 𝛼1 = (0, 1,−1)
and 𝛼2 = (0, 0, 1). It contains the isotropic vector 𝑓 = 𝛼0 + 𝛼1 + 𝛼2 and 𝑓⊥/ℤ𝑓 has
rank 1 and is spanned by the class of 𝛼0 which is a (−1)-root and not a (−2)-root.
A similar calculation shows that 𝐸1,3 is not (−2)-reflective.

For 𝑛 = 5, . . . , 9 the computation is slightly different: the vector 𝑓 = 𝑒0 + 𝑒𝑛 =

𝛼0 +
∑𝑛

𝑖=1 𝑖𝛼𝑖 is isotropic and 𝑓⊥/𝑓 has root basis 𝛼1, . . . ,𝛼𝑛−2,𝛼𝑛−1 +𝛼𝑛 which gives
the root system 𝐵𝑛−1 and so 𝑓⊥/𝑓 is not spanned by (−2)-roots. Hence also for
𝑛 = 5, . . . , 9 the root-lattice for ℤ1,𝑛 is not (−2)-reflective.

17.3.C Application to lattices splitting off copies of the hyperbolic plane.
This situation occurs frequently in the study of singularities as we shall see in Chap-
ter 18. Assume that we are given an even lattice 𝐿 = 𝑈 ⦹ 𝐿′ and we let {𝑒,𝑓} be
the standard basis of 𝑈. Then for all 𝑦 ∈ 𝐿′ one has Eichler–Siegel transformations
𝜓𝑒,𝑦 as well as 𝜓𝑓,𝑦. The group generated by those transformations will be denoted
by

𝜓𝑈 (𝐿′) = ⟨𝜓𝑒,𝑦 , 𝜓𝑓,𝑦⟩𝑦∈𝐿′ ⊂ O (𝐿).

As indicated by the notation, this group does not depend on the choice of basis
for 𝑈 (see Example 17.1.2.2). The following result shows how one can use Eichler–
Siegel transformations to describe certain orbits under the isometry group.

Lemma 17.3.9 ([144, Lemma 2.5]). Let 𝑈 be a hyperbolic plane with standard basis
{𝑒,𝑓}. Consider the lattice 𝑈 ⦹ 𝑈′ where 𝑈′ is another hyperbolic plane. Then
𝜓𝑈𝑈

′ = 𝜓𝑈′𝑈 ≃ SL2 (ℤ) × SL2 (ℤ). Moreover, every vector 𝑥 is in the 𝜓𝑈 (𝑈′)-orbit
of some vector of the form 𝑎𝑒 + 𝑑𝑓 with 𝑑 |𝑎 . In particular, if 𝑥 is primitive with
𝑞(𝑥) = 𝑎, we can take 𝑑 = 1.

Proof. Let {𝑒′,𝑓′} be a standard basis for 𝑈′, then

𝑎𝑒 + 𝑑𝑓 + 𝑏𝑒′ + 𝑐𝑓′ ↦→
(
𝑎 𝑏
−𝑐 𝑑

)
defines an isometry between𝑈⦹𝑈′ and (Mat(2×2,ℤ),det). Under this isometry the
transformations 𝜓𝑒,±𝑒′ ,𝜓𝑒,±𝑓′ ,𝜓𝑓,±𝑒′ , 𝜓𝑓,±𝑓′ correspond to row and column additions
and subtractions. Since SL2 (ℤ) is generated by the corresponding elementary
matrices, this shows in particular that 𝜓𝑈𝑈

′ = 𝜓𝑈′𝑈 ≃ SL2 (ℤ) × SL2 (ℤ) – the
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first copy acting from the left on 2 × 2 integral matrices, and the second copy
acting from the right. Using these elementary transformations, a given matrix 𝑀 ∈
Mat(2 × 2,ℤ) can be put in diagonal form diag(𝑎 ,𝑑) with 𝑑 |𝑎 (use the elementary
divisor theorem A.1.2 applied to the submodule of ℤ2 generated by the column

vectors

(
𝑎
−𝑐

)
and

(
𝑏
𝑑

)
). In terms of a primitive vector 𝑥 ∈ 𝑈 ⦹𝑈′ this means that

we can either take 𝑥 = 𝑓 or 𝑥 = 𝑎𝑒 + 𝑓. □

Corollary 17.3.10. Suppose 𝐿 = 𝑈 ⦹ 𝐿′, with 𝐿′ = 𝑈′ ⦹ 𝐿′′, 𝐿′′ even, and let
𝑥 ∈ 𝐿. Then

1. there exists an isometry of 𝐿 belonging to 𝜓𝑈 (𝑈′) which sends 𝑥 to 𝛼𝑒+𝛽𝑓+𝑥′′
with 𝛽 |𝛼 and 𝑥′′ ∈ 𝐿′′;

2. if, moreover, 𝑏(𝑥,𝐿) = ℤ, there is an isometry belonging to 𝜓𝑈 (𝐿′) sending 𝑥
to 𝑎𝑒 + 𝑓, 𝑎 = 𝑞(𝑥).

Proof. Assume 𝑥 = 𝑥′ + 𝑥′′ with 𝑥′ ∈ 𝑈 ⦹𝑈′ and 𝑥′′ ∈ 𝐿′′.
1. This follows by applying Lemma 17.3.9 to 𝑥′. We thus may assume that
𝑥′ = 𝛼𝑒 + 𝛽𝑓 ∈ 𝑈, where the integer 𝛽 divides the integer 𝛼. This implies

𝑏(𝑥,𝑢) ≡ 0 mod 𝛽, ∀𝑢 ∈ 𝑈. (17.8)

2. Suppose that 𝑦 ∈ 𝐿 satisfies 𝑏(𝑥, 𝑦) = 1 and write 𝑦 = 𝑢 + 𝑦′, 𝑢 ∈ 𝑈, 𝑦′ ∈ 𝐿′,
and apply 𝜓 = 𝜓𝑒,𝑦′ to 𝑥. Then we have 𝜓(𝑒) = 𝑒 and 𝜓(𝑓) = 𝑓 − 𝑦′ − 𝑞(𝑦′)𝑒. Since
𝜓−1 = 𝜓𝑒,−𝑦′ we find 𝜓−1 (𝑓) = 𝑓 + 𝑦′ − 𝑞(𝑦′)𝑒 and so, writing 𝜓(𝑥) = 𝑎 ′𝑒 + 𝑏′𝑓 + 𝑧,
𝑧 ∈ 𝐿′, one finds

𝑏′ = 𝑏(𝜓𝑥, 𝑒) = 𝑏(𝜓𝑥,𝜓𝑒) = 𝑏(𝑥, 𝑒) = 𝛽

𝑎 ′ = 𝑏(𝜓𝑥,𝑓) = 𝑏(𝑥,𝜓−1𝑓) = 𝑏(𝑥,𝑓 + 𝑦′ − 𝑞(𝑦′)𝑒) = 𝛼 + 𝑏(𝑥, 𝑦′) − 𝑞(𝑦′)𝛽
≡ 𝑏(𝑥, 𝑦′) mod 𝛽 since 𝛽 |𝛼
≡ 𝑏(𝑥,𝑢 + 𝑦′) mod 𝛽 by (17.8)

≡ 𝑏(𝑥, 𝑦) mod 𝛽

≡ 1 mod 𝛽 by the assumption on 𝑦.

It follows that 𝑎 ′𝑒 + 𝑏′𝑓 ∈ 𝑈 is primitive and so, again by Lemma 17.3.9, we may
assume that 𝑏′ = 1, that is, the 𝜓𝑈𝐿

′-orbit of 𝑥 contains a vector of the form
𝑎 ′𝑒 + 𝑓 + 𝑧′. Applying 𝜓𝑒,𝑧′ to this vector yields a vector of the form 𝑥 = 𝑎 𝑒 + 𝑓
with 𝑎 = 𝑞(𝑥) = 𝑞(𝑥). □

In Section 18.1 we shall use some more properties of lattices that split off a
hyperbolic plane:

Lemma 17.3.11. Let 𝐿 be an even lattice. Suppose that 𝐿 = 𝑈⦹ 𝐿′ and let {𝑒,𝑓}
be a standard basis for 𝑈. Then

1. The group O (𝑈) normalizes 𝜓𝑈 (𝐿′).



17.3 Eichler–Siegel Transformations 323

2. Suppose that 𝑟 ∈ 𝐿′ is a (−2)-root. Then

𝜓𝑒,𝑟 = 𝜎𝑟◦𝜎𝑟+𝑒 (17.9)

𝜎𝑟 = 𝜓𝑓,𝑟◦𝜓𝑒,−𝑟◦𝜓𝑓,𝑟◦𝜎𝑒−𝑓 (17.10)

3. Suppose that 𝐿′ is a lattice generated by (−2)-roots. Then 𝜓𝑈 (𝐿′) ⊂ W− (𝐿).

Proof. 1. By Example 17.1.2 we only have to consider the effect of the reflection
𝜎𝑒−𝑓 interchanging 𝑒 and 𝑓. For 𝑦 ∈ 𝐿′ one finds 𝜎𝑒−𝑓◦𝜓𝑒,𝑦◦𝜎𝑒−𝑓 = 𝜓𝑓,𝑦 and likewise
𝜎𝑒−𝑓◦𝜓𝑓,𝑦◦𝜎𝑒−𝑓 = 𝜓𝑒,𝑦.
2. By Lemma 17.3.3.3 we have 𝜓𝑒,𝑟 = 𝜓𝑒,𝑟+𝑒 which by Proposition 17.3.6.1 equals
𝜎𝑒−(𝑟+𝑒) ◦𝜎𝑟+𝑒 = 𝜎−𝑟◦𝜎𝑟+𝑒.

□

Historical and Bibliographical Notes. Isometries in hyperbolic spaces and for

Lorentzian lattices have been studied by many people, especially by É. Vinberg [237, 238,

239, 240] and by V. Nikulin [170, 172]. Reflection subgroups of lattices with higher Witt

index have been investigated by M. Kneser [121]. M. Eichler remarks in Kap. V.1. of

[67] that his transformations 𝜓𝑓,𝑦 that we introduced in Section 17.3 were for the first

time used by C.-L. Siegel, whence the terminology ”Eichler–Siegel transformation”. The

present treatment is heavily influenced by W. Ebeling’s book [62] and the articles [60, 61].
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Applications to Singularities

Introduction

In this chapter we consider quadratic lattices (𝐿, 𝑞) generated by roots 𝑟 with
𝑞(𝑟) = −1. If a spanning set ∆ of roots can be found which forms a single orbit
under the Weyl group W− (∆), we speak of a vanishing lattice. As we shall see in
Section 18.2, these occur in the study of monodromy of singularities and of families
of hypersurfaces in projective space.

The goal of Section 18.1 is twofold. First we describe tools to recognize vanish-
ing lattices. The second goal is to see when the Weyl group is as large as possible,
that is, equal to O−,# (𝐿). The idea is first to show that W− (∆) = W− (𝐿) and then
to apply M. Kneser’s result, Theorem 17.2.11.

In practice 𝐿 is often the lattice associated to a generalized Dynkin diagram Γ.
However, in general the roots corresponding to the vertices of Γ do not define a
vanishing lattice. Theorem 18.1.7 provides a large class of Dynkin diagrams that
do not suffer from this defect. As demonstrated in Section 18.2, these can be used
to determine the monodromy group of many singularities.

However, in applications we need more, namely a class of vanishing lattices
which in a certain sense is stable under inclusions, the so-called complete vanishing
lattices (cf. Definition 18.1.4). Many lattices associated to Dynkin diagrams yield
complete vanishing lattices and so for those not only W− (𝐿) = O−,# (𝐿), but this
equality persists under inclusion into larger vanishing lattices. This is used in
Section 18.3 to determine global monodromy groups (cf. Theorem 18.3.2) .

18.1 Generalized Dynkin Diagrams and Vanishing Lattices

In this section (𝐿, 𝑞) is a quadratic integral lattice with polarization 𝑏. By ”root” we

shall mean ”(−2)-root” and accordingly we set 𝜖 = −. With appropriate changes all

results are valid for 2-roots and 𝜖 = +. The set of roots in 𝐿 is denoted ∆(𝐿), the lattice

generated by these 𝐿root, and the Weyl group W− (𝐿).

The lattices we consider in this chapter are spanned by roots which form the
nodes of a graph. If 𝑟, 𝑟′ are such roots and 𝑏(𝑟, 𝑟′) = 1, as usual, we connect the
corresponding nodes by an unlabelled edge. In the lattices also pairs {𝑟, 𝑟′} occur
for which 𝑏(𝑟, 𝑟′) = −2. We connect the corresponding nodes by a doubly dashed
edge. The resulting graphs Γ are called (generalized) Dynkin diagrams and
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the corresponding even integral lattice 𝐿Γ they give rise to the associated root-
lattice . Identifying the vertices of Γ with roots in 𝐿Γ, the Weyl group W− (Γ) of
Γ is the group generated by the reflections determined by Γ.

Let ∆ ⊂ 𝐿Γ be a set of roots. A 1-connected path within ∆ from 𝑟 ∈ ∆
to 𝑟′ ∈ ∆ is a chain 𝑟 = 𝑟0, 𝑟1, . . . , 𝑟𝑁 = 𝑟′ of roots in ∆ such that 𝑏(𝑟𝑗 , 𝑟𝑗+1) = 1,
𝑗 = 0, . . . ,𝑁 −1. This defines an equivalence relation on ∆. The equivalence classes
are called the 1-connected components of ∆. If there is only one component, ∆ is
called a 1-connected set . The Dynkin diagrams associated to finite 1-connected
sets of roots are connected. Such graphs will be called 1-connected. Similarly, one
can speak of the 1-connected components of a Dynkin graph.

We also need a suitable notation to deal with orbits of a possibly infinite set of
roots, say Λ ⊂ 𝐿. If W− (Λ) is the group generated by the reflections 𝜎𝜆, 𝜆 ∈ Λ, we
shall denote the orbit of Λ by the corresponding bold letter:

Λ = W− (Λ)Λ ⊂ 𝐿root.

Lemma 18.1.1. Two roots in a 1-connected component of a set of roots ∆ ⊂ 𝐿 = 𝐿Γ
belong to the same W− (∆)-orbit.

Proof. This follows from the observation that for any two roots 𝑟𝑖, 𝑟𝑗 with 𝑏(𝑟𝑖 , 𝑟𝑗)
= 1, one has 𝜎𝑟𝑖 ◦𝜎𝑟𝑗 𝑟𝑖 = 𝜎𝑟𝑖 (𝑟𝑖 + 𝑟𝑗) = 𝑟𝑗 . □

As announced, the specific root lattices coming from singularities are the van-
ishing lattices, ordered under containment:

Definition 18.1.2. 1. A vanishing lattice consists of a pair (𝐿,∆) of a lattice
𝐿 and a set of roots ∆ spanning 𝐿 and forming a single orbit under W− (∆) =
⟨𝜎𝑟⟩𝑟∈∆, that is ∆ = ∆.

2. A vanishing lattice (𝐿,∆) contains the vanishing lattice (𝐿′,∆′) if 𝐿′ is a
primitive sublattice of 𝐿 and ∆′ ⊂ ∆.

Remark 18.1.3. The vertices of a generalized Dynkin diagram Γ form a finite set of
roots, say ∆, spanning the lattice 𝐿Γ = ℤ ·∆. If ∆ is 1-connected, by Lemma 18.1.1
all roots in ∆ are in the same orbit under the reflection group W− (∆), but ∆ need
not be an entire orbit. Taking ∆ = W− (∆) instead of ∆ then yields a vanishing
lattice. In general, if the subset ∆ of roots of 𝐿 belongs to a single W− (∆)-orbit, this
procedure yields a vanishing lattice. Clearly, this also shows that such a vanishing
lattice is determined by the lattice itself.

For a general vanishing lattice (𝐿,∆), the Weyl group W− (𝐿) of course contains
the subgroup W− (∆), but the entire Weyl group of 𝐿 might be larger. Our goal
is to give a large class of vanishing lattices for which W− (∆) = W− (𝐿). Since in
applications we need a class of vanishing lattices which is stable under containment,
we shall look within the class of so-called complete vanishing lattices (see below for
their definition). The basic building block for such lattices is the pair (𝐿min,Γmin)
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with 𝐿min := 𝑈⦹𝑈′⦹𝐴2 (−1) and, using the standard basis {𝑒,𝑓} of 𝑈, {𝑒′,𝑓′} of
𝑈′, {𝜔1,𝜔2} of 𝐴2 (−1) with

Γmin = {𝑟1 = 𝑒 − 𝑓, 𝑟2 = 𝜔1 − 𝑒, 𝑟3 = 𝜔1, 𝑟4 = 𝜔2, 𝑟5 = 𝜔1 − 𝑒′, 𝑟6 = 𝑒′ − 𝑓′}.

There are of course other choices for a spanning set of roots, e.g., we may replace
𝑟2 with 𝑟′2 = −𝜔1 − 𝜔2 − 𝑒 − (𝑒′ + 𝑓′) and 𝑟5 with 𝑟′5 = −𝜔1 − 𝜔2 − 𝑒′ − (𝑒 + 𝑓) which
gives the graph Γ′

min. The two graphs are depicted in Fig. 18.1.1. Both graphs
are connected and since the transition matrix expressing the roots in the basis is
unimodular, the roots give a basis of 𝐿min and so this indeed defines vanishing
lattices.1

𝑟1
𝑟2 𝑟5

𝑟6

𝑟3

𝑟4

𝑟1
𝑟′2 𝑟′5

𝑟6

𝑟3

𝑟4

Figure 18.1.1: Γmin and Γ′
min

Definition 18.1.4. A vanishing lattice (𝐿,∆) is called complete if it contains a
copy of (𝐿min,Γmin).

This concept is obviously preserved under containment of vanishing lattices;
since this plays a central role later on, we set this apart.

Lemma 18.1.5. A vanishing lattice containing a complete vanishing lattice is
itself complete.

We shall further make use of some technical concepts which play a central role
in the proofs that follow:

Definition 18.1.6. A (possibly infinite) subset Λ of roots in 𝐿 is called a special
subset of roots of 𝐿 if it contains three roots 𝑟1, 𝑟2, 𝑟3, by definition a socle of Λ,
which have the following two properties:

1. The intersection behaviour of roots in the socle and with other roots 𝑟 ∈ Λ
is as in the following graph:

1The graph Γ′min is the graph used by Beauville in [18]
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𝑟1

𝑟2

𝑟3

𝑟

𝑚 = 𝑏(𝑟2, 𝑟)

𝑚 = 𝑏(𝑟3, 𝑟)

In other words, 𝑏(𝑟1, 𝑟2) = 1, 𝑏(𝑟2, 𝑟3) = −2, 𝑏(𝑟1, 𝑟) = 0 for 𝑟 ≠ 𝑟1, 𝑟2 and,
finally, 𝑏(𝑟, 𝑟2) = 𝑏(𝑟, 𝑟3) for 𝑟 ≠ 𝑟1, 𝑟2, 𝑟3. In particular it follows that 𝑟1, 𝑟2, 𝑟3
are independent (consider the Gram matrix).

2. The set Λ′ = Λ − {𝑟1, 𝑟2} is 1-connected.

We make some observations and introduce related terminology.
• If the set Λ contains at least 4 elements, it is 1-connected since then there
exists 𝑟 ∈ Λ′, 𝑟 ≠ 𝑟3 for which 𝑏(𝑟3, 𝑟) = 1 and thus 𝑏(𝑟2, 𝑟) = 1.

• The hyperbolic plane with standard basis 𝑒 = −𝑟2 + 𝑟3, 𝑓 = −𝑟1 − 𝑟2 + 𝑟3 is
called the socle plane , and the resulting decomposition 𝐿 = 𝑈 ⦹ 𝐿′ the
socle decomposition . The lattice generated by Λ′ belongs to 𝐿′ as is easily
verified.

The usefulness of these concepts and remarks is illustrated by the next result.
Its formulation uses Eichler–Siegel transformations defined in Section 17.3, and the
proof makes essential use of the results of § 17.3.C.

Theorem 18.1.7 ([60, Thm 3]). Let (𝐿, 𝑞) be a quadratic lattice of rank at least
4 containing a special subset Λ of roots which span 𝐿. Then (𝐿,Λ) is a vanishing
lattice. If, moreover, 𝐿 splits off an extra hyperbolic plane besides the socle plane,
then W− (𝐿) = W− (Λ). More precisely, we have:

1. • Let 𝑈 be the socle plane and 𝐿 = 𝑈 ⦹ 𝐿′ the corresponding socle decom-
position. Then 𝐿′ is spanned by Λ′ = Λ − {𝑟1, 𝑟2}.

• Conversely, let 𝐿 be a quadratic lattice of rank at least 4 with a decom-
position 𝐿 = 𝑈 ⦹ 𝐿′, where 𝐿′ is spanned by a 1-connected set of roots
Λ′. Let {𝑒,𝑓} be the standard basis of 𝑈 and 𝑟3 ∈ Λ′. Then the set of
roots 𝑟1 = 𝑒 − 𝑓, 𝑟2 = −𝑒 + 𝑟3, 𝑟3, 𝑟 ∈ Λ′ forms a special subset of roots.

2. With Λ′ as in 1, the roots 𝑟′ ∈ Λ′ belong to the same W− (𝐿′)-orbit.

3. 𝜓𝑈𝐿
′ ⊂ W− (Λ).

4. If, moreover, 𝐿′ = 𝑈′ ⦹ 𝐿′′ for some hyperbolic plane 𝑈′, then W− (Λ) =

W− (𝐿). In other words, the Weyl group of 𝐿 is generated by the reflections
𝜎𝑟, where the roots 𝑟 belong to Λ.
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Proof. We already observed that we get a vanishing lattice if Λ has at least 4
elements, since then Λ is 1-connected (cf. Definition 18.1.6 and use Remark 18.1.3).
1. Since Λ spans 𝐿, 𝐿′ is spanned by Λ′. Conversely, the crucial input is 𝑏(𝑒, 𝑟) =
𝑏(𝑓, 𝑟) = 0 for 𝑟 ≠ 𝑟1, 𝑟2 so that 𝑏(𝑟2, 𝑟3) = 𝑏(−𝑒 + 𝑟3, 𝑟3) = 𝑏(𝑟3, 𝑟3) = −2 while
𝑏(𝑟2, 𝑟) = 𝑏(−𝑒 + 𝑟3, 𝑟) = 𝑏(𝑟3, 𝑟) if 𝑟 ≠ 𝑟1, 𝑟2, 𝑟3.
2. By the assumption on the 1-connectedness, Lemma 18.1.1 shows that all roots
𝑟 ≠ 𝑟1, 𝑟2 are in the 𝐺-orbit of 𝑟3, where 𝐺 is the group generated by the reflections
𝜎𝑟, 𝑟 ≠ 𝑟1, 𝑟2. This group is contained in W− (𝐿′).
3. The group 𝜓𝑈𝐿

′ is generated by 𝜓𝑒,𝑟 and 𝜓𝑓,𝑟 where 𝑟 runs through a generating
set of 𝐿′. We take for the latter the set of roots Λ′. By equation (17.9), these
isometries are products of the reflections 𝜎𝑟 and 𝜎𝑟−𝑒 or 𝜎𝑟 and 𝜎𝑟−𝑓 with 𝑟 ∈ Λ′.
Let us deduce that the above generators for 𝜓𝑈𝐿

′ belong to W− (Λ).
• Since 𝑟3 − 𝑒 = 𝑟2, the corresponding reflection is in W− (Λ).
• For 𝑟3 − 𝑓 = 𝑟1 + 𝑟2 = 𝜎𝑟1𝑟2 we have 𝜎𝑟3−𝑓 = 𝜎𝑟1 ◦𝜎𝑟2 ◦𝜎𝑟1 ∈ W− (Λ).
• Assume that 𝑟 ∈ Λ′. Since Λ′ is 1-connected, we may write 𝑟 = 𝑔(𝑟3) for
some 𝑔 ∈ W− (Λ′). But then

𝜎𝑟−𝑒 = 𝑔◦𝜎𝑟3−𝑒◦𝑔
−1 ∈ W− (Λ),

𝜎𝑟−𝑓 = 𝑔◦𝜎𝑟3−𝑓◦𝑔−1 ∈ W− (Λ).

4. We first show the inclusion W− (𝐿) ⊂ 𝜓𝑈𝐿
′ ·O (𝑈). By Corollary 17.3.9 any root

𝑟 ∈ 𝐿 can be moved to a root in 𝐿′ = 𝑈′ ⦹ 𝐿′′ by an Eichler–Siegel transformation
𝜓 ∈ 𝜓𝑈′𝑈 = 𝜓𝑈𝑈

′ ⊂ 𝜓𝑈𝐿
′. Applying (17.10) it follows that 𝜎𝜓(𝑟) = 𝜓′◦𝑢 with

𝜓′ ∈ 𝜓𝑈𝐿
′ and 𝑢 ∈ O (𝑈). By Lemma 17.3.11.1 we find some 𝜓′′ ∈ 𝜓𝑈𝐿

′ such that

𝜎𝑟 = 𝜓−1◦𝜎𝜓(𝑟) ◦𝜓

= 𝜓−1◦𝜓′◦𝑢◦𝜓

= 𝜓−1◦𝜓′◦𝜓′′◦𝑢,

and hence 𝜎𝑟 ∈ 𝜓𝑈𝐿
′ · O (𝑈).

Next, since Nm𝜖
spin 𝜓 = det𝜓 = 1 for all 𝜓 ∈ 𝜓𝑈𝐿

′ and since by Example 17.1.2
the only isometry in O (𝑈) with the same invariants is the identity, we conclude

W− (𝐿) ∩ SO (𝐿) ⊂ 𝜓𝑈𝐿
′ ⊂ W− (Λ), (18.1)

where the rightmost inclusion is assertion 3. If 𝜎 ∈ W− (𝐿), equation (18.1) implies
that 𝜎◦𝜏 ∈ W− (Λ) for all 𝜏 ∈ W− (Λ) and hence W− (𝐿) ⊂ W− (Λ) so that these two
sets coincide. □

If there exists a special subset of roots Λ spanning the lattice 𝐿 then, by
Remark 18.1.3, (𝐿,Λ) is a vanishing lattice. Now Theorem 18.1.7 comes into play.
It states that, if, besides the socle plane, 𝐿 splits off a second hyperbolic plane,
W− (Λ) is the full Weyl group of the lattice. Let us give an important class of
examples which illustrate this and serve to motivate the theorem.

Example 18.1.8. Consider the Dynkin diagram 𝑇 1
𝑝,𝑞,𝑟 depicted in Figure 18.1.2.

The vertices define a special subset of roots. We shall show that this defines a
complete vanishing lattice.



18.1 Generalized Dynkin Diagrams and Vanishing Lattices 329

𝑢𝑝−1 𝑢𝑝−2 𝑢1
𝑟

𝑟2

𝑟1

𝑠1𝑠1 𝑠𝑞−2 𝑠𝑞−1
𝑡1

𝑡𝑟−2

𝑡𝑟−1

Figure 18.1.2: Vanishing lattice given by 𝑇 1
𝑝,𝑞,𝑟,𝑝 ≥ 2, 𝑞 ≥ 3, 𝑟 ≥ 7.

The graph is 1-connected and defines a vanishing lattice by Remark 18.1.3. The
vertices of the graph form a special set of roots with socle {𝑟1, 𝑟2, 𝑟}. The three
legs have lengths 𝑝, 𝑞, 𝑟, respectively. The corresponding quadratic lattice will be
denoted by the same symbol. One verifies that

𝑇 1
𝑝,𝑞,𝑟 ≃ 𝑇𝑝,𝑞,𝑟 ⦹𝑈,

where 𝑈 is the socle plane, i.e., the hyperbolic plane with basis 𝑒 = −𝑟2 + 𝑟,
𝑓 = −𝑟1 − 𝑟2 + 𝑟, and 𝑇𝑝,𝑞,𝑟 is the Coxeter diagram depicted in Section 4.1. If

𝑝 ≥ 2, 𝑞 ≥ 3, 𝑟 ≥ 7, the diagram of 𝐸8 is a subgraph of 𝑇𝑝,𝑞,𝑟 and a proof similar

to the proof of Lemma 4.1.5 shows then that 𝑇𝑝,𝑞,𝑟 ≃ 𝑇𝑝,𝑞,4 ⦹𝑈 ⦹ 𝐴𝑟−6 (−1). Since
𝑇𝑝,𝑞,𝑟 splits off a copy of the hyperbolic plane, and 𝑇𝑝,𝑞,4 contains 𝐴2 (−1) and so
𝑇 1
𝑝,𝑞,𝑟 contains 𝐿min = 𝑈⦹𝑈⦹𝐴2 (−1), by Remark 18.1.3 it is a complete vanishing
lattice. Its reflection group is maximal as follows from Theorem 18.1.7, but we
shall prove shortly (cf. Theorem 18.1.9) that this also follows from completeness
of the vanishing lattice.

We shall show now that the class of complete vanishing lattices has indeed the
merit of having maximally possible Weyl groups:

Theorem 18.1.9 ([63, Thm. 5.3.4]). Let (𝐿,∆) be a complete vanishing lattice.
Then W− (∆) = W− (𝐿) = O−,# (𝐿).

Proof. The equality W− (𝐿) = O−,# (𝐿) is a consequence of M. Kneser’s result,
Corollary 17.2.12, since 𝐿 contains 𝐿2 = 𝑈 ⦹ 𝑈′ ⦹ 𝐴2 (−1) which has rank 6 and
discriminant 3, and 𝐿1 = 𝑈 ⦹𝑈′ ⦹𝐴1 (−1) which has rank 5 and discriminant −2.

For the leftmost equality we maneuver us in the situation of Theorem 18.1.7
and search for a special set of roots which generate the lattice. We break up the
proof in the following steps.
Connectedness: The graph of ∆ is 1-connected. We postpone the proof, cf.
Lemma 18.1.10 below.
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Characterizing W− (∆): The Weyl group of ∆ is the group 𝐺 generated by the
reflections in the roots from ∆ having distance ≤ 1 to 𝑟3, that is, the following set
of roots

∆0 = {𝑟 ∈ ∆ | 𝑟 = 𝑟3 or 𝑏(𝑟, 𝑟3) = 1}. (18.2)

Moreover, the latter set generates 𝐿. Here 𝑟3 ∈ Λmin is as in Figure 18.1.1, a root
orthogonal to the sum 𝑈 ⦹𝑈′ of the hyperbolic planes spanned by {𝑒,𝑓, 𝑒′,𝑓′}.

To show the claim, first notice that by Lemma 18.1.10 we can connect 𝑟 ∈ ∆ to
𝑟3 by a chain (𝑟3, . . . , 𝑟𝑘 = 𝑟) of minimal length 𝑘 − 2. Next, we show by induction
on the minimal length that 𝑟 is in the 𝐺-orbit of 𝑟3. We may assume that 𝑘 > 2.
By the induction hypothesis, there exists 𝑔 ∈ 𝐺 such that 𝑔(𝑟𝑘−1) = 𝑟3 and since
𝑏(𝑟3, 𝑔(𝑟)) = 𝑏(𝑔(𝑟𝑘−1), 𝑔(𝑟)) = 𝑏(𝑟𝑘−1, 𝑟 = 𝑟𝑘) = 1, we have 𝑔(𝑟) ∈ ∆0. Hence the
reflection 𝜎𝑔(𝑟) = 𝑔𝜎𝑟𝑔

−1 belongs to 𝐺. We infer

𝑟 = 𝜎𝑟𝑘−1 ◦𝜎𝑟𝑘 (𝑟𝑘−1)
= 𝜎𝑟𝑘−1 ◦𝑔−1◦(𝑔𝜎𝑟𝑔−1) (𝑟3) ∈ 𝐺 · 𝑟3.

Since all roots 𝑟 ∈ ∆ belong to 𝐺𝑟3 ⊂ 𝐺∆0, we have W− (∆) = 𝐺 = W− (∆0) and the
lattice spanned by ∆ must be the same as the lattice spanned by ∆0.
Construction of a special subset of roots: With Γmin ⊂ ∆ as in Figure 18.1.1
and 𝑈 = ℤ𝑒 + ℤ𝑓, 𝑈′ = ℤ𝑒′ + ℤ𝑓′, let Λ be the set of roots consisting of

• the roots of Γmin;
• the 1-connected component Λ′ of ∆ ∩𝑈⊥ containing 𝑟3.

Then Λ ⊂ ∆ is a special subset of roots of 𝐿 containing Γmin. Moreover, 𝐿 =

𝑈 ⦹𝑈′ ⦹ 𝐿′′.

Let us prove these assertions. A root 𝑟 ∈ Λ′ is orthogonal to 𝑟1 and 𝑏(𝑟, 𝑟2) =
𝑏(𝑟, 𝑟3). Since Γmin is 1-connected and contains 𝑟3 which belongs to the 1-connected
set Λ′, also Λ is 1-connected. Hence Λ is a special subset of roots in 𝐿. The lattice
spanned by Γmin contains 𝑈 ⦹ 𝑈′ and so does ℤΛ. It remains to show that 𝐿
is spanned by Λ. By the previous step it suffices to show that ∆0, the subset of
roots of ∆ having distance ≤ 1 belongs to the lattice ℤ∆0. Let us show the latter
assertion. So take 𝑟 ∈ Λ, 𝑟 ≠ 𝑟3. By Corollary 17.3.10 there is some 𝜓 ∈ 𝜓𝑈 (𝑈′)
with 𝜓(𝑟) ∈ 𝑈′ ⦹ 𝐿′′. Then 𝜓(𝑟3) = 𝑟3 since 𝑟3 is orthogonal to 𝑈 ⦹𝑈′ and so

𝑏(𝜓(𝑟), 𝑟3) = 𝑏(𝜓(𝑟),𝜓(𝑟3))
= 𝑏(𝑟, 𝑟3) = 1,

where the last equality holds according to the definition (18.2) of ∆0. So 𝜓(𝑟) ∈ Λ′.
Since 𝜓 ∈ W− (Λ), we conclude 𝑟 = 𝜓−1 (𝜓𝑟) ∈ W− (Λ)Λ′ ⊂ ℤΛ, which proves our
claim that ∆0 ⊂ ℤΛ.
Final step: Once we have found the special subset of roots, it remains to apply
Theorem 18.1.7. □

As announced, the following result completing the proof of Theorem 18.1.9
remains to be shown.
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Lemma 18.1.10. For a complete vanishing lattice (𝐿,∆), the set ∆ is 1-connected.

Proof. Step 1: Any 1-connected component ∆′ of ∆ is a complete W− (∆′)-orbit.
To prove this, first remark that by Lemma 18.1.1 a 1-connected subset ∆′ of ∆
belongs to a single orbit under W− (∆′). On the other hand the complete W− (∆′)-
orbit ∆′ belongs to ∆′. To see this, one shows that for 𝑟, 𝑠 ∈ ∆′ one has 𝜎𝑟𝑠 ∈ ∆′.
We distinguish two cases.

• For 𝑟 = 𝑠 this just means that we need to see that −𝑟 ∈ ∆′. To show this,
first remark that since (𝐿,∆) is a vanishing lattice, 𝑟 can be moved to any
other root in ∆ by means of an element of the Weyl group of ∆. Since (𝐿,∆)
is complete it contains (𝐿min,Γmin) and hence 𝑟4 ∈ ∆. So there is some 𝛾 ∈
W− (∆) for which 𝛾 (𝑟4) = 𝑟. The roots 𝑟4, 𝑟5, 𝑟6 ∈ ∆ define a Dynkin diagram
of type 𝐴3 (see Figure 18.1.1) and ∆ contains all of its roots. These form a
1-connected subset of ∆ as one can see in Figure 18.1.3. In particular, −𝑟4

−𝛼3

𝛼2 + 𝛼3 −(𝛼2 + 𝛼3)

𝛼1 𝛼2

−(𝛼1 + 𝛼2 + 𝛼3)

𝛼1 + 𝛼2 + 𝛼3

−𝛼2

𝛼3

−𝛼1

−(𝛼1 + 𝛼2) (𝛼1 + 𝛼2)

Figure 18.1.3: The root system 𝐴3 (−1) is 1-connected.

belongs to this 1-connected subset of ∆. The same holds for the images under
𝛾 which then must be included in ∆′ since ∆′ is a 1-connected component of
∆ and 𝐴3 (−1) is 1-connected. But then also −𝑟 = 𝛾 (−𝑟4) belongs to ∆′.

• For 𝑟 ≠ 𝑠, take a 1-connected path in ∆′ of minimal length from 𝑟 to 𝑠, say
𝑟 = 𝑠0, 𝑠1, . . . , 𝑠𝑘−1, 𝑠𝑘 = 𝑠, and suppose that by induction we have shown that
𝜎𝑟𝑠𝑘−1 connects within ∆′ to 𝑟. Since 𝜎𝑟𝑠𝑘−1 belongs to the 1-connected ∆′,
and 𝜎𝑟𝑠𝑘−1 and 𝜎𝑟𝑠𝑘 ∈ ∆ are connected, we must have 𝜎𝑟𝑠(= 𝜎𝑟𝑠𝑘) ∈ ∆′.

Step 2: We claim that reflection in a root 𝑟 ∈ ∆ fixes some root 𝑟′ ∈ ∆′, that is, for
which 𝑏(𝑟, 𝑟′) = 0. To show this, first remark that since we have a vanishing lattice,
there is a reflection 𝛾 ∈ W− (∆) which maps a root of Γmin to ∆′. But then, since ∆′

is a 1-connected component of ∆ and Γmin is itself 1-connected, 𝛾 (Γmin) ⊂ ∆′. On
the other hand, by Corollary 17.3.10, we can move 𝛾−1𝑟 to 𝑈 ⦹ 𝐿′′ by an element
𝜓 ∈ 𝜓𝑈 (𝑈′) and since 𝑟6 = 𝑒′ − 𝑓′ ∈ 𝑈′ is orthogonal to 𝑈 ⦹ 𝐿′′ we have

0 = 𝑏(𝑟6,𝜓𝛾−1𝑟)
= 𝑏(𝛾𝜓−1 (𝑟6), 𝑟).
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By Lemma 17.3.11, all elements of 𝜓𝑈 (𝑈′ ⦹ 𝐴2 (−1)) ⊂ O (Γmin) such as 𝜓−1 are
products of reflections because 𝑈′ ⦹ 𝐴2 (−1) is indeed a root-lattice.2 Hence,
since Γmin ⊂ ∆′ we have 𝛾 (𝑟6) ∈ ∆′ and 𝛾𝜓−1𝛾−1 ∈ W− (∆′). Consequently
𝑟′ = 𝛾𝜓−1𝑟6 = 𝛾𝜓−1𝛾−1𝛾𝑟6 belongs to the W− (∆′)-orbit of ∆′ and so to ∆′ as desired.
Final step: The Weyl group W− (∆) acts transitively on the 1-connected compo-
nents of ∆. By Step 2 this group leaves the 1-connected component ∆′ invariant
and so there is just one such component, that is ∆ itself is 1-connected. □

Remark. 𝐴2 (−1) is not 1-connected: the set of roots {𝑎1,𝛼2,−(𝛼1 + 𝛼2)} as well as
the set {−𝛼1 − 𝛼2,𝛼1 + 𝛼2} is 1-connected, but these two sets cannot be connected.

Examples 18.1.11. 1. The Dynkin diagram 𝑇 1
𝑝,𝑞,𝑟 from Figure 18.1.2 defines a

special subset of roots in the lattice it defines and yields a vanishing lattice. As we
remarked in Example 18.1.8, its reflection group is maximal. It forms a complete
vanishing lattice, provided 𝑝 ≥ 2, 𝑞 ≥ 3, 𝑟 ≥ 7 since 𝑇 1

𝑝,𝑞,𝑟 = 𝑇𝑝,𝑞,4⦹𝑈⦹𝑈′⦹𝐴𝑟−6 (−1),
which contains 𝑈 ⦹𝑈′ ⦹ 𝐴2 (−1) (all legs of 𝑇𝑝,𝑞,4 have ≥ 2 nodes).
2. Every vanishing lattice containing 𝑇 1

𝑝,𝑞,𝑟 as in the first example is a complete
vanishing lattice.

18.2 Application to the Monodromy of Singularities

In this section (𝑋,𝑥) is a germ of an isolated hypersurface singularity of even dimension

𝑛. Furthermore, 𝜖 =

{
− or − 1 if 𝑛 ≡ 2 mod 4

+ or 1 if 𝑛 ≡ 0 mod 4.

18.2.A Introduction to isolated hypersurface singularities. We let 𝑧1, . . . ,
𝑧𝑛+1 be the standard coordinates on ℂ𝑛+1 and we shall write 𝒛 = (𝑧1, . . . , 𝑧𝑛+1) for
the vector with coordinates 𝑧1, . . . , 𝑧𝑛+1

We consider germs (𝑋,𝑥) of 𝑛-dimensional hypersurfaces with an isolated singu-
larity at 𝑥. Such a singularity will be represented by the zero-set of a holomorphic
function 𝑓 : ℂ𝑛+1 → ℂ restricted to a neighborhood of the origin 0 ∈ ℂ𝑛+1, where 0
corresponds to the singularity at 𝑥. To ease the presentation we assume that 0 is
the only critical point of 𝑓. So, if 𝑡 is a coordinate on the target space, the level
sets 𝑓−1 (𝑡) for 𝑡 ≠ 0 are smooth hypersurfaces while 𝑓−1 (0) is smooth away from
0. The 𝑡-disc of radius 𝑟 punctured at the origin is denoted ∆∗ (𝑟).

The associated Milnor fibration is obtained by restricting 𝑓 to

M = {|𝒛 |2 < 𝜂} ∩ 𝑓−1 [∆∗ (𝑟)],

where 𝜂 and 𝑟 are sufficiently small so that 𝑓 : M → ∆∗ (𝑟) is a locally trivial
fibration. Its typical fiber, 𝑀∗, is the so-called Milnor fiber associated to the

2Here the extra root-lattice 𝐴2 (−1) is essential since 𝑈′ is not a root-lattice.
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singularity. We think of the lower index ∗ as the “general point” of the punctured
disk ∆∗ (𝑟). The Milnor fiber has the homotopy type of a bouquet of 𝜇 (real)
spheres of dimension 𝑛, where 𝜇 is the Milnor number and hence 𝐻𝑛 (𝑀∗,ℤ) is
a free ℤ-module of rank 𝜇. The orientation induced by the complex structure
defines the intersection pairing

𝐻𝑛 (𝑀∗,ℤ) ×𝐻𝑛 (𝑀∗,ℤ) → ℤ,

which is symmetric and bilinear, but not necessarily non-degenerate. We denote
this pairing with a dot. The resulting lattice

Λ𝑋,𝑥 = (𝐻𝑛 (𝑀∗,ℤ), · )

is called the Milnor lattice of (𝑋,𝑥). It comes equipped with the action of the
monodromy operator 𝑇𝑋,𝑥 which is induced by moving the Milnor fiber of 𝑓 once
about the origin in anti-clockwise direction.

Examples 18.2.1. 1. The function 𝑓(𝒛) = 𝑧21 + · · · + 𝑧2𝑛+1 has a single critical
point at the origin. The corresponding singularity is an ordinary double point. If
𝑡 ≠ 0, the fiber 𝑓−1 (𝑡) is the smooth hypersurface

∑
𝑗 𝑧

2
𝑗 = 𝑡. The Milnor number

is 1 since 𝐻𝑛 (𝑀∗,ℤ) = ℤ is generated by a so-called vanishing cycle 𝛿 given by
{𝑥2

1 + · · · + 𝑥2
𝑛+1 = 𝑡∗} ∩ {|𝒛 |2 < 𝜂}, where 𝑧𝑗 = 𝑥𝑗 + 𝒊𝑦𝑗 , 𝑗 = 1, . . . ,𝑛 + 1, and 𝑡∗ is the

𝑡-coordinate of the point ∗. It is well known (cf. e.g. [134, §6]) that 𝛿 · 𝛿 = 2𝜖 and
that the monodromy operator 𝑇𝑋,𝑥 is the reflection 𝑠𝛿, corresponding to 𝛿.
2. More generally, consider the du Val singularities of Table 4.5.1. The minimal
resolution of these singularities is a connected chain of rational curves of self-
intersection −2 whose dual graph is one of the Dynkin diagrams 𝐴𝑘,𝐷𝑘, 𝐸6,𝐸7,𝐸8.
The construction on page 102 shows that a tubular neighborhood of such a chain
is a disc bundle over a wedge of 2-spheres, and from this it follows that the Milnor
fibre has the same homotopy type as the latter wedge of 2-spheres. Du Val-type
singularities occur in any dimension and are denoted by the same symbols as for
dimension 2. Their Milnor lattices are given in Table 18.2.1. The Milnor number
for 𝐴𝑘,𝐷𝑘 and 𝐸𝑘 equals 𝑘.

Table 18.2.1: Milnor lattice of the du Val singularities

Name equation Milnor lattice

𝐴𝑘 𝑧1𝑧2 + 𝑧𝑘+13 + ∑
𝑗≥4 𝑧

2
𝑗 = 0 𝐴𝑘 (𝜖)

𝐷𝑘 𝑧21 + 𝑧22 + 𝑧𝑘−13 + ∑
𝑗≥4 𝑧

2
𝑗 = 0 𝐷𝑘 (𝜖)

𝐸6 𝑧21 + 𝑧32 + 𝑧43 +
∑

𝑗≥4 𝑧
2
𝑗 = 0 𝐸6 (𝜖)

𝐸7 𝑧21 + 𝑧32 + 𝑧2𝑧33 +
∑

𝑗≥4 𝑧
2
𝑗 = 0 𝐸7 (𝜖)

𝐸8 𝑧21 + 𝑧32 + 𝑧53 +
∑

𝑗≥4 𝑧
2
𝑗 = 0 𝐸8 (𝜖 )
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18.2.B Deforming hypersurface singularities. For a proper treatment of this
topic see e.g. [142, Ch. 8], [5, Ch. 1]. The basic concept is that of a semi-
universal unfolding of the isolated singularity (𝑋,𝑥). Roughly speaking a semi-
universal unfolding or miniversal deformation of (𝑋,𝑥) is a family of hypersurfaces
{𝑋𝑢}𝑢∈𝑈 , where the base manifold 𝑈 is a ball centered at 0 with 𝑋0 ≃ 𝑋 and which
“contains” all deformations of (𝑋,𝑥). More precisely, every deformation {𝑋𝑡}𝑡∈𝑇
of (𝑋,𝑥) is the pull-back of a semi-universal unfolding by a holomorphic map
𝜙 : 𝑇 → 𝑈 which is ”infinitesimally unique at 0” in the sense that the derivative
of 𝜙 at 0 is uniquely determined by the family {𝑋𝑡}. It is well known that there
exists a semi-universal unfolding of the shape

𝐹 (𝒛,𝑢0, . . . ,𝑢𝜏−1) = 𝑓(𝒛) + 𝑢0 + 𝑢1𝒛𝑩1 + · · · + 𝑢𝜏−1𝒛𝑩𝜏−1 . (18.3)

The multi-index notation we use means this: if 𝑩𝑗 = (𝑏1,𝑗 , . . . , 𝑏𝑛+1,𝑗), one sets

𝒛𝑩𝑗 = 𝑧
𝑏1,𝑗
1 · · · 𝑧𝑏𝑛+1,𝑗𝑛+1 .

The exponents 𝑩𝑗 are chosen so that {1, 𝒛𝑩1 , . . . , 𝒛𝑩𝜏−1 } is a basis for the algebra
𝐽𝑋,𝑥/𝑓, where

𝐽𝑋,𝑥 = ℂ⟦𝒛⟧/(𝜕𝑓/𝜕𝑧1, . . . , 𝜕𝑓/𝜕𝑧𝑛+1)
is the jacobian algebra and 𝑓 ∈ 𝐽𝑋,𝑥 is the class of 𝑓 in the jacobian algebra. Write
𝒖 = (𝑢1, . . . ,𝑢𝜏−1). The number 𝜏 is the Tjurina number of the singularity. Then
the function

𝑭 : ℂ𝑛+1+𝜏 → ℂ𝜏 , (𝒛,𝑢0,𝒖) → (𝐹 (𝒛,𝑢0,𝒖),𝒖)
restricted to a suitable small neighbourhood 𝑉 of 0 is a semi-universal unfolding
of 𝑓. The critical points of 𝑭 by definition make up the discriminant locus DF

of F, a hypersurface in 𝑈. If 𝑈 is small enough, the fibers over DF have isolated
singularities only and the locus of a given isomorphism type of singularity (𝑌, 𝑦)
forms a locally closed subvariety of the discriminant locus. If (𝑋,𝑥) is a singularity
in its closure we say that (𝑌, 𝑦) is adjacent to (𝑋,𝑥). Such a singularity can be
viewed as less complicated than (𝑋,𝑥). The ordinary double point singularities,
making up an open dense stratum of the discriminant, give the simplest type
of singularity while the stratum 𝑆𝜇 parametrizes the most complex ones, those
with Milnor number 𝜇. Although the singularities with fixed Milnor number are
topologically the same, this need not be the case in the biholomorphic category.
To see this, observe that the group of germs of biholomorphic automorphisms of
(𝑋,𝑥) acts on 𝑆𝜇, and while the points in the orbit of 0 (corresponding to (𝑋,𝑥))
are all isomorphic, those in a slice transversal to this orbit are not. The dimension
𝑚 of such a slice gives the number of moduli of (𝑋,𝑥) and we say that (𝑋,𝑥) is an
𝑚-modal singularity . If 𝑚 = 1 we speak of a unimodal singularity.

Examples 18.2.2. 1. The ordinary double point 𝑧21 + · · · + 𝑧2𝑛+1 = 0 of Exam-
ple 18.2.1 has the function 𝑧21 + · · · + 𝑧2𝑛+1 − 𝑡 as its semi-universal unfolding and so
𝜏 = 𝜇 = 1. The discriminant locus is the origin and the modality is 0.
2. The other Du Val singularities have 𝜇 = 𝜏 as well and the modality is 0. For
instance, for 𝐸6 the jacobian ring has a basis {1, 𝑧2, 𝑧3, 𝑧23, 𝑧2𝑧3, 𝑧2𝑧23} consisting of
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6 elements and it also contains the defining polynomial.
3. The hyperbolic singularities 𝑇𝑝,𝑞,𝑟. In dimension 2 these singularities are
given by:

𝑓 = 0, 𝑓 = 𝑥𝑝 + 𝑦𝑞 + 𝑧𝑟 + 𝑎𝑥𝑦𝑧, 𝑎 ∈ ℂ×,
1

𝑝
+ 1

𝑞
+ 1

𝑟
< 1.

With 𝐽𝑓 the jacobian ideal, we see that the vector space ℂ⟦𝑥, 𝑦, 𝑧⟧/(𝐽𝑓,𝑓) is gen-

erated by 1 together with the monomials 𝑥𝑘, 𝑘 = 1, . . . ,𝑝 − 1, 𝑦ℓ, ℓ = 1, . . . , 𝑞 − 1,
𝑧𝑚, 𝑚 = 1, . . . , 𝑟 − 1, and so 𝜏(𝑓) = 𝑝 + 𝑞 + 𝑟 − 2. Because of the relation

𝑝−1𝑥𝑓𝑥 + 𝑞−1𝑦𝑓𝑦 + 𝑟−1𝑧𝑓𝑧 − 𝑓 = (𝑝−1 + 𝑞−1 + 𝑟−1 − 1)𝑎𝑥𝑦𝑧,

we find 𝜇 = 𝑝 + 𝑞 + 𝑟 − 2. For all non-zero 𝑎 the singularities have the same
Milnor number. It turns out (see [5, Ch. I.2.3]) that the isomorphism class of the
singularity varies with 𝑎 , and so it is a unimodal singularity.
4. Milnor lattices can have a non-zero null-space. The simplest are the so-called
parabolic singularities. These are also unimodal, again by [5, Ch. I.2.3].

Table 18.2.2: Milnor lattice of the parabolic singularities

Name equation Milnor lattice restriction

𝐸6 𝑧31 + 𝑧32 + 𝑧33 + 𝑎𝑧1𝑧2𝑧3 +
∑

𝑗≥4 𝑧
2
𝑗 = 0 𝐸6 (𝜖) 𝑎3 + 27 ≠ 0

𝐸7 𝑧41 + 𝑧42 + 𝑧23 + 𝑎𝑧1𝑧2𝑧3 +
∑

𝑗≥4 𝑧
2
𝑗 = 0 𝐸7 (𝜖) 𝑎4 − 64 ≠ 0

𝐸8 𝑧61 + 𝑧32 + 𝑧23 + 𝑎𝑧1𝑧2𝑧3 +
∑

𝑗≥4 𝑧
2
𝑗 = 0 𝐸8 (𝜖) 𝑎6 − 432 ≠ 0

18.2.C Monodromy. Let the base 𝑈 ⊂ ℂ𝜏 of a semi-universal unfolding F of
the singularity (𝑋,𝑥) be a small enough ball about 0 such that 𝑭−1𝑈 ⊂ 𝑉 away
from the discriminant locus DF gives a locally trivial differentiable fiber bundle

𝑭−1 [𝑈 −𝑈 ∩ DF] → 𝑈 −𝑈 ∩ DF,

and such that the fiber 𝑭∗,0 of 𝑭 passing through the point (∗, 0) intersected with
the ball |𝒛 | < 𝜂 is the Milnor fiber 𝑀∗ of (𝑋,𝑥). By definition 𝐻𝑛 (𝑀∗,ℤ) = Λ𝑋,𝑥

is free of rank 𝜇. It is generated by vanishing cycles as follows. A general line
ℓ intersects the discriminant hypersurface DF transversally. It turns out that ℓ ∩
𝑈 ∩DF consists of precisely 𝜇 points, say 𝑡1, . . . , 𝑡𝜇, and the fiber of 𝑭 over each of
these points has exactly one ordinary double point, say 𝑠𝑗 , and no other singular
points. In Example 18.2.1 we found a vanishing cycle 𝛿′𝑗 in the fibre near 𝑠𝑗 . We

want to transport it to (∗, 0) ∈ 𝑈 along a well-chosen path.
To this end we introduce a distinguished set of generators of the fundamental

group 𝜋1 (𝑈 − 𝑈 ∩ DF, (∗, 0)), namely the loops 𝛾𝑗 , 𝑗 = 1, . . . ,𝜇, which start at
(∗, 0) ∈ 𝑈 ∩ ℓ, follow the straight line segment ℓ𝑗 from (∗, 0) to the first point of
intersection with a little circle 𝜎𝑗 about 𝑡𝑗 , traverse this circle in anti-clockwise
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(∗, 0)

𝑡1

ℓ1
𝜎1

𝑡2
ℓ2

𝜎2

𝑡3

ℓ3

𝜎3𝑡𝜇

ℓ𝜇

𝜎𝜇

Figure 18.2.1: Generators of the fundamental group

direction and then go back to (∗, 0) along ℓ𝑗 as in Figure 18.2.1. We assume
that the loops are numbered consecutively as in the figure and that any two of
them only have (∗, 0) in common. These loops generate the fundamental group
of 𝑈 ∩ ℓ − {𝑡1, . . . , 𝑡𝜇} (recall that 𝑈 ∩ ℓ is a disc containing all of the points 𝑡𝑗).
The vanishing cycle 𝛿𝑗 in 𝐻𝑛 (𝑀∗,ℤ) for 𝑗 = 1, . . . ,𝜇, is obtained by transporting
𝛿′𝑗 along the path ℓ𝑗 to the fiber over (∗, 0) ∈ 𝑈. The monodromy representation

associated to (an unfolding of) the singularity is by definition the representation
of the fundamental group 𝜋1 (𝑈 −𝑈 ∩DF, (∗, 0)) on Λ𝑋,𝑥 = 𝐻𝑛 (𝑭∗,0,ℤ) with image
the monodromy group associated to the singularity , denoted

Mon(Λ𝑋,𝑥) ⊂ O (Λ𝑋,𝑥).

Since by [142, Chap. 7] the inclusion 𝑈 ∩ ℓ ↩→ 𝑈 induces a surjection

𝜋1 (𝑈 ∩ ℓ − {𝑡1, . . . , 𝑡𝜇}, (∗, 0)) ↠ 𝜋(𝑈 − ∆, (∗, 0)), (18.4)

the action of the monodromy group is completely described by the automorphism 𝑇𝑖
on 𝐻𝑛 (𝑀∗) resulting from moving vanishing cycles around the loops 𝛾𝑖, 𝑖 = 1, . . . ,𝜇.
From what we have seen in the case of an ordinary double point, 𝑇𝑖 is a reflection
in the hyperplane 𝛿⊥𝑖 ⊂ 𝐻𝑛 (𝑀∗). One can show that the discriminant locus is a
connected hypersurface and then, by the arguments in [134, §7], [142, Chap. 7], it
follows that all vanishing cycles are in the same orbit under the reflection group
they generate:

Theorem 18.2.3. The set ∆𝑋,𝑥 = {𝛿1, . . . , 𝛿𝜇} of vanishing cycles is a basis for the
Milnor lattice Λ𝑋,𝑥. All of these vanishing cycles are in the same orbit under the
action of the monodromy group. In particular (Λ𝑋,𝑥,∆𝑋,𝑥) is a vanishing lattice.

For the actual calculation of vanishing lattices such as for the following exam-
ples, we refer to [5, Ch.2] and [63].

Examples 18.2.4. 1. Let us continue with the hyperbolic singularities of Ex-
ample 18.2.2 (3). The associated vanishing lattices are not given by the Dynkin
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diagrams 𝑇𝑝,𝑞,𝑟 from Section 4.1.A, but are obtained from 𝑇 1
𝑝𝑞𝑟 by deleting the root

𝑟1. Since then 𝑟2 − 𝑟 is orthogonal to itself and all other roots, the lattice is iso-
metric to 𝑇𝑝,𝑞,𝑟 ⦹ 0.
2. The 14 exceptional unimodal families of Arnold [4] as given in Table 18.2.3. The

Table 18.2.3: Exceptional unimodal singularities

Notation Normal Form Milnor number 𝜇 Dynkin Diagram
𝐾12 𝑥3 + 𝑦7 + 𝑧2 + 𝑎𝑥𝑦5 12 𝑇 1

2,3,7

𝐾13 𝑥3 + 𝑥𝑦5 + 𝑧2 + 𝑎𝑦8 13 𝑇 1
2,3,8

𝐾14 𝑥3 + 𝑦8 + 𝑧2 + 𝑎𝑥𝑦6 14 𝑇 1
2,3,9

𝑍11 𝑥3𝑦 + 𝑦5 + 𝑧2 + 𝑎𝑥𝑦4 11 𝑇 1
2,4,5

𝑍12 𝑥3𝑦 + 𝑥𝑦4 + 𝑧2 + 𝑎𝑥2𝑦3 12 𝑇 1
2,4,6

𝑍13 𝑥3𝑦 + 𝑦6 + 𝑧2 + 𝑎𝑥𝑦5 13 𝑇 1
2,4,7

𝑊12 𝑥4 + 𝑦5 + 𝑧2 + 𝑎𝑥2𝑦3 12 𝑇 1
2,5,5

𝑊13 𝑥4 + 𝑥𝑦4 + 𝑧2 + 𝑎𝑦5 13 𝑇 1
2,5,6

𝑄10 𝑥3 + 𝑦4 + 𝑦𝑧2 + 𝑎𝑥𝑦3 10 𝑇 1
3,3,4

𝑄11 𝑥3 + 𝑦5 + 𝑦𝑧2 + 𝑎𝑧5 11 𝑇 1
3,3,5

𝑄12 𝑥3 + 𝑦3𝑧 + 𝑥𝑧3 + 𝑎𝑥𝑦4 12 𝑇 1
3,3,6

𝑆11 𝑥4 + 𝑦2𝑧 + 𝑥𝑧2 + 𝑎𝑥3𝑧 11 𝑇 1
3,4,4

𝑆12 𝑥2𝑦 + 𝑦2𝑧 + 𝑥𝑧3 + 𝑎𝑧5 12 𝑇 1
3,4,5

𝑈12 𝑥3 + 𝑦3 + 𝑧4 + 𝑎𝑥𝑦𝑧2 12 𝑇 1
4,4,4

vanishing lattice 𝑇 1
𝑝,𝑞,𝑟 is given in Figure 18.1.2 by means of a Dynkin diagram with

𝜇 vertices. The ”modulus” 𝑎 is any complex number. In Example 18.1.11.1 we
have shown that the vanishing lattices of these singularities are complete (cf. Defi-
nition 18.1.4) and by Theorem 18.1.9 we haveMon(Λ𝑋,𝑥) = W𝜖 (Λ𝑋,𝑥) = O𝜖,# (Λ𝑋,𝑥).
3. For the Du Val singularities the monodromy groups are as large as possible.
Indeed, the quotient of full the isometry group by the monodromy group is isomor-
phic to the group of symmetries of the Dynkin diagram as shown in Table 18.2.2.

Table 18.2.4: Monodromy of the Du Val singularities

Name monodromy index in
full isometry group

𝐴𝑘 W𝜖 (𝐴𝑘 (𝜖)) = O# (𝐴𝑘 (𝜖)) 1

𝐷𝑘 W𝜖 (𝐷𝑘 (𝜖)) = O# (𝐷𝑘 (𝜖)) 2 if 𝑘 ≠ 4
4 if 𝑘 = 4

𝐸6 W𝜖 (𝐸6 (𝜖)) = O# (𝐸6 (𝜖)) 2

𝐸7 W𝜖 (𝐸7 (𝜖)) = O# (𝐸7 (𝜖)) 1

𝐸8 W𝜖 (𝐸8 (𝜖)) = O# (𝐸8 (𝜖)) 1

4. If (𝑌, 𝑦) is adjacent to (𝑋,𝑥), the vanishing lattice of the former is contained in
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that of the latter. In particular, the lattice (Λ𝑋,𝑥,∆𝑋,𝑥) is complete whenever this
is the case for (Λ𝑌,𝑦 ,∆𝑌,𝑦). This remark can be used to prove completeness in a
great number of cases. See [61].

18.3 Application to Global Monodromy

We now consider the global situation of the universal family of degree 𝑑 hypersur-
faces

∑
|𝑰 |=𝑑 𝑎𝑰𝒛

𝑰 = 0 in ℙ𝑛+1, 𝒛 = (𝑧0, . . . , 𝑧𝑛+1). The base manifold is the projective
space ℙ𝑛,𝑑 with homogeneous coordinates (. . . , 𝑎𝑰 , . . . ), where 𝐼 runs over multi-
indices of length 𝑛 + 1 and total degree 𝑑. Let us write 𝑋𝑡 for the hypersurface
corresponding to 𝑡 ∈ ℙ𝑛,𝑑 and 𝐹𝑛,𝑑 for the total manifold. The singular hypersur-
faces correspond to points of the discriminant hypersurface D𝑑 ⊂ ℙ𝑛,𝑑 and so its
complement

𝑈𝑛,𝑑 = ℙ𝑛,𝑑 − D𝑑

parametrizes the smooth hypersurfaces. A generic line ℓ ⊂ ℙ𝑛,𝑑 meets D𝑑 transver-
sally in points 𝑃 corresponding to hypersurfaces with exactly one ordinary double
point. Every such point 𝑃 gives rise to a vanishing cycle 𝛿𝑃 in a nearby smooth
fiber. This situation resembles the local situation we just treated. The present sit-
uation is the one Lefschetz had in mind in the classical monograph [138] and this is
why the restriction 𝐹𝑛,𝑑 to the line ℓ is called a Lefschetz pencil. The global theory
mirrors the local theory exactly. This leads to an associated vanishing lattice, but
this time in cohomology, as we shall now explain.

Choose a base point ∗ ∈ ℓ ∩ 𝑈𝑛,𝑑. The fundamental group 𝜋1 (𝑈𝑛,𝑑, ∗) acts on
𝐻𝑛 (𝑋∗,ℤ) through the group generated by so-called Picard–Lefschetz reflections
with respect to the vanishing cycles 𝛿𝑃. This is the monodromy representation
with image the monodromy group

Mon(Λ𝑛,𝑑) ⊂ O (Λ𝑛,𝑑).

The monodromy representation on the vector space 𝐻𝑛 (𝑋∗,ℚ) turns out to be
semi-simple and is a direct sum of two irreducible submodules, the trivial module,
also called the fixed homology ℚ · ℎ, ℎ the class of a linear section of dimension
𝑛/2, and the so-called variable homology. This direct sum splitting is orthogonal
with respect to the intersection pairing, because the monodromy preserves the
homeomorphism type of the hypersurface. Of course we can do the same for the
middle cohomology and we get a direct sum splitting which is orthogonal with
respect to the cup-product pairing. The two are related by the Poincaré duality

isomorphism 𝐻𝑛 (𝑋∗,ℤ)
∼−→ 𝐻𝑛 (𝑋∗,ℤ).

We shall be interested in the monodromy action on the Poincaré-dual of the
variable cohomology which in this setting coincides with the primitive cohomol-
ogy

𝐻𝑛
prim (𝑋∗) = [ℎ]⊥ ⊂ 𝐻𝑛 (𝑋∗,ℤ).
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Theorem 18.3.1 ([134, §7]). Let 𝐹𝑛,𝑑 be the universal family of degree 𝑑 hyper-
surfaces in ℙ𝑛+1 with discriminant D𝑑, ℓ ⊂ ℙ𝑛,𝑑 a line transversally intersecting
D𝑑 so that 𝐹𝑛,𝑑 |ℓ is a Lefschetz pencil. Choose a base point ∗ ∈ ℓ ∩𝑈𝑛,𝑑. Then

1. Under Poincaré duality the set ∆𝑑,𝑛 of vanishing cocycles obtained by taking
the Poincaré duals of the vanishing cycles 𝛿𝑃, 𝑃 ∈ D𝑑 ∩ ℓ (transported to ∗),
generate the primitive homology 𝐻𝑛

prim (𝑋∗).

2. All vanishing cocycles are in the same orbit under the monodromy group, and
(𝐻𝑛

prim (𝑋∗),∆𝑑,𝑛) is a vanishing lattice.

About the proof. Assertion 1 is a form of Theorem [134, 7.2] and assertion 2 is a
consequence of assertion 1, just as in the local situation. □

To establish the relation with the monodromy group of the tautological family
of hypersurfaces we use the global version of (18.4):

𝑖∗ : 𝜋1 (ℓ ∩𝑈𝑛,𝑑, ∗) ↠ 𝜋1 (𝑈𝑛,𝑑, ∗).

This version is the result of first restricting to a general planar section on which
the discriminant locus appears as a curve 𝐶. By O. Zariski’s result [254] this does
not change the fundamental groups of the complements, and then we use E. van
Kampen’s theorem [232] to see that further restricting to a general line ℓ gives a
surjection 𝜋1 (ℓ − 𝐶 ∩ ℓ) → 𝜋1 (ℙ2 − ℓ).

We now make the essential observation which relates the monodromy group
Mon(Λ𝑛,𝑑) of the universal family to the monodromy group Mon(Λ𝑋,𝑥) of an iso-
lated hypersurface singularity 𝑥 ∈ 𝑋, 𝑋 a degree 𝑑 hypersurface in ℙ𝑛+1. Its Milnor
fiber 𝑀 is the intersection of a smooth hypersurface 𝑋′ near 𝑋 with a small ball
around 𝑥. The injection 𝑖 : 𝑀 ↩→ 𝑋′ induces a homomorphism 𝑖′ : 𝐻𝑛 (𝑀,ℤ) →
𝐻𝑛 (𝑋,ℤ) which is the composition of the induced map 𝑖∗ in homology, (the inverse
of) Poincaré-duality and an identification of 𝐻𝑛 (𝑋′,ℤ) with 𝐻𝑛 (𝑋,ℤ) (which de-
pends on the choice of a path to the base point). These homomorphisms all preserve
the intersection forms. If the intersection form on 𝐻𝑛 (𝑀,ℤ) is non-degenerate, the
homomorphism 𝑖′ is injective and so the vanishing lattice (Λ𝑋,𝑥,∆𝑋,𝑥) becomes a
sublattice of the vanishing lattice (𝐻𝑛

prim (𝑋),∆𝑑,𝑛). This observation explains why
one prefers to work with complete vanishing lattices.

Before we pass to the main result of this section, we first note that the mon-
odromy action on the full middle cohomology group fixes the class ℎ so it lands
in Oℎ (𝐻𝑛 (𝑋∗,ℤ)), the stabilizer of ℎ in O (𝐻𝑛 (𝑋∗,ℤ)). The monodromy group is
generated by reflections and by Lemma 16.1.1 these induce the identity on the
discriminant group. Hence by Theorem 15.1.7 these extend to isometries of the
full cohomology group 𝐻𝑛 (𝑋∗,ℤ). Consequently one has an embedding

Mon(Λ𝑛,𝑑) ↩→ Oℎ (𝐻𝑛 (𝑋∗,ℤ)). (18.5)

Using this, we can show:
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Theorem 18.3.2 ([18]). The monodromy group Mon(Λ𝑛,𝑑) of the universal family
of degree 𝑑 smooth hypersurfaces in ℙ𝑛+1, 𝑛 even, equals O𝜖,# (Λ𝑑,𝑛). Under the
embedding (18.5) the group Mon(Λ𝑛,𝑑) has index 2 in Oℎ (𝐻𝑛 (𝑋∗,ℤ)) if 𝑑 ≥ 4 or
𝑑 = 3,𝑛 ≠ 2. In the remaining cases these groups are equal.

Proof. We treat the various cases. For brevity we set 𝐺′ = Mon(Λ𝑛,𝑑) and 𝐺 =

Oℎ (𝐻𝑛 (𝑋∗,ℤ)).
• If 𝑑 = 2 we have a quadric with 𝐻2

prim (𝑋∗,ℤ) = ⟨𝜖 ·2⟩ and then 𝐺 = 𝐺′ = {±id}.
• If 𝑑 = 3, 𝑛 = 2, we have a cubic surface. The full cohomology lattice is
the Lorentzian lattice ℤ1,6 with primitive cohomology isometric to 𝐸6 (−1)
since 𝐸6 (−1) is the orthogonal complement of the hyperplane section ℎ (cf.
Eqn. (4.5)). Since the vanishing cycles form a collection of roots which span
𝐸6 (−1), the monodromy group is the Weyl group of 𝐸6 (−1).

• 𝑑 ≥ 4 or 𝑑 = 3,𝑛 ≠ 2. We show that the vanishing lattice is complete
by following the ideas that were presented preceding the statement of the
theorem. If 𝑑 ≥ 4,𝑛 ≥ 2, we take now for 𝐹𝑡 the hypersurface whose affine
equation is 𝑥3

1 +𝑥3
2 +𝑥4

3 +𝑥𝑑3 +
∑

𝑗≥4 𝑥
2
𝑗 = 0. This is an exceptional singularity of

type 𝑈12 (cf. Table 18.2.3). To see this, note firstly that 1 + 𝑥𝑑−43 is a unit in
ℂ[[𝑥3]] and so may be replaced by 1 in that ring, and, secondly, that adding∑

𝑗≥4 𝑥
2
𝑗 does not change the type of a singular point (”stably equivalence”

equals ”equivalence”, cf. [5, §1.3]).
For 𝑑 = 3,𝑛 ≥ 4, there is a cubic surface with affine equation 𝑓(𝑥1,𝑥2,𝑥3) = 0
with a singularity of type 𝐸6, namely 𝑓 = 𝑥2

1+𝑥1𝑥2
2+𝑥3

2 (cf. [52, §9.2.2]). Then
the hypersurface with affine equation 𝑓 + 𝑥3

4 +
∑

𝑗≥5 𝑥
2
𝑗 has a 𝑈12-singularity.

In all of the above cases 𝐺′ = O𝜖,# (Λ𝑑,𝑛) and we have equality for quadratic hyper-
surfaces and cubic surfaces. In the other cases Λ𝑑,𝑛 contains the lattice 𝑈 = ℤ𝑒+ℤ𝑓
since, as a complete lattice, it contains 𝐿min := 𝑈 ⦹ 𝑈′ ⦹ 𝐴2 (−1). Observe that
𝑒 − 𝜖𝑓 is a (−2𝜖)-root with 𝜖-spinor norm −1 (cf. Example 17.1.2.2). Hence it does
not belong to the group 𝐺′, but it extends to an element of 𝐺. Since the index
[𝐺 : 𝐺′] is at most 2, it is exactly 2. □

The group of orientation preserving diffeomorphisms Diff+ (𝑋∗) has a natural
representation in 𝐻𝑛 (𝑋∗,ℤ). The preceding result implies:

Corollary 18.3.3. Let 𝑛 be even and ≥ 4 and let ℓ ∈ 𝐻𝑛 (𝑋∗,ℤ) be the class of a
linear section. Then

Im
[
Diff+ (𝑋∗) −−−−−→ O (𝐻𝑛 (𝑋∗,ℤ))

]
=

{
Oℓ (𝐻𝑛 (𝑋∗,ℤ)) if 𝑛 ≡ 0 mod 4.

Oℓ (𝐻𝑛 (𝑋∗,ℤ)) × {±1} if 𝑛 ≡ 2 mod 4.

Proof. Let ℎ be the class of a hyperplane section. Then 𝐻2 (𝑋∗) = ℤℎ and so
a diffeomorphism preserves ℎ up to sign. Since the diffeomorphism induced by
complex conjugation reverses the sign on ℎ, the minus sign actually occurs if 1

2𝑛
is odd.

The monodromy operators come from diffeomorphisms and so it suffices to
find a diffeomorphism giving an isometry fixing ℓ but of 𝜖-spinor norm −1. We
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may suppose 𝑑 ≥ 3. Then Λ𝑑,𝑛 is a complete vanishing lattice and as before
it contains a hyperbolic plane 𝑈 whence a splitting 𝐻𝑛 (𝑋,ℤ) = 𝑈 ⦹ 𝑈⊥. Since
𝐻𝑛 (𝑆𝑛 × 𝑆𝑛,ℤ) ≃ 𝑈, this yields a connected sum decomposition

𝑋∗ = (𝑆𝑛 × 𝑆𝑛)#𝑋′, 𝐻𝑛 (𝑋′) ≃ 𝑈⊥.

Let 𝑠 be the reflection in the equator of the sphere 𝑆𝑛. Then (𝑠, 𝑠) is an orientation
preserving diffeomorphism of 𝑆𝑛×𝑆𝑛. Glue this to the identity on 𝑋′. The resulting
diffeomorphism 𝑓 by construction induces −id on 𝑈 and id on 𝑈⊥. Since ℓ ∈ 𝑈⊥,
we have 𝑓∗ (ℓ) = ℓ. On the other hand, 𝑓∗ |𝑈 = −id has 𝜖-spinor norm −1 as we have
observed in the proof of Theorem 18.3.2 above. □

Historical and Bibliographical Notes. The main sources for this chapter are W.
Ebeling’s articles [60, 59, 61] as well as his book [62]. The results in [62, 63] concerning
complete intersection singularities are more delicate since certain degenerate lattices may
occur. See also [65] by W. Ebeling and S. Gusĕın-Zade.

The application to global monodromy groups of tautological families of hypersurfaces
is due to A. Beauville [18]. This article also contains results on odd-dimensional hy-
persurfaces, but here the intersection form is alternating and so the symplectic group
replaces the role of the orthogonal group. See [18, Thm. 4]. For 𝑑 even, the monodromy
group turns out to be the full symplectic group and for 𝑑 odd there is a quadratic form
𝑞 : 𝐻𝑛 (𝐹∗,ℤ) → 𝔽2 such that Mon(Λ𝑑,𝑛) = {𝜙 ∈ Sp(𝐻𝑛 (𝐹∗,ℤ)) | 𝜙(𝑞) = 𝑞}. See [18, Thm.
4] and W. Janssen’s article [110] .

A. Beauville further shows (Prop. 5 in loc.cit.) that for 𝑑 odd and 𝑛 ≠ 1, 3, 7 the latter
monodromy group is realized by orientation preserving diffeomorphisms and that in all
other cases the entire symplectic group Sp(𝐻𝑛 (𝐹∗,ℤ)) is realized by orientation preserving
diffeomorphisms.
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Application to Moduli of K3 Surfaces

Introduction

We have encountered K3 surfaces on various occasions such as in Section 2.5 where
we discussed which unimodular lattices can be represented as the intersection lat-
tice of a topological four-manifold. In this chapter we make a more fundamental
use of lattice theoretic considerations to understand the period domain as well as
the moduli space of K3 surfaces. The required geometric background on K3 sur-
faces is summarized in the opening Section 19.1. Next, in Section 19.2 the Torelli
theorem and the surjectivity of the period map are briefly discussed. Together
these give a ”linear algebra” description of the period space of marked K3 surfaces
and of marked K3 surfaces with prescribed Néron–Severi lattices. The Torelli theo-
rem in its precise form includes a lattice theoretic description of the automorphism
group of a K3 surface. This will be further pursued in Chapter 20. In the rather
technical Section 19.3 we describe the relevant moduli spaces. This will be used in
a crucial way in Section 20.2 of the next chapter.

In Section 19.5 we turn to characteristic 𝑝 where we investigate supersingular
K3 surfaces, an arithmetic subject with a completely different flavour, but where
lattice theory can be applied equally successfully.

In this chapter 𝑋 is a K3 surface and we write Λ instead of ΛK3 for the K3 lattice.

19.1 Background On K3 Surfaces

A K3 surface is, we recall, a simply connected compact complex surface with trivial
canonical bundle. It has a nowhere vanishing holomorphic 2-form, unique up to
non-zero multiples. We collect some basic material, mostly without proofs and
refer for details to [106, Ch. 8] and [15, Ch. VIII.3]. Consult also Appendix B.3
where some examples are given, notably the Kummer surfaces. Recall that the
intersection lattice of a compact oriented four-manifold 𝑋, such as the K3 surface, is
the free ℤ-module 𝐻2 (𝑋,ℤ)/(torsion) equipped with the intersection pairing. Since
a K3 surface 𝑋 is simply connected, 𝐻2 (𝑋,ℤ) is free and underlies the intersection
lattice.

Proposition 19.1.1. All K3 surfaces 𝑋 are Kähler and are mutually diffeomor-
phic. The Betti numbers are 𝑏1 (𝑋) = 𝑏3 (𝑋) = 0, 𝑏2 (𝑋) = 22, and the Hodge
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numbers are ℎ1,0 (𝑋) = ℎ0,1 (𝑋) = 0, ℎ2,0 (𝑋) = 1 and ℎ1,1 (𝑋) = 20. The intersection
lattice 𝐻2 (𝑋,ℤ) is isometric to the K3-lattice

Λ := 𝑈⦹3 ⦹ 𝐸8 (−1)⦹2.

Divisors on a K3 surface enjoy special properties which can be read off from
their intersection behaviour:

Proposition 19.1.2. Let 𝐷 be a divisor on 𝑋.

1. If 𝐷 · 𝐷 ≥ −2 either 𝐷 or −𝐷 is effective.

2. If 𝐷 is irreducible, then 𝐷 ·𝐷 ≥ −2 and if equality holds 𝐷 is a nodal curve,
that is, a smooth rational curve.

3. 𝐷 is ample if and only if 𝐷 · 𝐷 > 0 and 𝐷 · 𝐷′ > 0 for all nodal curves 𝐷′.

For brevity, the classes of effective, respectively ample divisors in the Néron–
Severi lattice NS(𝑋) are called effective, respectively ample classes. Likewise, the
class of a nodal curve is called a nodal class. Observe that nodal classes are
roots in NS(𝑋), but not conversely. In fact, (−2)-roots in the Néron–Severi lattice
are classes of divisors 𝐷 with 𝐷 · 𝐷 = −2 which are not necessarily effective or
irreducible. Reflections in (−2)-roots in NS(𝑋) generate its Weyl group. Since
the corresponding hyperplane reflections extend to 𝐻2 (𝑋,ℤ), this group can be
considered as a subgroup of O (𝐻2 (𝑋,ℤ)). We call it the Weyl group of 𝑋:

W− (𝑋) := W− (NS(𝑋)) ⊂ O (𝐻2 (𝑋,ℤ)). (19.1)

This group is even a normal subgroup of O (𝐻2 (𝑋,ℤ)).
If 𝑑 ∈ NS(𝑋) is a root, by the preceding proposition, either 𝑑 or −𝑑 is effective,

which leads to a canonical partition of the set ∆(NS(𝑋)) of roots in the Néron–
Severi lattice given by

∆(NS(𝑋)) = ∆+
𝑋 ∪ −∆+

𝑋 , ∆+
𝑋 = {effective roots}. (19.2)

The Hodge index theorem B.2.3 states that the intersection product on𝐻1,1
ℝ

(𝑋) =
𝐻1,1 (𝑋) ∩𝐻2 (𝑋,ℝ) has signature (1,ℎ1,1 (𝑋) −1), and so it gives 𝐻1,1

ℝ
(𝑋) the struc-

ture of a hyperbolic vector space containing NS(𝑋). As explained in Appendix B.2,
there is a preferred component C𝑋 of the “light cone” {𝑥 ∈ 𝐻1,1

ℝ
(𝑋) | 𝑥 · 𝑥 > 0},

namely the one that contains the Kähler classes and which is called the positive
cone . The group W− (𝑋) acts on 𝐻1,1

ℝ
(𝑋) and by (16.3) it preserves the positive

cone.
The Kähler classes in fact belong to the subcone

CKäh
𝑋 = {𝑥 ∈ C𝑋 | 𝑥 · 𝑟 > 0 for all nodal classes 𝑟}. (19.3)

This follows since if 𝜅 is a Kähler form and 𝐷 a nodal curve, its classes [𝜅], [𝐷]
pair to [𝜅] · [𝐷] =

∫
𝐷
𝜅, which, because of the inequality (B.1), is positive. The
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converse is also true but lies much deeper. See [106, Ch. 8.5]. This motivates
naming CKäh

𝑋 the Kähler cone of 𝑋.
If 𝑋 is projective, the ample classes belong to the Kähler cone. Conversely,

Proposition 19.1.2 implies that a divisor class in the Kähler cone is an ample class.
Consequently, the cone in 𝐻2 (𝑋,ℝ) spanned by the ample classes is

Camp
𝑋 = CKäh

𝑋 ∩ (NS(𝑋) ⊗ ℝ). (19.4)

This cone is called the ample cone of 𝑋. The ample classes are precisely the
integral classes of the ample cone.

Proposition 19.1.3. 1. The closure of the Kähler cone is a fundamental do-
main for the action of the Weyl group W− (𝑋) (cf. (19.1)) on C𝑋 .

2. If 𝑋 is projective, the closure of the ample cone is a fundamental domain for
the action of the Weyl group W− (𝑋) on the intersection of the positive cone
with NS(𝑋) ⊗ ℝ.

3. The set of nodal classes determines the Kähler cone and if 𝑋 is projective,
these nodal classes determine the ample cone.

4. The choice of a Kähler class determines the entire Kähler cone and in the
projective case, the choice of an ample class determines the entire ample
cone.

Proof. 1. This follows from Proposition 17.2.6 and characterization (19.3).
2. This follows directly from (19.4).
3. This is a consequence of Proposition 17.2.6.
4. A Kähler class 𝜅 belongs to the Kähler cone. The latter is the unique Weyl
chamber containing 𝜅. The second assertion follows from this. The last assertion
is a consequence of (19.3). □

19.2 K3 Surfaces: Period Domains, Néron–Severi lattices
and Transcendental Lattices

19.2.A Torelli Theorems. We refer to Appendix B.4 for the definition of the
period domain associated to the polarized Hodge structure on the second coho-
mology group. In the present situation the period domain is given by

𝐷(Λ) = {[𝑢] ∈ ℙ(Λ ⊗ ℂ) | 𝑢 · 𝑢 = 0, and 𝑢 · 𝑢 > 0}.

Given a marking , i.e., a choice of an isometry 𝜑 : 𝐻2 (𝑋,ℤ) ∼−→ Λ, the Hodge
structure on 𝐻2 (𝑋,ℤ) defines a period point in 𝐷(Λ). Indeed 𝐻2,0 (𝑋) ⊂ 𝐻2 (𝑋,ℂ)
is a line and 𝜑 sends the corresponding point of the projective space ℙ(𝐻2 (𝑋,ℂ))
to a point in the period domain. Two different markings give period points that
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are in the same O (Λ)-orbit. Note also that two markings 𝜑,𝜑′ give the same period
point in case the markings are opposite, i.e., 𝜑′ = −𝜑.

If one has a family X→ 𝑆 of K3 surfaces over a smooth complex manifold 𝑆
together with a global marking (this is always possible if 𝑆 is simply connected),
then there is an obvious map 𝑆 → 𝐷(Λ), called the period map. Work of Grif-
fiths [87, Part II, §2] implies that the period map is holomorphic. The following –
far from trivial1 – results are crucial for our applications:

Theorem 19.2.1. 1. Two K3-surfaces are isomorphic if and only if there are
markings such that the corresponding period points are the same (”injectivity
of the period map” – or – ”Torelli theorem”).

2. All points of the period domain are period points (”surjectivity of the period
map”).

Since the group O (Λ) permutes the choices of a marking, the set of isomorphism
classes of K3 surfaces corresponds to the orbit space O (Λ)\𝐷(Λ), which is not a
nice topological space since the action of the group O (Λ) is not proper. There
are various ways to remedy this. In the non-algebraic situation, instead of taking
the quotient of the period domain by O (Λ), one constructs a covering which takes
into account the marking and the Kähler cone. This approach will be sketched in
Section 19.3. For other approaches we refer to the discussion in [106, Ch. 6].

There is a more precise version of the Torelli theorem (cf. [15, Ch. VIII. 11])
which can be phrased as follows:

Theorem 19.2.2. Let 𝑋 be a K3 surface and 𝛾 an isometry of 𝐻2 (𝑋,ℤ). Then
there exists a unique automorphism of 𝑋 inducing 𝛾 if and only if the following
conditions hold simultaneously:

• the complexification 𝛾ℂ of 𝛾 preserves the Hodge decomposition, or, equiva-
lently, 𝛾ℂ preserves the line spanned by the holomorphic 2-form.

• 𝛾ℝ preserves the Kähler cone, or equivalently (by Proposition 19.1.3), sends
some Kähler class to a Kähler class.

Corollary 19.2.3. An isometry of 𝐻2 (𝑋,ℤ) preserving the Hodge decomposition
is, up to sign and (left or right) multiplication with an element of W− (𝑋), induced
by a unique automorphism of 𝑋.

Proof. Let 𝛾 be an isometry of 𝐻2 (𝑋,ℤ) preserving the Hodge decomposition and
let 𝜅 ∈ CKäh

𝑋 . Then for a unique element 𝑤 ∈ W− (𝑋), ±𝑤◦𝛾 (𝜅) ∈ CKäh
𝑋 , and by

Proposition 19.1.3 ±𝑤◦𝛾 preserves the Kähler cone and so is induced by a unique
automorphism of 𝑋. Since W− (𝑋) is a normal subgroup of O (𝐻2 (𝑋,ℤ)), we can
also write 𝑤◦𝛾 = 𝛾◦(𝛾−1𝑤𝛾) = 𝛾◦𝑤′ for a unique 𝑤′ ∈ W− (𝑋). □

The uniqueness statement in Theorem 19.2.2 is implied by the faithfulness of
the action of automorphisms on cohomology:

1We refer the reader to the bibliographic and historical remarks at the end of this chapter.
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Lemma 19.2.4. For a K3 surface 𝑋 there is an injection

Aut(𝑋) ↩→ O (𝐻2 (𝑋,ℤ)), 𝑔 ↦→ 𝑔∗.

In terms of this representation, the above can be restated as

Aut(𝑋) ≃ {𝛾 ∈ O (𝐻2 (𝑋,ℤ)) | 𝛾ℂ (𝐻2,0 (𝑋)) = 𝐻2,0 (𝑋) and 𝛾ℝC
Käh
𝑋 = CKäh

𝑋 },
≃ {𝛾 ∈ O (𝐻2 (𝑋,ℤ)) | 𝛾ℂ (𝐻2,0 (𝑋)) = 𝐻2,0 (𝑋)}/{±id} ×W− (𝑋).

Observe also:

Lemma 19.2.5. The marked K3-surfaces (𝑋,𝜑), (𝑋,±𝜑◦𝑤), 𝑤 ∈ W− (𝑋) and
(𝑋,𝜑◦𝑔∗), 𝑔 ∈ Aut(𝑋), all have the same period point. In particular, if two marked
K3 surfaces have the same period point they need not be isomorphic.

Remark 19.2.6. By Proposition 19.1.3, the Kähler cone is preserved by an isometry
𝛾 if and only if 𝛾ℂ preserves the Hodge decomposition and maps some Kähler class
to a Kähler class. This is equivalent to ”𝛾ℂ preserves the Hodge decomposition
and the effective roots”.

Let us draw a further consequence of Theorem 19.2.1 which addresses general
behaviour . We say that a property holds generally on some complex variety if it
holds on the complement of countably many proper subvarieties. In this sense the
general K3 surface is not algebraic, for instance the Kummer surface constructed
from a non-algebraic complex two-torus is not algebraic. Theorem 19.2.1 implies
that more is true:

Corollary 19.2.7. The general K3 surface does not have any curves on it, in
other words, its Picard number, i.e., the rank of its Néron–Severi lattice, is zero.

Proof. Suppose that 𝐶 ⊂ 𝑋 is a curve. Its class [𝐶] is of Hodge type (1, 1) and
hence perpendicular to the class of a non-zero 2-form. In geometric terms this
means that the corresponding period point belongs to the hyperplane orthogonal
to the image of [𝐶] in Λ. If we delete from 𝐷(Λ) the (countably many) hyperplanes
orthogonal to primitive elements in Λ, the resulting set 𝐷(Λ)gen then parametrizes
K3 surfaces without curves. □

19.2.B Algebraic K3 Surfaces and Their Moduli. One of the peculiar prop-
erties of surfaces is that the mere existence of a divisor 𝐷 with 𝐷 · 𝐷 > 0 implies
already that the surface is algebraic. See e.g. [15, Ch. IV. Th, 6.2]. So a marked
K3 surface (𝑋,𝜑) is algebraic if and only if 𝜑 sends some divisor class to a lat-
tice element with positive self intersection. In other words, algebraic K3 surfaces
correspond to marked surfaces (𝑋,𝜑) such that ℓ ∈ Λ exists perpendicular to the
period point with ℓ · ℓ > 0. Just as in the proof of Corollary 19.2.7, this is equiva-
lent to demanding that some period point of 𝑋 lies on the hyperplane ℓ⊥ ⊂ 𝐷(Λ).
There are infinitely many of those since the intersection number ℓ ·ℓ takes infinitely
many values. However, for fixed 𝑘 and primitive ℓ with ℓ · ℓ = 2𝑘 these form one
O (Λ)-orbit. This is a particular case of Example 15.2.8.1. If ℓ corresponds to the
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ample divisor 𝐷 on 𝑋 with 𝐷 · 𝐷 = 2𝑘, we call the divisor class [𝐷] a degree 2𝑘
polarization . The corresponding Hodge structure on Λ will then be such that ℓ
has type (1, 1). In other words, the period point belongs to

𝐷(ℓ⊥) = {[𝑢] ∈ 𝐷(Λ) | 𝑢 · ℓ = 0}.

By [15, Ch. VIII, Theorem 22.3] the isometry group O (ℓ⊥) acts properly and
discontinuously on this new domain. The quotient does not yet give the moduli
space of algebraic K3 surfaces with a polarization of degree 2𝑘. Indeed, also the
hyperplanes orthogonal to (−2)-roots in ℓ⊥ ⊂ Λ need to be deleted (see [15, Ch.
VIII, 22]). This leads to

◦
𝐷 (ℓ⊥) = 𝐷(ℓ⊥) −

⋃
𝑟∈ℓ⊥, 𝑟·𝑟=−2

𝑟⊥ ∩ 𝐷(ℓ⊥).

The group O (ℓ⊥) also acts on this domain in a properly discontinuous fashion. By
[14] the quotient is a quasi-projective algebraic variety. This is the variety whose
points correspond to the isometry classes of K3 surfaces admitting a degree 2𝑘
polarization. Such a variety is also called a moduli space .2 Summarizing, we
have:

Theorem 19.2.8 (cf. [15, Ch. VIII, Thm 22.2]). Fix ℓ ∈ Λ with ℓ · ℓ = 2𝑘.
The moduli space of K3 surfaces admitting a degree 2𝑘 polarization is the quasi-
projective variety

O (ℓ⊥)\
◦
𝐷 (ℓ⊥).

19.2.C Period domains for 𝑺-marked K3 surfaces. Analogously to Corol-
lary 19.2.7, the rank of the Néron–Severi lattice of the general algebraic K3 surface
is 1. Those that have a larger Picard number can be retrieved replacing ℓ with a
suitable lattice 𝑆 leading to 𝑆-markings.

Definition 19.2.9. Suppose that 𝑆 is a non-degenerate lattice which is either neg-
ative definite or has signature (1, 𝑟−), 𝑟− ≥ 0, and which is primitively embedded in

Λ. A marking 𝜑 : 𝐻2 (𝑋,ℤ) ∼−→ Λ such that 𝑆 ⊂ 𝜑(NS(𝑋)) is called an 𝑆-marking .
The pair (𝑋,𝜑) with 𝜑 an 𝑆-marking is called an 𝑆-marked K3 surface . 3

The domain
𝐷(𝑆⊥) = {[𝑢] ∈ 𝐷(Λ) | 𝑢 · 𝑆 = 0}

parametrizes 𝑆-marked K3 surfaces (𝑋,𝜑). It has dimension 20 − rank(𝑆) and
(according to Appendix B.4) if 𝑟− < 19 it is connected since 𝑇 = 𝑆⊥ has signature
(2, 19 − 𝑟−). Deleting, as before, countably many hyperplanes leaves us with K3
surfaces with Néron–Severi lattice exactly 𝜑−1𝑆.

2This is a pedestrian approach. The formal definition of a moduli space is more involved.
Nowadays one prefers instead the concept of moduli stack since the latter is better behaved with
respect to automorphisms of varieties. See e.g. [106, Chapter 5] for a concise introduction.

3Some authors speak of an 𝑆-polarization. Note that 𝑋 is projective if and only if 𝑆 has one
positive eigenvalue and so the terminology 𝑆-marking is more appropriate.
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Natural questions are: 1) Which 𝑆 occur as the Néron–Severi lattice of a K3
surface? 2) Which 𝑇 as the transcendental lattice of a K3 surface? This is in
general quite involved, but one can definitely say more about small ranks making
use of Example 15.2.8.1:

Proposition 19.2.10 ([158, §2]). 1. Every non-degenerate negative definite qua-
dratic lattice 𝑆 of rank 𝜌 ≤ 11 or of signature (1, 𝜌 − 1), 1 ≤ 𝜌 ≤ 10, occurs
as the Néron–Severi lattice of a general 𝑆-marked K3 surface and embeds
uniquely in the K3 lattice.

2. Every non-degenerate quadratic lattice 𝑇 of signature (2, 20−𝜌), 12 ≤ 𝜌 ≤ 20,
occurs as the transcendental lattice of a general 𝑇 ⊥-marked K3 surface4 and
embeds uniquely in the K3 lattice.

As for uniqueness of the isometry class of the Néron–Severi lattice or the tran-
scendental lattice, the situation is in some sense dual:

Proposition 19.2.11 ([158, Cor. 2.9, Cor. 2.10]). Let 𝑋 be a K3 surface.

1. If 12 ≤ 𝜌(𝑋) ≤ 20, then the Néron–Severi lattice of 𝑋 is unique in its genus.

2. If 𝜌(𝑋) ≤ 10, then the transcendental lattice of 𝑋 is unique in its genus.

Proof. Let 𝑆 = NS(𝑋) and 𝐺 its discriminant group. Since 𝑇 = 𝑆⊥ ⊂ 𝐻2 (𝑋,ℤ)
has the same discriminant group, we have ℓ(𝐺) ≤ rank(𝑇 ) = 22 − 𝜌(𝑋) ≤ 10.
The condition of Corollary 14.4.3 is ℓ(𝐺) ≤ rank(𝑆) − 2 = 𝜌(𝑋) − 2. This is the
case since 10 ≤ 𝜌(𝑋) − 2. The proof of the assertion for small Picard numbers is
analogous. □

Remark 19.2.12. 1. In the non-algebraic situation NS(𝑋) can indeed be negative
definite or have a one-dimensional null-space. The last two cases occur if and only
if the function field of 𝑋 has transcendence degree 𝑎 (𝑋) = 0, respectively 𝑎 (𝑋) = 1.
Indeed, if an isotropic 𝑓 ∈ NS(𝑋) exists, then ±𝑓 is effective and one can show
(cf. [124, Thm. 4.1,4.2]) that a suitable multiple defines an elliptic fibration. This
implies that 𝑎 (𝑋) ≥ 1. If 𝑎 (𝑋) = 2 the surface 𝑋 is algebraic (cf. [15, Ch. IV.
Corollary 6.5]) and its Néron–Severi lattice is not negative semi-definite. If NS(𝑋)
is negative definite, 𝑋 cannot be elliptic or algebraic, and hence 𝑎 (𝑋) = 0.
2. By Theorem 15.2.6 any unimodular lattice 𝑆 of rank ≤ 20 embeds uniquely in the
K3 lattice provided 𝑇 = 𝑆⊥ is indefinite. This ceases to be true if 𝑇 is definite which
may only occur in the non-algebraic situation. The simplest example is presented
by the sublattice 𝑆 = ⦹3𝑈. In the standard embedding its orthogonal complement
is ⦹2𝐸8 (−1). However, as we have seen (Example 1.5.1.2), there is another even
unimodular rank 16 lattice which is negative definite and indecomposable, Γ16(−1).
By Theorem 2.4.1, which gives the classification of indefinite even unimodular
lattices, ⦹3𝑈⦹⦹2𝐸8 (−1) ≃ ⦹3𝑈⦹Γ16 (−1). So two possible period domains then
occur for (non-algebraic) K3 surfaces having the same Néron–Severi lattice, but
with different transcendental lattices.

4Such a K3 surface is projective since 𝑇 ⊥ has signature (1, 𝜌 − 1).
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19.3 The Moduli Space of Marked K3 Surfaces

The main result from [33] is as follows:

Theorem 19.3.1. There exists a smooth (non-Haussdorff) analytic space M of
dimension 20 together with a universal family of marked K3 surfaces.

1. The induced period map p : M→ 𝐷(Λ) is surjective;

2. The fiber over each point [𝑢] ∈ 𝐷(Λ) is discrete (but might be infinite);

3. The period map p is étale in the sense that every [𝑢] ∈ 𝐷(Λ) has an open
neighbourhood 𝑈 so that p maps every connected component of p−1𝑈 biholo-
morphically to 𝑈.

19.3.A Construction of the moduli space. By the results of Appendix B.4,
the period domain 𝐷(Λ) consisting of period points of marked K3 surfaces is a
connected complex manifold of dimension 20. Denote the Hodge decomposition
corresponding to [𝑢] ∈ 𝐷(Λ) by5

Λℂ = Λ2,0
𝑢 ⊕ Λ1,1

𝑢 ⊕ Λ0,2
𝑢 .

The above Hodge structures for varying [𝑢] ∈ 𝐷(Λ) define a variation of Hodge
structure over 𝐷(Λ) in the technical sense of [89] which is also called the tauto-
logical variation of Hodge structure. There does not exist a family of marked K3
surfaces (𝑋𝑢,𝜑𝑢), 𝑢 ∈ 𝐷(Λ), with the property that the Hodge decompositions of
𝐻2 (𝑋𝑢) under the marking 𝜑𝑢 give the tautological variation, but we can achieve
this locally as follows. Let 𝑋0 be a K3-surface. There is a locally universal de-
formation 𝑝 : X𝑈 → 𝑈 of 𝑋0 = 𝑝−1 (0) consisting of K3 surfaces, the so-called
Kuranishi family for 𝑋0. One may take for 𝑈 a disc centered at 0 and then

there is a constant marking 𝜑𝑠 : 𝐻
2 (𝑋𝑠,ℤ)

∼−→ Λ over 𝑈, i.e., a trivialization of the
local system 𝑅2𝑝∗ℤ. There are no two isomorphic (marked) fibres in the Kuranishi
family. If this would be the case, there is an isomorphism 𝑔 : (𝑋1,𝜑1) → (𝑋2,𝜑2),
and then 𝜑1𝑔

∗𝜑−1
2 = idΛ since 𝑋1,𝑋2 are in a single trivialized family with discrete

fibres in the local system 𝑅2𝑝∗ℤ. This implies 𝜑1𝑔
∗ = 𝜑2 so that we would get

identical period points by (a variation of) Lemma 19.2.5, which contradicts that
the period map is an embedding (cf. [87, Part II, §2]).

Consequently, via constant markings one can glue the Kuranishi deformations
for the various K3 surfaces and obtain in this way a smooth analytic space M over
which one has a universal marked family of K3 surfaces with, again by [87, Part
II, §2], a holomorphic map

p : M→ 𝐷(Λ), (19.5)

the period map for this family. It is a surjective map (cf. Theorem 19.2.1) but
p clearly cannot be injective: by Lemma 19.2.5 two marked K3 surfaces with the
same period point need not be isomorphic (as marked K3’s; Torelli’s theorem states

5To ease notation we will occasionally write 𝑢 instead of [𝑢] if no confusion is likely to arise.
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that they are isomorphic if one allows changing the marking). Indeed, the period
point determines the Weyl chambers up to signs through the roots perpendicular
to it, and so it does not ”see” the Kähler cone. This suggests to add the Weyl
chamber data to this marking, yielding a strong marking.

19.3.B Description of M in terms of strong markings. We give another
description (without proofs) of M which explains the assertion in Theorem 19.3.1

that the period map is étale. A priori this description gives a different space �𝐷(Λ)
which by construction lies étale over the period domain 𝐷(Λ). We refer to loc. cit.
that this space is biholomorpic to M and that the projection map corresponds to
the period map p.

In this alternative description, the fiber of p over a period point [𝑢] of (𝑋,𝜑)
is constructed in such a way that it indeed parametrizes the supplementary data
of Weyl chambers over [𝑢] which together with 𝜑 define a strongly marked K3
surface . Recall first (cf. Section B.4) that the intersection form induces a non-
degenerate quadratic form of signature (1, 19) on Λ1,1

𝑢,ℝ, and that the light cone has

two components ±C𝑢. The cone C𝑢 is the union of Weyl chambers C𝑃
𝑢 parametrized

by partitions labeled by 𝑃

∆𝑢 := ∆𝑃
𝑢 ∪ −∆𝑃

𝑢 (19.6)

of the set ∆𝑢 of all roots orthogonal to 𝑢. If the latter set is empty, by convention
C𝑃
𝑢 = C𝑢. Of course the same partition also determines a Weyl chamber in the

opposite cone −C𝑢. It turns out that p−1 [𝑢] consists of the collection of points
{𝑢+,𝑃 ,𝑢−,𝑃}𝑃, where 𝑃 runs through the partitions of ∆𝑢 and where for each 𝑃 a

pair 𝑢±,𝑃 ∈ ±C𝑃
𝑢 is chosen. The union of the p−1 [𝑢] defines �𝐷(Λ) as a set.

Note that #(p−1 [𝑢]) may vary wildly with 𝑢 and so it seems counter-intuitive
that the period map p is a local homeomorphism as indeed it is. On the level
of the K3 surfaces the variation of #(p−1 [𝑢]) is due to the fact that for varying
period points the corresponding K3 surface can acquire wildly varying numbers
of nodal curves giving rise to varying numbers of possible markings. This causes

the non-Hausdorff nature of the topology of �𝐷(Λ). Let us illustrate how this can
happen. Consider a point 𝑢 ∈ 𝐷(Λ) such that C𝑢 is divided in two Weyl chambers
parametrized by 𝑃1,𝑃2, while ∆𝑢′ = ∅ for all points 𝑢′ in a punctured neighbourhood
𝑈 of 𝑢. Then p−1𝑈 = 𝑈+,𝑃1 ∪ 𝑈−,𝑃1 ∪ 𝑈+,𝑃2 ∪ 𝑈−,𝑃2 where 𝑈±,𝑃1 is glued to 𝑈±,𝑃2

over the complement of 𝑢±,𝑃1 ∪ 𝑢±,𝑃2 , creating an isolated ”double point”.

This phenomenon happens indeed as a consequence of the topology of �𝐷(Λ)
which we shall describe now. Over a general point 𝑢 the fiber of p consists of two
points 𝑢± in the two connected components ±C𝑢 of the light cone which can be con-
sidered as belonging to the two connected components 𝐷± (Λ) of SO (3, 19)/SO (2)×
SO+ (1, 19). This space has indeed two components since it is a disconnected two-
sheeted cover of 𝐷(Λ) = SO (3, 19)/SO (2) × SO (1, 19) which itself is connected by
Proposition 13.3.7.

Next, we need a continuity property (cf. [33, Proposition 2.3]) which states
that every point (𝑢, 𝑐) ∈ 𝐷(Λ) × Λℝ such that 𝑐 ∈ C𝑢 has an open neighbourhood
𝑈𝑢,𝑐 × 𝐾𝑢,𝑐 with the property that the only reflection hyperplanes in any 𝑢′ × Λℝ,
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𝑢′ ∈ 𝑈𝑢,𝑐, for roots orthogonal to 𝑢
′ that meet 𝑢′×𝐾𝑢,𝑐 are ones orthogonal to 𝑢. In

particular, 𝑐 (considered in the fixed vector space Λℝ) belongs to a Weyl chamber
relative to all points in 𝑈𝑢,𝑐.

Now form the topological space �𝐷(Λ) by taking the disjoint union
∐

𝑈𝑢,𝑐 for
all 𝑢 ∈ 𝐷(Λ) and all 𝑐 ∈ ±C𝑢, and then glue 𝑢′ ∈ 𝑈𝑢1,𝑐1 to 𝑢′′ ∈ 𝑈𝑢2,𝑐2 if and
only if p(𝑢′) = p(𝑢′′) and 𝑐1 and 𝑐2 belong to the same Weyl chamber relative
p(𝑢′). By [33, Cor. 2.4] the continuity property implies that in this way 𝑈1 glues

to 𝑈2 along a common open set. This makes �𝐷(Λ) an analytic space and p a
local homeomorphism. Moreover, the fibers p−1 [𝑢] are indeed parametrized by
±𝑃, where 𝑃 is a partition of the roots ∆𝑢.

To give an idea what this space looks like, recall that a general K3 surface does
not have curves and so the positive cone is the only Weyl chamber. If 𝑢 is its
period point, an open neighbourhood 𝑈 ⊂ 𝐷(Λ) is covered by two open subsets

𝑈± ⊂ �𝐷(Λ). For non-general points 𝑢′ ∈ 𝑈 the cone C𝑢′ has more Weyl chambers
C𝑃
𝑢′ , which are present along a subvariety, say 𝑊. Over 𝑢′ as well as over the

general point of 𝑊 ∩ 𝑈 the fiber p−1𝑢′ contains the supplementary points 𝑢′±𝑃.

There are neighbourhoods 𝑈′±𝑃 ⊂ �𝐷(Λ) for each of these points 𝑢′±𝑃 which under
p map biholomorphically to open subsets in 𝐷(Λ). These are glued to 𝑈± so that
the supplementary points 𝑢′±𝑃 form a non-separated subset each belonging to a

distinct open subset of �𝐷(Λ). This holds for all points in p−1 (𝑊 ∩𝑈) ⊂ �𝐷(Λ).
We shall from now on identify �𝐷(Λ) and the moduli space M of strongly marked

K3-surfaces.

19.3.C Moduli of 𝑺-marked K3 surfaces. Recall that the period domain of
𝑆-marked surfaces is the subdomain 𝐷(𝑆⊥) = {[𝑢] ∈ 𝐷(Λ) | 𝑢 · 𝑆 = 0}, where the
lattice 𝑆 ⊂ Λ is as in Definition 19.2.9. Consider

M𝑆 := p−1𝐷(𝑆⊥) ⊂ M.

If [𝑢] ∈ 𝐷(𝑆⊥), the ”Néron–Severi lattice” NS(𝑢) := {𝑥 ∈ Λ | 𝑥 · 𝑢 = 0} contains
𝑆 and is generally equal to it. As we explained in the previous subsection, this
implies that the fiber of p of a general point [𝑢] ∈ 𝐷(𝑆⊥) consists of a number
of disjoint points parametrized by (±,𝑃), where 𝑃 is a partition of the roots in 𝑆.
Since p is a local homeomorphism, one expects that the connected components of
M𝑆 are also parametrized by (±,𝑃). This is indeed the case as shown by V. Nikulin
([169, Proposition 2.9]). Even more is true:

Proposition 19.3.2. There is an open dense subset
◦
𝐷 (𝑆⊥) ⊂ 𝐷(𝑆⊥) so that the

roots in ∆𝑢, [𝑢] ∈ M𝑆, are irreducible, i.e., for some marking all roots correspond
to nodal classes. Let 𝑃 be a partition of the roots of 𝑆. The connected components
of M𝑆 consist of the non-Hausdorff smooth analytic spaces M±,𝑃

𝑆 of dimension
20 − rank(𝑆).
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19.4 Lattices and Compactifications of Moduli Spaces

This section describes how the lattice theory developed in the earlier chapters plays
a role in the construction of compactifications of the moduli spaces of algebraic K3
surfaces.

Recall that in § 19.2.B lattices were used to describe the moduli space of po-
larized K3 surfaces of degree 2𝑘 in arithmetic terms through the period map. Our
setting is an elaboration of a special case of the theory described e.g. by W. Baily
and A. Borel in [14]. We limit ourselves to an outline of a typical base case, that
of the so-called Satake–Baily–Borel (SBB) compactification of the moduli
space of polarized K3 surfaces of degree 2, but note that lattices also play a role for
other degrees and other surfaces, and in more refined (partial) compactifications,
with toroidal compactifications as another extreme. For example, E. Looijenga
in [143] described an intermediate compactification in the case of K3 surfaces of
degree 2 which provides an arithmetic counterpart to J. Shah’s geometric invariant
theory approach in [206], and is based on the representation of degree 2 K3 surfaces
as double covers of the projective plane branched along sextics.

It turns out that isotropic sublattices play a central role in the construction of
the SBB compactification of the moduli space. As stated above, we illustrate this
for polarized K3 surfaces of degree 2. So, if - as before - Λ = 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹
𝑈⦹𝑈⦹𝑈 is the K3 lattice, we aim to represent the polarization by a vector ℎ ∈ Λ
with ℎ · ℎ = 2. Up to O (Λ)-equivalence ℎ is unique by Theorem 15.2.6. If [𝐷] is a
degree 2 (almost)6 polarization, there indeed exists a marking identifying [𝐷] with
ℎ ∈ 𝐿. We use the standard bases {𝑒,𝑓}, {𝑒′,𝑓′}, {𝑒′′,𝑓′′} of the first, second and
third copy 𝑈 in Λ (so 𝑒 · 𝑒 = 𝑓 · 𝑓 = 𝑒 · 𝑓 − 1 = 0, etc.). We choose ℎ = 𝑒′′ + 𝑓′′ ∈ Λ.
Below we will make use of the standard root bases 𝛼1, . . . ,𝛼8 and 𝛼′

1, . . . ,𝛼
′
8 of the

two copies of 𝐸8 (−1).
The orthogonal complement Λ2 = ℎ⊥ = 𝐸8 (−1)⦹𝐸8 (−1)⦹𝑈⦹𝑈⦹ ⟨𝑒′′−𝑓′′⟩ in

Λ is a rank 21 lattice of signature (2, 19). We view the period point of an almost
polarized K3 surface as an element in

𝐷(Λ2) = {𝜔 ∈ ℙ(Λ2)ℂ) | 𝜔 · 𝜔 = 0, 𝜔 · 𝜔 > 0}.

Since Λ∗
2/Λ2 and ⟨ℎ⟩∗/⟨ℎ⟩ are isomorphic and of order 2, every isometry of Λ2 to

itself induces the identity on Λ∗
2/Λ2 and hence can be extended to an isometry of

Λ fixing ℎ by Theorem 15.1.7. The image Γ2 of the natural map O (Λ)ℎ → O (ℎ⊥)
is therefore O (ℎ⊥) itself, and, similarly to what was discussed in Section 19.2.B,
𝐷(Λ2)/Γ2 is quasi-projective, and is a moduli space of almost polarized K3 surfaces
of degree 2.

19.4.A Boundary components. To obtain the SBB compactification, first ‘bound-
ary components’ are added to 𝐷(Λ2) in such a way that the resulting union �̂�(Λ2)

6If we allow our surfaces to have rational double point singularities, then in the minimal desin-
gularizations, which are also K3 surfaces, these give rise to curve configurations perpendicular to
the pull-back of [𝐷]. This set-up has various advantages we won’t go into here. In particular, it
eliminates the need to exclude the hyperplanes as discussed in Section 19.2.B.
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can be provided with a topology leading to a quotient space �̂�(Λ2)/Γ2 with the
structure of a compact complex analytic (even algebraic) space. The boundary
components are 0- and 1-dimensional and turn out to correspond to Γ2 orbits of
primitive isotropic sublattices of ranks 1 and 2, respectively. Since any element
𝜔 ∈ Λ2 ⊗ℂ satisfying 𝜔 ·𝜔 = 0 and 𝜔 ·𝜔 > 0 corresponds to a positive definite plane
in Λ2 ⊗ ℝ spanned by Re(𝜔), Im(𝜔), one can imagine that boundary components
are related to ‘limits’ of such planes, i.e., an isotropic line or plane. On the geomet-
ric side boundary components are related to degenerations of K3 surfaces of degree
2, i.e., double covers of certain singular plane sextics. The isotropic sublattices are
also an ingredient in more sophisticated geometrically relevant compactifications.

Let 𝐼 be an isotropic subspace of Λ2 ⊗ ℝ. It corresponds to a boundary com-
ponent 𝐹𝐼 ⊂ �̂�(Λ2) of 𝐷(Λ2) whose closure is of the form 𝐹𝐼 = ℙ(𝐼ℂ) ∩ 𝐷(Λ2) (in
the case the dimension of 𝐼 is 1 this is just a point). For the SBB compactification
in our setting, only the so-called rational boundary components play a role. These
are the boundary components that correspond to isotropic subspaces defined over
the rationals, so that we can restrict our attention to primitive isotropic sublattices
𝐼 of Λ2. Since the signature of Λ2 is (2, 19), such isotropic sublattices can only
have rank 1 or 2. In the first case the boundary component is a single point, in the
second case 𝐹𝐼 is isomorphic to a half-plane in ℙ(𝐼ℂ). If 𝐼 ⊂ 𝐽, where 𝐼 is a rank 1
isotropic sublattice and 𝐽 a rank 2 isotropic sublattice, then 𝐹𝐼 is contained in the
closure of 𝐹𝐽 .

19.4.B Isotropic sublattices of rank 1.

Lemma 19.4.1. There is only one rank 1 primitive isotropic sublattice of Λ2 up
to Γ2-equivalence.

Proof. We use Corollary 17.3.10 to prove this. Let 𝑥 ∈ Λ2 = 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹
𝑈 ⦹ 𝑈 ⦹ ⟨𝑣⟩ be a primitive isotropic vector, where 𝑏(𝑣, 𝑣) = −2. We first show
that 𝑏(𝑥,Λ2) = ℤ. Suppose 𝑏(𝑥,Λ2) = 𝑚ℤ, with 𝑚 a positive integer. Then
𝑥/𝑚 ∈ Λ∗

2 = 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹ 𝑈 ⦹ 𝑈 ⦹ ⟨ 12𝑣⟩. So 𝑥/𝑚 = 𝑤 + 1
2𝛾𝑣, with 𝑤 ∈

𝐸8 (−1)⦹𝐸8 (−1)⦹𝑈⦹𝑈 and 𝛾 ∈ ℤ. From 0 = 𝑏(𝑤+ 1
2𝛾𝑣,𝑤+ 1

2𝛾𝑣) = 𝑏(𝑤,𝑤) − 1
2𝛾

2

we obtain that 1
2𝛾

2 is even and hence that 𝛾 is even. But then 𝑥/𝑚 ∈ Λ2 and
𝑚 = 1 by primitivity of 𝑥.

By Corollary 17.3.10-2 the vector 𝑥 is equivalent to a vector of the form 𝑎𝑒 + 𝑓
for some 𝑎 ∈ ℤ, where 𝑒,𝑓 are the standard basis vectors of the first copy of 𝑈.
Since 𝑥 is isotropic, 𝑎 = 0, and 𝑥 is equivalent to 𝑓 (and of course also to 𝑒′ in the
second copy of 𝑈, etc.) □

19.4.C Isotropic sublattices of rank 2. If 𝐽 is a rank 2 primitive isotropic
sublattice of Λ2 = 𝐸8 ⦹ 𝐸8 ⦹ 𝑈 ⦹ 𝑈 ⦹ ⟨𝑒′′ − 𝑓′′⟩, we may assume by the above
lemma that 𝐽 contains 𝐼 = ⟨𝑒′⟩ (in the second copy of 𝑈), so that we can reduce
our search for rank 2 primitive isotropic sublattices in Λ2 to determining rank 1
isotropic sublattices in 𝐼⊥/𝐼 = 𝐸8 (−1)⦹𝐸8 (−1)⦹𝑈⦹ ⟨𝑒′′−𝑓′′⟩ (the second copy of
𝑈 taken out) up to O (𝐼⊥/𝐼)-equivalence. We first establish that the natural maps
O− (Λ)ℎ → O (Λ2) and O (Λ2)𝑒′ → O (𝐼⊥/𝐼) are surjective.
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Lemma 19.4.2. Let ℎ = 𝑒′′ + 𝑓′′ ∈ Λ and 𝑒′ be as above. The natural maps
O− (Λ)ℎ → O (Λ2) and O (Λ2)𝑒′ → O (𝐼⊥/𝐼) are surjective.

Proof. Let 𝑆 = ⟨ℎ⟩ and 𝑇 = ⟨ℎ⟩⊥ = Λ2, both non-degenerate primitive sublattices
of Λ. Then 𝑆∗/𝑆 and 𝑇 ∗/𝑇 are of order 2 so that isometries of 𝑆 and 𝑇 , respectively,
induce the identity on 𝑆∗/𝑆 and 𝑇 ∗/𝑇 , respectively. Proposition 15.1.6 implies that
every element O (Λ2) = O (𝑇 ) extends to an isometry of Λ preserving ℎ, i.e., an
element in O− (Λ)ℎ. So the map O− (Λ)ℎ → O (Λ2) is surjective.

The second claim is easy since every isometry of 𝐼⊥/𝐼 = 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹
𝑈 ⦹ ⟨𝑒′′ − 𝑓′′⟩ can simply be extended with the identity on the second copy of 𝑈
in 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹𝑈 ⦹𝑈 ⦹ ⟨𝑒′′ − 𝑓′′⟩. □

As before, Λ2 = 𝐸8 (−1)⦹𝐸8 (−1)⦹𝑈⦹𝑈⦹⟨𝑣⟩, with 𝑣 = 𝑒′′−𝑓′′ and 𝑣 ·𝑣 = −2. If
𝐽 is a rank 2 primitive isotropic sublattice of Λ2 containing 𝑒′, then 𝐽/𝐼 determines
a primitive isotropic rank 1 sublattice in 𝐼⊥/𝐼 � 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹ 𝑈 ⦹ ⟨𝑣⟩, an
even lattice of hyperbolic signature (1, 18). We continue by searching for primitive
isotropic rank 1 lattices in 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹ 𝑈 ⦹ ⟨𝑣⟩, with 𝑣 · 𝑣 = −2. Here
we use È. Vinberg’s work [236] in which he describes a procedure which, under
favourable circumstances, may be used to determine the set of equivalence classes
(with respect to lattice isometries) of primitive isotropic rank 1 sublattices in a
lattice of hyperbolic signature, a procedure which we briefly discuss. Let (𝑀, 𝑏) be
a non-degenerate lattice of signature (1,𝑛) and let C𝑀 be one of the two connected
components of {𝑥 ∈ 𝑀ℝ | 𝑏(𝑥,𝑥) > 0}. Let O− (𝑀) be the subgroup of index 2
of O (𝑀) fixing C𝑀 (see Section 16.1). If the subgroup generated by reflections 𝑠𝑣
with 𝑏(𝑣, 𝑣) < 0 is of finite index, it has a polyhedral fundamental domain 𝑃 of
finite volume (viewed in the associated Lobachevskii space C𝑀/ℝ+) whose bounding
reflection hyperplanes and their relative position can be determined by Vinberg’s
procedure. A Dynkin diagram is used to represent and visualize this information.
From these results one then finds the vertices ‘at infinity’ of this polyhedron, i.e.,
the isotropic rank 1 sublattices up to reflection subgroup equivalence. The step
from reflection subgroup equivalence to isometry group equivalence is made by
using the symmetries of the Dynkin diagram.

The polyhedron 𝑃 is described by inequalities of the form 𝑏(𝑥, 𝑣) ≥ 0, where the
vectors 𝑣 correspond to the vertices of the diagram. By exploiting a close relative
of the distance function in Lobachevskii space, Vinberg’s algorithm provides a way
to successively compute the bounding hyperplanes of a fundamental domain and
to determine when to stop.

According to Vinberg, the vertices in the diagram can be found as follows.
Take a vector 𝑥 ∈ C𝑀 ∩ 𝑀. The idea behind the procedure is to successively
look for a bounding hyperplane that is closest to 𝑥 (in the Lobachevskii space)
given a certain intersection behaviour with hyperplanes found thus far. In prac-
tice this means: look for vectors 𝑣1, 𝑣2, . . . ∈ 𝑀 corresponding to reflections (and
determining bounding hyperplanes) such that the expression

𝑏(𝑥, 𝑧)2
|𝑏(𝑧, 𝑧) | , (19.7)
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which is closely related to the distance function in Lobachevskii space, is mini-
mal for 𝑧 = 𝑣1 (this means that the hyperplane 𝐻1 = 𝑣⊥1 is ‘closest’ to 𝑥 in the
Lobachevskii space), and such that 𝑣2 satisfies 𝑏(𝑣2, 𝑣1) ≥ 0 and the expression 19.7
is minimal for 𝑧 = 𝑣2 given this inequality, and so on. Vinberg furthermore states a
test when to stop, namely as soon as the following conditions are satisfied: if, in a
given stage, the diagram contains no so-called Lannér diagrams, if every parabolic
subdiagram can be extended to a parabolic subdiagram of rank 𝑛 − 1 (the rank of
a parabolic subdiagram is its number of vertices minus its number of connected
components), and if a condition is satisfied for pairs of bounding hyperplanes not
meeting in the cone (they correspond to dashed rank 2 subdiagrams).

In our situation, the lattice is 𝐼⊥/𝐼 � 𝐸8 (−1) ⦹ 𝐸8 (−1) ⦹𝑈 ⦹ ⟨𝑣⟩, has rank 19
and is of signature (1, 18). We apply Vinberg’s algorithm, where we start by taking
𝑥 = 𝑒 + 𝑓 ∈ 𝑈 in the positive cone. As for notation, we let 𝜔1, . . . ,𝜔8 be the dual
basis of 𝛼1, . . . ,𝛼8 and 𝜔′

1, . . . ,𝜔
′
8 the dual basis of 𝛼′

1, . . . ,𝛼
′
8. Vinberg’s procedure

leads to the following vectors (see also the Dynkin diagram for an overview):
• Roots corresponding to hyperplanes with distance 0 to the class of 𝑒 + 𝑓
in Lobachevskii space, i.e., roots that are perpendicular to 𝑒 + 𝑓: the roots
𝛼1, . . . ,𝛼8 in the first copy of 𝐸8 (−1) and the roots 𝛼′

1, . . . ,𝛼
′
8 of the second

copy of 𝐸8 (−1); the root 𝑓 − 𝑒 ∈ 𝑈 and 𝑣 in the last summand.
• Next we take the (−2)-roots 𝜔8 + 𝑒 and 𝜔′

8 + 𝑒, −𝑣 + 𝑒. These are mutually
perpendicular and perpendicular to 𝛼1, . . . ,𝛼7,𝛼

′
1, . . . ,𝛼

′
7, have inner product

+1 with 𝑓−𝑒. The root −𝑣+𝑒 satisfies 𝑏(−𝑣+𝑒, 𝑣) = 2. The distance expression
is 1/2 for these roots.

• Then take 𝜔1+𝜔′
1+2𝑒+2𝑓−𝑣. This root is perpendicular to most of the roots

found so far, in particular to 𝜔8 + 𝑒, 𝜔′
8 + 𝑒, and −𝑣 + 𝑒; it has inner product

1 with 𝛼1 and 𝛼′
1, and inner product 2 with 𝑣. The distance expression is

42/2 = 8 for these roots.
• Finally, we take the (−2)-roots 𝛽 = 2𝜔2+2𝜔′

7+6𝑒+6𝑓−3𝑣 and, symmetrically,
𝛽′ = 2𝜔′

2 + 2𝜔7 + 6𝑒 + 6𝑓 − 3𝑣. Note that

𝑏(𝛽, 𝛽′) = 𝑏(𝛽, 𝑣) = 𝑏(𝛽′, 𝑣) = 6;

the corresponding vertices in the Dynkin diagram are connected by a dashed
edge. The distance expression is 122/2 = 72.

The resulting Dynkin diagram is shown below.

We briefly verify Vinberg’s conditions (see [235], especially pages 22, and 33–34,
or see Ch. 5 in G. Heckman’s more recent notes [95]).

a) The maximal rank parabolic subdiagrams are all of rank 17: 𝐴17, 𝐸8+𝐸8+𝐴1,
�̃�16 + 𝐴1, �̃�10 + 𝐸7. Some occur multiple times because of symmetry.

b) Take two vertices of a dashed line in the diagram; the corresponding roots
span a hyperbolic lattice of rank 2. The roots corresponding to the vertices
in the diagram not connected to these two span a negative definite lattice
𝐴11 ⦹ 𝐸6 of rank 17. Together the 17 + 2 roots span a rank 19 sublattice
which is of finite index and hence its orthogonal complement consists of {0}
only.
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Since the roots represented in the diagram span the lattice, we also see that the
symmetries of the graph come from isometries of the lattice 𝐼⊥/𝐼 so that 𝑂− (𝐼⊥/𝐼) =
𝑊⋊𝑆3. Hence every isotropic vector is equivalent to one of the four types mentioned
above.

6

6 6

𝛼1

𝛼2

𝛼3𝛼4

𝛼5

𝛼6

𝛼7

𝛼8

𝜔8 + 𝑒

𝛼′
1

𝛼′
2

𝛼′
3 𝛼′

4

𝛼′
5

𝛼′
6

𝛼′
7

𝛼′
8

𝜔′
8 + 𝑒

𝑓 − 𝑒

−𝑣 + 𝑒
𝑣

𝛽 𝛽′

𝜔1 + 𝜔′
1 + 2𝑒 + 2𝑓 − 𝑣

Figure 19.4.1: Vinberg–Dynkin diagram.

We conclude that, up to O (𝐼⊥/𝐼)-equivalence, we find four distinct isotropic rank
1 sublattices 𝐽𝑖, 𝑖 = 1, . . . , 4. They are inequivalent since the corresponding root
systems in the lattices 𝐽⊥𝑖 /𝐽𝑖, 𝑖 = 1, . . . , 4 are distinct and hence these lattices are

not isometric. The four lifts 𝐽𝑖 of 𝐽𝑖 under 𝐼
⊥ → 𝐼⊥/𝐼 are then inequivalent rank 2

isotropic lattices in Λ2 for a similar reason.

Figure 19.4.2: Isotropic vector of types 𝐴17 and 𝐸8+𝐸8+𝐴1 up to diagram symmetry.

19.5 Supersingular K3 Surfaces

In this section we consider projective K3 surfaces over an algebraically closed field
of characteristic 𝑝 > 0. The main objective of this section is to classify the possible
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Figure 19.4.3: Isotropic vectors of types 𝐷16 + 𝐴1 and 𝐷10 + 𝐸7 up to diagram
symmetry.

Néron–Severi lattices of supersingular K3 surfaces using the techniques developed
so far.

19.5.A Some characteristic 𝒑 tools. A projective K3 surface can also be
defined as a projective 2-dimensional non-singular variety 𝑋 with trivial canon-
ical bundle and with 𝑞(𝑋) = dim𝐻1 (O𝑋) = 0. This definition is commonly used
when dealing with surfaces in arbitrary characteristics. This agrees with our pre-
vious definition for complex projective K3 surfaces. We see this as follows. If
𝐾𝑋 is trivial, 𝜅(𝑋) = 0, 𝑝𝑔 (𝑋) = 1 and 𝑐21 (𝑋) = 0. If also 𝑞(𝑋) = 0, then
𝜒(O𝑋) = 1 − 𝑞(𝑋) + 𝑝𝑔 (𝑋) = 2 = 1

12𝑐2 (𝑋) and hence 𝑐2 (𝑋) = 24. From Theo-
rem B.5.4 we then deduce that 𝑋 is indeed a K3 surface.

We shall use some facts from the classification of surfaces in positive charac-
teristics as explained in [23]. Apart from algebraic invariants such as 𝑝𝑔, 𝑞 and
𝜒(O), which are defined as in the complex case, topological invariants such as the
Betti numbers are used. In the complex situation these are defined via singu-
lar cohomology which makes use of the complex topology. It turns out that the
”classical” Zariski topology does not lead to meaningful invariants, but instead
one should resort to étale topology as introduced by A. Grothendieck. Roughly
speaking, the usual approach to topology using open subsets is to be replaced by
varieties lying in some sense in an unbranched way over Zariski open sets. See
[10, 11, 12, 148] for more details. Indeed, using this topology, for any scheme over
a field of characteristic 𝑝 one can define ℚℓ-adic cohomology groups 𝐻𝑘 (𝑋,ℚℓ),
𝑘 = 0, 1, . . . , where ℓ is a prime different from 𝑝. If these ℚℓ-spaces are finite-
dimensional (e.g. if 𝑋 is projective) their dimensions 𝑏𝑘 (𝑋) = dim𝐻𝑘 (𝑋,ℚℓ) are
called the Betti numbers, and these are independent of the choice of the prime
ℓ. The cohomology groups 𝐻𝑘 (𝑋,ℚℓ) assemble to form a ring as in the complex
situation, and if 𝑋 is non-singular and projective, there is an intersection pairing
on 𝐻𝑑 (𝑋,ℚℓ), 𝑑 = dim𝑋.

Assuming from now on that 𝑑 = 2, there is an intersection pairing on the Néron–
Severi group NS(𝑋) coming from intersecting two curves and which is integral



358 19 Application to Moduli of K3 Surfaces

valued. This gives NS(𝑋) the structure of an integral lattice which turns out to
be non-degenerate. There is a natural ”cycle class map” NS(𝑋) → 𝐻2 (𝑋,ℚℓ) and,
after tensoring with ℚℓ, the intersection product is compatible with the ℚℓ-valued
product on the target space.

As demonstrated in [23], the Betti numbers of a K3 surface turn out to be the
same as in the complex case: 𝑏1 (𝑋) = 0 and 𝑏2 (𝑋) = 22. However, the Néron–
Severi group can have rank 𝜌(𝑋) up to 22. We concentrate on the maximal value.
A K3-surface with 𝜌(𝑋) = 22 is called a supersingular K3 surface . So for those
surfaces NS(𝑋) is an integral lattice of rank 22. It has signature (1, 21) but it turns
out to be non-unimodular.

19.5.B Supersingular K3-lattices. The Néron–Severi lattices for supersingu-
lar K3 surfaces all belong to the class of the so-called supersingular K3-lattices
defined below (cf. Definition 19.5.1).7 We explain how these can be classified us-
ing the theory we have developed. We also give their construction as given in loc.
cit.

Definition 19.5.1. Let 𝑝 be a prime number. A non-degenerate quadratic lattice
𝑁 of rank 𝑛 is called a supersingular K3-lattice with Artin invariant 𝜎 if

1. 𝑛 ≡ 6 mod 8,
2. 𝑁 is Lorentzian, that is, its signature is (1,𝑛 − 1),
3. 𝑁 is 𝑝-elementary, i.e., 𝑝𝑁∗ ⊂ 𝑁 ⊂ 𝑁∗,
4. 𝑁∗/𝑁 is an 𝔽𝑝-vector space of even dimension 2𝜎.

Observe that conditions 1 and 2 ensure that 𝜏(𝑁) ≡ 4 mod 8, that is, the index
mod 8 equals 4. This turns out to be crucial for the next result to be true. To
explain the statement, recall from Section 1.7.B that 2-elementary lattices come
in two flavours distinguished by their type. Type 𝐼 lattices have 1

2ℤ/ℤ-valued
discriminant quadratic forms while the discriminant quadratic form of a type 𝐼𝐼
lattice assumes at least one of the values ± 1

4 modulo ℤ.

Proposition 19.5.2. For any odd prime 𝑝 a supersingular K3-lattice 𝑁 is uniquely
determined by 𝑛 and 𝜎 with 𝑛,𝜎 as in Definition 19.5.1. Such lattices only exist if
0 < 𝜎 < 1

2𝑛.
If 𝑝 = 2 we have 0 < 𝜎 ≤ 1

2𝑛. There are two types of discriminant forms:

𝑞# = ⦹𝜎−1𝑢1 ⦹ 𝑣1, 1 ≤ 𝜎 <
1

2
𝑛, (Type I),

𝑞# = ⟨2−1⟩ ⦹ ⟨3 · 2−1⟩ ⦹⦹𝜎−2𝑢1 ⦹ 𝑣1, 𝜎 ≥ 2, (Type II).

If 𝜎 = 1 one has 𝑞# = 𝑣1 and if 𝜎 = 1
2𝑛, 𝑞# is of type II. In all these cases

there exists an up to isometry unique 2-elementary supersingular K3-lattice with
discriminant form 𝑞#.

Proof. Since 𝜏 ≡ 4 mod 8 the lattice 𝑁 cannot be unimodular (see Theorem 2.4.2)
and so we must have 𝜎 > 0.

7These are also called Rudakov–Šafarevič lattices.
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Next we investigate existence and uniqueness according to which discriminant
forms are possible. This depends on whether 𝑝 is odd or even.
1. 𝑝 odd. Since 𝑁∗/𝑁 has even dimension 2𝜎, Table 14.6.1 shows that the
value of 𝜏8 only depends on 𝑝 mod 4 (take 𝑤 = 2𝜎) and that there is a unique
candidate discriminant quadratic form. If 𝜎 < 1

2𝑛 it follows from Theorem 14.6.4
that there exists a supersingular K3-lattice with given torsion quadratic form and
from Corollary 14.6.2 that it is unique up to isometry.

Since 𝑤 = 2𝜎 is even, by Lemma 14.6.1 the discriminant of 𝑁 is ±1 up to
squares, but over the reals the discriminant is −1 as 𝑛 − 1 is odd. In case 𝜎 = 1

2𝑛,

we thus need to exclude that the reduced discriminant of 𝑞#𝑁 equals −1. To do
so, we first consider the case that the discriminant group is isomorphic to 𝑛 = 2𝜎
copies of ℤ/𝑝ℤ with form ⦹2𝜎−1⟨𝑝−1⟩ ⦹ 𝜀⟨𝑝−1⟩. Note that in this case 𝜎 must be
odd since 2𝜎 ≡ 6 mod 8. Now 𝜀 = −1 is a square mod 𝑝 if and only if 𝑝 ≡ 1 mod 4.
In this case 𝑞#𝑁 ≃ ⦹2𝜎 ⟨𝑝−1⟩. According to the same table as before, this form has
𝜏8 ≡ 0 mod 8. If 𝑝 ≡ 3 mod 4 the other class occurs and so by loc. cit., since 𝜎
is odd, we also get 𝜏8 ≡ 0 mod 8. So such a lattice is not possible. This excludes
𝜎 = 1

2𝑛.
2. 𝑝 = 2. Here the result follows from Theorem 14.6.4 for existence and Corol-
lary 14.6.2 for uniqueness up to isometry. □

We give a direct construction of supersingular K3-lattices following [199,
§2]):

For 𝑝 odd: Here one uses the technique of neighbouring lattices as explained
in § 1.7.A. For a vector 𝒂 = (𝑎1, . . . , 𝑎𝑘) of odd integers we introduce the symmetric
lattice

𝐸 (𝒂) = ⟨𝑎1⟩ ⦹ · · ·⦹ ⟨𝑎𝑘⟩.

As for Example 3 in Section 1.4, introducing

𝐸 (0) (𝒂) = {(𝑥1, . . . ,𝑥𝑘) ∈ 𝐸 (𝒂) |
∑︁

𝑥𝑗 ≡ 0 mod 2},

the lattice

𝐸′(𝒂) = ℤ

(
1

2
, . . . ,

1

2

)
+ 𝐸 (0) (𝒂),

(
1

2
, . . . ,

1

2

)
∈ 𝐸 (𝒂) ⊗ ℚ,

is a neighbouring lattice of 𝐸 (𝒂). It is indeed a lattice provided
∑
𝑎𝑗 ≡ 0 mod 4

and it is even precisely if
∑
𝑎𝑗 ≡ 0 mod 8.

We also need the existence of an even positive definite 𝑝-elementary rank 4
lattice 𝐻𝑝 with discriminant 𝑝2. This can be done using quaternion algebras. See
Proposition 5.4.8. As in Example 5.4.9 the associated ternary form is isometric to
⟨1⟩ ⦹⦹2⟨𝑝⟩ and so 𝐻𝑝 is a 𝑝-elementary lattice.

The construction of 𝑁 depends on whether 𝜎 is odd or even. Write 𝜎 = 2𝑠 + 1
respectively 𝜎 = 2𝑠 + 2, and let 𝑛 = 8𝑚 + 6. Then take

𝒂 = (𝑝, . . . ,𝑝︸   ︷︷   ︸
4𝑠 copies

, 1, . . . , 1) ∈ ℤ8𝑚.
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Note that disc(𝐸 (𝒂)) = 𝑝4𝑠 is odd and then by Lemma 1.7.1, the discriminant
groups of 𝐸′(𝒂) and its neighbour 𝐸 (𝒂) are isomorphic to ⊕4𝑠ℤ/𝑝ℤ and so these
lattices are 𝑝-elementary. Now set

𝑁 =

{
𝑈 ⦹𝐻𝑝 (−1) ⦹ 𝐸′(−𝒂) if 𝜎 is odd

𝑈 (𝑝) ⦹𝐻𝑝 (−1) ⦹ 𝐸′(−𝒂) if 𝜎 is even.

For 𝑝 = 2: The following table gives supersingular K3-lattices for all types and
Artin invariants.

𝜎 type lattice
1
2𝑛 II ℤ1,𝑛−1 (2) = ⦹𝑛−1⟨−2⟩ ⦹ ⟨2⟩

1
2𝑛 − 1 I 𝑈 (−2) ⦹ 𝐷4 (−1) ⦹⦹ 1

8
(𝑛−6)𝐸8 (−2)

II 𝑈 ⦹⦹𝑛−2⟨−2⟩
2 ≤ 𝜎 ≤ 1

2𝑛 − 2 II 𝑈 ⦹⦹2𝜎−2⟨−2⟩ ⦹ 𝐷(𝑛−2)−(2𝜎−2) (−1)
1 ≤ 𝜎 ≤ 1

4 (𝑛 − 2) I 𝑈 ⦹⦹𝜎−1𝐷4 (−1) ⦹ 𝐷(𝑛−2)−4(𝜎−1) (−1)
1
4 (𝑛 − 2) ≤ 𝜎 ≤ 1

2𝑛 − 3

𝜎 ≡ 0 mod 4 I 𝑈 (2) ⦹ 1
4
(𝜎−4) 𝐸8 (−2) ⦹3 𝐷4 (−1) ⦹

1
8
(𝑛+2−2𝜎) 𝐸8 (−1)

𝜎 ≡ 2 mod 4 I 𝑈 ⦹ Γ2𝜎−4 (−2) ⦹ 𝐷(𝑛−2)−2𝜎 (−1) ⦹ 𝐷4 (−1)
1
4 (𝑛 − 2) ≤ 𝜎 ≤ 1

2𝑛 − 2

𝜎 ≡ 3 mod 4 I 𝑈 (2) ⦹ 1
4
(𝜎−3) 𝐸8 (−2)) ⦹2 𝐷4 (−1) ⦹

1
8
(𝑛−2𝜎) 𝐸8 (−1)

𝜎 ≡ 1 mod 4 I 𝑈 ⦹ Γ2𝜎−2 (−2) ⦹ 𝐷(𝑛−2)−(2𝜎−2) (−1)

Here we use the unimodular lattices Γ𝑘, 𝑘 ≡ 0 mod 4, from Section 1.4. We saw
that Γ𝑘 is positive definite and integral if 𝑘 is divisible by 4. The lattice Γ𝑘 (−2)
then is even and integral. Example 1.6.8.2 shows that Γ𝑘 (−2) is 2-elementary. To
obtain type I lattices one needs to impose that 𝑘 is divisible by 8 which explains
the difference for the choice of the lattice in the last 4 entries according to the
value of 𝜎 mod 4. We also note that Table 4.1.1 shows that the root lattices 𝐷𝑘

for even 𝑘 are 2-elementary as well.

Remark 19.5.3. The above table shows that the unique supersingular lattice of
rank 𝑛 = 22 and with 𝜎 = 1 is isometric to 𝑈⦹𝑁′ where 𝑁′ = 𝐷20 (−1) and so this
is isometric to the Borcherds lattice from Example 17.2.10.5.

19.5.C Application to supersingular K3 surfaces. Proposition 19.5.2 im-
plies:

Corollary 19.5.4. Let 𝑘 be an algebraically closed field of odd characteristic 𝑝
and let 𝑋 be a supersingular K3 surface. Then NS(𝑋) is a 𝑝-elementary K3-lattice
of rank 22 and so it is uniquely determined by the Artin invariant.

Uniqueness is also true in characteristic 2. We state the result from [199, §2,
3] and we refer to loc. cit. for a proof:

Theorem 19.5.5. Let 𝑘 have characteristic 2 and let 𝑋 be a supersingular K3
surface over 𝑘. Then NS(𝑋) is a supersingular K3-lattice of rank 22 of type I and
so it is uniquely determined by the Artin invariant.
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The reader wil find in loc. cit. also a precise classification result:

Theorem ([199, §3,4]). Supersingular K3 surfaces in characteristic 2 with Artin
invariant 𝜎 have a moduli variety 𝑀𝜎 of dimension 𝜎−1. In other words, the points
of 𝑀𝜎 are in one to one correspondence with isomorphism classes of supersingular
K3 surfaces with Artin invariant 𝜎.

As an example, the universal family of K3 surfaces with Artin invariant 10 is
given by an equation of the form

𝑦2 = 𝑎2 (𝑡)𝑥4 + 𝑎3 (𝑡)𝑥3 + 𝑎4 (𝑡)𝑥2 + 𝑎5 (𝑡)𝑥 + 𝑎6 (𝑡), (19.8)

where the 𝑎𝑗 (𝑡) are polynomials of degree 𝑗 in 𝑡. Taking into account the peculiari-
ties of characteristic 2, one writes 𝑎2𝑘 (𝑡) = 𝑏𝑘 (𝑡)2 +𝑎 ′2𝑘 (𝑡), where the prime denotes
formal differentiation with respect to 𝑡. Since an equation of the same form of
(19.8) arises under the substitution 𝑦 ↦→ 𝑦 + 𝑏1 (𝑡)𝑥2 + 𝑏2 (𝑡)𝑥 + 𝑏3 (𝑡), one deduces
that the coefficients of the polynomials 𝑎 ′2 (𝑡), 𝑎3 (𝑡), 𝑎 ′4 (𝑡) , 𝑎5 (𝑡) , 𝑎 ′6 (𝑡) are “true”
parameters. There are 1 + 4 + 2 + 6 + 3 = 16 of these. However, it turns out that
certain other transformations also give isomorphic surfaces: 𝑥 ↦→ 𝛼 · 𝑥 + 𝛽 · 𝑡 + 𝛾,
where 𝛼, 𝛽, 𝛾 ∈ 𝑘; next 𝑦 ↦→ 𝛿 · 𝑦, 𝛿 ∈ 𝑘, and, finally, every projective linear map of
the 𝑡-line. So the number of effective parameters is indeed 16 − (4 + 3) = 9 = 𝜎 − 1.

Since in odd characteristic there is not a general geometric construction of fam-
ilies of supersingular K3 surfaces, Ogus used an indirect construction to describe
their moduli spaces using a ”period map”, very much analogous to what we did
in Section 19.2. The main result of [176], stated here in a slightly imprecise and
simplified form is as follows:

Theorem ([176]). Let 𝑝 ≠ 2, 3 be a prime and 𝑘 an algebraically closed field of
characteristic 𝑝. Supersingular K3 surfaces with Artin invariant 𝜎 have a “moduli
space” of dimension 𝜎 − 1.

Historical and Bibliographical Notes. A proof for the Torelli theorem for K3
surfaces in the projective case is due to I. Pjateckĭı-Šapiro and I. Šafarevič [189], and
in the Kähler case to D. Burns and M. Rapoport [33]. The surjectivity statements are
due to V. Kulikov [130, 131], H. Pinkham–U. Persson [182] in the projective case, and
A. Todorov [226], Y. Namikawa [165] in the Kähler setting. Comprehensive proofs can
be found in [106] and [15, Ch. VIII]. These results make it possible to describe various
moduli spaces for K3 surfaces such as for ”lattice polarized K3 surfaces” as in Section 19.2.
This is due to D. Morrison [158].

Geometrical meaningful (partial) compactifications of moduli spaces were studied
by many people and in various settings. For the setting of locally symmetric varieties,
relevant for our work, we refer to [13] and its extensive list of references. The example we
discuss in Section 19.4 is based on an outline of a lattice oriented approach for the moduli
space of K3 surfaces of degree 2 as described by E. Looijenga in [143]. The diagram occurs
in a letter by Looijenga to J. Shah and was also used by F. Scattone in [200].

In Section 19.5 we have used the notion of supersingular surface as in T. Shioda’s
article [209]. ”Supersingular” might also refer to an a priori different notion introduced by
M. Artin in [9]. Only recently it has been shown that his notion coincides with Shioda’s, at
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least for 𝑝 ≠ 2. See the discussion in [106, Ch. 17.2–3]. Our treatment of supersingular
K3 surfaces is based on the approach of A. Rudakov and I. Šafarevič in [199]. Using
still another ”Grothendieck topology” leading to crystalline cohomology, Ogus [175, 176]
developed a theory of period maps for supersingular K3 surfaces in characteristics 𝑝 ≠ 2, 3.
See also the lecture notes [139] by C. Liedtke where many of the required techniques are
explained. We should however warn the reader that despite the claim in these lecture
notes, according to D. Bragg and M. Lieblich [27] the ”Artin conjecture” (Conjecture 7.4
in [139]), stating that all supersingular K3 surfaces are unirational, is still open at the
moment of writing.

There are now two monographs available devoted to K3 surfaces, [106] by D. Huy-

brechts and [129] by S. Kondō. Both give extensive background on several of the topics

treated in this chapter. While [129] can be viewed as an introduction to K3 surfaces and

the related geometry, in [106] the reader finds a vast area of subjects ranging from the

complex geometry aspects to arithmetic fineries.
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Automorphism Groups of K3 Surfaces

Introduction

In Section 20.1 we describe the automorphism group of a K3 surface through the
action on cohomology, making use of the Torelli theorem 19.2.1. By definition,
the subgroup of symplectic automorphisms is the subgroup fixing a holomorphic
2-form. For algebraic K3 surfaces this group is of finite index in the full group
and the quotient group is well understood. This gives a finiteness criterion for
automorphisms in terms of the Néron–Severi lattice.

Shifting gears, we may ask which finite groups can occur as a group of symplec-
tic automorphisms of a K3 surface. This is the subject of Section 20.2. In § 20.3 we
prove a remarkable result due to S. Mukai on finite groups of symplectic automor-
phisms, abelian or not. Next, restricting to abelian such groups in Section 20.4,
we recall Nikulin’s list of finite abelian groups acting symplectically. Subsequently
we show that these act in an essentially unique way on the K3 lattice. The latter
proof is technical and depends on the precise description of the moduli space of
marked K3 surfaces as given in Section 19.3 of the preceding chapter. It also uses
a delicate result concerning the relation between the intersection lattice of a K3
surface and that of the minimal resolution of its quotient by a finite abelian group.
The latter result has been placed in Appendix 20.9.

As we have seen, involutions and their quotients come up in many contexts. In
Section 20.5 we describe how these act on the intersection lattice. By definition, a
Kummer surface is the minimal resolution of a quotient of a torus by its natural
involution. In Section 20.6 we give a lattice theoretic characterization of Kummer
surfaces. An involution acting on a K3 surface may or may not be symplectic. If
it is, it is also called a Nikulin involution; in Section 20.7 we devote a deeper study
to these. As to non-symplectic involutions, we only consider the lattice aspects
of fixed point free involutions on K3 surfaces whose quotients, by definition, are
Enriques surfaces. We return to Enriques surfaces in the next chapter.

Finally, in Section 20.8 we investigate those Nikulin involutions which give a
so-called Shioda–Inose structure.
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20.1 The Automorphism Group of a Projective K3 Surface

In this section 𝑆, respectively 𝑇 = 𝑆⊥ denotes the Néron–Severi lattice, resp. the

transcendental lattice of a K3 surface 𝑋 (Compare Lemma B.2.7).

20.1.A The role of symplectic automorphisms. The automorphism group
of a projective K3 surface 𝑋 can be investigated through its natural representation
on cohomology, since Theorem 19.2.2 implies that this representation is faithful.
The description in terms of the K3 lattice is however rather unwieldy but sim-
plifies for the subgroup Aut𝑠 (𝑋) which fix every holomorphic 2-form on 𝑋, the
so-called symplectic automorphisms. Such automorphisms act as the identity
on 𝐻2,0 (𝑋), and hence on the transcendental lattice and consequently induce the
identity on 𝑆∗/𝑆 ≃ 𝑇 ∗/𝑇 . We use the exact sequence of Proposition 15.2.9 in this
situation, where now 𝐿 = 𝐻2 (𝑋,ℤ):

1 → O# (𝑆) 𝑒𝑆−→ O# (𝐿)𝑆
𝜌𝑇−−→ O (𝑇 ),

where 𝑒𝑆 (𝜎) is the extension of 𝜎 ⊕ id𝑇 , 𝜎 ∈ O# (𝑆) and 𝜌𝑇 is the restriction. This
extension is called the symplectic extension of 𝜎 which is unique since 𝑆 ⦹ 𝑇
generates 𝐿.

To express the group of symplectic automorphisms of 𝑋 in terms of the group
O# (𝑆), we identify the latter with the subgroup of O (𝐿) of the symplectic exten-
sions. Note that a symplectic automorphism of 𝑋 induces an isometry in O# (𝑆)
preserving the ample cone in 𝑆ℝ. Recall (see (17.2)) that the subgroup O−,# (𝑆) of
O (𝑆) is formed by those isometries of 𝑆 that preserve the positive light cone in-
tersected with 𝑆ℝ and induce the identity on the discriminant group. So it follows
from Corollary 19.2.3 that

Aut𝑠 (𝑋) ≃ O−,# (𝑆)/W− (𝑆),

and fits in the exact sequence

1 → Aut𝑠 (𝑋) −−→ Aut(𝑋)
𝜌𝑇−−→ O (𝑇 ).

Using these remarks, we state and prove:

Theorem 20.1.1. Let 𝑋 be a projective K3 surface. There exists a positive integer
𝑚 (depending on 𝑋) such that there is an exact sequence

1 → Aut𝑠 (𝑋) → Aut(𝑋)
𝜌𝑇−−→ 𝜇𝑚 → 1,

where 𝜇𝑚 is the group of 𝑚-th roots of unity in ℂ.
The group Aut𝑠 (𝑋) is isomorphic to the subgroup of O (𝐻2 (𝑋,ℤ)) consisting

of those symplectic extensions of isometries in O−,# (𝑆) which preserve the ample
cone. This group is isomorphic to the quotient group O−,# (𝑆)/W− (𝑆).
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Proof. It remains to show that the image of 𝜌𝑇 is a finite group of roots of unity.
Since 𝑋 is projective, 𝑇 has signature (2, 20 − rank(𝑆)). Suppose that 𝑔 is an
automorphism of 𝑋. The induced action 𝛾 = 𝑔∗ on cohomology preserves the
complex line 𝐻2,0 (𝑋) ⊂ 𝑇ℂ as well as the complex conjugate line. Consequently,
𝛾ℝ ∈ Aut(𝑇ℝ) belongs to the compact group which preserves the decomposition
𝑇ℝ = 𝑇 ′ ⊕ 𝑇 ′′, 𝑇 ′ = 𝑇 1,1 ∩ 𝑇ℝ (negative definite), 𝑇 ′′ = (𝑇 2,0 ⊕ 𝑇 0,2) ∩ 𝑇ℝ (positive
definite). This implies that such 𝛾 form a finite set. Hence each of them acts on
the line 𝐻2,0 (𝑋) as multiplication by some fixed root of unity. The image of 𝜌𝑇 is
thus some group of 𝑚-th roots of unity. □

Remark 20.1.2. If 𝑋 is a non-projective K3 surface, there can be automorphisms
that do not act by multiplication with a root of unity and then [Aut(𝑋) : Aut𝑠 (𝑋)] =
∞. See [106, Ch 15, Example 1.11].

As an immediate consequence of this result one obtains a finiteness criterion
for the automorphism group in terms of the Néron–Severi lattice.

Criterion 20.1.3 ([189, §7, Theorem 1]). The automorphism group of a complex
projective K3 surface 𝑋 is finite if and only if O− (𝑆)/W− (𝑆) is finite. In other
words, Aut(𝑋) is finite if and only if the Weyl group of 𝑋 (cf. 19.1) embeds as a
finite index subgroup in the isometry group of the Néron–Severi lattice 𝑆.

Proof. By Theorem 20.1.1 the group Aut(𝑋) is finite if and only if this is the case
for the group Aut𝑠 (𝑋). Moreover, the theorem states that the image of Aut𝑠 (𝑋)
has finite index in the group of all isometries of 𝑆 preserving the ample cone. Since
the latter group is isomorphic to O− (𝑆)/W− (𝑆), the result follows. □

Examples 20.1.4. 1. If 𝜌(𝑋) = 1 the group O− (𝑆) is the identity and so Aut(𝑋)
is finite. In fact, if 𝑋 is a double cover of ℙ2 branched along a general sextic curve,
Aut(𝑋) is generated by the covering involution and in all other cases Aut(𝑋) is
trivial. See e.g. [106, Ch. 15. Cor. 2.12]. So for all 𝑘 ≥ 2, the general K3
admitting a degree 2𝑘-polarization has trivial automorphism group.
2. Suppose 𝜌(𝑋) = 2. Here finiteness occurs if and only if 𝑆 has either an isotropic
vector or a root. This happens for infinitely many non-isometric lattices. The only
possible infinite groups are ℤ and ℤ ∗ ℤ. See [75].
3. More generally, let F𝜌 be the set of isometry classes of even lattices 𝑆 of
signature (1, 𝜌 − 1) for which O− (𝑆)/W− (𝑆) finite. Then the previous examples
show that the sets F1 and F2 have infinitely many elements. By [170, 172] the
set F20 is empty while for 𝜌 = 3, . . . , 19 there are finitely many isometry classes in
F𝜌 and each of these occur as the Néron–Severi lattice of some K3 surface. For
geometric constructions (and much more) see [198].

As announced, the arithmetic nature of the description of Aut𝑠 (𝑋) has an
important consequence. Continuing with the notation as above, introduce the
following auxiliary groups:

𝐺 = {𝛾 ∈ O (ΛK3 ⊗ ℝ) | 𝛾 (𝑆ℝ) = 𝑆ℝ, 𝛾 (Camp
𝑋 ) = Camp

𝑋 },
𝐺ℤ = 𝐺 ∩ O (ΛK3), 𝐺−

ℤ = {𝑔 ∈ 𝐺 ∩ O− (ΛK3) | 𝑔 induces id on 𝑆∗/𝑆}.
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Before stating the result we are after, recall that an algebraic matrix group 𝐺
defined over a field 𝑘 is an affine subvariety of 𝑀𝑛×𝑛 (𝑘), the affine space of the 𝑛
by 𝑛 matrices with coefficients in the field 𝑘 with group action inherited by matrix
multiplication. In particular, 𝐺 is given as the zero locus of polynomials from the
ring 𝑘[𝑋1,1, . . . ,𝑋𝑛,𝑛].

Proposition 20.1.5 ([220]). Suppose 𝑋 is a projective K3 surface. Then the
group 𝐺 is an algebraic group defined over ℚ and hence 𝐺ℤ is finitely generated. A
marking induces an isomorphism Aut𝑠 (𝑋) ≃ 𝐺−

ℤ
. The latter has finite index in 𝐺ℤ

and hence Aut𝑠 (𝑋) as well as Aut(𝑋) are finitely generated.

Proof. The isometry group of ΛK3 ⊗ℝ is an algebraic group. Since the coefficients
of its defining equations belong to ℚ, this algebraic group is defined over ℚ. The
subgroup 𝐺 ⊂ O (ΛK3 ⊗ ℝ) is also an algebraic group defined over ℚ since 𝑆ℝ comes
from a lattice and since the ample cone is determined by a choice of a partition
of the roots in 𝑆 into positive roots (the effective ones) and negative roots. Then
𝐺ℤ is by definition an arithmetic subgroup of 𝐺 and by [25, §3] such groups are
finitely generated.

Theorem 20.1.1 shows that Aut𝑠 (𝑋) ≃ 𝐺−
ℤ
. Since the latter has finite index

in 𝐺ℤ, the subgroup 𝐺−
ℤ
is also finitely generated. Again by Theorem 20.1.1, the

group Aut𝑠 (𝑋) has finite index in Aut(𝑋), and so the latter is finitely generated
as well. □

20.1.B General behaviour of automorphisms. In this subsection we show
that, up to a possible sign, an automorphism of a projective K3 surface is generally
symplectic, in other words we show that generally the values of 𝑚 that occur in
Theorem 20.1.1 are 1 and 2. We first present an estimate for the values of 𝑚 which
may occur. So, let 𝜑 be an isometry of the transcendental lattice 𝑇 of a projective
K3 surface 𝑋 which preserves the Hodge decomposition and assume that some
𝑚-th root of unity appears as an eigenvalue of 𝜑 (Note that if 𝜑 comes from an
automorphism of 𝑋 of finite order there is such an eigenvalue). As usual, let 𝜙 be
the Euler totient function. Since 𝜙(𝑚) is at most the degree of the characteristic
polynomial of 𝜑, the rank of the lattice 𝑇 is at least 𝜙(𝑚). This leads to the
algebraic field

𝐾𝜌 = ℚ

(⋃
𝑚

exp(2𝜋𝒊/𝑚)
)
, 𝜙(𝑚) ≤ rank(𝑇 ) = 22 − 𝜌, 𝜌 = rank(𝑆), (20.1)

i.e., the field obtained by adjoining to ℚ all primitive 𝑚-th roots of unity for which
𝜙(𝑚) ≤ 22− 𝜌. The 𝑚 that satisfy this inequality for a given 𝜌 are collected in the
following table.
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𝜌 𝑚 with 𝜙(𝑚) ≤ 22 − 𝜌
20, 19 1, 2, 3, 4, 6
18, 17 additional 𝑚 : 5, 8, 10, 12
16, 15 additional 𝑚 : 7, 9, 14, 18
14, 13 additional 𝑚 : 15, 16, 20, 24, 30
12, 11 additional 𝑚 : 11, 22

10, 9, 8, 7 additional 𝑚 : 13, 21, 26, 28, 36, 42
6, 5 additional 𝑚 : 17, 32, 34, 40, 48, 60
4, 3 additional 𝑚 : 19, 27, 38, 54
2, 1 additional 𝑚 : 25, 33, 44, 50, 66

Remark 20.1.6. 1. One can show that all integers

𝑚 ∈ {1, . . . , 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 54, 66}

occur, in some cases for a unique K3 surface. See [127, 146, 253, 255]. However, it
turns out that the numbers 33 and 60 from the above table do not occur.
2. If 𝜁𝑚 ∈ ℂ is an 𝑚-th root occurring as an eigenvalue for some 𝑚 in the table,
then the corresponding eigenspace is defined over ℚ(𝜁𝑚).

From the proof of Theorem 20.1.1 one sees that the group of isometries of 𝑇
preserving the Hodge decomposition is finite if 𝑇 has signature (2, ∗), whence the
following result.

Lemma 20.1.7. Suppose 𝑇 is the transcendental lattice of a projective K3 surface (
so that its signature is of the form (2, ∗)). If no one-dimensional non-zero subspace
of 𝑇ℂ can be defined over the field 𝐾𝜌 we just introduced, then ±1 are the only
roots of unity that occur as eigenvalues of an isometry of 𝑇 preserving the Hodge
decomposition.

It leads to the notion of 𝐾𝜌-genericity:

Definition 20.1.8. Let rank(𝑆) = 𝜌. A point [𝑢] ∈ 𝐷(𝑆⊥) is called 𝐾𝜌-generic
or generic over 𝐾𝜌 if the following two conditions hold:

• With 𝑇 = 𝑆⊥, there is no proper sublattice 𝑇 ′ of 𝑇 for which ℂ𝑢 ⊂ 𝑇 ′
ℂ
. In

particular, the Picard number of any corresponding K3 surface 𝑋 equals
𝜌 = 22 − rank(𝑇 );

• No one-dimensional subspace of 𝑇ℂ is defined over 𝐾𝜌 and so, using the nota-
tion of Theorem 20.1.1, either Im(𝜌𝑇 ) is the identity or the order two group
{±id}.

Shifting gears, we now let 𝑆 be an abstract lattice of signature (1, 𝜌 − 1) and
consider 𝑆-marked K3 surfaces, that is K3 surfaces (𝑋,𝜑) such that 𝑆 ⊂ NS(𝑋).
Such surfaces are parametrized by the domain 𝐷(𝑆⊥) (cf. Definition 19.2.9). By its
very definition, 𝐾𝜌-generic period points in 𝐷(𝑆⊥) come from 𝑆-marked K3 surfaces
with transcendental lattice exactly 𝑇 = 𝑆⊥. Invoking Lemma 20.1.7, this proves:

Lemma 20.1.9. Let 𝐾𝜌 be defined by equation (20.1). If [𝑢] ∈ 𝐷(𝑆⊥) is a 𝐾𝜌-
generic period point of a projective K3 surface, then the only automorphisms of
𝑇 = 𝑆⊥ extending to ΛK3 are ±id.
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Since for a K3 surface without nodal curves the Weyl group is trivial, this fact
and Theorem 20.1.1 imply:

Corollary 20.1.10. Let 𝜌 = rank(𝑆) and 𝐾𝜌 defined by equation (20.1). For
𝐾𝜌-generic 𝑆-marked projective K3 surfaces 𝑋 without nodal curves one has

• Aut(𝑋) = Aut𝑠 (𝑋) × {±1} ≃ O−,# (𝑆) × {±1} if and only if 𝑋 admits an
involution acting as −id on 𝑇 ;

• Aut(𝑋) = Aut𝑠 (𝑋) ≃ O−,# (𝑆) otherwise.

The first alternative does occur. Indeed any K3 surface 𝑋 without nodal curves
and whose holomorphic 2-forms are anti-invariant under an involution, such as the
universal cover of a general Enriques surface, has this property. Consult Sec-
tion 21.1 for more details.

20.2 Finite Groups Acting On a K3 Surface

From now on the K3 lattice will be denoted as Λ instead of ΛK3. 𝐺 denotes a finite

subgroup of O (Λ).

Recall the notation Λ𝐺 for the 𝐺-invariant sublattice, and Λ𝐺 for its orthogonal
complement. Note that Λ𝐺 and Λ𝐺 are non-degenerate if 𝐺 is non-trivial. See
Example 1.7.3.

Criterion 20.2.1. Let 𝑋 be a K3 surface. Then, up to conjugation under the
action of W− (𝑋), a finite subgroup 𝐺 of O (𝐻2 (𝑋,ℤ)) is induced by automorphisms
of 𝑋 if and only if the following three conditions hold simultaneously:

1. 𝐺 preserves 𝐻2,0 (𝑋);

2. There is a 𝐺-invariant element in the positive cone;

3. 𝐻2 (𝑋,ℤ)𝐺 ∩ NS(𝑋) contains no roots.

Proof. If 𝐺 ⊂ Aut(𝑋), then item 1 holds trivially. Roots 𝑟 belonging to NS(𝑋) are
orthogonal to 𝐻2,0 (𝑋) and so 𝜎𝑟 preserves the latter. Hence item 1 holds also for
𝑤𝐺𝑤−1, 𝑤 ∈ W− (𝑋).

Since 𝐺 ⊂ Aut(𝑋) is finite and preserves the set of Kähler classes, given a
Kähler class ℓ, then so is the non-zero invariant class

∑
𝑔∗ (ℓ). In case 𝐺 ⊂ Aut(𝑋)

this proves item 2. Since by the observation in § 17.2.B, W− (𝑋) preserves the
positive light cone, 𝑤(∑ 𝑔∗ (ℓ))𝑤−1 =

∑
𝑔∗ (𝑤(ℓ)) is a 𝐺-invariant element in the

positive cone for all 𝑤 ∈ W− (𝑋), completing the proof of item 2.
Next, assume that Λ𝐺 ∩ NS(𝑋) contains a root 𝑟. Replacing 𝑟 with −𝑟 if

necessary, we may assume that the root is effective and then, again assuming
𝐺 ⊂ Aut(𝑋), also ∑

𝑔∗ (𝑟) ∈ Λ𝐺 ∩Λ𝐺 is effective, a contradiction since Λ𝐺 ∩Λ𝐺 = 0.
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This argument is not affected by conjugation with an element fromW− (𝑋), proving
3.

For the converse, let 𝑋 be a K3 surface and 𝐺 ⊂ O (𝐻2 (𝑋)) a finite subgroup
satisfying conditions 1–3. Item 1 implies that 𝐺 preserves 𝐻1,1 (𝑋). We identify
𝐻2 (𝑋,ℤ) with the K3 lattice Λ through a marking and so 𝐺 preserves Λ1,1

ℝ
. Let

us consider the 𝐺-invariant subcone 𝐾 = (Λ1,1)𝐺
ℝ
∩ C𝑋 of the positive C𝑋 . It is

non-empty by assumption 2, say 𝜅 ∈ 𝐾. The cone cannot be contained in any
hyperplane 𝐻𝑟 orthogonal to a root 𝑟 ∈ NS(𝑋). Otherwise (Λ1,1)𝐺 ⊂ 𝑟⊥ since
the open subset 𝐾 of (Λ1,1)𝐺

ℝ
spans the latter vector space, and then 𝑟 would be

contained in (Λ1,1)𝐺 which contradicts item 3. The Kähler cone is a fundamental
domain for the action of W− (𝑋), and so some 𝑤 ∈ W− (𝑋) sends the element 𝜅 ∈ 𝐾
to a Kähler class 𝑤(𝜅) and 𝑔𝑤 := 𝑤◦𝑔◦𝑤−1 preserves this Kähler class for every
𝑔 ∈ 𝐺. By Theorem 19.2.2, 𝑔𝑤 is induced by a unique automorphism of 𝑋. So
𝑤𝐺𝑤−1 ⊂ Aut(𝑋), completing the proof. □

Symplectic actions. There is a related result which gives a criterion for a finite
group 𝐺 of O (Λ) to act symplectically on some K3 surface. Recall that for a
sublattice 𝑆 of Λ in Section 19.2 we defined the period domain 𝐷(𝑆⊥) = {[𝑢] ∈
𝐷(Λ) | 𝑢 · 𝑆 = 0}. This is the period domain parametrizing K3 surfaces whose
Néron–Severi group contains (a copy of) 𝑆, or, equivalently, whose transcendental
lattice is contained in 𝑇 = 𝑆⊥. We shall be interested in 𝑆 = Λ𝐺, that is, in period
points in 𝐷(Λ𝐺).

Proposition 20.2.2. Let 𝐺 be a finite group acting symplectically on a marked
K3 surface 𝑋. Then, via the marking, Λ𝐺 does not contain roots and the period
point of 𝑋 belongs to 𝐷(Λ𝐺).

Let 𝐺 be a finite subgroup of O (Λ). Suppose rank(Λ𝐺) ≤ 18 and that Λ𝐺 does
not have roots. If the period point of 𝑋 belongs to 𝐷(Λ𝐺), then, up to conjugation
with some 𝑤 ∈ W− (𝑋), every 𝑔 ∈ 𝐺 acts symplectically on 𝑋 via the marking.
Moreover, on the connected subset corresponding to K3-surfaces with Néron–Severi
group equal to Λ𝐺,

◦
𝐷 (Λ𝐺) = {[𝑢] ∈ 𝐷(Λ𝐺) | 𝜑NS(𝑋) = Λ𝐺 , [𝑢] period point of (𝑋,𝜑)}, (20.2)

one can take 𝑤 = id.

Proof. First assume that 𝐺 acts symplectically on 𝑋. A marking sends the tran-
scendental lattice of 𝑋 into Λ𝐺 and so, by definition, the period point of 𝑋 belongs
to 𝐷(Λ). But also Λ𝐺 ⊂ 𝑆, 𝑆 the image of the Néron–Severi lattice under the
marking and so, by Criterion 20.2.1 Λ𝐺 does not contain roots.

Conversely, since by assumption on the period point the transcendental lattice
is contained in Λ𝐺, 𝐺 acts trivially on the transcendental lattice and hence also
on 𝐻2,0 (𝑋). In particular, 𝐺 acts symplectically in cohomology and the 𝐺-action
on 𝐻2 (𝑋) preserves the Hodge decomposition. To show that the 𝐺-action on
cohomology is induced from a 𝐺-action on 𝑋 it suffices to verify the conditions
of Criterion 20.2.1. First of all, the 𝐺-action preserves each of the cones ±C𝑋 .
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This can be seen as follows. Since rank(Λ𝐺) ≥ 4 and the signature of Λ is (3, 19),
the non-degenerate lattice Λ𝐺 cannot be positive definite and since the period
point belongs to Λ𝐺 ⊗ ℂ, the lattice Λ𝐺 cannot be negative definite either, hence
is indefinite and so meets the positive cone. Since 𝐺 fixes its intersection with
the positive cone pointwise, 𝐺 must preserve C𝑋 as well as −C𝑋 . As 𝐺 is finite, it
follows that there is a 𝐺-invariant element in each of the cones. Secondly, we just
recalled that, by definition, Λ𝐺 ⊂ NS(𝑋), and since Λ𝐺 does not contain roots, all
conditions of Criterion 20.2.1 are fulfilled and so up to conjugation with an element
of the Weyl group of the Néron–Severi group the cohomological 𝐺-action comes
from a 𝐺-action on the K3 surface. If the Néron–Severi group coincides with Λ𝐺

this Weyl group is trivial. This happens for period points outside the countably
many hyperplane orthogonal to roots in Λ. This set is connected since hyperplanes
are of real codimension 2. □

A marked K3 surface (𝑋,𝜑) with a symplectic 𝐺-action determines a 𝐺-action
on Λ. If 𝜄 : 𝐺 ↩→ O (𝐻2 (𝑋)) is the action on cohomology, the one on Λ is given by

𝜄𝜑 : 𝐺 ↩→ O (Λ), 𝑔 ↦→ 𝜑◦𝜄 (𝜑−1𝑔). (20.3)

A different marking for 𝑋 gives a conjugate embedding so that the conjugation
class of 𝜄𝜑 (𝐺) in O (Λ) only depends on 𝜄. So also the isometry class of the lattice
fixed under 𝜄𝜑 (𝐺) only depends on 𝜄, or, more precisely on the image 𝜄(𝐺), we shall
denote any representing lattice by Λ𝜄(𝐺) and its orthogonal complement by Λ𝜄(𝐺) .
This leads to:

Definition 20.2.3. A marked K3-surface (𝑋,𝜑) with symplectic 𝐺-action and
induced embedding 𝜄 : 𝐺 ↩→ O (Λ) is called a (𝜄,𝐺)-marked K3 surface .

We can then rephrase the above proposition as follows:

Corollary 20.2.4. Suppose that Λ𝜄(𝐺) has rank ≤ 18 and does not contain roots.

Then
◦
𝐷 (Λ𝜄(𝐺)) is the period domain of (𝜄,𝐺)-marked K3 surfaces.

Recalling the period map (19.5) for the universal family of marked K3 surfaces,
the smooth analytic space

M𝜄(𝐺) = M∩p−1 (
◦
𝐷 (Λ𝜄(𝐺))) (20.4)

is the moduli-space of (𝜄,𝐺)-marked K3-surfaces. For the corresponding period
points the associated light cone has two components and since the Néron–Severi
lattice has no roots, there are two choices for the Kähler cone. Replacing a marking
by its negative exchanges these two cones and hence we have:

Proposition 20.2.5. Let 𝐺 be a finite group. The moduli space of (𝜄,𝐺)-marked
K3 surfaces M𝜄(𝐺) has two connected components M±

𝜄(𝐺) corresponding to two op-

posite markings.
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Next, we consider how the image of 𝐺 in O (Λ) varies in a family of (𝜄,𝐺)-
marked K3 surfaces. We have seen that two markings for a given K3 surface lead to
conjugate copies of the group 𝐺 in O (Λ). For a family 𝑓 : X→ 𝑆 of K3 surfaces over
a contractible base 𝑆 with 𝐺-action a similar result is true: a trivialization of the
local system 𝑅2𝑓∗ℤ leads to a fixed copy of 𝐺 in O (Λ); changing the trivialization
leads to a conjugate copy. A patching argument deals with a general base. In
particular we have:

Corollary 20.2.6. The images of 𝐺 in O (Λ) for the members of the universal
family of (𝜄,𝐺)-marked K3 surfaces over a connected component of M𝜄(𝐺) belong to
the same conjucacy class in O (Λ).

Classification of quotient surfaces. To determine the place of the quotient
surfaces 𝑋/𝐺 in the classification, we first consider the fixed points of the 𝐺-action
on a K3 surface 𝑋. As we have remarked previously, by [35] the action of a non-
trivial 𝑔 ∈ 𝐺 at a fixed point can be linearized. This implies that the fixed locus
of 𝑔 in 𝑋 is either empty or a disjoint union of smooth curves and isolated points.
Suppose 𝑥 ∈ 𝑋 is a fixed point of 𝑔 and that 𝑔 acts symplectically. With 𝑇𝑥𝑋
the tangent space at 𝑥, 𝑔 acting symplectically translates as det

(
𝑔|𝑇𝑥𝑋

)
= 1. This

implies that 𝑥 is an isolated fixed point since no direction in 𝑇𝑥𝑋 can be fixed (a
curve of fixed points would give an eigenvalue 1). So its image in 𝑌 is a quotient
singularity, hence, by Proposition 4.5.2, it is a du Val singularity.

Proposition 20.2.7. Let 𝐺 be a finite group of automorphisms of a K3 surface
𝑋, then:
1. If 𝐺 acts symplectically, 𝑋/𝐺 has at most du Val singularities and its minimal
resolution is a K3 surface;
2. If 𝐺 does not act symplectically, 𝑋/𝐺 is either rational or birational to an
Enriques surface. It is isomorphic to an Enriques surface if 𝐺 has order 2 and
acts freely on 𝑋.

Proof. 1. We have just noted that 𝑌 = 𝑋/𝐺 has at most isolated du Val singular-
ities. Denote its minimal resolution by 𝑌. The non-zero holomorphic 2-form on
𝑋 is 𝐺-invariant and therefore descends to a non-zero holomorphic 2-form on 𝑋/𝐺
outside the singular points. This non-zero holomorphic 2-form on the complement
of the singularities on 𝑌 pulls back to the complement of the exceptional curves
of 𝑌 and extends to 𝑌 (residues along exceptional curves vanish). So 𝑌 has trivial
canonical bundle. Since 𝑏1 (𝑋) = 0, also 𝑏1 (𝑌) = 0 and so, by the classification of
surfaces B.5.4, 𝑌 is a K3 surface.
2. In this case 𝑝𝑔 (𝑌) = 0 and 𝑏1 (𝑌) = 0. Again, the classification theorem of

surfaces shows that in this case 𝑌 is either rational or birational to an Enriques
surface. An involution acting freely produces by definition an Enriques surface. □
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20.3 Finite Groups Acting Symplectically: Universality of
the Mathieu Group 𝑴23

Here 𝑋 is a K3 projective surface, 𝐻2 (𝑋,ℤ) will be identified with the K3 lattice Λ, 𝐺

is a finite subgroup of O (Λ) acting symplectically. Finally 𝑆 = NS(𝑋) and 𝑇 = 𝑆⊥.

The Mathieu group 𝑀24 has been introduced in Section 5.1. We recall that it is
the subgroup of the symmetric group 𝔖24 preserving the Golay code. This group
acts transitively on the set Ω = {1, . . . , 24} and 𝑀23 is the stabilizer of one of the
elements of Ω for which we may and do take 24.

Theorem 20.3.1 (Mukai, [159]). A finite group 𝐺 arises as a subgroup of Aut𝑠 (𝑋)
for some projective K3 surface 𝑋 if and only if 𝐺 is isomorphic to a subgroup of
the Mathieu group 𝑀23 for which the induced action on Ω has at least 5 orbits.

Sketch of the proof of the only if part. The proof is subdivided in the following
steps:
Step 1. Proof that there exists some Niemeier lattice 𝑁1 and a primitive
embedding

𝑗 : 𝑀 := Λ𝐺 ⦹ 𝐴1 (−1) ↩→ 𝑁 (−1). (20.5)

First of all we establish that Λ𝐺 is negative definite. To prove this, first note
that 𝑇 ⊂ Λ𝐺 since 𝐺 consists of symplectic automorphisms, and so Λ𝐺 ⊂ 𝑆 with 𝑆
of signature (1, 𝜌 − 1). Since 𝑋 is projective and 𝐺 is finite there exists an ample
invariant class, say 𝑦 ∈ Λ𝐺 ∩ 𝑆, and Λ𝐺 ⊂ 𝑆 is orthogonal to 𝑦 and hence Λ𝐺 is
negative definite.

By the third condition of Proposition 15.2.1, the desired embedding exists if
a positive definite lattice of rank 24 − rank(𝑀) = 23 − rank(Λ𝐺) and with dis-
criminant quadratic form 𝑞#𝑀 exists. We show this by verifying the conditions of
Theorem 12.4.4. The first condition is automatic since 𝑀 is an integral lattice,
and condition 2 on the length of the discriminant group is satisfied since

ℓ(𝑀) = ℓ(dgΛ𝐺
) + 1 = ℓ(dgΛ𝐺 ) + 1

≤ rank(Λ𝐺) + 1

= 22 − rank(Λ𝐺) + 1

= 24 − (rank(Λ𝐺) + 1).

Finally, condition 3 on the 2-primary discriminant group holds since ⟨2−1⟩ splits off
due to the orthogonal summand 𝐴(−1). This also implies that ℓ(dg𝑀𝑝

) < rank(𝑀)
so that condition 3 for 𝑝 ≠ 2 is vacuous.
Step 2. The case where 𝑁 is the Niemeier lattice with root lattice 𝑅 =

⦹24
𝑖=1ℤ𝑒𝑖, 𝑒𝑖 · 𝑒𝑖 = 2.
In Section 5.1 we have seen that 𝑁 is associated to the Golay code 𝐶Gol ⊂ 𝔽24

2 .
We claim that O (𝑁) = (ℤ/2ℤ)24 ⋊ 𝑀24. Indeed, (ℤ/2ℤ)24 ⋊ 𝔖24 acts on 𝑅 by

1Recall that a Niemeier lattice is a positive definite even unimodular lattice of rank 24.
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permuting the basis vectors and sign changes. Since rank(𝑁) = 24, an isometry
is completely determined by the action on a spanning set such as {𝑒1, . . . , 𝑒24}
and preserves this set up to signs, whence an inclusion O (𝑁) ↩→ (ℤ/2ℤ)24 ⋊ 𝔖24.
However, 𝑁 is associated to the Golay code and 𝑀24 is the stabilizer of this code
and so O (𝑁) ↩→ (ℤ/2ℤ)24⋊𝑀24. Since every element of the right-hand side actually
gives an isometry of 𝑁, we have equality.

The action of 𝐺 extends to an action on the Niemeier lattice by letting it act as
the identity on the orthogonal complement of the image of 𝑗 (Λ𝐺) ⊂ 𝑁 under the
embedding 𝑗 from (20.5). This is possible by Theorem 15.1.7 since 𝐺 acts as the
identity on Λ𝐺 and consequently it also acts as the identity on the discriminant
group of Λ𝐺. Hence we get an inclusion 𝐺 ↩→ O (𝑁) and, since W(𝑁) = (ℤ/2ℤ)24,
we obtain an induced homomorphism

𝜑 : 𝐺 → O (𝑁)/W(𝑁) ≃ 𝑀24.

We claim that 𝜑 is an injection. Note first that the action of 𝐺 on 𝑁 is constructed
in such a way that 𝑁𝐺 ⊂ Λ𝐺. Moreover, since 𝐺 acts symplectically, 𝑇 ⊂ Λ𝐺 and
hence 𝑁𝐺 ⊂ Λ𝐺 ⊂ 𝑆, that is, 𝑁𝐺 consists of algebraic classes. Next observe that
O (𝑁)/W(𝑁) can be identified with the subgroup of O (𝑁) which leaves a Weyl
chamber of W(𝑁) invariant and so 𝜑 is an injection if its image leaves each Weyl
chamber invariant. To prove this, it suffices to show that 𝑁𝐺 meets a Weyl chamber
in its interior. Suppose that this is not the case. Then the linear subspace 𝑁𝐺

ℝ
⊂ 𝑁ℝ

is contained in some reflection hyperplane 𝑒⊥𝑖 . But then 𝑒𝑖 ∈ 𝑁𝐺 and hence 𝑒𝑖 is a
root in Λ𝐺 contradicting Criterion 20.2.1. Finally, since the root corresponding to
the 𝐴1 (−1)-summand embedded in 𝑁 is fixed by all 𝜎 ∈ 𝐺, letting it correspond
to 𝑒24, we get an embedding 𝐺 ↩→ 𝑀23.

It remains to show that 𝐺 has at least 5 orbits in Ω. To see this, first remark
that rank(𝑁𝐺) ≥ 3 since 𝐺 acts trivially on 𝑇 which has rank ≥ 3, and hence
rank(𝑁𝐺) ≤ 19 so that the 𝐺-invariant sublattice 𝑁𝐺 of 𝑁 has rank ≥ 24 − 19 = 5.
Let 𝑓1, . . . ,𝑓5 ∈ 𝑁𝐺 be independent elements, say 𝑓𝑖 =

∑24
𝑗=1 𝑓𝑖𝑗𝑒𝑗 . The matrix

𝐹 = (𝑓𝑖𝑗) thus has rank 5. From 𝜎(𝑓𝑖) = 𝑓𝑖, 𝜎 ∈ 𝐺 ⊂ 𝔖24, one sees that 𝑓𝑖𝑗 = 𝑓𝑖𝜎−1 (𝑗) .
So if 𝑘 and ℓ are in the same 𝐺-orbit, then the 𝑘-th and ℓ-th columns are equal.
Since rank(𝐹) ≥ 5, we must then have at least 5 orbits in Ω.

The argument for the other Niemeier lattices is simpler. See S. Kondō’s paper
[128] for details.

We refer to loc. cit. for a proof of the converse statement which uses Crite-
rion 20.2.1. □

20.4 Finite Abelian Groups Acting Symplectically

In this section we discuss which finite abelian groups act symplectically on K3
surfaces. The main goal is to show that each of these groups act in an essentially
unique way in cohomology.
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20.4.A An inventory. Suppose 𝐺 acts symplectically on a K3 surface 𝑋. By
Proposition 20.2.7, 𝑌 = 𝑋/𝐺 has at most du Val singularities and its minimal reso-
lution 𝑌 is a K3 surface. The classes of the components in the minimal resolution
�̃� generate a sublattice of 𝐻2 (𝑌,ℤ) which is denoted 𝑀′

𝑌 . Its primitive closure,
𝑀𝑌 , is called the resolution lattice of the quotient K3 surface.

Lemma 20.4.1. The possible finite abelian groups 𝐺 acting effectively and sym-
plectically (and their invariants) are those which are given in Table 20.4.1,

Table 20.4.1: Groups 𝐺

𝐺 exceptional rank 𝑀𝑌 signature Λ𝐺 dg𝑀𝑌

divisor
ℤ/2ℤ 8𝐴1 8 (3, 11) ⊕6ℤ/2ℤ
ℤ/3ℤ 6𝐴2 12 (3, 7) ⊕4ℤ/3ℤ
ℤ/5ℤ 4𝐴4 16 (3, 3) ⊕2ℤ/5ℤ
ℤ/7ℤ 3𝐴6 18 (3, 1) ℤ/7ℤ
ℤ/4ℤ 2𝐴1 + 4𝐴3 14 (3, 7) ⊕2ℤ/2ℤ ⊕2 ℤ/4ℤ
ℤ/6ℤ 2(𝐴1 + 𝐴2 + 𝐴5) 16 (3, 3) ⊕2ℤ/6ℤ
ℤ/8ℤ 𝐴1 + 𝐴3 + 2𝐴7 18 (3, 1) ℤ/2ℤ ⊕ ℤ/4ℤ

⊕2ℤ/2ℤ 12𝐴1 12 (3, 7) ⊕8ℤ/2ℤ
⊕3ℤ/2ℤ 14𝐴1 14 (3, 5) ⊕8ℤ/2ℤ
⊕4ℤ/2ℤ 15𝐴1 15 (3, 4) ⊕7ℤ/2ℤ

ℤ/2ℤ ⊕ ℤ/4ℤ 4(𝐴1 + 𝐴3) 16 (3, 3) ⊕2ℤ/2ℤ ⊕2 ℤ/4ℤ
ℤ/2ℤ ⊕ ℤ/6ℤ 3(𝐴1 + 𝐴5) 18 (3, 1) ℤ/2ℤ ⊕ ℤ/6ℤ

⊕2ℤ/3ℤ 8𝐴2 16 (3, 3) ⊕4ℤ/3ℤ
⊕2ℤ/4ℤ 6𝐴3 18 (3, 1) ⊕2ℤ/4ℤ

Proof for 𝐺 cyclic of prime order 𝑝. We have seen in § 4.5.A that the fixed points
of a generator 𝑔 all give 𝐴𝑝−1 singularities. Their number, 𝑛𝑝, can be found by
calculating the Euler number 𝑒(𝑌) in two ways. The first is by comparing it
with the Euler number of the K3 surface 𝑌 which equals 𝑒(𝑌) = 24. Each of
the 𝑛𝑝 singularities on 𝑌 resolves into an 𝐴𝑝−1-configuration. Each of these has

Euler number 𝑝. Hence 𝑒(𝑌) = 𝑒(𝑌) − 𝑛𝑝𝑝 + 𝑛𝑝 = 24 + 𝑛𝑝 (1 − 𝑝). On the other
hand 𝑋 → 𝑌 is a 𝑝-fold cover which is unbranched in the complement of the 𝑛𝑝
fixed points, while each fixed point gives a single (singular) point on 𝑌. We find
𝑒(𝑌) = (𝑒(𝑋) − 𝑛𝑝)/𝑝 + 𝑛𝑝 = 24/𝑝 + 𝑛𝑝 (𝑝 − 1)/𝑝. Comparison gives (𝑝 + 1)𝑛𝑝 = 24
and so (𝑝 + 1) |24. Since 𝑛𝑝 configurations of type 𝐴𝑝−1 produce a negative definite
lattice of rank 𝑛𝑝 (𝑝 − 1) ≤ 19, we obtain 𝑝 ≤ 7. This gives the first block of the
first and second column.

Next, to calculate rank(𝐻2 (𝑋,ℤ)𝐺), we apply the ordinary Lefschetz fixed point
formula [88, Ch 3.4] to the action of 𝑔 ≠ id on 𝐻2 (𝑋,ℚ). In our case it reads

2 + Tr(𝐻2 (𝑋,ℚ)) = number of fixed points = 𝑛𝑝,
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where Tr denotes the trace. The irreducible representations of 𝐺 correspond to
the subrepresentations of the regular representation 𝑅(𝐺) of 𝐺 that have rational
trace. For 𝐺 cyclic of prime order 𝑝 there are exactly two such representations:
the trivial representation and a rank 𝑝 − 1 representation with trace −1. See e.g.
[205, Exercise 13.1]. So, if dim𝐻2 (𝑋,ℚ)𝐺 = 𝑑, one has 2+𝑑 − (22−𝑑)/(𝑝 − 1) = 𝑛𝑝
which gives the penultimate column in the table.

Since 𝑀′
𝑌 = ⦹𝑛𝑝𝐴𝑝−1 (−1), we find disc(𝑀′

𝑌) = ±𝑝𝑛𝑝 by Lemma 4.1.7. Theo-
rem 20.9.6.1 in the appendix to this chapter, tells us that [𝑀𝑌 : 𝑀′

𝑌] = |𝐺 |, and
so, applying Lemma 1.2.2, we get disc(𝑀𝑌) = ±𝑝𝑛𝑝−2. Next, from the inclusions
𝑀′

𝑌 ⊂ 𝑀𝑌 ⊂ 𝑀∗
𝑌 ⊂ 𝑀′∗

𝐺 it follows that 𝑀∗
𝑌/𝑀′

𝑌 ⊂ 𝑀′∗
𝐺 /𝑀

′
𝑌 . So, since by Table 4.1.1

the discriminant group of 𝐴𝑝−1 (−1) is the cyclic group ℤ/𝑝ℤ, the group 𝑀∗
𝑌/𝑀′

𝑌
is a direct sum of cyclic groups of order 𝑝, and hence its quotient 𝑀∗

𝑌/𝑀𝑌 as well.

Combining with disc(𝑀𝑌) = ±𝑝𝑛𝑝−2, we find dg𝑀𝑌
=

⊕𝑛𝑝−2 ℤ/𝑝ℤ. This gives the
last column.
Proof of the remaining cases. See [169, §6]. □

Example 20.4.2. The first example in the above list is the Nikulin involution.
The table shows that it has eight fixed points which upon resolving gives eight
−2 curves whose classes 𝑒1, . . . , 𝑒8 span ⦹8𝐴1 (−1). The primitive closure in 𝐻2

has an extra element 1
2

∑
𝑗 𝑒𝑗 . So the resolution lattice is the Nikulin lattice (see

Definition 5.2.9) with discriminant group ⦹6ℤ/2ℤ.

Table 20.4.2

𝐺 cyclic subgroup occurring types 𝜇 and 𝑛(𝜇) 𝑚(𝜇)
⊕2ℤ/2ℤ ℤ/2ℤ all 3 types, 2 4
⊕3ℤ/2ℤ ℤ/2ℤ all 7 types, 2 2
⊕4ℤ/2ℤ ℤ/2ℤ all 15 types, 2 1
⊕2ℤ/3ℤ ℤ/3ℤ all 4 types, 3 2
⊕2ℤ/4ℤ ℤ/2ℤ none 0

ℤ/4ℤ all 6 types, 4 1
ℤ/2ℤ ⊕ ℤ/4ℤ ℤ/2ℤ (1, 2), (1, 0), 2 2

ℤ/4ℤ, all 2 types, 4 2
ℤ/2ℤ ⊕ ℤ/6ℤ ℤ/2ℤ all 3 types, 2 1

ℤ/3ℤ none 0
ℤ/6ℤ all 3 types, 6 1

20.4.B Isometry class of the resolution lattice. We shall give a lattice the-
oretical description of the resolution lattice 𝑀𝑌 in terms of the group 𝐺. To begin,
a non-trivial stabilizer of a point 𝑝 ∈ 𝑋 is cyclic (analyse its action on 𝑇𝑝 (𝑋)).
A finite group has an invariant factor decomposition isomorphic to ⊕𝑠

𝑗=1ℤ/𝑑𝑗ℤ,
𝑑1 |𝑑2 | · · · and a cyclic subgroup of 𝐺 is then determined by an 𝑠-tuple of integers
(modulo 𝑑𝑗 in the 𝑗-th summand), its type , for which we use the letter 𝜇. The
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order of the group will be denoted 𝑛(𝜇). In case 𝐺 = ⊕𝑘ℤ/2ℤ, 𝑘 = 2, 3, 4, we
also identify the type with a non-zero vector in 𝔽𝑘2. Cyclic groups 𝐺 have types
consisting of a sole number, which is a divisor of |𝐺 |.

Not every possible type occurs for K3 surfaces in this way, and there may
be multiple occurrences, say 𝑚(𝜇) of type 𝜇, each corresponding to an 𝐴𝑛-type
singularity with 𝑛 = 𝑛(𝜇)−1. For cyclic groups the numbers𝑚(𝜇) of subgroups with
type 𝜇 can be read off from the table (second column) we gave in Lemma 20.4.1.
For the non-cyclic groups the complete list (with proofs) can be found in [169, §6],
copied as Table 20.4.2.

The aimed for description of the lattices 𝑀𝑌 in terms of 𝐺 can now be given.
We first introduce 𝑀′

𝐺 which as a free ℤ-module is generated by 𝑒𝜇,ℓ,𝑘 where 𝜇 runs
over the types for 𝐺 which actually occur according to Tables 20.4.1 and 20.4.2,
the integer ℓ runs from 1 to 𝑚(𝜇), and 𝑘 from 1 to 𝑛(𝜇) − 1. The lattice structure
is given by declaring

𝑀′
𝐺 := ⦹𝜇 ⦹

𝑚(𝜇)
ℓ=1 𝐴𝑛(𝜇)−1 (−1),

where the ℓ-th copy is generated by the set of roots {𝑒𝜇,ℓ,1, . . . , 𝑒𝜇,ℓ,𝑛(𝜇)−1} as in the
graph (*) below.

• • • • • •
𝑒𝜇,ℓ,1 𝑒𝜇,ℓ,2 𝑒𝜇,ℓ,3 𝑒𝜇,ℓ,𝑛(𝜇)−3 𝑒𝜇,ℓ,𝑛(𝜇)−2 𝑒𝜇,ℓ,𝑛(𝜇)−1

(∗)

We furthermore put

𝐸𝐺 :=
⋃
𝜇,ℓ

{𝑒𝜇,ℓ,1, . . . , 𝑒𝜇,ℓ,𝑛(𝜇)−1} (20.6)

𝑀𝐺 := smallest sublattice of 𝑀′
𝐺 ⊗ ℚ containing 𝑀′

𝐺 and {𝑥 ∈ 𝐽𝐺} (20.7)

where 𝐽𝐺 is the set of ℓ(𝐺) supplementary (representatives of) generators from
the last column in Table 20.4.3. From this table we see that the choice of the
supplementary generators is such that the torsion group 𝑀𝐺/𝑀′

𝐺 is isomorphic to
𝐺. On the geometric side, 𝑀𝑌 and 𝑀𝐺 are indeed isometric and this gives the
searched for abstract description of 𝑀𝑌 . See Lemma 20.4.3 below for details.

Lemma 20.4.3. Let 𝑋 be a K3 surface and 𝐺 a finite abelian group acting sym-
plectically on 𝑋 with quotient 𝑌 = 𝑋/𝐺. Let 𝐸𝑌 be the collection of classes of the
exceptional curves of the minimal resolution 𝑌 of 𝑌, 𝑀′

𝑌 the lattice they span and

𝑀𝑌 its resolution lattice, i.e., the primitive closure of 𝑀′
𝑌 in 𝐻2 (𝑌).

1. There exists an isometry 𝜑 : 𝑀𝑌
∼−→ 𝑀𝐺 such that 𝜑(𝐸𝑌) = 𝐸𝐺; hence 𝜑 sends

𝑀′
𝑌 to 𝑀′

𝐺 inducing a group isomorphism 𝜑 : 𝑀𝑌/𝑀′
𝑌

∼−→ 𝑀𝐺/𝑀′
𝐺.

2. The embedding 𝑀𝑌
𝜑
−→ 𝑀𝐺 ↩→ Λ extends to an 𝑀𝐺-marking 𝐻2 (𝑌) ∼−→ Λ. Any

two embeddings of 𝑀𝑌 ↩→ Λ are conjugate under O (Λ).

Proof. 1. This follows from a straightforward calculation for which we refer to
[169, §6]. The last assertion can be seen from the shape of the supplementary
generators in Table 20.4.3.
2. Extension follows from Witt’s extension theorem 15.1.7 and the uniqueness of
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Table 20.4.3

𝐺 ℓ(𝐺) set 𝐽𝐺 of generators for 𝑀𝐺/𝑀′
𝐺

ℤ/2ℤ 1 𝑓
ℤ/3ℤ 1 𝑓
ℤ/5ℤ 1 𝑓(1),1 + 𝑓(1),2 + 2𝑓(1),3 + 2𝑓(1),4
ℤ/7ℤ 1 𝑓(1),1 + 2𝑓(1),2 + 3𝑓(1),3
ℤ/4ℤ 1 𝑓
ℤ/6ℤ 1 𝑓
ℤ/8ℤ 1 𝑓(4) + 𝑓(2) + 𝑓(1),1 + 𝑓(1),2

⊕2ℤ/2ℤ 2 𝑓′1,𝑓
′
2

⊕3ℤ/2ℤ 3 𝑓′1,𝑓
′
2,𝑓

′
3

⊕4ℤ/2ℤ 4 𝑓′1,𝑓
′
2,𝑓

′
3,𝑓

′
4

ℤ/2ℤ ⊕ ℤ/4ℤ 2 𝑓(1,2) + 𝑓(1,0) + 2𝑓(1,1)
𝑓(1,2) + 𝑓(0,1) + 𝑓(1,1)

ℤ/2ℤ ⊕ ℤ/6ℤ 2 𝑓(1,0) + 𝑓(1,3) + 3𝑓(1,2) + 3𝑓(1,1)
𝑓(0,1) + 𝑓(1,0) + 𝑓(1,2) + 𝑓(1,3) + 2𝑓(1,1)

⊕2ℤ/3ℤ 2 𝑓(1,0) + 𝑓(1,1) + 𝑓(0,1),
𝑓(1,1) + 𝑓(0,1) + 𝑓(1,2)

⊕2ℤ/4ℤ 2 𝑓(1,0) + 𝑓(1,2) + 𝑓(1,1) + 𝑓(1,3) + 2𝑓(2,1)
2𝑓(1,2) + 𝑓(1,3) + 𝑓(0,1) + 𝑓(2,1) + 𝑓(1,1)

In the table we make use of some auxiliary vectors in 𝑀′
𝐺
⊗ ℚ, namely the vectors 𝑓𝜇,ℓ =

1
𝑛𝜇

∑𝑛(𝜇)−1
𝑘=1

𝑘𝑒𝜇,ℓ,𝑘, 𝑓 =
∑
𝜇,ℓ 𝑓𝜇,ℓ, and 𝑓′𝑞 = 1

2

∑
𝜇∈𝐻𝑞

𝑒𝜇,1,1, where 𝐻𝑞 = {𝜇 = (𝜇1, . . . ,𝜇𝑘) ∈
𝔽𝑘2 | 𝜇𝑞 = 1}, 𝑞 = 2, 3, 4.

the embedding up to conjugation follows from Theorem 15.2.6. The conditions in
the statements are indeed satisfied, since first of all 𝑀⊥

𝑌 is indefinite because 𝑀𝑌 is
negative definite of rank ≤ 18. Secondly, rank(𝑀𝐺) ≤ 18 ≤ rank(Λ) − 3. Thirdly,
by Lemma 20.4.1, in all cases the table (last column) we gave in Lemma 20.4.1
shows that the number of generators of the discriminant group of 𝑀𝐺 ≃ 𝑀𝑌 is at
most rank(𝑀⊥

𝐺 ) − 2. □

Example 20.4.4. Continuing with 𝐺 = ℤ/2ℤ, i.e., the Nikulin involution (cf.
Example 20.4.2), we see that the 8 types 𝜇 are given by the 8 basisvectors of 𝔽8

2,
and 𝑛(𝜇) = 2, 𝑚(𝜇) = 1. The extra generator is 𝑓 = 1

2

∑
𝑒𝑗 . Then 𝑀′

𝐺 = ⦹8𝐴1 (−1),
𝑀𝐺 = ΛNik and 𝑀𝐺/𝑀′

𝐺 ≃ ℤ/2ℤ.

20.4.C K3 surfaces with symplectic 𝑮-action and their quotients. In

the previous subsection we showed that the K3 surface 𝑌 = �𝑋/𝐺 admits an 𝑀𝐺-
marking and so belongs to the period domain 𝐷(𝑀⊥

𝐺 ). In fact for these surfaces the
roots in 𝐸𝐺 correspond to nodal classes. This justifies the concept of an (𝑀𝐺 ,𝐸𝐺)-
marking , where 𝐸𝐺 corresponds to nodal classes under the marking. In particular,
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the roots in 𝐸𝐺 are irreducible. We set

◦
𝐷 (𝑀⊥

𝐺 ) := {[𝑢] ∈ 𝐷(𝑀⊥
𝐺 ) | [𝑢] is (𝑀𝐺 ,𝐸𝐺)-marked}. (20.8)

Surprisingly, conversely an (𝑀𝐺 ,𝐸𝐺)-marked K3 surface 𝑌 determines in a

canonical way a K3 surface 𝑋 with symplectic 𝐺-action such that �𝑋/𝐺 = 𝑌. More
precisely:

Proposition 20.4.5. 1) Let 𝑌 be a K3 surface admitting an (𝑀𝐺 ,𝐸𝐺)-marking.

• The (𝑀𝐺 ,𝐸𝐺)-marking gives a canonical identification

𝜄∗ : Ext1 (𝐺) ∼−→ 𝑀𝑌/𝑀′
𝑌 . (20.9)

• There exists a K3-surface 𝑋 and an embedding 𝜄 : 𝐺 ↩→ Aut𝑠 (𝑋) such that the
minimal resolution of singularities of 𝑋/𝜄(𝐺) is isomorphic to 𝑌. Moreover,
𝑌 has an (𝑀𝐺 ,𝐸𝐺)-marking inducing 𝜄∗.

2) Conversely, every K3-surface 𝑋 with symplectic 𝐺-action comes in this way
from some (𝑀𝐺 ,𝐸𝐺)-marked K3 surface. Two such marked K3-surfaces come from
(possibly different) embeddings 𝜄, 𝜄′ : 𝐺 ↩→ Aut𝑠 (𝑋) if and only if 𝜄′ = 𝜄◦𝛼 where 𝛼 is
an automorphism of the group 𝐺.

Proof. 1) By definition, there is a set of nodal curves {𝐸𝜇,ℓ,𝑘} on 𝑌 whose classes

under the marking correspond to those in 𝐸𝐺. Let 𝑌′ = 𝑌 − ⋃
𝜇,ℓ,𝑘 𝐸𝜇,ℓ,𝑘. Observe

that one can apply formulas (20.22) and (20.25) in the Appendix to this chapter
even if one does not know that a group acts. Since in our situation 𝐻1 (𝑌) = 0, the
argument which we give there then yields a canonical identification Tors𝐻2 (𝑌′) =
𝑀𝑌/𝑀′

𝑌 = Ext1 (𝐺). This proves the first assertion.
By the universal coefficient theorem this implies Tors𝐻1 (𝑌′) = 𝐺. Hence,

there is an unramified cover 𝜋′ : 𝑋′ → 𝑌′ with covering group 𝐺. Let 𝑇 ⊂ 𝑌 be a
small enough tubular neighborhood of an 𝐴𝑛(𝜇)−1-configuration. The inverse image
(𝜋′)−1𝑇 ′, 𝑇 ′ = 𝑇 ∩𝑌′ consists of |𝐺 |/𝑛(𝜇) disjoint isomorphic copies of the universal
cover 𝐵′ of 𝑇 ′. This follows since the fundamental group of 𝑇 ′ = 𝑇 ∩ 𝑌′ is cyclic
of order 𝑛(𝜇) because the 𝐴𝑛(𝜇)−1-configuration can be blown down to a cyclic
quotient singularity 𝑦 of type 𝐴𝑛(𝜇)−1. Moreover, 𝐵′ = 𝐵 − 𝑥 for some ball 𝐵 with
center 𝑥. We can now glue 𝑋′ to the disjoint union of these balls 𝐵 along the 𝐵′,
obtaining a compact complex manifold 𝑋. The action of the covering group 𝐺 of
𝑋′ → 𝑌′ extends to 𝑋 such that each of the points 𝑥 becomes a fixed point (Hartog’s
theorem). In particular, we get an embedding 𝜄 : 𝐺 ↩→ Aut𝑠 (𝑋). Then 𝑌 := 𝑋/𝜄(𝐺)
has 𝑌 as its minimal desingularization and 𝑥 maps to the corresponding point
𝑦 ∈ 𝑌. We claim that 𝑋 is a K3 surface. To show this, remark that 𝑒(𝑋) = 24,
as can be seen by reversing the argument in the proof of Lemma 20.4.1. Next,
a non-zero holomorphic 2-form 𝜂 on 𝑌 restricts to a holomorphic 2-form on 𝑌′

which lifts to a non-zero 2-form on 𝑋′ extending to 𝑋 as a 𝐺-invariant non-zero
2-form (a priori its zero locus is either empty or a divisor – the last possibility is
excluded). But then 𝑋 is a K3 surface, by the classification theorem B.5.4. By
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construction 𝑌 = 𝑋/𝜄(𝐺). The construction of 𝑌 gives an (𝑀𝐺 ,𝐸𝐺)-marking for 𝑌
and an isomorphism 𝜄∗.
2) Suppose 𝜄 : 𝐺 ↩→ Aut𝑠 (𝑋). Then the minimal resolution of 𝑌 = 𝑋/𝜄(𝐺) is a
K3-surface admitting an (𝑀𝐺 ,𝐸𝐺)-marking, and one has an induced isomorphism

𝜄∗ : Ext1 (𝐺) ∼−→ 𝑀𝑌/𝑀′
𝑌 which encodes the 𝐺-action. Precomposing the embedding

with an automorphism 𝛼 of 𝐺 gives the isomorphism 𝜄∗◦Ext(𝛼). The minimal
resolutions of 𝑋/𝜄(𝐺) and 𝑋/𝜄◦𝛼(𝐺) are isomorphic. On the other hand isomorphic
minimal resolutions of quotients of two symplectic 𝐺 actions on 𝑋 can only arise
if the 𝐺-action on 𝑋 preserves the set of fixed points of each given type. Such
a permutation comes from a lattice isometry of 𝑀𝑌 preserving the set 𝐸𝑌 , i.e.,
from some isometry in 𝐴(𝑀𝑌) = {𝛾 ∈ O (𝑀𝑌) | 𝛾 (𝐸𝑌) = 𝐸𝑌}. For any 𝛾 ∈ 𝐴(𝑀𝑌)
consider the commutative diagram

𝑀𝑌 𝛾
//

��

𝑀𝑌

��
𝑀𝑌/𝑀′

𝑌 𝛾
// 𝑀𝑌/𝑀′

𝑌

Ext1 𝐺

𝜄∗

OO

Ext(𝛼)
// Ext1 𝐺,

𝜄∗

OO

where 𝛾 is induced from the natural map 𝜌𝑌 : 𝐴(𝑀𝑌) → 𝐴(𝑀𝑌/𝑀′
𝑌). Since Ext is

functorial, 𝛼 is defined by the commutativity of the diagram. The above argument
shows that 𝜌𝑌 is surjective. Hence every K3-surface with symplectic 𝐺-action
comes in this way from some (𝑀𝐺 ,𝐸𝐺)-marked K3 surface. □

20.4.D Uniqueness of the 𝑮-action on cohomology. Let 𝐺 be any of the
possible abelian groups of Table 20.4.1. Recall that a marked K3-surface (𝑋,𝜑)
with symplectic 𝐺-action and induced embedding 𝜄 : 𝐺 ↩→ O (Λ) is called a (𝜄,𝐺)-
marked K3 surface. Proposition 20.2.5 states that the moduli space M𝜄(𝐺) of (𝜄,𝐺)-
marked surfaces consists of two components.

The main result in this section, due to V. Nikulin, states that there is in fact
only one conjugacy class (irrespective of the 𝐺-action):

Theorem 20.4.6 ( [169, Thm. 4.7]). Let 𝐺 be a finite abelian group acting sym-
plectically (and effectively) on some K3 surface 𝑋. Then the 𝐺-action on the K3
lattice induced by some marking of 𝑋 is up to conjugacy uniquely determined by
𝐺.

To achieve our goal, first recall that by Corollary 20.2.6 over connected compo-
nents of the moduli space M𝜄(𝐺) incorporating the action of the group 𝐺, we stay
within the same conjugacy class. So there are at most two classes. To compare K3
surfaces whose moduli points are in different connected components we will use
the moduli space M𝑀𝐺 related to the quotients 𝑌 = 𝑋/𝐺. This comparison makes
essential use of the fact that M𝑀𝐺 does not depend on the embedding of 𝐺 in the
orthogonal group of the K3 lattice.
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We divide the proof accordingly into several steps.

Proof. Step 1: on the moduli space of 𝑀𝐺-marked K3 surfaces. Recall

(cf. (20.8)) that the domain
◦
𝐷 (𝑀⊥

𝐺 ) is the period domain of (𝑀𝐺 ,𝐸𝐺)-marked K3
surfaces. The sublattice 𝑀′

𝐺 ⊂ 𝑀𝐺 is a root lattice and the set of roots 𝑃(𝑀𝐺)
that are non-negative linear combinations of the standard root basis for 𝑀′

𝐺 define
a partition 𝑃(𝑀𝐺) ∪ −𝑃(𝑀𝐺). By Proposition 19.3.2 this partition determines two
preferred connected components of M𝑀𝐺 corresponding to markings for which ±𝐸𝐺
is a set of nodal curves, say

M
+,𝑃(𝑀𝐺 )
𝑀𝐺

⊔ M
−,𝑃(𝑀𝐺 )
𝑀𝐺

⊂ �◦
𝐷 (𝑀⊥

𝐺 ). (20.10)

These correspond to opposite markings permuted by −id ∈ O (Λ).

Step 2: relating M𝑀𝐺 and M𝜄(𝐺). By Proposition 20.4.5 we can assign to the

moduli point of an (𝑀𝐺 ,𝐸𝐺)-marked surface (𝑌,𝜑), say 𝑚 = 𝑚(𝑌,𝜑) ∈ M
±,𝑃(𝑀𝐺 )
𝑀𝐺

a
unique K3 surface 𝑋𝑚 equipped with symplectic 𝐺-action.

A marking 𝜓 : 𝐻2 (𝑋𝑚)
∼−→ Λ induces a 𝐺-action on Λ given by formula (20.3)

and hence a (𝜄,𝐺)-marked K3 surface (see Definition 20.2.3) (𝑋𝑚, 𝜄𝑚,𝜓), where
𝜄𝑚 is the action on cohomology. Different markings 𝜓 give conjugate embeddings
𝐺 ↩→ O (Λ) and so we are free to choose a marking 𝜓 = 𝜓𝑚. A choice of the positive
light cone then gives a moduli point in M𝜄(𝐺) and hence an assignment

𝑚 = 𝑚(𝑌,±𝜑) ∈ M
±,𝑃(𝑀𝐺 )
𝑀𝐺

↦→ (𝑋𝑚, 𝜄𝑚,𝜓𝑚,±) ∈ M±
𝜄(𝐺) .

By Proposition 20.4.5.(4), every (𝑋, 𝜄,𝜓,±) ∈ M±
𝜄(𝐺) comes in this way from a moduli

point of M𝑀𝐺 .

Hence it suffices to show that for 𝑚,𝑚′ ∈ M
±,𝑃(𝑀𝐺 )
𝑀𝐺

the 𝐺-actions 𝜄𝑚 and 𝜄𝑚′ on
Λ give conjugate subgroups 𝜄𝑚 (𝐺), 𝜄𝑚′ (𝐺) of O (Λ). For brevity we shall say that
in this case 𝑚 and 𝑚′ give conjugate 𝐺-actions.

To show that this is the case, it suffices to

1. construct an open neighborhood of a given moduli point of M𝑀𝐺 so that the
points in this neighborhood give conjugate 𝐺-actions;

2. show that 𝐺-actions coming from the two connected components M
±,𝑃(𝑀𝐺 )
𝑀𝐺

are conjugate within O (Λ).

Step 3: local comparison of M𝑀𝐺 and M𝜄(𝐺). We fix a moduli point 𝑚 ∈ M+
𝑀𝐺

whose period point is that of the marked K3 surface (𝑌𝑚,𝜑𝑚). Let (𝑋𝑚, 𝜄𝑚,𝜓𝑚) be
the corresponding K3 surface with 𝐺-action. Let 𝑉 ⊂ M+

𝜄(𝐺) be a disc centered at

𝑚 and let X|𝑉 be the restriction of the universal Λ𝐺-marked family to 𝑉. By local
universality, the group 𝐺 acts on X. The fibers 𝑋𝑣/𝐺 = 𝑌𝑣 of the quotient Y= X/𝐺
have the same type and number of quotient singularities along the (disconnected)
submanifold of Y which is the image of the union Σ ⊂ X of fixed point manifolds
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of 𝐺. Let 𝑣𝑜 ∈ 𝑉 and 𝑠 ∈ Σ ∩ 𝑋𝑣𝑜 . Locally around 𝑠 the total space of the family
Y is isomorphic to (𝑈𝑠/𝐺𝑠) × 𝑉, where 𝐺𝑠 is the stabilizer subgroup of 𝑠 in 𝐺 and

𝑈𝑠 is a 𝐺𝑠-invariant open subset of the fiber 𝑋𝑣𝑜 . The minimal resolution �𝑈𝑠/𝐺𝑠

of 𝑈𝑠/𝐺𝑠 gives an open subset in 𝑌𝑣𝑜 . A patching argument shows that there is a

global resolution Ỹ of Y, which locally is isomorphic to �𝑈𝑠/𝐺𝑠 × 𝑉. There results
a commutative diagram

X|𝑉
𝑢 &&

// Y|𝑉

��

Ỹ|𝑉oo

𝑣xx
𝑉

and 𝑢−1𝑚 = (𝑋𝑚, 𝜄𝑚,𝜓𝑚), 𝑣−1𝑚 = (𝑌𝑚,𝜑𝑚).
The next step consists of comparing the period maps p𝑢 and p𝑣 for the two

families X|𝑉 , respectively Ỹ|𝑉 . To do this, we first link the two period points over
𝑚 ∈ 𝑉. We use the natural map 𝜃𝑚 : 𝐻2 (𝑌𝑚) → 𝐻2 (𝑋𝑚) of Theorem 20.9.6.1
together with the two markings 𝜑𝑚 and 𝜓𝑚 to transform the sequence (20.24) into
a exact sequence of abstractly given lattices,

0 → 𝑀𝐺/𝑀′
𝐺 → Λ/𝑀′

𝐺

𝜃′−→ Λ𝐺 , 𝜃′ = 𝜓𝑚◦𝜃◦𝜑−1
𝑚 , Λ𝐺/Im(𝜃′) ≃ 𝐻3 (𝐺). (20.11)

Theorem 20.9.6 also implies that 𝜃′ restricts to 𝑀⊥
𝐺 ⊂ Λ/𝑀′

𝐺 and then induces an

embedding 𝑀⊥
𝐺 ↩→ Λ𝐺 of free ℤ-modules of the same rank (but which multiplies

the intersection form by |𝐺 |). Consequently, one obtains an isomorphism

𝜃′𝑚,ℂ : [𝑀⊥
𝐺 ]ℂ

≃−−−−−−−−−−−→ [Λ𝐺]ℂ,
[𝜑𝑚 (𝐻2,0 (𝑌𝑚))] ↦−→ [𝜓𝑚 (𝐻2,0 (𝑋𝑚)]

relating the period points of (𝑌𝑚,𝜑𝑚) and (𝑋𝑚,𝜓𝑚).
Next, we extend the preceding isomorphisms 𝜃′𝑚,ℂ

over 𝑉. To start, note that
the exact sequence (20.24) extends over 𝑉 as an exact sequence of sheaves of ℤ-
modules. Now choose trivializing markings for the local systems 𝑅2𝑢∗ℤ and 𝑅2𝑣∗ℤ
which coincide at 𝑚 ∈ 𝑉 with 𝜑𝑚, respectively 𝜓𝑚. So the exact sequence (20.11)
holds at every point 𝑚′ ∈ 𝑉 and 𝜃′𝑚′,ℂ sends the period of (𝑌𝑚′ ,𝜓𝑚′) to the period

point of (𝑋′
𝑚,𝜓𝑚′) for all𝑚′ ∈ 𝑉. In other words, the period mapp𝑢 : 𝑉 → 𝐷(Λ𝜄(𝐺))

and p𝑣 : 𝑉 → 𝐷(𝑀⊥
𝐺 ) fit in a commutative diagram

p𝑢 (𝑉) ⊂ 𝐷(Λ𝜄(𝐺)),

𝑉

p𝑢 33

p𝑣
++

p𝑣 (𝑉) ⊂ 𝐷(𝑀⊥
𝐺 ),

≃ 𝜽′

OO

where 𝜽′ is an injective (but a priori only continuous) map onto the image of the
period map p𝑢. Because X|𝑉 is a locally universal family, p𝑢 is injective, and so
p𝑣 must be injective. To finish, we make a crucial
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Observation. The period domains 𝐷(Λ𝐺) and 𝐷(𝑀⊥
𝐺 ) associated to finite abelian

groups acting symplectically on K3 surfaces have the same dimension.

This follows from Table 20.4.1 and the existence of the isometry 𝑀𝑌 ≃ 𝑀𝐺.
The observation implies that p𝑣 is an open immersion and so the image is the
desired open neighborhood of the period point of (𝑌,𝜑𝑚), identified with an open
neighborhood of its moduli point 𝑚. This finishes the first step in our strategy.

Step 4: finishing the proof: relating different components. We come to
the second point of our strategy: comparing the 𝐺-actions coming from the two

connected components M±,𝑃(𝑀𝐺 )
𝑀𝐺

.
The two preferred partitions ±𝑃(𝑀𝐺) from opposite cones are related by an

isometry of the root lattice 𝑀′
𝐺. To see this, note that by [26, VI.1.6, Cor. 3] there

is an involution 𝑤′
0 belonging to the Weyl group of the root system which sends the

all roots of a lattice isometric to a direct sum of type 𝐴 lattices to their negatives.
So it does not preserve 𝑃(𝑀𝐺) but −𝑤′

0 does. It extends to an isometry −𝑤0 of Λ,
which sends the positive light cone to its opposite (since by Observation 17.2.B 𝑤0

preserves the positive light cone). Hence we have shown:

Lemma 20.4.7. If (𝑌,𝜑𝑜) has moduli point 𝑚 = [𝑢1] ∈ M
+,𝑃(𝑀𝐺 )
𝑀𝐺

, then the moduli

point −𝑤0 (𝑚) of (𝑌,−𝑤0◦𝜑𝑜) belongs to M
−,𝑃(𝑀𝐺 )
𝑀𝐺

.

So we now have two moduli points 𝑚,−𝑤0 (𝑚), on the two components for the
same surface 𝑌, 𝑌 = 𝑋/𝐺, equipped with two markings that are related by the
lattice isometry −𝑤0. We next find out how the 𝐺-actions on the corresponding
surfaces 𝑋𝑚 and 𝑋−𝑤0 (𝑚) are related. We start by recalling that there is a canonical

isomorphism 𝜄∗ : Ext1 (𝐺) ∼−→ 𝑀𝑌/𝑀′
𝑌 (see Eqn. (20.9)) which prescribes how 𝐺 acts

on 𝑋. The two markings 𝜑𝑜 and −𝑤𝑜◦𝜑𝑜 then induce 𝜑𝑜◦𝜄
∗ : Ext1 (𝐺) ∼−→ 𝑀𝐺/𝑀′

𝐺,
and respectively −𝑤0◦𝜑𝑜◦𝜄

∗, where 𝑤0 is the automorphism of 𝑀𝐺/𝑀′
𝐺 induced by

𝑤0 and 𝜑𝑜 is induced by the marking. So the two actions of 𝐺 on the K3 lattice
differ by composition with the automorphism −𝑤0 of 𝐺.

Lemma. One has 𝑤0 = id on 𝑀𝐺/𝑀′
𝐺 and so composing the marking with −𝑤0

results in the opposite 𝐺-action.

Proof. The assertion being clear for 𝐺 = ⊕𝑘ℤ/2ℤ, we turn to the extra generators
for 𝑀𝐺 which are all ℤ-linear combinations of the 𝑓𝜇,ℓ and we have

𝑤0 (𝑓𝜇,ℓ) =
1

𝑛(𝜇)

𝑛(𝜇)−1∑︁
𝑘=1

𝑘𝑒𝜇,ℓ,𝑘 =
1

𝑛(𝜇)

𝑛(𝜇)−1∑︁
𝑘′=1

(−𝑛(𝜇) + 𝑘′)𝑒𝜇,ℓ,𝑘′

≡ 1

𝑛(𝜇)

𝑛(𝜇)−1∑︁
𝑘′=1

𝑘′𝑒𝜇,ℓ,𝑘′ mod 𝑀′
𝐺 .

Hence 𝑤0 = id as claimed. □
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We can now finish the proof.
Case 1. In case 𝐺 ≃ ⊕ℤ/2ℤ the automorphism −𝑤0 is the identity and so 𝐺 acts
up to conjugation with −𝑤0 in the same way on 𝐺-marked K3 surfaces with moduli
points in either one of the two components and this proves the theorem for these
cases.
Case 2. For the other groups 𝐺 we replace the extension of −𝑤′

0 by a different
extension which leads to a second moduli point on the same connected component
while the two 𝐺-actions still are opposite. We first show how to construct such an
extension.

Claim. −𝑤′
0 also extends to an isometry 𝑤 of the entire K3 lattice such that 𝑤

preserves the positive light cone in Λ1,1 of (𝑌,𝜑𝑜).

Proof of the Claim. For simplicity of notation we set 𝐿 := 𝑀⊥
𝐺 . We first search an

isometry 𝑤′′ of 𝐿 that induces on dg𝐿 the same isometry as the one induced by
−𝑤′

0 but which at the same time preserves the positive light cone of 𝐿1,1
ℝ

. Then
the extension criterion Proposition 15.1.6 provides an extension 𝑤 of 𝑤′′ to all of
Λ preserving the light cone of Λ1,1 ⊗ ℝ.

To proceed, we first observe that the map 𝑤0 is a product of reflections and so,
by Lemma 16.1.1, induces the identity on the discriminant group. Hence 𝑤 = −𝑤0

induces −id on the discriminant group of 𝑀𝐺. Since the discriminant group of 𝐿 is
the same as for 𝑀𝐺, we could take 𝑤′′ = −id. We seek however a lift 𝑤′′ of 𝑟𝐿 (𝑤) to
𝐿 which has signed spinor norm 1 since by the arguments in Section 16.1 such an
isometry will preserve the positive light cone of Λ1,1⊗ℝ, as desired. Theorem 14.5.5
gives us a criterion for the existence of a rotation with real spinor norm 1. Such
an element has also signed spinor norm 1 since it is a product of an even number
of reflections. We verify the conditions: Lemma 20.4.1 tells us that 𝐿 is indefinite
of rank ≥ 3 (indeed it is of signature (3, 19 − rank(𝐿))), and secondly, the number
of generators of the discriminant group of 𝑀𝐺 and hence of dg𝐿 = dg𝑀⊥

𝐺
is at most

its length minus 2. This finishes the construction of the searched for 𝑤′′.

We can now finish the proof in this case. Recall that (𝑌,𝜑𝑜) has moduli point

𝑚 ∈ M
+,𝑃(𝑀𝐺 )
𝑀𝐺

. Because 𝑤 preserves the positive light cone for the marked K3

surface 𝑌, the moduli point 𝑤(𝑚) also belongs to M
+,𝑃(𝑀𝐺 )
𝑀𝐺

.
So −𝑤0 (𝑚) and 𝑤(𝑚) belong to different components, but, by construction, the

corresponding 𝐺-actions on the K3 lattice are the same up to conjugation. Hence
both components lead to the same conjugacy class. This finishes the proof in this
case. □

To indicate that from a geometric perspective this theorem is quite unexpected
we exhibit some examples of K3-surfaces which admit actions of small groups acting
symplectically on totally different K3 surfaces.

Examples 20.4.8. 1. Examples from [79] with ℤ/3ℤ-action.
• The total space of the elliptic surface 𝑦2 = 𝑥3+ (𝑡3−𝑠3)4 in Weierstraß form (with
𝑠 a parameter) can be shown to be a K3-surface which admits a torsion section of
order 3 given by 𝑡 ↦→ (𝑥, 𝑦) = (0, (𝑡3 − 𝑠3)2) and so admits an order 3 symplectic
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transformation (by translation). If we vary 𝑠 we get a 1-dimensional family of such
surfaces.
• The action of a generator fo ℤ/3ℤ on ℙ2 given by 𝜎(𝑥 : 𝑦 : 𝑧) = (𝑥 : 𝜌3𝑦 : 𝜌23𝑧),
𝜌3 = exp(2𝜋𝒊/3) leaves invariant the 10 monomials 𝑥6,𝑥4𝑦𝑧,𝑥3𝑦3, 𝑥3𝑧3,𝑥2𝑦2𝑧2,
𝑥𝑦4𝑧,𝑥𝑦𝑧4, 𝑦6, 𝑦3𝑧3, 𝑧6 and a general linear combination 𝑓(𝑥, 𝑦, 𝑧) of such mono-
mials gives a smooth ℤ/3ℤ-invariant sextic plane curve. The double cover of ℙ2

branched in this sextic is a K3 surface with equation 𝑤2 = 𝑓(𝑥, 𝑦, 𝑧) and 𝜎 lifts
to an automorphism. It preserves the non-zero holomorphic 2-form Ω/𝑤, where
Ω = 𝑥𝑑𝑦 ∧ 𝑑𝑧 + 𝑦𝑑𝑧 ∧ 𝑑𝑥 + 𝑧𝑑𝑥 ∧ 𝑑𝑦. The family depends on 10 − 3 = 7 effective
parameters since the projective transformations commuting with 𝜎 are the diago-
nal transformations.
• Similarly, one has an action of ℤ/3ℤ on ℙ3 given by 𝜎(𝑥 : 𝑦 : 𝑧 : 𝑡) = (𝑥 : 𝑦 : 𝜌3𝑧 :
𝜌23) and the general 𝜎-invariant quartic 𝑔 is a smooth K3-surface and 𝜎 restricts
to it symplectically since a non-zero holomorphic 2-form is given by the residue of
Ω3/𝑓 where Ω3 = 𝑥 𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝑡 + 𝑦 𝑑𝑧 ∧ 𝑑𝑡 ∧ 𝑑𝑥 + 𝑧 𝑑𝑡 ∧ 𝑑𝑥 ∧ 𝑑𝑦 + 𝑡 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.
A dimension count shows that this gives a family depending on 7 effective param-
eters.
2. Examples from [174]. A very general Kummer surface of product type is the
Kummer surface of a product of non-isogeneous elliptic curves. Such a surface has
4 different elliptic fibrations with a 2-torsion section and 3 different elliptic fibra-
tions with (ℤ/2ℤ)2-torsion Hence these have 4 different symplectic ℤ/2ℤ-actions
and 3 different symplectic (ℤ/2ℤ)2-actions. Such surfaces depend on 2 effective
parameters.

20.5 Involutions on K3 Surfaces

In this section we shall write 𝐻2 (𝑋),𝐻2 (𝑌), . . . to mean integral cohomology. We

continue to write Λ for the K3 lattice.

Our aim is to investigate involutions 𝑔 on a K3 surface and characterize several
of these lattice theoretically, such as the Enriques involution.

20.5.A Group Theoretical Invariants. A result [192] due to I. Reiner de-
scribes the representations of a cyclic group acting on a free ℤ-module 𝐿 of finite
rank. For a cyclic group 𝐺 = {1, 𝑔} of order 2 this result states that the module
𝐿 is the direct sum of three types of irreducible 𝐺-submodules, the trivial rank
1 representation, the rank 1 representation −1 on which 𝑔 = −id, and, finally,
the 2-dimensional representation 𝑈 on which 𝑔 acts by permuting the two ba-
sis vectors. Hence one has a direct sum decomposition 𝐿 = 𝐿+ ⊕ 𝐿− ⊕ 𝐿sw, where
𝐿± = {𝑥 ∈ 𝐿 | 𝑔(𝑥) = ±id} and 𝐿sw = ⊕𝑐𝑈 (the symbol ”sw” stands for ”swapping”).
The three integers

𝑎 := rank(𝐿+), 𝑏 := rank(𝐿−), 𝑐 :=
1

2
rank(𝐿sw)
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combined give 𝑡(𝑔) = (𝑎 , 𝑏, 𝑐), which we shall call the type of the involution .
Since 𝑔 acts with trace 0 on 𝑈 we see:

Tr(𝑔) = 𝑎 − 𝑏. (20.12)

Note that if 𝐿 is a non-degenerate lattice and 𝑔 an isometry of 𝐿, the above direct
sum decomposition is not in general an orthogonal decomposition. However, as
we have seen in Example 1.7.3, in the case 𝑔 is an isometry the sublattice 𝐿𝐺 ⦹ 𝐿𝐺
spans a finite index sublattice of 𝐿, where, we recall, 𝐿𝐺 = {𝑥 ∈ 𝐿 | 𝑔(𝑥) = 𝑥} and
𝐿𝐺 = (𝐿𝐺)⊥. Since 𝐿sw has a basis {𝑒1,𝑓1, . . . , 𝑒𝑐,𝑓𝑐} such that 𝑔(𝑒𝑗) = 𝑓𝑗 , 𝑔(𝑓𝑗) = 𝑒𝑗 ,
𝑗 = 1, . . . , 𝑐, the lattice 𝐿𝐺 is spanned by 𝐿+ ⊕ ⊕𝑐

𝑗=1ℤ(𝑒𝑗 + 𝑓𝑗). The lattice spanned

by 𝐿− ⊕ ⊕𝑐
𝑗=1ℤ(𝑒𝑗 − 𝑓𝑗) is primitive, is contained in 𝐿𝐺 and, since it has the same

rank, is equal to 𝐿𝐺. We deduce:

Lemma 20.5.1. If 𝐿 is a unimodular lattice, and 𝐺 acts as isometries, one has

rank(𝐿𝐺) = 𝑎 + 𝑐, rank(𝐿𝐺) = 𝑏 + 𝑐,
[𝐿 : (𝐿𝐺 ⦹ 𝐿𝐺)] = 2𝑐,

| disc(𝐿𝐺) | = | disc(𝐿𝐺) | = 2𝑐.

(20.13)

20.5.B Implications of the Lefschetz Fixed Point Formula.

Lemma 20.5.2. Suppose 𝑋 is a K3 surface with an involution 𝑔 : 𝑋 → 𝑋. If
𝑔 is symplectic, it has 8 isolated fixed points and the quotient is a surface with 8
ordinary double points with a K3 surface as its minimal resolution. In that case,
Tr(𝑔∗ |𝐻2 (𝑋)) = 6 and the invariant lattice has rank 14, i.e., 𝑎+𝑐 = 14, where (𝑎 , 𝑏, 𝑐)
is the type of 𝑔∗.

If 𝑔 is not symplectic, there are at most disjoint fixed point curves and 𝑌 = 𝑋/𝐺
is smooth. If Tr(𝑔∗ |𝐻2 (𝑋)) = −2, then 𝑎 + 𝑐 = 10.

Proof. Symplectic involutions have been dealt with in Lemma 20.4.1. We showed
that there are 8 isolated fixed points and that the quotient has a K3 surface as its
minimal resolution. We also showed that the invariant lattice 𝐻2 (𝑋)𝐺 has rank
14.

Since at a fixed point the action can be locally linearized (cf. [35]), in the
non-symplectic case there can at most be fixed point curves (consisting of disjoint
smooth components). A generalization of the Lefschetz fixed point formula (cf. for
example [228, Lemma 1.6]) reads:

2 + Tr(𝑔∗ |𝐻2 (𝑋)) = # isolated fixed points +
∑︁

𝐹 fixed curve

𝑒(𝐹),

and then simplifies to 2 + Tr(𝑔∗ |𝐻2 (𝑋)) =
∑

𝐹 𝑒(𝐹), where we sum over fixed point
curves 𝐹. Hence, if Tr(𝑔∗ |𝐻2 (𝑋)) = −2, then ∑

𝐹 𝑒(𝐹) = 0. Finally, from 𝑎+𝑏+2𝑐 = 22
and 𝑎 − 𝑏 = Tr 𝑔∗ = −2 we obtain 𝑎 + 𝑐 = 10. □
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Remark 20.5.3. If the second case of the above lemma occurs and no fixed curves
are present, 𝑌 is an Enriques surface. We give two examples where 𝑌 is a rational
surface. First, consider an elliptic pencil 𝜆𝐶 + 𝜇𝐶′ = 0, (𝜆 : 𝜇) ∈ ℙ1, on ℙ2 where
𝐶,𝐶′ are smooth elliptic curves intersecting transversally (in 9 points), and let 𝑌 be
the blow-up of ℙ2 in the nine base points of the pencil. Let 𝑋 be the double cover
of 𝑌 branched in the strict transform of 𝐶 + 𝐶′. Note that 𝑒(𝑌) = 3 + 9 = 12 and
𝑒(𝑋) = 24 as it should. Classical algebraic geometry teaches us that coordinates
can be fixed so that a pencil of cubics passes through 4 fixed points in general
position and the pencil is determined by the choice of 4 further points, giving 8
moduli. The resulting surface 𝑋 is a K3 surface admitting an involution which
produces 𝑌.

The second example starts from a pencil of elliptic curves on ℙ1 × ℙ1 defined
by a pair of smooth curves of bidegree (2, 2) meeting transversally (in 8 points).
So here we have to blow up the 8 intersection points which gives a smooth rational
surface with 𝑒 = 4 + 8 = 12 as well.

Proposition 20.5.4. Let 𝑋 be a K3 surface with an involution 𝑔 inducing 𝑔∗ on
𝐻2 (𝑋) and set 𝐺 = ⟨𝑔∗⟩.

If 𝑔 is an Enriques involution, i.e., a fixed point free involution, then 𝐻2 (𝑋)𝐺 ≃
𝑈 (2)⦹𝐸8 (−2) of signature (1, 9). The invariants (𝑎 (𝑔∗), 𝑏(𝑔∗), 𝑐(𝑔∗)) are (0, 2, 10).

If 𝑔 is a Nikulin involution (i.e., a symplectic involution), the discriminant
group of 𝐻2 (𝑋)𝐺 is isomorphic to ⊕8ℤ/2ℤ. The invariants of 𝑔∗ are (6, 0, 8) and
the signature of 𝐻2 (𝑋)𝐺 equals (3, 11).

Proof. Let 𝑔 be an Enriques involution and let 𝑌 = 𝑋/⟨𝑔⟩. We first claim that
H𝑌 , the intersection lattice of 𝑌, is isometric to 𝑈 ⦹ 𝐸8 (−1). Note that this
lattice is unimodular, and of rank 10 by Lemma 20.5.2. Since 𝑐21 (𝑌) = 0 and
𝑒(𝑌) = 24/2 = 12, the index of H𝑌 equals −8. Then apply the classification of even
unimodular lattices given in Section 2.4.

Since the induced quotient map 𝜋 : 𝑋 → 𝑌 is unramified of degree 2, there is
an isometric embedding 𝜋∗H𝑌 (2) ↩→ 𝐻2 (𝑋). By Proposition A.6.2 the image is
𝐻2 (𝑋)𝐺. Since H𝑌 (2) ≃ 𝑈 (2)⦹𝐸8 (−2), we see that the signature of 𝐻2 (𝑋)𝐺 equals
(1, 9). The discriminant being equal to 210, formula (20.13) shows that 𝑐 = 10. It
then follows that 𝑎 = 0 and hence 𝑏 = 2.

The case of a symplectic involution is slightly more involved. As for Kummer
surfaces (see Appendix B.3), the involution on 𝑋 extends to the blow-up in the
8 fixed points with quotient a K3 surface 𝑌. The primitive closure of the lattice
spanned by the 8 nodal curves on 𝑌 is a Nikulin lattice ΛNik. Hence for 𝑌 = 𝑋/𝐺 we
have 𝑏2 (𝑌) = 22−rank(ΛNik) = 22−8 = 14. By Proposition 5.2.10 the discriminant
group of the Nikulin lattice is isomorphic to ⊕6ℤ/2ℤ. Hence, by Example 20.9.7
the discriminant group of 𝐻2 (𝑋)𝐺 is isomorphic to ⊕8ℤ/2ℤ and so 𝑐 = 8. By
Lemma 20.5.2 it then follows that 𝑎 = 6 and hence 𝑏 = 0. Let 𝑋 be the blow-up
of 𝑋 in the 8 fixed points of 𝑔. The signature of 𝐻2 (𝑋)𝐺 equals (3, 19), the same
as that of 𝐻2 (𝑌). Indeed, over ℚ these have the same intersection forms. By
Lemma B.5.2, 𝐻2 (𝑋) ≃ 𝐻2 (𝑋)⦹⦹8⟨−1⟩. The exceptional curves are 𝐺-stable and
so the signature of 𝐻2 (𝑋)𝐺 is indeed equal to (3, 11). □
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20.5.C On Involutions and Transcendental Lattices. In this subsection we
consider Hodge-theoretic aspects of the action of an involution on a Kähler surface
𝑋. This involves Trs(𝑋), the transcendental lattice of 𝑋, which, we recall (cf.
Appendix B.2), is the smallest primitive sublattice 𝑇 ′ of the intersection lattice of
𝑋 such that 𝐻2,0 (𝑋) ⊂ 𝑇 ′ ⊗ ℂ. Indeed, the main result is Proposition 20.5.5. It
plays a central role in subsequent sections, e.g., in the study of Kummer surfaces
in Section 20.6 and of Inose–Shioda structures in Section 20.8. For this reason, we
broaden our view and let 𝑋 be any Kähler surface admitting an involution 𝑔 with
finite (possibly empty) fixed point set Σ. As before, we set

𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺, 𝐺 = {1, 𝑔},
𝑋 = the blow-up of 𝑋 at Σ.

The fixed points of 𝑔 give ordinary double points on 𝑌 and 𝑔 extends to 𝑋 with
quotient 𝑌, a resolution of the singularities of 𝑌. The exceptional curves on 𝑋
map to (−2)-curves under the canonical morphism

𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺.

The Gysin map 𝜋! : 𝐻
2 (𝑋) → 𝐻2 (𝑌) is the map Poincaré dual to the induced map

in 2-homology 2 and preserves the Hodge decomposition (see e.g. [186, Lemma
1.19]). By Lemma B.5.2, 𝐻2 (𝑋) is a direct summand of 𝐻2 (𝑋) and so 𝜋! |𝐻2 (𝑋)
also preserves the Hodge decomposition. The main result now reads as follows:

Proposition 20.5.5. Let 𝑋 be a Kähler surface admitting an involution 𝑔, and
let 𝐺 = {1, 𝑔} and 𝜋 : 𝑋 → 𝑌 as above.

1. If all holomorphic 2-forms are invariant under 𝑔, then Trs(𝑋) ⊂ 𝐻2 (𝑋)𝐺.

2. If, moreover, 𝐿 is a primitive sublattice of 𝐻2 (𝑋)𝐺 such that Trs(𝑋) ⊂ 𝐿 and

such that 𝜋!𝐿 is primitive in 𝐻2 (𝑌), then 𝜋! : Trs(𝑋) (2) ∼−→ Trs(𝑌) = Trs(𝑌)
is an isometry.

Proof. The assumption on holomorphic 2-forms means𝐻2,0 (𝑋) ⊂ 𝐻2 (𝑋,ℂ)𝐺. Since
Trs(𝑋) is the smallest primitive sublattice of𝐻2 (𝑋) such that𝐻2,0 (𝑋) ⊂ Trs(𝑋)⊗ℂ,
also Trs(𝑋) ⊂ 𝐻2 (𝑋)𝐺, proving the first assertion.

To show the second assertion, we first claim that the assumption that 𝜋!𝐿 is
primitive in 𝐻2 (𝑌) implies that 𝜋! Trs(𝑋) is also primitive in 𝐻2 (𝑌). To prove
this, suppose that for some 𝑥 ∈ 𝐻2 (𝑌) and some positive integer 𝑘 one has 𝑘𝑥 =

𝜋!𝑡 ∈ 𝜋!𝐿 for some 𝑡 ∈ Trs(𝑋). Then 𝑥 = 𝜋!𝑥
′ for some 𝑥 ∈ 𝐻2 (𝑌) and some

positive integer 𝑘 one has 𝑘𝑥 = 𝜋!𝑡 ∈, and so, since 𝜋! is injective, 𝑡 = 𝑘𝑥′. But by
primitivity of Trs(𝑋), we then have 𝑥′ ∈ Trs(𝑋) and so 𝑘𝑥 = 𝑘𝜋!𝑥

′. Since 𝐻2 (𝑋)
has no torsion, 𝑥 = 𝜋!𝑥

′ and so we have shown primitivity.
As a consequence, 𝜋! Trs(𝑋) ⊂ Trs(𝑌) is an inclusion of primitive sublattices of

𝐻2 (𝑌) of the same rank and so 𝜋! Trs(𝑋) = Trs(𝑌). On the other hand, making use
of item 1, by Lemma 20.9.3 in the Appendix to this chapter, we have an isometry

𝜋! : 𝐿(2)
≃−→ 𝜋!𝐿. Hence 𝜋! sends Trs(𝑋) (2) isometrically to 𝜋! Trs(𝑋) = Trs(𝑌). □

2See page 399 in the appendix to this chapter.



388 20 Automorphism Groups of K3 Surfaces

20.6 Kummer Surfaces Revisited

20.6.A The Kummer Involution. We recall (cf. Appendix B.3) that a K3
surface 𝑌 is a Kummer surface if it is the minimal resolution of the quotient of a
complex 2-torus 𝑋 under the standard involution. We have used coding theory
in Subsection 5.2 to show that 𝑌 is Kummer if and only if it contains a set E of
16 disjoint nodal curves (cf. Proposition 5.2.7). Then the primitive closure 𝑁E of
their span in 𝐻2 (𝑌,ℤ) is isometric to the Kummer lattice ΛKum associated to the
code 𝐷5 = 𝐸1 (𝔽4

2) of affine linear functions on a four-dimensional 𝔽2-vector space.
Hence we obtain a primitive embedding ΛKum ⊂ NS(𝑌) fitting in the commutative
diagram

𝑁E

≃
��

� � // 𝐻2 (𝑌,ℤ)

𝜑 ≃
��

ΛKum
� � // ΛK3

The essential information about the Kummer lattice is summarized as follows.

Proposition 20.6.1. 1. The discriminant quadratic form of the Kummer lat-
tice is isometric to ((ℤ/2ℤ)6,⦹3𝑢1).

2. The orthogonal complement of ΛKum in the K3-lattice is isometric to ⦹3𝑈 (2).

3. The embedding ΛKum ↩→ ΛK3 is unique up to an isometry of the K3 lattice.

Proof. 1. By Lemma 5.2.6 the Kummer lattice ΛKum is a 2-elementary lattice
of type I with discriminant group ⊕6ℤ/2ℤ. Its signature mod 8 is 0. Since the
discriminant quadratic form is ℤ/2ℤ-valued, applying Proposition 14.6.3.2 to the
indefinite lattice ΛKum⦹𝑈 with the same discriminant quadratic form, one deduces
the isometry 𝑞#ΛKum

≃ ⦹3𝑢1.
2. The orthogonal complement of the Kummer lattice has index 0 and rank 6
and by Proposition 15.1.3 the discriminant form is −𝑞#ΛKum

≃ ⦹3𝑢1. The lattice

⦹3𝑈 (2) has the same signature and discriminant form as Λ⊥
Kum and hence belongs

to the same genus. By Theorem 14.4.2 (and case 2 of Theorem 14.2.5) this genus
contains only one isometry class. The result then follows. 3

3. Since the discriminant form of the Kummer lattice splits off 𝑢1 and no rank 1
quadratic torsion form does, we can apply Witt’s extension theorem 15.1.7 together
with Theorem 14.5.5 with 𝑆 = ΛKum and 𝑇 = 𝑆⊥ ≃ ⦹3𝑈 (2). The conditions on 𝑇
required to apply the last theorem are satisfied as we just saw in the proof of item
2. □

This has a surprising consequence:4

Corollary 20.6.2 ([168]). A K3 surface cannot have more than 16 disjoint nodal
curves. A singular K3 surface embedded as a degree 𝑑 surface in projective space

3There is also a geometric argument (cf. [15, Ch. VIII.5]) to prove that Λ⊥
Kum ≃ ⦹3𝑈 (2).

4For a proof using coding theory, see [185].
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with 𝑑 . 0 mod 4 and whose singularities are at most ordinary double points can
have at most 15 of these.

Proof. Suppose 𝑋 is a K3 surface with > 16 disjoint nodal curves. As we recalled,
by Proposition 5.2.7 any 16 among these curves arise from the nodes of a Kummer
surface and the primitive sublattice of NS(𝑋) they span is isometric to the Kum-
mer lattice ΛKum. By Proposition 20.6.1 the orthogonal complement is isometric
to ⦹3𝑈 (2). Classes of remaining nodal curves belong to this lattice. This is a
contradiction since the self-intersection of any element of ⦹3𝑈 (2) is divisible by 4.

If 𝑋 → 𝑋 ⊂ ℙ𝑛 acquires double points, any hyperplane section not passing
through them corresponds to a class ℎ ∈ 𝐻2 (𝑋,ℤ) orthogonal to the corresponding
nodal classes. Hence, if 𝑋 would have 16 double points, then ℎ ∈ Λ⊥

Kum and
𝑑 = ℎ · ℎ ≡ 0 mod 4, from which the last assertion follows. □

20.6.B Characterizing Kummer surfaces. If 𝑋 is a complex two-torus, we
denote by 𝑌 = Km(𝑋) the associated (smooth) Kummer surface and by 𝜋′ : 𝑋 d 𝑌
the canonical rational 2-to-1 map. In this section we establish a characterization
of Kummer surfaces in terms of the Néron–Severi lattice and the transcendental
lattice. We need an auxiliary Hodge-theoretic result.

Lemma 20.6.3. Suppose that 𝐿 = ⦹3𝑈 has a rank 2 Hodge structure of K3 type.5

Then there is a complex 2-torus 𝑋 and an isometry 𝐻2 (𝑋,ℤ) ∼−→ 𝐿 preserving the
Hodge structure.

Proof. Let {𝑒𝑖 ,𝑓𝑖} be the standard basis of the 𝑖-th copy of 𝑈 in 𝐿 = ⊕3𝑈, 𝑖 = 1, 2, 3.
Suppose the Hodge structure is given by the non-zero (2, 0)-class 𝜔 =

∑3
𝑖=1 𝑎𝑖𝑒𝑖 +

𝑏𝑖𝑓𝑖 ∈ 𝐿ℂ. It satisfies the two conditions 𝜔 · 𝜔 = 0 and 𝜔 · 𝜔 > 0. which translate as

𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 = 0, Re(𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3) > 0. (20.14)

Without loss of generality we may assume that 𝑎1 ≠ 0 and so, by scaling 𝜔, we can
also choose 𝑎1 = 1. Let {𝜖1, 𝜖2} be the standard basis of C2. We claim that for the
2-torus 𝑋 we can take C2/Γ, where Γ = ℤ𝜖1 +ℤ𝜖2 +ℤ(−𝑏3𝜖1 + 𝑎2𝜖2) +ℤ(𝑏2𝜖1 + 𝑎3𝜖2).

First we show that the four generators 𝛾1, 𝛾2, 𝛾3, 𝛾4 of the lattice are linearly
independent over R. Writing 𝑎𝑘 = 𝑡𝑘 + 𝒊𝑢𝑘, 𝑏𝑘 = 𝑣𝑘 + 𝒊𝑤𝑘, 𝑘 = 1, 2, 3, with real
𝑡𝑘,𝑢𝑘, 𝑣𝑘,𝑤𝑘, The four generators in the basis 𝜖1, 𝒊𝜖1, 𝜖2, 𝒊𝜖2 give the columns of the
matrix ©«

1 0 −𝑣3 𝑣2
0 0 −𝑤3 𝑤2

0 1 𝑡2 𝑡3
0 0 𝑢2 𝑢3

ª®®®¬
and so linear independence over R comes down to 𝑢2𝑤2 + 𝑢3𝑤3 ≠ 0. This is a
consequence of (20.14):

0 = Re(𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3) = 𝑣1 + 𝑡2𝑣2 − 𝑢2𝑤2 + 𝑡3𝑣3 − 𝑢3𝑤3

0 < Re(𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3) = 𝑣1 + 𝑡2𝑣2 + 𝑢2𝑤2 + 𝑡3𝑣3 + 𝑢3𝑤3.

5See Definition B.4.1.3.
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Next, we turn to the Hodge structure which is induced from the non-zero holomor-
phic 2-form 𝑑𝑧1 ∧ 𝑑𝑧2 on ℂ2 and on 𝑋 (here, 𝑧1, 𝑧2 are coordinates on C2). Note
first that in general, if Γ is generated by the vectors 𝑣1, 𝑣2, 𝑣3, 𝑣4, with dual basis
𝑢𝑖, then

𝑑𝑧1 ∧ 𝑑𝑧2 =
∑︁
𝑖<𝑗

det
(
𝑣𝑖𝑣𝑗

)
𝑢𝑖 ∧ 𝑢𝑗 ,

where det
(
𝑣𝑖𝑣𝑗

)
is shorthand for the 2 by 2 matrix containing the coefficients of

𝑣𝑖 (resp. 𝑣𝑗) with respect to the standard basis of ℂ2 in the first (resp. second)
column. In our case, using the shorthand 𝛾𝑖𝑗 = 𝛾𝑖 ∧ 𝛾𝑗 , and 𝛾∗𝑖𝑗 for th ir duals, the
ordered basis

𝛾∗12, 𝛾
∗
34, 𝛾

∗
13, 𝛾

∗
42, 𝛾

∗
14, 𝛾

∗
23

gives an identification with ⊕3𝑈, since the intersection product is essentially the
wedge product. For instance 𝛾∗12 · 𝛾∗34 = 𝛾∗1 ∧ 𝛾∗2 ∧ 𝛾∗3 ∧ 𝛾∗4 corresponds to 1.

We next have to express the cohomology class of 𝑑𝑧1 ∧ 𝑑𝑧2 in terms of the
(complexified) basis of ∧2Γ∗:

𝑑𝑧1 ∧ 𝑑𝑧2 (𝛾12) = 1 𝑑𝑧1 ∧ 𝑑𝑧2 (𝛾13) = 𝑎2 𝑑𝑧1 ∧ 𝑑𝑧2 (𝛾14) = 𝑎3
𝑑𝑧1 ∧ 𝑑𝑧2 (𝛾23) = 𝑏3 𝑑𝑧1 ∧ 𝑑𝑧2 (𝛾24) = −𝑏2 𝑑𝑧1 ∧ 𝑑𝑧2 (𝛾34) = −𝑎3𝑏3 − 𝑎2𝑏2 = 𝑏1.

Then 𝑑𝑧1 ∧ 𝑑𝑧2 = 𝛾∗1 ∧ 𝛾∗2 + 𝑏1 𝛾
∗
3 ∧ 𝛾∗4 + 𝑎2 𝛾

∗
13 + 𝑏2 𝛾

∗
24 + 𝑎3 𝛾

∗
14 + 𝑏3 𝛾

∗
23 . So the

isometry ⊕3𝑈 → 𝐻2 (𝑋,ℤ) sending 𝑒1 to 𝛾∗12, etc., is a Hodge isometry, sending 𝜔
to 𝑑𝑧1 ∧ 𝑑𝑧2. □

Proposition 20.6.4. 1. A K3 surface 𝑌 is a Kummer surface if and only if
the following conditions hold simultaneously 6:
(a) Trs(𝑌) embeds primitively in ⦹3𝑈 (2);
(b) the abstract Kummer lattice ΛKum embeds primitively in NS(𝑌).
If this is the case, say 𝑌 = Km(𝑋), then there is an isometry Trs(𝑌) ≃
Trs(𝑋) (2).

2. 𝑌 = Km(𝑋) is an algebraic Kummer surface if and only if there exists an
even lattice 𝑇 ′ such that Trs(𝑌) ≃ ⦹𝑒𝑈 (2) ⦹ 𝑇 ′(2), where 𝑒 = max (0, 𝑘 − 1),
and (2, 𝑘) is the signature of Trs(𝑌).

Proof. 1. First we discuss the ”only if” part. If 𝑋 is a two-torus, 𝐻2 (𝑋,ℤ) can
be identified with the lattice 𝐿 = ⦹3𝑈 and Trs(𝑋) ⊂ 𝐿. Let 𝑌 = Km(𝑋) and let
𝑋 d 𝑌 be the rational double cover as in diagram (20.19). The Gysin homomor-
phism 𝐻2 (𝑋,ℤ) → 𝐻2 (𝑌,ℤ) induces a homomorphism 𝜋! : 𝐻

2 (𝑋,ℤ) → 𝐻2 (𝑌,ℤ)
since the cohomology of the blow-up 𝑋 splits off 𝐻2 (𝑋,ℤ) as a direct orthogo-
nal summand. The Kummer involution acts on 𝐻2 (𝑋,ℤ) as the identity and so
Lemma 20.9.3 implies that 𝜋!𝐻

2 (𝑋,ℤ) ≃ 𝐿(2). Since the Kummer involution also
acts as the identity on the transcendental lattice, 𝜋! Trs(𝑋) (2) = Trs(𝑌). Hence
Trs(𝑌) ⊂ 𝐿(2). Clearly (b) holds since the Kummer lattice embeds in 𝐻2 (𝑌,ℤ).

6In the algebraic case, or if the Néron–Severi lattice is negative definite, these two conditions
are equivalent.
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For the converse observe that the above argument shows that assumption (a)
implies that the lattice 𝐿(2) inherits a K3-type Hodge structure whose transcen-
dental lattice is the image of Trs(𝑌) in 𝐿(2). This Hodge structure induces one on
𝐿 with transcendental lattice Trs(𝑌) ( 12 ). By Lemma 20.6.3 there is a complex torus
𝑋 with Trs(𝑋) = Trs(𝑌) ( 12 ). We shall show that the Kummer surface 𝑌′ = Km(𝑋)
is isomorphic to 𝑌 by constructing a Hodge isometry 𝜆 : 𝐻2 (𝑌′,ℤ) ∼−→ 𝐻2 (𝑌,ℤ)
and applying the global Torelli theorem 19.2.1.

As before, there is a rational map 𝜋′ : 𝑋 d 𝑌′ inducing a homomorphism
𝜋′
∗ : 𝐻

2 (𝑋,ℤ) → 𝐻2 (𝑌′,ℤ) with image a sublattice of 𝐻2 (𝑌′,ℤ) isometric to 𝐿(2).
By Proposition 5.2.7 the Kummer lattice is isometric to ΛKum. It is orthogonal
to Im(𝜋′

∗). Since disc(ΛKum) = 26 = disc(𝐿(2)) = disc(Im(𝜋′
∗)), the orthogonal

complement of the Kummer lattice coincides with Im(𝜋′
∗) and so is primitively

embedded in 𝐻2 (𝑌′,ℤ).
Now pass to the 𝑌-side. By assumption (b) ΛKum embeds primitively in NS(𝑌)

and NS(𝑌) embeds primitively in 𝐻2 (𝑌,ℤ), ΛKum embeds primitively in the K3-
lattice. Its orthogonal complement is isometric to 𝐿(2). This follows since by
Corollary 14.4.4 𝐿(2) is the unique lattice in its genus up to isometry (because
6 < 1

2 (6
2 + 1)). We now can define primitive embeddings 𝜎 : ΛKum ↩→ 𝐻2 (𝑌,ℤ) by

sending the Kummer lattice of 𝑌′ to its image in NS(𝑌) under the given embedding,
and 𝜏 : 𝐿(2) ↩→ 𝐻2 (𝑌,ℤ) by identifying 𝜎(ΛKum)⊥ with 𝜋′

∗𝐻
2 (𝑋,ℤ), the copy

of 𝐿(2) which contains Trs(𝑌). By Proposition 14.5.1 the reduction morphism
𝑟𝑇 : O (𝑇 ) → O (dg𝑇 ), 𝑇 = ΛKum, is surjective and so, after possibly changing 𝜎
by an isometry of ΛKum (so that we still have ΛKum ⊂ NS(𝑌)), the embedding
𝜎 ⦹ 𝜏 extends to an isometry 𝜆 : 𝐻2 (𝑌′,ℤ) ≃−→ 𝐻2 (𝑌,ℤ). By construction, 𝜆 sends
Trs(𝑌′) ⊂ 𝐻2 (𝑌′,ℤ) to Trs(𝑌) ⊂ 𝐻2 (𝑌,ℤ) and hence 𝜆 is a Hodge isometry which
finishes the proof that 𝑌 ≃ 𝑌′.

To show the final assertion that Trs(𝑋) (2) ≃ Trs(𝑌), observe that by Proposi-
tion 20.5.5 𝜋′

∗ Trs(𝑋) (2) ≃ Trs(𝑌′) and that 𝜆(Trs(𝑌′)) = Trs(𝑌).

2. In the algebraic situation the signature of Trs(𝑌) is (2, 𝑘) for some 𝑘 ∈ ℤ≥0.
Also Trs(𝑌) ≃ Trs(𝑋) (2), and so we may apply Example 15.2.5 to Trs(𝑋) which
implies the desired result for Trs(𝑌). □

20.7 Nikulin Involutions Revisited

In this section 𝐻2 (−) is integral cohomology and Λ stands for the K3 lattice.

Recall that a Nikulin involution is the same as a symplectic involution. Our
first goal is to show that its induced action in cohomology (after an appropriate
choice of marking) corresponds to the lattice Nikulin involution 𝜄Nik defined as

𝑉 ⦹ 𝐸8 (−1) ⦹ 𝐸8 (−1)
𝜄Nik−−−→ 𝑉 ⦹ 𝐸8 (−1) ⦹ 𝐸8 (−1), 𝑉 := ⦹3𝑈,

(𝑣, 𝑒, 𝑒′) ↦→ (𝑣, 𝑒′, 𝑒).
(20.15)
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The invariant part is isometric to 𝑉⦹𝐸8 (−2) and the anti-invariant part is isometric
to 𝐸8 (−2).

We can now make our first goal precise:

Proposition 20.7.1. Let 𝑋 be a K3 surface admitting a Nikulin involution 𝜄 and
let 𝐺 be the cyclic group generated by this involution. Then there is a commutative
diagram

𝐻2 (𝑋)
𝜆

∼ //

𝜄

��

Λ

𝜄Nik

��
𝐻2 (𝑋)

𝜆

∼ // Λ.

(20.16)

In other words, a K3 surface with a Nikulin involution admits a marking which
turns this involution into a lattice Nikulin involution. Its period point belongs to
𝐷(Λ𝐺), and7 𝐻2 (𝑋)𝐺 ≃ Λ𝐺 = ⦹3𝑈 ⦹ 𝐸8 (−2).

A K3 surface 𝑋 with period point in 𝐷(Λ𝐺) admits a Nikulin involution which is,
up to conjugation by an element of W− (𝑋), induced by the lattice Nikulin involution
𝜄Nik as in (20.16). If the period point is general, NS(𝑋) ≃ Λ𝐺 ≃ 𝐸8 (−2).

Proof. Let 𝑋 be a K3 surface with a Nikulin involution 𝜄. Proposition 20.5.4
states that 𝐻2 (𝑋,ℤ)𝐺 has signature (3, 11) and discriminant group ⊕8ℤ/2ℤ. Then
its orthogonal complement, the anti-invariant sublattice of 𝐻2 (𝑋,ℤ), say 𝑀, has
signature (0, 8) and discriminant group 𝑀∗/𝑀 = ⊕8ℤ/2ℤ.

We first show that 𝑀 is isometric to 𝐸8 (−2), the anti-invariant lattice for the
lattice Nikulin involution. To start, since 𝑀 is 2-elementary, Lemma 14.6.1 shows
that its 2-adic localization is of the form 𝑀2 = 𝑀 (1) (2) with 𝑀 (1) unimodular.
Then 𝑀2 = 2𝑀∗

2 and so (since 𝑀 is 2-elementary) also 𝑀 = 2𝑀∗. This implies
that 𝑀 = 𝑀′(−2) with 𝑀′ unimodular. By the classification of rank 8 positive
definite unimodular lattices given in [119] either 𝑀′ ≃ ⦹8⟨1⟩ or 𝑀′ ≃ 𝐸8. In the
first case 𝑀 ≃ ⦹8⟨−2⟩ which contradicts Proposition 20.2.2 (the anti-invariant
lattice under a symplectic isometry does not contain roots). Having shown this,
𝐻2 (𝑋,ℤ)𝐺, the orthogonal complement of 𝑀, has discriminant form isometric to
that of 𝑉 ⦹ 𝐸8 (−2) = ⦹3𝑈 ⦹ 𝐸8 (−2), the invariant lattice of 𝜄Nik. Since 𝐻

2 (𝑋,ℤ)𝐺
and Λ𝐺 have the same rank, index and discriminant form, they are in the same
genus, and so they are isometric by Corollary 14.4.3.

Next, observe that by Lemma 17.2.2 the group O (𝐸8 (−2)) = O (𝐸8) is gener-
ated by reflections. By Lemma 16.1.1 these induce the identity on the discriminant
group. So by Proposition 15.1.6 one has a commutative diagram (20.16), as as-
serted.

For the second part of the proof, we show the existence of a Nikulin involu-
tion on a K3 surface 𝑋 with period point [𝜂] ∈ 𝐷(Λ𝐺). Via the marking NS(𝑋)
contains a lattice isometric to Λ𝐺, and the induced lattice involution 𝜄 on coho-
mology preserves 𝐻2,0 (𝑋). To see that 𝜄 comes from a surface involution, we apply
Criterion 20.2.1. Since the invariant part of 𝐻2 (𝑋,ℝ) has signature (3, 11), it con-
tains the light cone and there exists a Kähler class invariant under the involution.

7This also confirms the first entry in Table 20.9.1.
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Lastly, the anti-invariant sublattice of 𝐻2 (𝑋,ℤ) does not contain roots, since it is
isometric to 𝐸8 (−2). The criterion then implies that 𝜄 is conjugate (under W− (𝑋))
to a linear map on cohomology induced by an involution on 𝑋 which is necessarily
symplectic, that is, a Nikulin involution. □

Observe that the corresponding period domain 𝐷(Λ𝐺) as an open subset of
a quadric in ℙ(Λ𝐺) has dimension 12. The Néron–Severi group of a K3 surface
with period point in this period domain contains 𝐸8 (−2) and generally one has
NS(𝑋) ≃ 𝐸8 (−2) so that such surfaces are generally non-algebraic. The algebraic
ones belong to countably many irreducible families of dimension 11 as we shall
show now. First we determine the candidate Néron–Severi lattices.

Proposition 20.7.2 ([83, §2]). Fix a positive integer 𝑘 and let 𝑁𝑘 = 𝐸8 (−2)⦹⟨2𝑘⟩.
For even 𝑘 it has an up to isometry unique index 2 even overlattice, say 𝑁′

𝑘
, which

contains 𝐸8 (−2) and ⟨2𝑘⟩ primitively. For 𝑘 odd there are no such overlattices.

Proof. We shall employ the technique of overlattices as explained in Sections 1.7.C
and 15.1. We set 𝑁 = 𝐸8 (−2) ⦹ ℤ · 𝑓 with 𝑓 · 𝑓 = 2𝑘. An order 2 isotropic
subgroup 𝐼 of 𝑁∗/𝑁 (with respect to the discriminant bilinear form) corresponds
to an overlattice 𝐿 with 𝑁 as index 2 sublattice and vice versa. Given 𝐼, the
corresponding overlattice admits both 𝐸8 (−2) and ℤ · 𝑓 as primitive sublattices
provided the intersections of 𝐼 with dg𝐸8 (−2) and dgℤ·𝑓 are zero. Since dg𝐸8 (−2) ≃
⊕8ℤ/2ℤ is 2-torsion, 𝐼 is then generated by an element of the form 1

2𝑒 +
1
2𝑓 + 𝑁,

where 𝑒 ∈ 𝐸8 (−2) is such that 1
2𝑒 ∉ 𝑁.

For an overlattice to be even, we use the discriminant quadratic form 𝑞# on 𝐼.
Observe that 𝑞# ( 12𝑓+𝑁) ≡ 𝑘

4 mod ℤ and that 𝑞# ( 12𝑒+𝑁) ∈ 1
2ℤ/ℤ. So 𝐼 is isotropic

with respect to 𝑞# if and only if 𝑞# ( 12𝑒 + 𝑁) + 𝑘
4 ≡ 0 mod ℤ. Since 𝑞# ( 12𝑒 + 𝑁)

is either 0 mod ℤ or 1
2 mod ℤ, 𝑘 must be even. Moreover, if 𝑘 ≡ 0 mod 4, then

𝑞# ( 12𝑒 +𝑁) ≡ 0 mod ℤ, i.e., 𝑒 · 𝑒 ≡ 0 mod 8, and if 𝑘 ≡ 2 mod 4, then 𝑞# ( 12𝑒 +𝑁) ≡
1
2 mod ℤ, that is, 𝑒 · 𝑒 ≡ 4 mod 8. If 𝑘 is odd, there are no even index 2 overlattices.

In the case where 𝑘 ≡ 0 (mod 4) and 𝑞# ( 12𝑒 + 𝑁) ≡ 0 (mod ℤ), we show that
all such vectors 1

2𝑒 + 𝑁 are in the same O (dg𝑁)-orbit. It suffices to observe that
the vectors 1

2𝑒 + 𝐸8 (−2) are in the same O (dg𝐸8 (−2))-orbit, and this follows from
an extension of the Witt extension theorem mentioned in Remark 7.2.9 (or from
detailed knowledge of the inner product space 𝐸8 (−2)/2𝐸8 (−2)). The case where
𝑘 ≡ 2 (mod 4) and 𝑞# ( 12𝑒 + 𝑁) ≡ 1

2 (mod ℤ) is handled in a similar way. It then
follows that elements of the form 1

2𝑒 +
1
2𝑓 +𝑁 are in the same orbit as well in each

of the two cases.
Finally, we prove that in each of the two cases the resulting overlattices are

isometric. Here we use that the natural homomorphism O (𝑁) → O (dg𝑁) is sur-
jective by Theorem 14.5.5 14.5.5 and Proposition 10.2.2 10.2.2, so that for each
isometry in O (dg𝑁) taking an isotropic subgroup to another one, there exists a lift
in O (𝑁) relating the corresponding overlattices. □

We shall now show, following [83], that the algebraic K3 surfaces admitting a
Nikulin involution have a moduli space of dimension 20 − 9 = 11, where 9 is the
rank of the Néron–Severi group of the general such K3 surface. The nature of the
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moduli space depends on 𝑘. For each odd number 𝑘 the period space is irreducible,
for 𝑘 even there are two components. The proof uses that by Proposition 19.2.10
each of the lattices 𝑆 = 𝑁𝑘 or 𝑆′ = 𝑁′

𝑘
can be embedded primitively in the K3

lattice so that we can speak of 𝑆-marked or 𝑆′-marked K3 surfaces. Indeed, the
corresponding period domains parametrize the K3 surfaces we are after:

Proposition 20.7.3. Let 𝑁𝑘 (respectively 𝑁′
𝑘
) be primitively embedded in the K3

lattice. The period-domain for 𝑁𝑘-marked or 𝑁′
𝑘
-marked K3 surfaces has dimension

11. With 𝐺 the group generated by 𝜄Nik, any of these period domains are cut out in
𝐷(Λ𝐺) by a hyperplane.

The general point of 𝐷(𝑁⊥
𝑘
) corresponds to a K3 surface 𝑋 with NS(𝑋) ≃ 𝑁𝑘

and likewise for 𝑁′
𝑘
. Any such marked K3 surface admits a Nikulin involution

induced by the lattice Nikulin involution 𝜄Nik.

Proof. Let ℓ be a generator of the second summand of 𝑁𝑘 = 𝐸8 (−2) ⦹ ⟨2𝑘⟩. Its
orthogonal complement in 𝑁𝑘 as well as and in 𝑁′

𝑘
is the sublattice 𝐸8 (−2) which

does not contain −2-roots. Hence ℓ · 𝑟 ≠ 0 for all roots 𝑟 in either one of these
lattices, i.e., ℓ belongs to the interior of some Weyl chamber. So, if 𝑋 is an 𝑁𝑘-
marked K3 surface or an 𝑁′

𝑘
-marked K3 surface, we can adapt the marking in such

a way that ℓ is an ample class.
Assume for simplicity that we are in the 𝑁𝑘-marked case. Then, since the pe-

riod point of 𝑋 is assumed to be general, we may henceforth assume that NS(𝑋)
corresponds to 𝑁𝑘. If one defines 𝜄 = −id on the first summand 𝐸8 (−2) of 𝑁𝑘 and
𝜄 = id on the orthogonal complement of this summand in ΛK3, it extends to an
involution 𝜄 on ΛK3 by the extension criterion from Theorem 15.1.7 (use that the
discriminant group of 𝐸8 (−2) is 2-torsion). Let 𝐺 be the order two group generated
by 𝜄. Under the marking Trs(𝑋) ⊂ Λ𝐺, so that 𝐺 preserves the Hodge decomposi-
tion. Moreover, 𝐺 preserves the ample class ℓ. So by Theorem 19.2.2 the involution
𝜄 is induced by a unique (symplectic) involution on 𝑋. By Proposition 20.7.1 this
implies that 𝜄 = 𝜄Nik, the lattice Nikulin involution. Hence 𝐷(𝑁⊥

𝑘
) ⊂ 𝐷(Λ𝐺).

The above argument is essentially the same for 𝑁′
𝑘
. □

20.8 Shioda–Inose structures

In Corollary 5.2.8 we showed that every Kummer surface Km(𝐴) (the minimal
resolution of the quotient of a complex 2-torus 𝐴 by the involution 𝑗 sending 𝑥 ∈ 𝐴
to −𝑥) admits a double cover 𝑋 with 8 exceptional curves which is the blow-up of
a K3 surface 𝑋. Moreover, the covering involution 𝜄 on 𝑋 is a Nikulin involution
and 𝑌 = Km(𝐴) is the minimal resolution of 𝑋/𝜄. The resulting diagram

𝑋

𝜄

''

�� ''

𝑋oo

𝜋
��

𝐴

��xx
𝑌 = 𝑋/𝜄 𝑌 = Km(𝐴)oo // 𝐴/𝑗

(20.17)
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is called a Shioda–Inose structure .8

Next we abstract from this specific situation to the one described in the ap-
pendix to this chapter. By (20.20) the manifold 𝑋′ = 𝑋 − Σ, (Σ is the fixed point
set of 𝜄), is shown to have the same 2-cohomology as 𝑋. Since 𝜋 : 𝑋′ → 𝑌′,
𝑌′ = 𝑌 − 𝜄(Σ) is a topological double covering, the transfer homomorphism t∗ :
𝐻2 (𝑋′) → 𝐻2 (𝑌′) is well defined. Moreover, the inclusion 𝑋′ ↩→ 𝑋 induces an iso-
morphism 𝐻2 (𝑋) ≃ 𝐻2 (𝑋′) and so the transfer homomorphism extends to 𝐻2 (𝑋)
and can be identified with the Gysin homomorphism 𝜋!. By Lemma 20.9.3.1 in
the appendix to this chapter one has

𝜋∗◦𝜋! (𝑥) = 𝑥 + 𝜄∗ (𝑥), 𝑥 ∈ 𝐻2 (𝑋,ℤ). (20.18)

Let us consider the following lattice theoretic situation involving the abstract
Nikulin lattice ΛNik, a rank 8 positive definite even lattice of discriminant 26 (see
§ 5.2.B). It leads to the left-hand half of the above diagram (20.17), without the
condition 𝑌 is a Kummer surface:

Theorem 20.8.1 ([158, Th. 5.7]). Let (𝑋,𝜑) be a marked K3 surface such that
𝜑−1 (⦹2𝐸8 (−1)) embeds into NS(𝑋). Then with the notation as above

1. there is a Nikulin involution 𝜄 on 𝑋 with 𝜋 : 𝑋 → 𝑌;

2. there exists a primitive embedding ΛNik ⦹ 𝐸8 (−1) ↩→ NS(𝑌);

3. The Gysin morphism 𝜋! induces an isometry Trs(𝑋) (2) ≃−→ Trs(𝑌).

Proof. 1. The lattice Nikulin involution 𝜄Nik on ΛK3 (see (20.15)) gives an involution
on 𝐻2 (𝑋,ℤ) as follows. Since 𝜄Nik switches the two copies of 𝐸8 (−1) inside ΛK3

and is the identity on its orthogonal complement, via the marking this gives an
involution 𝜄′ on the embedded copy of ⦹2𝐸8 (−1). We let 𝐺 be the group generated
by 𝜄′. Then the anti-invariant lattice (𝐻2 (𝑋))𝐺 = (𝐻2 (𝑋)𝐺)⊥ is isometric to 𝐸8 (−2)
and thus does not contain roots. So 𝐻2 (𝑋)𝐺 ∩NS(𝑋) does not contain roots, that
is, condition 3 of Criterion 20.2.1 is fulfilled. Condition 1 holds since 𝐻2 (𝑋)𝐺 ⊂
NS(𝑋) and so Trs(𝑋) ⊂ NS(𝑋)⊥ ⊂ 𝐻2 (𝑋)𝐺. Condition 2 holds since 𝐻2 (𝑋)𝐺 has
signature (3, 11) and therefore intersects the positive cone. It follows that for some
𝑤 ∈ W− (𝑋), 𝑤𝜄′𝑤−1 is induced by an involution 𝜄 on 𝑋 which by construction
is a Nikulin involution. This shows item 1. Note also that upon replacing the
embedding 𝜑−1 by 𝑤◦𝜑−1 : 𝐸8 (−1)⦹2 ↩→ 𝐻2 (𝑋,ℤ), the induced involution 𝜄∗ on
cohomology acts in a similar way as 𝜄′.
2. The Nikulin involution on 𝑋 has eight isolated fixed points, which on 𝑌 give
eight (−2)-curves and the primitive closure of the span of their classes is a copy
of ΛNik, the Nikulin lattice, in NS(𝑌). The second summand comes from the two
copies of 𝐸8 (−1) in the K3 lattice under the Gysin morphism 𝜋! : 𝐻2 (𝑋,ℤ) →
𝐻2 (𝑌,ℤ), as we now show. By construction, 𝜄∗ interchanges the two copies of

8So named after [211, §3] where this structure has been introduced and studied.
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𝐸8 (−1) in 𝐻2 (𝑋,ℤ). So if 𝑥,𝑥′ belong to the same copy, and hence 𝜄∗ (𝑥) · 𝑥′ = 0,
then

(𝑥 + 𝜄∗ (𝑥)) · (𝑥′ + 𝜄∗ (𝑥′)) = 𝑥 · 𝑥′ + 𝜄∗𝑥 · 𝜄∗𝑥′ = 2𝑥 · 𝑥′.

If 𝜏 : 𝑋 → 𝑋 is the blowing up in the fixed-point set Σ, then 𝜏∗ : 𝐻2 (𝑋,ℤ) ↩→
𝐻2 (𝑋,ℤ) by Lemma B.5.2. So we may identify 𝑥 and 𝑥′ with their counterparts
in 𝐻2 (𝑋,ℤ). By (20.18) one has

𝑦 = 𝑥 + 𝜄(𝑥) = 𝜋∗𝜋! (𝑥), 𝑦′ = 𝑥′ + 𝜄(𝑥′) = 𝜋∗𝜋! (𝑥′),

an equality of 𝐺-invariant elements. Then Lemma 20.9.3.2 implies

𝜋! (𝜋∗𝜋!𝑥) · 𝜋! (𝜋∗𝜋!𝑥
′) = 𝜋!𝑦 · 𝜋!𝑦

′ = 2𝑦 · 𝑦′ = 4𝑥 · 𝑥′.

Since 𝜋 has degree 2, 𝜋!𝜋
∗ is multiplication by 2 and the left-hand side equals

4𝜋!𝑥 ·𝜋!𝑥
′. In other words, 𝜋! is an isometry on each of the two copies of 𝐸8 (−1) in

𝐻2 (𝑋,ℤ) and maps these to the same sublattice of𝐻2 (𝑌,ℤ). These map into NS(𝑌)
since 𝜋! preserves the Hodge structure (see e.g. [186, Lemma 1.19]). Summarizing,
NS(𝑌) contains a copy of ΛNik ⦹ 𝐸8 (−1). Since the first summand, the Nikulin
lattice, is primitively embedded and the second summand is unimodular, their
direct sum is also primitively embedded as claimed, finishing the proof of 2.
3. We aim to apply Proposition 20.5.5 in the present situation where

Trs(𝑋) ⊂ 𝐿, 𝐿 = (⦹2𝐸8 (−1))⊥ ⊂ 𝐻2 (𝑋,ℤ)𝐺 .

Then 𝐿 ≃ 𝑉. To be able to apply the proposition, we show first that 𝜋!𝐿 is a
primitive sublattice of 𝐻2 (𝑌,ℤ). So we introduce

𝑀 := (𝜋!𝐿)⊥.

Then 𝑀⊥ is the smallest primitive sublattice of 𝐻2 (𝑌,ℤ) containing 𝜋!𝐿. We
wish to show that 𝑀⊥ = 𝜋!𝐿. By the same argument as before, 𝜋! multiplies the
intersection form on the invariant part by 2 and so 𝜋!𝐿 is isometric to 𝑉 (2) and so
has discriminant 26. On the other hand, by Lemma 1.2.2 we have

disc(𝜋!𝐿) = [𝑀⊥ : 𝜋!𝐿]2 · disc(𝑀⊥)
= [𝑀⊥ : 𝜋!𝐿]2 · disc(𝑀).

But disc(𝑀) = disc(𝜋!𝐿) = 26 and so 𝑀⊥ = 𝜋!𝐿, as asserted. By construction
Trs(𝑌) ⊂ 𝜋!𝐿 and so we can indeed apply Proposition 20.5.5 and conclude that

𝜋! : Trs(𝑋) (2) ∼−→ Trs(𝑌). □

Using the previous result, one can characterize the Shioda–Inose structures as
follows.

Theorem 20.8.2 ([158, Thm. 6.3]). Let 𝑋 be a K3 surface. Consider the following
properties.

1. 𝑋 admits a Shioda–Inose structure;
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2. there is a complex 2-torus 𝐴 with Trs(𝑋) ≃ Trs(𝐴);

3. there is a primitive embedding Trs(𝑋) ⊂ ⦹3𝑈;

4. there is an embedding ⦹2𝐸8 (−1) ⊂ NS(𝑋).

One has the implications 1 =⇒ 2 =⇒ 3. If, moreover, 𝑋 is algebraic, then 3
=⇒ 4 =⇒ 1, and hence in this case all of the above properties are equivalent.

Proof. 1 =⇒ 2: By Theorem 20.8.1, Trs(𝑌) ≃ Trs(𝑋) (2), where 𝑌 is the Kummer
surface of 𝐴 as in the definition of a Shioda–Inose structure. Since also Trs(𝑌) ≃
Trs(𝐴) (2) we conclude that Trs(𝑋) ≃ Trs(𝐴).
2 =⇒ 3 : Take 𝐴 as in 2. Then, by 2, the natural embedding Trs(𝐴) ⊂ 𝐻2 (𝐴,ℤ) ≃
𝑈⦹3 induces Trs(𝑋) ↩→ 𝑈⦹3.
Now assume that 𝑋 is algebraic.
3 =⇒ 4: The given embedding, say 𝜑, extends as 𝜑 ⦹ 0 : Trs(𝑋) ↩→ ΛK3. Now
Trs(𝑋) has signature (2, 𝑘), 𝑘 ≤ 3, and thus, by Proposition 19.2.10, it embeds
uniquely in ΛK3. This shows that 𝜑 ⦹ 0 gives the canonical embedding Trs(𝑋) ⊂
𝐻2 (𝑋,ℤ) = ⦹3𝑈 ⦹⦹2𝐸8 (−1), which implies that NS(𝑋) contains ⦹2𝐸8 (−1).
4 =⇒ 1. By Theorem 20.8.1 there is a Nikulin involution 𝜄 : 𝑋 → 𝑋 such that for

the rational quotient map 𝜋 : 𝑋 d 𝑌 we have 𝜋! : Trs(𝑋) (2) ≃−→ Trs(𝑌). Moreover,
ΛNik ⦹ 𝐸8 (−1) ⊂ NS(𝑌). The crucial remarks now are:

• 𝑀 = ΛNik⦹𝐸8 (−1) as well as the Kummer lattice ΛKum are negative definite
and have the same discriminant form 𝑢⦹3

1 and so belong to the same genus.

• NS(𝑌) has rank ≥ 16 ≥ 1
2 rank(𝐿) = 11 and so, by Corollary 15.2.7, the

isometry class of the lattice NS(𝑌) is unique in its genus.

The lattice 𝑀 embeds primitively in NS(𝑌) and hence by Corollary 15.1.4 also
ΛKum embeds primitively in NS(𝑌). But then 𝑌 = Km(𝐴), proving 1. □

We come back to the article [211] by T. Shioda and H. Inose where the struc-
ture named after them was introduced. In loc. cit. they applied it to the smallest
possible transcendental lattices, those of rank 2. These correspond to positive def-
inite integral quadratic forms. Two such forms are isometric if they are equivalent
under conjugation by SL2 (ℤ). Any K3 surface with a transcendental lattice 𝑇 of
rank 2 has no moduli and Theorem 20.8.2 implies that these are obtained from an
algebraic torus 𝐴 via a Shioda–Inose structure. It is shown in [211] that in fact 𝐴
is a product of two elliptic curves. Summarizing:

Corollary 20.8.3. A K3-surface 𝑋 whose transcendental lattice 𝑇 has rank 2 is
obtained from a product of two elliptic curves by means of a Shioda–Inose structure.
Such surfaces have no moduli and correspond one-to-one to points of the set of
isometry classes of positive definite even lattices of rank 2.

Example 20.8.4 (Non-Kummer Nikulin quotients and non-algebraic K3 surfaces
with a Shioda–Inose structure). By Theorem 19.2.1, there is a K3-surface 𝑋 with

a marking 𝜑 : 𝐻2 (𝑋,ℤ) ∼−→ ΛK3 such that 𝜑(Trs(𝑋)) = ⦹3𝑈 ⊂ ⦹3𝑈 ⦹⦹2𝐸8 (−1).
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Since NS(𝑋) is then negative definite, such K3 surfaces (and all of its quotients by
an involution) are not algebraic. We next observe that, since NS(𝑋) ≃ ⦹2𝐸8 (−1),
Theorem 20.8.1 implies that, first of all, 𝑋 admits a Nikulin involution with quo-
tient 𝑌 and with Trs(𝑌) ≃ ⦹3𝑈 (2) (so 𝑌 is not algebraic), and, secondly, that
NS(𝑌) contains ΛNik ⦹ 𝐸8 (−1). Note also that rank(NS(𝑌)) = rank(NS(𝑋)) = 16
so that the index [NS(𝑌) : ΛNik ⦹ 𝐸8 (−1)] is finite. Suppose that there exists a
torus 𝐴 with 𝑌 = Km(𝐴). Since the two-forms are preserved in a Shioda–Inose
structure, we would have a Hodge isometry 𝐻2 (𝐴) ≃ 𝑈⦹3 ≃ Trs(𝑋). Hence for the
Kummer quotient 𝑌, by Theorem 20.6.4 one would have Trs(𝑌) = ⦹3𝑈 and a prim-
itive embedding ΛKum ⊂ NS(𝑌), which must be an equality since disc(NS(𝑌)) =
disc(Trs(𝑌)) = 26 = disc(ΛKum). Similarly, since disc(ΛKum) = 26 = disc(ΛNik),
the inclusion ΛNik ⦹ 𝐸8 (−1) ⊂ NS(𝑌) becomes an equality. Since ΛKum is clearly
indecomposable, it cannot be isometric to 𝐸8 (−1) ⦹ ΛNik and there is no Shioda–
Inose structure involving 𝑌.

On the other hand, there are non-algebraic surfaces admitting a Shioda–Inose
structure: just start with a non-algebraic 2-torus. By Corollary 5.2.8 the corre-
sponding Kummer surface is a Nikulin quotient, say of a (necessarily non-algebraic)
K3 surface 𝑋 and so here is no Shioda–Inose structure involving 𝑋.

We already observed (see Remark 19.2.12.2) that 𝑇 = ⦹3𝑈 embeds in two ways
into the K3 lattice: the standard embedding with 𝑇 ⊥ = ⦹2𝐸8 (−1) and another
embedding with 𝑇 ⊥ = Γ16 (−1). The above argument shows that in order for 𝑋 to
have a Shioda–Inose structure, the first embedding is impossible. This implies that
𝐷(⦹3𝑈) ⊂ 𝐷(Λ) is the period domain of K3 surfaces admitting a Shioda–Inose
structure, where 𝑇 = ⦹3𝑈 ⊂ Λ is not the standard embedding. The general point
represents non-algebraic surfaces, while the algebraic ones are given by countably
many hyperplanes in this 4–dimensional period domain.

20.9 Appendix: On Surfaces Admitting an Action of a Finite
Group

In this section 𝑋 is any compact (smooth) complex surface with a faithful action of a finite

group 𝐺, and 𝑌 denotes the minimal resolution of 𝑌 = 𝑋/𝐺. We write 𝐻2 (𝑋),𝐻2 (𝑌), . . .
to mean integral cohomology while 𝐻1 (𝑋),𝐻2 (𝑌), . . . stands for integral homology. We

relate the intersection lattices of 𝑋 and 𝑌. The main result, Theorem 20.9.6, is quite

technical, but it is of crucial importance for applications to K3 surfaces in Section 20.2.

20.9.A The set-up. By [35], the action of 𝑔 ∈ 𝐺 on the tangent space at a
fixed point can be linearized which implies that the fixed locus of 𝑔 in 𝑋 is either
empty or a disjoint union of smooth curves and points. The image in 𝑌 of an
isolated fixed point of 𝑔 acting on 𝑋 by definition is a quotient singularity, hence
by Proposition 4.5.2, a du Val singularity. We assume that there are only (finitely
many) isolated fixed points and we employ the following notation:

• 𝜎 : 𝑌 → 𝑌: the minimal resolution of 𝑌;
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• Σ ⊂ 𝑋: the finite set of fixed points of the 𝐺-action;
• 𝑝 ∈ 𝑌: the image of 𝑝 ∈ Σ ⊂ 𝑋, under 𝜋 : 𝑋 → 𝑌;
• 𝜏 : 𝑋 → 𝑋: a minimal the blow-up of 𝑋 in the points of Σ so that 𝜋 extends
as 𝜋 : 𝑋 → 𝑌;

• 𝐸𝑝 ⊂ 𝑌: the exceptional divisor over 𝑝;
We gather the information in the following commutative diagram:

𝑋

𝜋

��

𝑋′ = 𝑋 − Σ? _
𝑗′oo

��

𝑋 − 𝜋−1𝐸

��

� � // 𝑋

𝜋
��

𝜏

rr

𝑌 𝑌′ = 𝑋/𝐺 − 𝜋(Σ)? _

𝑗
oo 𝑌 − 𝐸 �

�

𝑗

// 𝑌.

𝜎

ll

(20.19)

Using the Mayer–Vietoris sequence applied to the open sets 𝑋 − Σ and a union of
balls around the points of Σ, one gets isomorphisms

𝑗′∗ : 𝐻𝑞 (𝑋) ∼−→ 𝐻𝑞 (𝑋′), 𝑗′∗ : 𝐻𝑞 (𝑋)𝐺 ∼−→ 𝐻𝑞 (𝑋′)𝐺 , 𝑞 = 0, 1, 2. (20.20)

Since by Lemma B.5.2 the induced map 𝜏∗ makes 𝐻2 (𝑋) into a direct summand
of 𝐻2 (𝑋), we may and shall consider 𝐻2 (𝑋) as a subgroup of 𝐻2 (𝑋).

Recall that for continuous maps 𝑓 : 𝑋 → 𝑌 between connected oriented mani-
folds 𝑋,𝑌 of dimensions 𝑑,𝑑′ respectively, the induced maps 𝑓∗ : 𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑌),
𝑞 = 0, . . . ,𝑑, in homology can be combined with the two Poincaré duality iso-

morphisms 𝐻
𝑞
𝑐 (𝑋) ≃−→

𝐷
𝐻𝑑−𝑞 (𝑋) and 𝐻

𝑑′−(𝑑−𝑞)
𝑐 (𝑌) ≃−−→

𝐷′
𝐻𝑑−𝑞 (𝑌) to give the Gysin

homomorphisms in (compactly supported) cohomology 9 𝑓! = (𝐷′)−1◦𝑓∗◦𝐷 :

𝐻
𝑞
𝑐 (𝑋) → 𝐻

𝑑′−𝑑+𝑞
𝑐 (𝑌). See e.g. [50, Ch. VIII §10].

We shall also make use of extensions of the Gysin homomorphisms in the case
of regular topological coverings, such as 𝜋 : 𝑋′ → 𝑌′, the so-called transfer
homomorphisms t∗ : 𝐻𝑘 (𝑋′) → 𝐻𝑘 (𝑌′) and t∗ : 𝐻𝑘 (𝑌′) → 𝐻𝑘 (𝑋′), 𝑘 ∈ ℤ. See
e.g. [94, §3.2]. If we compose these with the usual induced maps 𝜋∗ and 𝜋∗, one
obtains similar rather obvious identities which we shall state only for cohomology:

Lemma 20.9.1. Let 𝜋 : 𝑋′ → 𝑌′ = 𝑋′/𝐺 be as above. Then

1. t∗𝜋∗ : 𝐻𝑘 (𝑌′) → 𝐻𝑘 (𝑌′) is multiplication by 𝑛 = |𝐺 |.
𝜋∗t∗ : 𝐻𝑘 (𝑋′) → 𝐻𝑘 (𝑋′) is induced by the action of

∑
𝑔∈𝐺 𝑔 ∈ ℤ[𝐺].

2. 𝜋∗ : 𝐻𝑘 (𝑌′) → 𝐻𝑘 (𝑋′) has its image in 𝐻𝑘 (𝑋′)𝐺. The kernel of 𝜋∗ as well
as the kernel of t∗ : 𝐻𝑘 (𝑋′)𝐺 → 𝐻𝑘 (𝑌′) is 𝑛-torsion.

3. If 𝐻𝑘 (𝑋′) is a free ℤ-module, then 𝐻𝑘 (𝑋′)𝐺 is the primitive closure of Im(𝜋∗).
9also called Umkehr homomorphisms.
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Proof. For the proofs of item 1 we refer to [94, §3.2].
2. Since 𝜋◦𝑔 = 𝜋 for every 𝑔 ∈ 𝐺, one has 𝑔∗ (𝜋∗ (𝑦)) = 𝜋∗ (𝑦), 𝑦 ∈ 𝐻∗ (𝑌′), and so
𝜋∗ (𝑦) is 𝐺-invariant. Item 1 shows that 𝜋∗ and t∗ |𝐻𝑘 (𝑋′)𝐺 are injective modulo
𝑛-torsion.
3. By item 2, Im(𝜋∗) has the same rank as 𝐻𝑘 (𝑋′)𝐺. So it suffices to show that
𝐻𝑘 (𝑋′)𝐺 is a primitive sublattice of 𝐻𝑘 (𝑋′). To see this, observe that if a 𝐺-module
𝑀 is without torsion, 𝑀𝐺 is a primitive sublattice of 𝑀 since, if for some 𝑥 ∈ 𝑀
and 𝑔 ∈ 𝐺 one has 𝑚𝑥 = 𝑚𝑔(𝑥) ∈ 𝑀𝐺, then 𝑥 = 𝑔(𝑥). □

Remark 20.9.2. If 𝑋′ (and hence 𝑌′) are oriented compact connected manifolds,
the transfer homomorphisms are the same as the Gysin homomorphisms. If 𝑋′ and
𝑌′ are oriented but not necessarily compact, the Gysin maps 𝜋! : 𝐻

𝑘
𝑐 (𝑋′) → 𝐻𝑘

𝑐 (𝑌′)
extend the transfer maps, i.e., there is a commutative diagram

𝐻𝑘 (𝑋′) t∗ // 𝐻𝑘 (𝑌′)

𝜋∗
uu

𝐻𝑘
𝑐 (𝑋′)

OO

𝜋! // 𝐻𝑘
𝑐 (𝑌′).

OO (20.21)

Returning to our setting we have:

Lemma 20.9.3. 1. One has 𝜋∗𝜋! (𝑢) =
∑

𝑔∈𝐺 𝑔
∗ (𝑢), 𝑢 ∈ 𝐻2 (𝑋).

2. The Gysin morphism 𝜋! : 𝐻
2 (𝑋) → 𝐻2 (𝑌) restricted to 𝐻2 (𝑋)𝐺 is injective

and multiplies the intersection form by |𝐺 |.

Proof. 1. Let 𝑢 ∈ 𝐻2 (𝑋). Using diagram (20.21) in case 𝑘 = 2 where 𝐻2
𝑐 (𝑋′) ≃

𝐻2 (𝑋′) ≃ 𝐻2 (𝑋), Lemma 20.9.1.2 implies 1. Indeed, in this case the diagram
extends as folllows

𝐻𝑘
𝑐 (𝑋′) 𝜋! // 𝐻𝑘

𝑐 (𝑌′)

��
𝐻2 (𝑋)

��
𝜏∗

��

𝐻2 (𝑌)

𝜎∗

��

𝜋∗
oo

𝐻2 (𝑋)
𝜋! //

𝐻2 (𝑌).
𝜋∗
oo

2. If 𝑢,𝑢′ ∈ 𝐻2 (𝑋), setting 𝑦 = 𝜋! (𝜏∗𝑢), 𝑦′ = 𝜋! (𝜏∗𝑢′), one finds 𝜋∗𝑦 ·𝜋∗𝑦′ = |𝐺 | 𝑦 ·𝑦′,
since 𝜋 has degree |𝐺 |. Assume now that 𝑢,𝑢′ ∈ 𝐻2 (𝑋)𝐺. Using item 1 and the
(cup-product preserving) injectivity of 𝜏∗ which allows to drop 𝜏∗, we have:

|𝐺 | (𝜋!𝑢,𝜋!𝑢
′) = 𝜋∗𝜋!𝑢 · 𝜋∗𝜋!𝑢

′ = |𝐺 |2𝑢 · 𝑢′.

This implies that 𝜋! restricts injectively to 𝐻2 (𝑋)𝐺 (since this lattice is non-
degenerate), and so 2 follows. □
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Next, we relate the cohomology groups of 𝑋′ and its compactification 𝑋, as
well as those of 𝑌′ and its compactification 𝑌. To do this, we shall make use of a
variant of the so-called Gysin exact sequence which relates the cohomology of
an oriented differentiable manifold 𝑀 and the cohomology of the complement of a
smooth submanifold 𝑁 ⊂ 𝑀:

· · · → 𝐻𝑞 (𝑁) → 𝐻𝑞+𝑒 (𝑀) → 𝐻𝑞+𝑒 (𝑀 −𝑁) → 𝐻𝑞+1 (𝑁) → · · · 𝑒 = codimℝ𝑁.

This is a slightly less known sequence and hence we explain how it arises. One
starts with the long exact sequence in cohomology for the pair (𝑀,𝑀−𝑁). By the
excision property, the terms𝐻𝑞 (𝑀,𝑀−𝑁) can be replaced with𝐻𝑞 (𝑇 , 𝑇−𝑁), where
𝑇 is a suitably small neighborhood of 𝑁 in 𝑀. The so-called tubular neighborhood
theorem (cf. [135, Chapter 4.5]) gives a nice choice for 𝑇 which ensures that 𝑇
is diffeomorphic to the total space of a 2-disc bundle over 𝑁, where we identify
𝑁 with the zero section 𝑠0 of this 2-disc bundle of 𝑁 in 𝑀. Finally, by Thom’s
theorem (cf. [219, Ch. 5.7, Thm 10]) we have a natural identification 𝐻𝑞 (𝑇 , 𝑇 −
𝑠0) = 𝐻𝑞−𝑒 (𝑁). In our case, 𝑁 is not a submanifold but an 𝐴-𝐷-𝐸 configuration
in a complex surface. However, we explained in § 4.4.C that a neighborhood
of such a configuration is obtained by plumbing the tubular neighborhoods of
the components of the configuration. This comes down to identifying the two 2-
discs over an intersection point 𝑝 of two intersecting components. Since 𝐻𝑞 (𝐸) =⊕

𝑝∈Σ𝐻
𝑞 (𝐸𝑝) and 𝐻1 (𝐸𝑝) = 0 (the curves 𝐸𝑝 are unions of smooth rational curves),

the Gysin sequence for the pair (𝑌,𝐸) leads to

0 →
⊕
𝑝∈Σ

𝐻0 (𝐸𝑝)
𝑖∗−→ 𝐻2 (𝑌)

𝑗∗

−→ 𝐻2 (𝑌 − 𝐸) = 𝐻2 (𝑌′) → 𝐻1 (𝐸) = 0. (20.22)

20.9.B The case where 𝑮 is abelian. In this subsection 𝐺 is an abelian group
acting on 𝑋 with quotient 𝑌. The goal is to relate 𝐻2 (𝑋)𝐺 to 𝐻2 (𝑌). Over
ℚ the groups are isomorphic, but the possible torsion in the integral cohomology
groups complicates matters. It is easy to impose a condition which implies that the
related groups 𝐻2 (𝑋) and 𝐻2 (𝑌) are free of torsion, since the universal coefficient
theorem implies that this is equivalent to 𝐻1 (𝑋) and 𝐻1 (𝑌) being free of torsion.
The stronger assumption that 𝑋 be simply connected and that 𝐻1 (𝑌) = 0 would
ensure this. A property of the group action, which holds in the cases of interest to
us, makes the last condition superfluous:

Lemma 20.9.4. With 𝑋,𝐺,Σ,𝑌,𝑌 as in § 20.9.A (with 𝐺 abelian), let 𝐺𝑝,𝑝 ∈
Σ, be the stabilizer of 𝑝 in 𝐺. Suppose that 𝑋 is simply connected and that the
homomorphism ⊕𝑝∈Σ𝐺𝑝 → 𝐺 induced by inclusion is surjective. Then 𝐻1 (𝑌) = 0.

Proof. Let 𝑈 = 𝑌 −𝐸 = 𝑌 −𝜋(Σ), and 𝑉 =
⋃

𝑝∈Σ 𝑇 (𝐸𝑝), the union of tubular neigh-
bourhoods 𝑇 (𝐸𝑝) of the exceptional sets 𝐸𝑝, 𝑝 ∈ Σ. Then 𝑈 ∩ 𝑉 =

⋃
𝑝∈Σ 𝑇

0 (𝐸𝑝),
where 𝑇 0 (𝐸𝑝) can be identified with the quotient of a punctured ball by 𝐺𝑝. This
quotient has fundamental group 𝐺𝑝 since in real dimensions ≥ 3 a once punctured
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ball is simply connected. Part of the Mayer–Vietoris sequence for the open cover
{𝑈,𝑉} of 𝑌 in homology (cf. [94, §2.2]) reads

𝐻1 (𝑈 ∩ 𝑉) → 𝐻1 (𝑈) ⊕ 𝐻1 (𝑉) → 𝐻1 (𝑌) → 𝐻0 (𝑈 ∩ 𝑉) → · · · .

Since 𝑋′ = 𝑋−Σ is simply connected and 𝑋′ → 𝑌′ = 𝑌−𝜋(Σ) = 𝑈 is a Galois cover,
𝜋1 (𝑌′) = 𝐻1 (𝑌′) = 𝐺 and so, by what we just said, the Mayer–Vietoris sequence
reads as follows

⊕𝑝∈Σ𝐺𝑝 → 𝐺 → 𝐻1 (𝑌)
𝛿−→ ⊕𝑝∈Σℤ → ℤ ⊕ ⊕𝑝∈Σℤ → ℤ → 0.

Hence the assumption that ⊕𝑝∈Σ𝐺𝑝 → 𝐺 is surjective implies 𝐻1 (𝑌) = 0. □

Example 20.9.5. If 𝐺 is a finite abelian group acting symplectically on a K3
surface 𝑋, Tables 20.4.1 and 20.4.2 show that the assumption on the stabilizers is
satisfied in this case. However, the conclusion that 𝐻1 (𝑌) = 0 in this case follows
also directly since 𝑌 is a K3 surface.

To arrive at the desired comparison stated as Theorem 20.9.6 below, we make
use of Proposition A.6.2 which provides an exact sequence

0 → Ext1 (𝐺) → 𝐻2 (𝑌′) 𝜋∗
−−→ H → 0, H := ker(𝐻2 (𝑋′)𝐺 𝛿−→ 𝐻3 (𝐺)), (20.23)

describing what happens in cohomology under 𝜋 : 𝑋′ → 𝑌′, the induced unramified
𝐺-cover over the smooth part 𝑌′ of 𝑌. Observing that by (20.20) the inclusion
𝑋′ ↩→ 𝑋 induces an isomorphism 𝐻2 (𝑋) ≃ 𝐻2 (𝑋′), we see that in particular the
image of 𝜋∗ in 𝐻2 (𝑋′)𝐺 can be considered as a subgroup of 𝐻2 (𝑋)𝐺 of finite index
≤ |𝐻3 (𝐺)) |. Note also that H, as a subgroup of the torsion free group 𝐻2 (𝑋)
inherits a lattice structure from the intersection product on 𝐻2 (𝑋). Introducing
the following additional lattices:

𝑀′
𝑌 = sublattice of H𝑌 = 𝐻2 (𝑌)/Tors spanned by

the classes of the components of the 𝐸𝑖.

𝑀𝑌 = primitive closure of 𝑀′
𝑌 in H𝑌 ,

we can now state the central result of this section:

Theorem 20.9.6. Let 𝑋 be a compact complex surface admitting an action by a
finite abelian group 𝐺 of order 𝑛, let 𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺 be the quotient map, 𝑌 the
minimal resolution of singularities of 𝑌, 𝑋′ the complement of the fixed points of
𝐺, 𝑌′ = 𝑋′/𝐺, and 𝑗′ : 𝑋′ ↩→ 𝑋, 𝑗 : 𝑌′ ↩→ 𝑌 the inclusions.

Assume that 𝑌 := 𝑋/𝐺 has at most cyclic quotient singularities, that 𝑋 is simply
connected and that 𝐻1 (𝑌) = 0. Then the following assertions hold:

1. Setting 𝜃 := (𝑗′∗)−1◦𝜋∗◦𝑗∗ : 𝐻2 (𝑌) → 𝐻2 (𝑋)𝐺, the image of 𝜃 belongs to H
(cf. (20.23)) and there is an exact sequence

0 → 𝑀𝑌/𝑀′
𝑌 → 𝐻2 (𝑌)/𝑀′

𝑌

𝜃−→ H → 0. (20.24)

The factor group 𝑀𝑌/𝑀′
𝑌 is canonically isomorphic to Ext1 (𝐺).
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2. 𝜃 induces an isomorphism 𝐻2 (𝑌)/𝑀𝑌
≃−→ H and an injection 𝑀⊥

𝑌 ↩→ H. This
is an injection of free ℤ-modules of the same rank, but 𝜃 |𝑀⊥

𝑌
multiplies the

intersection form with |𝐺 |. In case 𝐺 is cyclic, H = 𝐻2 (𝑋)𝐺.

3. The elementary divisors 𝑒1 |𝑒2 | · · · |𝑒𝑟 of the discriminant group of 𝑀𝑌 all di-
vide 𝑛 = |𝐺 |.

4. The length of the discriminant group of the sublattice H ⊂ 𝐻2 (𝑋) is at least
equal to rank(𝐻2 (𝑋)𝐺) − 𝑟. Its elementary divisors are obtained by omitting
the integers equal to 1 from the list (𝑛/𝑒1, . . . ,𝑛/𝑒𝑟,𝑛, . . . ,𝑛) (the size of this
list equals rank(H) = rank(𝐻2 (𝑋)𝐺) = 𝑏2 (𝑌) − rank(𝑀𝑌)).

The discriminant bilinear form of H assumes values in 𝑛−1ℤ/ℤ. If the inter-
section form on 𝑋 is even, the discriminant quadratic form takes values in
(2𝑛)−1ℤ/ℤ.

Proof. 1. We first show that

• 𝑗 induces an isomorphism 𝑗∗ : 𝐻2 (𝑌)/𝑀′
𝑌

≃−→ 𝐻2 (𝑌′);

• there is a canonical identification Tors𝐻2 (𝑌′) = 𝑀𝑌/𝑀′
𝑌 = Ext1 (𝐺).

To start, remark that since 𝐻1 (𝑌) = 0, by the universal coefficient theorem 𝐻2 (𝑌)
has no torsion. Next, we invoke the exact sequence (20.22). Note that the image
of the map 𝑖∗ in this sequence is precisely the lattice 𝑀′

𝑌 . Since 𝑀𝑌 is its primitive

closure, 𝐻2 (𝑌)/𝑀𝑌 is without torsion and under 𝑗∗ it is isomorphic to 𝐻2 (𝑌′)
modulo torsion. Consequently, the sequence implies

𝐻2 (𝑌)/𝑀′
𝑌 = 𝐻2 (𝑌′), Tors𝐻2 (𝑌′) = 𝑀𝑌/𝑀′

𝑌 . (20.25)

On the other hand, 𝜋 restricted to 𝑋′ gives an unramified Galois cover 𝜋 : 𝑋′ →
𝑌′ and so, since 𝑋′ is simply connected, one has 𝜋1 (𝑌′) = 𝐺 and so 𝐻1 (𝑌′) =

Tors𝐻1 (𝑌′) = 𝐺 since 𝐺 is abelian. By the universal coefficient theorem ([94,
Thm. 3.2]), Tors𝐻2 (𝑌′) = Ext1 (𝐺). Using (20.23), the exact sequence (20.24) is
then a direct consequence of (20.20) and (20.22).
Proof of 2. The exact sequence (20.24) shows that 𝜃 induces an isomorphism
between 𝐻2 (𝑌)/𝑀𝑌 and H. Since 𝑀′

𝑌 is non-degenerate, 𝑀⊥
𝑌 ∩𝑀′

𝑌 = {0}, so the

homomorphism 𝜃 restricts injectively to𝑀⊥
𝑌 . The morphism 𝜋 : 𝑋 → 𝑌 induced by

𝜋 is finite of degree |𝐺 | and so, using the cup product, 𝜋∗ (𝑦) ∪𝜋∗ (𝑦′) = 𝜋∗ (𝑦∪𝑦′) =
|𝐺 | 𝑦 ∪ 𝑦′ for all 𝑦, 𝑦′ ∈ 𝐻2 (𝑌). In particular, the restriction of the intersection
form on 𝐻2 (𝑌) to 𝑀⊥

𝑌 gets multiplied by |𝐺 | under 𝜃. For the last statement one
makes use of the vanishing of 𝐻3 (𝐺) in case 𝐺 is cyclic.
Proof of 3 and 4. We are now in the following abstract setting: one has

• a primitive non-degenerate sublattice 𝑇 := 𝑀𝑌 of a unimodular lattice
(𝐿, 𝑏) := H𝑌 with orthogonal complement 𝑆 := 𝑇 ⊥ (and so 𝑇 = 𝑆⊥);
• a lattice H of rank 𝑁;

• an isomorphism 𝜃 : 𝐿/𝑇 ∼−→ H of ℤ-modules such that for 𝑥, 𝑦 ∈ 𝑆 one has
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𝑏′(𝜃(𝑥), 𝜃(𝑦)) = 𝑛 · 𝑏(𝑥, 𝑦), where 𝑏′ is the bilinear form on H.
Next, recall that by Lemma 1.6.2 the correlation map induces an isomorphism

𝛽𝑆 : 𝐿/𝑇 ∼−→ 𝑆∗ of free ℤ-modules. By what we have said before, on the finite

index sublattice 𝜃(𝑆) ⊂ H the form 𝑏′ coincides with 𝑏(𝑛). But then 𝜃◦(𝛽𝑆)−1
identifies (𝑆∗, 𝑏ℚ(𝑛)) with the (integral) lattice H. Note that since 𝐿 is unimodular,
by Lemma 1.7.6 the sublattices 𝑆 and 𝑇 have isomorphic discriminant groups,
hence the same length and the same elementary divisors. So we continue with 𝑆
instead of 𝑇 . Now apply Remark 1.6.10 to the lattice 𝑆 and its dual and with
𝜌 = 𝑛. The discriminant group of H = 𝑆∗ (𝑛) has elementary divisors obtained from
(𝑒∗1, . . . , 𝑒∗𝑁) = (𝑛/𝑒1, . . . ,𝑛/𝑒𝑟,𝑛, . . . ,𝑛) by omitting the 𝑒∗𝑗 with 𝑒∗𝑗 = 1 (recall that

rank(H) = 𝑁) and putting them in the right order. This shows in particular that
𝑒𝑗 |𝑛, 𝑗 = 1, . . . , 𝑟, and so, if 𝑦 ∈ 𝑆∗, then 𝑛 · 𝑦 ∈ 𝑆. From the description of the
discriminant form of 𝑆∗ (𝑛)∗/𝑆∗ (𝑛) in Remark 1.6.10 it follows that the discriminant
bilinear form (𝑏′)# assumes values in 𝑛−1ℤ/ℤ. A similar reasoning holds for the
discriminant quadratic form in case 𝑏′ is even. Finally, since dgH has at least 𝑁 − 𝑟
elementary divisors equal to 𝑛 ≠ 1, its length is at least 𝑁 − 𝑟. □

Example 20.9.7. For an involution one has 𝑛 = 2, and all elementary divisors of
the discriminant group of 𝑀𝑌 are equal to 2. Hence, in this case the discriminant
group of the invariant lattice is isomorphic to ⊕ℓℤ/2ℤ, ℓ = 𝑏2 (𝑌) − ℓ(𝑀𝑌), and if
the intersection form on 𝑋 is even, then the discriminant quadratic form can be of
type I, or of type II (cf. Definition 1.7.2).

Remark 20.9.8. Contrary to the claim in [169, §8.5], the homomorphism 𝜋′∗ :
𝐻2 (𝑌′) → 𝐻2 (𝑋′)𝐺 is not in general surjective, for instance if 𝑏1 (𝑋′) ≠ 0.

Table 20.9.1: The lattices Λ𝐺 for symplectic 𝐺-actions on K3 surfaces

𝐺 dgΛ𝐺 disc(Λ𝐺) Λ𝐺

ℤ/2ℤ ⦹8ℤ/2ℤ 28 𝐸8 (−2) ⦹⦹3𝑈
ℤ/3ℤ ⦹6ℤ/3ℤ 36 𝑈 ⦹⦹2𝑈 (3) ⦹⦹2𝐴2

ℤ/5ℤ ⦹4ℤ/5ℤ 54 𝑈 ⦹⦹2𝑈 (5)

ℤ/7ℤ ⦹3ℤ/7ℤ 73 𝑈 (7) ⦹
(
4 1
1 2

)
ℤ/4ℤ ⦹2ℤ/2ℤ⦹⦹4ℤ/4ℤ 210 𝑄4

ℤ/6ℤ ⦹4ℤ/6ℤ 64 𝑈 ⦹⦹2𝑈 (6)
ℤ/8ℤ ℤ/2ℤ ⊕ ℤ/4ℤ ⊕ ⊕2ℤ/8ℤ 83 𝑈 (8) ⦹ ⟨2⟩ ⦹ ⟨4⟩

⊕2ℤ/2ℤ ⊕6ℤ/2ℤ ⊕ ⊕2ℤ/4ℤ 210 ⦹2𝑈 (2) ⦹ 𝑄2,2

⊕3ℤ/2ℤ ⊕6ℤ/2ℤ ⊕ ⊕2ℤ/4ℤ 210 ⦹3𝑈 (2) ⦹⦹2⟨−4⟩
⊕4ℤ/2ℤ ⊕6ℤ/2ℤ ⊕ ℤ/8ℤ −29 ⟨−8⟩ ⦹⦹3𝑈 (2)

ℤ/2ℤ ⊕ ℤ/4ℤ ⊕2ℤ/2ℤ ⊕ ⊕4ℤ/4ℤ 210 𝑄2,4

ℤ/2ℤ ⊕ ℤ/6ℤ ℤ/3ℤ ⊕ ⊕2ℤ/12ℤ 2433 𝑅4

⊕2ℤ/3ℤ ⊕4ℤ/3ℤ ⊕ ℤ/9ℤ 36 ⦹2𝑈 (3) ⦹
(
2 3
3 0

)
⊕2ℤ/4ℤ ⊕2ℤ/2ℤ ⊕ ⊕2ℤ/8ℤ 28 𝑆4



20.9 Appendix: On Surfaces Admitting an Action of a Finite Group 405

In the present situation, where 𝑏1 (𝑋) = 0, Proposition A.6.2 asserts surjectivity
up to a group of finite index in 𝐻3 (𝐺). Since the latter group is non-zero if 𝐺 is not
cyclic, this affects the results of [169, §10], e.g. the list of the discriminant groups
of loc. cit. p. 133. This has been observed by A. Garbagnati in her thesis [76].
See also [81] where one finds a corrected list as well as a lattice-type description
of the 𝐺-invariant lattices reproduced as Table 20.9.1. In this table, one has used
the following abbreviations:

𝑄4 =

©«

0 4 0 2 0 −1 0 0
4 0 4 4 −4 0 0 −4
0 4 0 0 0 0 0 0
2 4 0 0 0 −1 0 0
0 −4 0 0 −2 −1 0 −2
−1 0 0 −1 −1 −2 1 1
0 0 0 0 0 1 −2 0
0 −4 0 0 −2 1 0 −2

ª®®®®®®®®®®¬
, 𝑄2,2 =

©«

0 1 0 0 0 0
1 −2 2 0 0 0
0 2 −4 2 0 0
0 0 2 −4 2 0
0 0 0 2 −4 4
0 0 0 0 4 −8

ª®®®®®®®¬
,

𝑄2,4 =

©«

4 −2 0 0 0 0
−2 0 −2 0 0 0
0 −2 −64 −4 0 0
0 0 −4 0 −4 0
0 0 0 −4 −80 4
0 0 0 0 4 0

ª®®®®®®®¬
, 𝑅4 =

©«
0 6 0 0
6 0 −3 0
0 −3 6 6
0 0 6 8

ª®®®¬ , 𝑆4 =

©«
4 6 0 0
6 4 6 4
0 6 4 0
0 4 0 0

ª®®®¬.

Historical and Bibliographical Notes. Proposition 20.1.3, the application to au-
tomorphism groups, is due to Pjateckĭı-Šapiro and Šafarevič and expanded in great detail
by V. Nikulin in [172]. Proposition 20.1.5 describing the algebraic nature of the auto-
morphism group is due to H. Sterk [220].

S. Mukai [159] discovered that all finite symplectic groups of automorphisms of a K3
surface appear as certain subgroups of𝑀23, one of the sporadic simple groups. The sketch
of the proof we give of this result (based on Niemeier lattices) is due to S. Kondō, c.f.
[128]. For other results on special automorphisms on K3 surfaces using lattice theory, see
also[6, 7, 76, 77, 80, 82]. That finite abelian groups acting symplecticaly on a K3 surface
have an essentially unique action in cohomology is due to V. Nikulin [169] whose proof
we have followed in Section 20.2. The uniqueness of a symplectic action in cohomology
for (not necessarily abelian) finite groups acting on a K3 surface has been discussed by
K. Hashimoto in [93] making use of the embeddings of 𝐺 in 𝑀23. He shows that except
for four groups one also has uniqueness (up to conjugation).

Our treatment in Section 20.6 is based on Nikulin’s article [168]. We also made use of
Lemma 20.6.3 which is inspired by Ch. 3.2.4 in D. Huybrechts’s book [106]. The lattice
theoretic study of the polarized K3 surfaces admitting a Nikulin involution is due to B.
van Geemen and A. Sarti [83]. For geometrically constructed K3 surfaces with a Nikulin
involution see Section 3 in loc. cit. The lattice theoretic arguments used for Nikulin
involutions and for the Shioda–Inose structures are largely due to D. Morrison [158]. The
term ”Shioda–Inose structure” refers to the article [211] by T. Shioda and H. Inose.

We finish by mentioning some related developments concerning so-called generalized
Kummer surfaces, that is, K3 surfaces which by definition are the minimal resolutions of
a quotient of two-dimensional complex tori by some finite group 𝐺. If 𝐺 fixes the origin,
apart from the cyclic group ℤ/2ℤ which gives the Kummer surface, only cyclic groups of
order 3, 4, 6, binary dihedral groups �̃�4, �̃�6 and the binary tetrahedral groups are possible.
See [74]. The analog of the Kummer lattice for the cyclic case has been studied by J.
Bertin in [22], and for the remaining groups by K. Wendland [249] and A. Garbagnati
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[78]. There are also groups 𝐺 acting in such a way that not all 𝑔 ∈ 𝐺 have the same fixed
points. This is only possible if 𝐺 is the quaternion group or the binary dihedral group
�̃�12, and these have been studied by X. Roulleau in [197].

The generalized Kummer surfaces also appear in the construction of generalized
Shioda–Inose structures (𝑋,𝐴,𝐺), where 𝑋 is a K3 surface, 𝐴 an abelian surface, and
the finite group 𝐺 acts on 𝐴 and it acts symplectically on 𝑋 such that 𝑋/𝐺 = 𝐴/𝐺 is a
generalized Kummer surface. These have been classified in [178] by H. Önsiper and S.
Sertöz.



21

Applications to Enriques Surfaces

Introduction

Since an Enriques surface is the quotient of a K3 surface by a fixed point free
involution, the moduli space of Enriques surfaces should be a ”subspace” of the
moduli space of K3 surfaces. We make this precise in Section 21.1. We also consider
moduli for those Enriques surfaces that have at least one nodal curve. Like we did
for K3 surfaces, once we have a description of the moduli space, we can make use
of this to investigate the automorphism groups of Enriques surfaces. This is taken
up in Section 21.2. Surprisingly, the automorphism group is generally infinite –
for instance for Enriques surfaces without nodal curves. In this case, as well as
for the case of a general nodal Enriques surface, the automorphism groups can be
described explicitly.

21.1 Enriques Surfaces: Moduli

In this chapter (𝑋, 𝑗) is a pair of a K3 surface together with a fixed point free involution

𝑗. As before, the cyclic group of order 2 generated by 𝑗 is denoted 𝐺. The quotient

𝑋/𝐺 = 𝑌 is an Enriques surface. We continue to denote the K3 lattice by Λ.

The basic invariants of an Enriques surface 𝑌 are as follows (see e.g. Ap-
pendix B.3)

𝑏1 (𝑌) = 0, 𝑝𝑔 (𝑌) = 0, 𝐻2 (𝑌)/torsion ≃ ΛEnr,

where ΛEnr := 𝑈⦹𝐸8 (−1) is the Enriques lattice . Below we shall also encounter
ΛEnr (2) and its discriminant quadratic form given by (see Example 11.2.5.3)

𝑞#
ΛEnr (2) ≃ ⦹5𝑢1. (21.1)

21.1.A Moduli for Enriques surfaces. The fixed point free involution 𝑗 on
the K3 surface 𝑋 induces an involution 𝑗∗ on 𝐻2 (𝑋,ℤ) which can be described
abstractly, using a properly chosen isometry 𝐻2 (𝑋,ℤ) ≃ Λ. To explain this, we
rewrite the K3 lattice as Λ = 𝑈 ⦹ 𝑊 ⦹ 𝑊′, where 𝑊,𝑊′ are copies of the En-
riques lattice. This last decomposition can be used to define the lattice Enriques
involution

𝜄Enr (𝑢, 𝑣, 𝑣′) = (−𝑢, 𝑣′, 𝑣), (𝑢, 𝑣, 𝑣′) ∈ 𝑈 ⦹𝑊 ⦹𝑊′.
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The invariant lattice Λ𝐺 consists of the vectors (0, 𝑣, 𝑣), and so it is isometric to
ΛEnr (2). Proposition 15.2.10 then implies that there is a marking 𝜑 : 𝐻2 (𝑋,ℤ) → Λ
fitting in a commutative diagram1

𝐻2 (𝑋,ℤ)
𝜑

∼ //

𝑗∗

��

Λ

𝜄Enr

��
𝐻2 (𝑋,ℤ)

𝜑

∼ // Λ.

(21.2)

Such a marking 𝜑 is called a marking for (𝑋, 𝑗). Since 𝑌 = 𝑋/𝐺 = 𝑋/⟨𝑗⟩ has
no non-zero holomorphic 2-forms, the involution 𝑗∗ acts as −id on 𝐻2,0 (𝑋) and
hence also on the corresponding period point [𝜔] = 𝜑[𝐻2,0 (𝑋)]. So [𝜔] belongs to
𝐷(Λ) ∩ ℙ(Λ𝐺) = 𝐷(Λ𝐺) where Λ𝐺 is the anti-invariant lattice. For later reference,
we observe

Λ𝐺 = {(𝑢,𝑤,−𝑤) ∈ 𝑈 ⦹𝑊 ⦹𝑊′} ≃ 𝑈 ⦹ ΛEnr (2). (21.3)

We claim that a period point [𝜔] ∈ 𝐷(Λ𝐺) such that [𝜔] is not orthogonal to
any root of Λ𝐺 corresponds to a K3 surface admitting an Enriques involution. To
show this, observe that by Criterion 20.2.1 it suffices to show that a) there is a
𝐺-invariant element in the positive cone, and b) Λ𝐺 ∩ NS(𝑋) contains no roots.
As to a), by the surjectivity of the period map (Theorem 19.2.1.2), there exists
a marked K3 surface 𝑋 with period point [𝜔]. We now identify 𝐻2 (𝑋,ℤ) with Λ
through this marking. By assumption 𝜄Enr (𝜔) = −𝜔, and so the involution preserves
𝐻2,0 (𝑋). Moreover, 𝜄Enr acts as −id on the transcendental lattice and so this lattice
is contained in Λ𝐺. Hence NS(𝑋) and a fortiori 𝐻1,1 (𝑋) contain Λ𝐺, a lattice of
signature (1, 9), and so condition a) holds. A root 𝑟 ∈ Λ𝐺 cannot be the class of
a divisor since by assumption 𝑟 · 𝜔 ≠ 0 and so b) holds as well. Consequently,
𝑋 admits an involution 𝑗 which under the marking corresponds to 𝜄Enr. Such an
involution 𝑗 is fixed point free by Lemma 20.5.2, since Tr(𝑗∗) = Tr(𝜄Enr) = −2. So
𝑋/𝐺 is an Enriques surfaces and the marking is a marking for (𝑋, 𝑗).

We shall indicate how this implies that Enriques surfaces depend on 10 moduli.
We just showed that markings for (𝑋, 𝑗) give period points in

𝐷Enr = 𝐷(Λ𝐺) −
⋃

𝑟∈Λ𝐺 , 𝑟·𝑟=−2
𝐻𝑟 ∩ 𝐷(Λ𝐺), 𝐻𝑟 = 𝑟⊥, (21.4)

and that, conversely, such points correspond to period points for Enriques surfaces
coming from marked pairs (𝑋, 𝑗) of a K3 surface equipped with an Enriques invo-
lution. Such period points will be called period points of Enriques surfaces.
The group

ΓEnr := {𝛾 ∈ O (Λ) | 𝛾◦𝜄Enr = 𝜄Enr◦𝛾} (21.5)

acts on 𝐷Enr in a discrete and proper fashion. If 𝜑 is a marking for (𝑋, 𝑗), then 𝛾◦𝜑,
𝛾 ∈ ΓEnr, is a marking for a pair (𝑋′, 𝑗′) with 𝑋′/𝑗′ isomorphic to 𝑋/𝑗. The converse
holds also and so the (10-dimensional) quotient ΓEnr\𝐷Enr classifies isomorphism
classes of Enriques surfaces.

1See also [15, Lemma VIII.19.1].
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21.1.B Nodal types and the ample cone for Enriques surfaces. In what
follows we shall identify 𝐻2 (𝑋,ℤ) with the K3 lattice Λ through a fixed (𝑋, 𝑗)-
marking and we let [𝜔] be the corresponding period point. The sublattice corre-
sponding to the Néron–Severi lattice of 𝑋 will be denoted by 𝑆. Let 𝜋∗ : ΛEnr → Λ𝐺

be the injective map induced by 𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺. This identifies the Enriques
lattice with Λ𝐺 ( 12 ).

As is the case for a K3 surface, the ample cone in the Enriques lattice can be
described by means of roots. In the present case we need an adapted version which
uses pairs of roots on the covering K3 surface.

Definition 21.1.1. For any subset 𝑅 of a lattice, we let ⟨𝑅⟩ be the smallest
primitive sublattice containing 𝑅.

1. An ordered pair of (−2)-roots {𝑟, 𝜄Enr (𝑟)}, 𝑟 ∈ Λ, which satisfy 𝑟 · 𝜄Enr (𝑟) = 0 is
called an 𝜄Enr-adapted root pair . The collection of all 𝜄Enr-adapted root pairs
of Λ is denoted by ∆(Λ, 𝜄Enr). If {𝑟, 𝜄Enr (𝑟)} ∈ ∆(Λ, 𝜄Enr), we set 𝑟± := 𝑟 ± 𝜄Enr (𝑟).
The corresponding root 𝒓 ∈ ΛEnr in the Enriques lattice is given by 𝜋∗𝒓 = 𝑟+.
In particular ∆± (𝑋)) ⊂ NS(𝑋).

2. Two sets 𝑅,𝑅′ of roots in Λ are said to be equivalent if the sublattices ⟨𝑅⟩
and ⟨𝑅′⟩ of Λ are isometric under O (Λ).

3. Geometry enters by passing to roots that are nodal classes, that is, classes
of smooth (−2)-curves:

∆(𝑋) := {{𝑟, 𝜄Enr (𝑟)} ∈ ∆(Λ, 𝜄Enr) | 𝑟 is a nodal class},
∆± (𝑋) := {𝑟± | {𝑟, 𝜄Enr (𝑟)} ∈ ∆(𝑋)},
∆(𝑌) := {𝒓 | {𝑟, 𝜄Enr (𝑟)} ∈ ∆(𝑋)} ⊂ ΛEnr.

Note that 𝑟 is a nodal class if and only if 𝜄Enr (𝑟) is a nodal class because of
the commutative diagram (21.2).
In this situation we say that (𝑋, 𝑗) is of nodal type ∆(𝑋).

There is a useful transitivity property:

Proposition 21.1.2. If {𝑟, 𝜄Enr (𝑟)} and {𝑠, 𝜄Enr (𝑠)} are two 𝜄Enr-adapted root pairs,
there exists 𝛾 ∈ ΓEnr for which 𝛾 (𝑟−) = 𝑠−.

Proof. Note that 𝑟+ ∈ 𝑆 := Λ𝐺 and 𝑟− ∈ 𝑇 := Λ𝐺 are (−4)-roots. Observe that
since 𝑇 = 𝑈 ⦹ 𝑈 (2) ⦹ 𝐸8 (−2), Example 15.3.5.2 applies and shows that either
the orbit of 𝑟− under O (𝑇 ) contains a vector contained in the 𝑈-component or
its orbit contains a vector in 𝑈 (2) ⦹ 𝐸( − 2). The first alternative cannot occur
as we show now. Assume 𝑟− is such a vector which itself is contained in the 𝑈-
component. Write 𝑟 ∈ Λ ≃ 𝑈 ⦹ 𝑊 ⦹ 𝑊′ in components as 𝑟 = (𝑢,𝑤, 𝜄Enr (𝑤′)).
Then 𝑟− = (2𝑢,𝑤 − 𝑤′,𝑤′ − 𝑤) and so, if 𝑟− would belong to the 𝑈-component,
then 𝑊 = 𝑤′ and its self-intersection would be 4𝑢 · 𝑢 ≡ 0 mod 8 which contradicts
𝑟− · 𝑟− = −4. Hence the second alternative holds, and so some 𝛾− ∈ O (𝑇 ) sends
𝑟− to a (−4)-root in 𝑈 (2) ⦹ 𝐸8 (−2) (note that this lattice contains many (−4)-
roots). A similar argument shows that an isometry of 𝑇 sends 𝑠− to a (−4)-root in
𝑈 (2) ⦹ 𝐸8 (−2). All (−4)-roots in 𝑈 (2) ⦹ 𝐸8 (−2) are equivalent under isometries
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of this sublattices, and can be extended to 𝑇 . Therefore we may assume that
𝛾− (𝑟−) = 𝑠−.

With 𝑟𝑇 : O (𝑇 ) → O (dg𝑇 ) the reduction homomorphism, the isometry 𝑟𝑇 (𝛾−)
yields an isometry of dg𝑆 since 𝑞#𝑇 = −𝑞#𝑆 for the respective discriminant forms. On
the other hand, upon applying Theorem 14.5.5, we see that the reduction homo-
morphism 𝑟𝑆 is surjective. Hence there exists 𝛾+ ∈ O (𝑆) with 𝑟𝑆 (𝛾+) = 𝑟𝑇 (𝛾−) and
so, by Proposition 15.1.6, 𝛾+ ⦹ 𝛾− extends to an isometry 𝛾 of Λ. By construction
𝛾 ∈ ΓEnr. □

Remark. The above result implies that after a possible change of marking, we may
assume that for any given 𝜄Enr-adapted root pair {𝑟, 𝜄Enr (𝑟)}, the associated root
𝑟− is of the form 𝜌 − 𝜄Enr (𝜌) where 𝜌 is any root contained in the 𝑊-summand.
Indeed, for such a choice, {𝜌, 𝜄Enr (𝜌)} is an 𝜄Enr-adapted root pair such that 𝜌− is
in the O (Λ𝐺)-orbit of 𝑟−.

Proposition 21.1.3. Let (𝑋, 𝑗) be a pair of a K3 surface equipped with an En-
riques involution and let 𝑌 = 𝑋/𝐺 be the quotient Enriques surface. Use a marking
for (𝑋, 𝑗) to identify 𝐻2 (𝑋) with Λ and 𝐻2 (𝑌)/Tors with ΛEnr = Λ𝐺 ( 12 ). Let ∆(𝑋)
be the nodal type of 𝑋 and set

Camp
𝑋,𝑗 : = {𝑥 ∈ Λ𝐺 ⊗ ℝ | 𝑥 ∈ C𝑋 , 𝑥 · 𝑟+ > 0 for all {𝑟, 𝜄Enr (𝑟)} ∈ ∆(𝑋)}

= {𝑦 ∈ ΛEnr ⊗ ℝ | 𝑦 ∈ C𝑌 , 𝑦 · 𝒓 > 0 for all 𝒓 ∈ ∆(𝑌)}.

Then Camp
𝑋,𝑗 = Camp

𝑋 ∩ Λ𝐺 ⊗ ℝ corresponds to the ample cone of 𝑌. Its closure is a

fundamental domain for the action of

W− (∆+ (𝑋)) := subgroup of O (Λ𝐺) generated by 𝜎𝑟◦𝜎𝜄Enr (𝑟) = 𝜎𝑟+ , {𝑟, 𝜄Enr (𝑟)} ∈ ∆(𝑋),

on the positive cone of Λ𝐺 ⊗ ℝ. The latter Weyl group depends only on the set of
nodal classes on 𝑌, more precisely, on ∆(𝑌).

Proof. If 𝑥 ∈ Λ𝐺 ⊗ ℝ, we have 𝑥 = 𝜋∗𝑦 for some 𝑦 ∈ ΛEnr ⊗ ℝ and if 𝑥 ∈ C𝑋 ,
then 𝑦 ∈ C𝑌 . Since 𝑥 · 𝑟+ = 𝜋∗𝑦 · 𝜋∗𝒓 = 2𝑦 · 𝒓, the definition of ∆(𝑋) and ∆(𝑌)
implies that 𝑥 · 𝑟+ > 0 for all {𝑟, 𝜄Enr (𝑟)} ∈ ∆(𝑋) if and only if 𝑦 · 𝒓 > 0 for all
𝒓 ∈ ∆(𝑌). Assume now that 𝑥 ∈ Camp

𝑋,𝑗 . We show that 𝑥 · 𝑟 > 0 for all nodal classes

𝑟 on 𝑋, not only for the 𝜄Enr-adapted ones. So, assume that 𝑟 · 𝜄Enr𝑟 ≠ 0. Since 𝑟
and 𝜄Enr (𝑟) are nodal classes, then 𝑟 · 𝜄Enr𝑟 > 0. Then also the self-intersection of
𝑟 + 𝜄Enr (𝑟) is non-negative, since it is equal to −4 + 2𝑟 · 𝜄Enr (𝑟) and it is divisible by
4. Consequently, 𝑟 + 𝜄Enr (𝑟) is in the closure of the positive cone, while 𝑥 belongs
to the interior. Hence 2𝑥 · 𝑟 = 𝑥 · (𝑟 + 𝜄Enr (𝑟)) which is positive by Lemma 16.1.3.
It follows that Camp

𝑋,𝑗 = Camp
𝑋 ∩ Λ𝐺 = Camp

𝑌 .

With respect to the action of W− (∆+ (𝑋)) on the positive cone of Λ𝐺 ⊗ ℝ, the
partitioning of ∆+ (𝑋) into effective (−4)-roots and their negatives, corresponds to

the fundamental domain Camp
𝑋,𝑗 , i.e. the closure of Camp

𝑋,𝑗 in the positive cone. The

last assertion follows by the very definition of ∆(𝑌). □
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We have seen that the group ΓEnr preserves the period domain for Enriques

surfaces. More precisely, if 𝛾 ∈ ΓEnr and 𝜑 : 𝐻2 (𝑋,ℤ) ∼−→ Λ is a marking for (𝑋, 𝑗),
then 𝛾◦𝜑 is a marking for an isomorphic pair (𝑋′, 𝑗′). In case 𝑋 = 𝑋′ this means
that 𝛾 preserves the period point, i.e., identifying 𝐻2 (𝑋) with Λ through 𝜑, the
isometry 𝛾 is a Hodge isometry. In this situation 𝛾 is induced by an automorphism
of 𝑋 and so:

Corollary 21.1.4. As in the preceding paragraph, assume that 𝛾 ∈ ΓEnr preserves
the period point of an Enriques surface 𝑋/⟨𝑗⟩ (and hence induces a Hodge isometry
on 𝐻2 (𝑋,ℤ)). Then for some 𝑤 ∈ W− (∆+ (𝑋)) the isometry 𝑤◦𝛾 is induced by a
unique automorphism of 𝑋 commuting with 𝑗.

Proof. Let 𝜅 ∈ Camp
𝑋,𝑗 . Then 𝛾 (𝜅) belongs to the positive cone of Λ𝐺 ⊗ℝ and Propo-

sition 21.1.3 tells us that for some 𝑤 ∈ W− (∆+ (𝑋)) the element 𝑤◦𝛾 (𝜅) belongs to
Camp
𝑋,𝑗 ⊂ Camp

𝑋 . Then, by Theorem 19.2.2, 𝑤◦𝛾 is induced by a unique automorphism

𝑔 of 𝑋. Since 𝑔∗◦𝑗∗ = 𝑤◦𝛾◦𝑗∗ = 𝑗∗◦𝑤◦𝛾 = 𝑗∗◦𝑔∗, the automorphism 𝑔 commutes with
𝑗 (by unicity). □

The above considerations shed light on the nodal type ∆(𝑋) of (𝑋, 𝑗). First of
all, note that

∆𝜔 := {{𝑟, 𝜄Enr𝑟} ∈ ∆(Λ, 𝜄Enr) | 𝑟 · 𝜔 = 0}, [𝜔] period point of (𝑋, 𝑗), (21.6)

is the subset of 𝜄Enr-adapted roots in Λ belonging to NS(𝑋). Next, observe that
the action of 𝜎𝑟◦𝜎𝜄Enr (𝑟) ∈ W− (∆+ (𝑋)) extends to the entire K3 lattice 𝐻2 (𝑋,ℤ) and
preserves C𝑋 . The ample cone of 𝑋 is a fundamental domain for the action of
W− (∆+ (𝑋)) on the positive cone and in this way determines ∆(𝑋) as the set of
indecomposable roots 𝑟 with 𝑟 · 𝑥 > 0 for all 𝑥 in the ample cone. By Proposi-
tion 17.2.6 there is a partition ∆𝜔 = ∆+

𝜔 ∪ −∆+
𝜔 which is closed under taking sums,

and ∆(𝑋) is exactly the subset of the indecomposable roots in ∆+
𝜔. The isometry

class of the lattice spanned by roots of ∆+
𝜔 does not depend on the chosen partition.

Hence we have shown:

Lemma 21.1.5. Let 𝜔 be the period point of a marked pair (𝑋, 𝑗), 𝑋 a K3 surface
𝑋 equipped with an Enriques involution 𝑗, and let the nodal set ∆𝜔 be given by
equation (21.6). Then any partition ∆𝜔 = ∆+

𝜔 ∪ −∆+
𝜔 closed under taking sums de-

termines ∆(𝑋) up to equivalence. In other words, the nodal type of 𝑋 is completely
determined by ∆𝜔.

Remark 21.1.6. Let 𝜔 be the period point of a 𝑗-marked K3 surface (𝑋,𝜑) and
let 𝛾 ∈ ΓEnr. Then 𝜔′ = 𝛾 (𝜔) is the period point of an isomorphic 𝑗′-marked K3-
surface (𝑋′, 𝛾◦𝜑). Under 𝛾 the sets ∆𝜔 and ∆𝜔′ correspond and the same holds for
their Weyl chambers. If 𝑟 ∈ ∆(𝑋) is indecomposable, also 𝛾 (𝑟) is indecomposable.
Hence isomorphic Enriques surfaces have the same nodal type.
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21.1.C Nodal types for Enriques surfaces. The goal of this subsection is
to show that there are at most finitely many nodal types. We make use of the
(+)-root invariant 𝛿+ (𝑋) which is defined using the mod 2 reduction map 𝑟2 :
Λ −−→ Λ ⊗ 𝔽2 ≃ Λ/2Λ:

𝛿+ (𝑋) = 𝑟2 (∆+ (𝑋)) ⊂ Λ𝐺 ⊗ 𝔽2 = Λ𝐺/2Λ𝐺 .

The quadratic form on Λ𝐺 ⊗ 𝔽2 is inherited from the quadratic form on Λ𝐺 and
is in a natural way isometric to the unique non-degenerate quadratic form ⦹5𝑢1
with Arf invariant 0 (see (21.1)). Root invariants are equivalent if they are related
through an isometry of this discriminant quadratic form.

The invariant 𝛿+ (𝑋) admits a description in terms of Λ𝐺, as we explain now.
The lattices Λ𝐺and Λ𝐺 are primitive sublattices of Λ. As in Section 15.1, the maps

Λ → dgΛ𝐺
and Λ → dgΛ𝐺 induce an isometry dgΛ𝐺

≃−→ dgΛ𝐺 . For a pair {𝑟, 𝜄Enr𝑟}
in ∆(𝑋) this implies that the class of 1

2𝑟
− ∈ dgΛ𝐺

is mapped to the class of 1
2𝑟

+

in dgΛ𝐺 . On the span ⟨∆− (𝑋)⟩ of such classes 𝑟−, {𝑟, 𝜄Enr𝑟} in ∆(𝑋), this can be
rephrased as a map of of 𝔽2-vector spaces

𝜉 : ⟨∆− (𝑋)⟩/2⟨∆− (𝑋)⟩ ≃ ⟨∆− (𝑋)⟩ ⊗ 𝔽2 −−→ Λ𝐺 ⊗ 𝔽2

𝑟− mod 2 ↦−→ 𝑟+ mod 2
(21.7)

preserving quadratic forms. However, since the form induced on ⟨∆− (𝑋)⟩ ⊗𝔽2 need
not be non-degenerate, the map 𝜉 is in general not an embedding. Indeed, ker 𝜉
is the null-space of the quadratic form and the image of 𝜉 in Λ𝐺 ⊗ 𝔽2 is precisely
𝛿+ (𝑋), which shows:

Lemma 21.1.7. Let 𝐻 := ker 𝜉 ⊂ ⟨∆− (𝑋)⟩ ⊗ 𝔽2. Then the map 𝜉 establishes an

isomorphism [⟨∆− (𝑋)⟩ ⊗ 𝔽2] /𝐻
≃−→ 𝛿+ (𝑋).

This lemma replaces the (+)-root invariant 𝛿+ (𝑋) with the pair (⟨∆− (𝑋)⟩ ⊗
𝔽2,𝐻), the (−)-root invariant . Equivalent (+)-root invariants give equivalent
(−)-root invariants, that is root invariants related by an isometry induced by ΓEnr.
By construction of the quadratic forms, the map 𝜉 preserves equivalent root in-
variants. There are only finitely many such invariants due to the following crucial
observation.

Lemma 21.1.8. ⟨∆− (𝑋)⟩( 12 ) is a negative definite root lattice (and hence isometric
to an orthogonal direct sum of the negative definite root lattices of types 𝐴-𝐷-𝐸).
The rank of ⟨∆− (𝑋)⟩ is at most 10 and so ⟨∆− (𝑋)⟩ belongs to finitely many isometry
types.

Proof. Since ⟨∆− (𝑋)⟩ is contained in Λ𝐺, a lattice of signature (2, 10), and is per-
pendicular to the transcendental lattice, a lattice of signature (2, 20−rank(NS(𝑋))),
the lattice ⟨∆− (𝑋)⟩ is a negative definite sublattice of the Néron–Severi lattice of
rank at most 10. □

Note that 𝑟−12 (∆± (𝑋) ⊗ 𝔽2) = ∆± (𝑋) and since the (+)- and the (−)-invariants
determine each other, the nodal type of ∆(𝑋) of 𝑋 is completely determined by
either one of the root invariants. Hence:
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Corollary 21.1.9. There are finitely many possible nodal invariants ∆(𝑋) (up to
equivalence) and hence an Enriques surface can have at most finitely many nodal
types.

21.1.D Moduli for nodal Enriques surfaces.

Lemma 21.1.10. Let (𝑋, 𝑗) be a K3-surface equipped with a fixed point free involu-
tion 𝑗, and with nodal type ∆(𝑋). A marking for (𝑋, 𝑗) identifies the transcendental
lattice 𝑇 of 𝑋 with a sublattice of ⟨∆− (𝑋)⟩⊥ ∩ Λ𝐺.

Proof. Recall that we have identified NS(𝑋) with 𝑆 ⊂ Λ and that 𝑇 = 𝑆⊥. Hence
Λ𝐺 ⊂ 𝑆 since the Néron–Severi group of 𝑌 = 𝑋/𝐺 is all of 𝐻2 (𝑌,ℤ) and so 𝑇 ⊂ Λ𝐺.
On the other hand, we have ∆− (𝑋) ⊂ 𝑆, and so 𝑇 ⊂ ∆− (𝑋)⊥. □

Observe now that for any 𝑥 ∈ Λ the linear forms 𝑏(𝑥,−) and 𝑏(𝜄Enr (𝑥),−)
evaluated on Λ𝐺 only differ by a sign and so the hyperplanes 𝐻𝑥 = {[𝜔] ∈ 𝐷Λ𝐺 |
𝜔 · 𝑥 = 0} and 𝐻𝜄Enr (𝑥) are the same. This applies in particular to 𝜄Enr-adapted
root pairs {𝑟, 𝜄Enr𝑟} so that the hyperplane 𝐷Enr ∩ 𝐻𝑟 in fact only depends on 𝑟−.
For a collection ∆ of 𝜄Enr-adapted root pairs, the intersection of the hyperplanes
orthogonal to the roots thus only depends on ∆− and we denote it by

𝐷∆−

Enr =
⋂

𝑟∈∆ 𝐷Enr ∩𝐻𝑟 = {[𝜔] ∈ 𝐷Enr | ∆𝜔 = ∆}, (21.8)

where we recall that ∆𝜔 is given by equation (21.6). Hence Lemma 21.1.5 tells
us that this is the period space of Enriques surfaces of nodal type ∆. Its
codimension in 𝐷Enr is the rank of ⟨∆−⟩. If ∆ is not empty, the Enriques surface
𝑋/𝐺 has nodal curves, and we say then that 𝑋/𝐺 is a nodal Enriques surface.
In case ∆− generates a rank one lattice, we call 𝑋/𝐺 a general nodal Enriques
surface.

If 𝛾 ∈ ΓEnr, then 𝛾 (∆) is an equivalent nodal type and

M∆−

Enr := ΓEnr\
[⋃

𝛾∈ΓEnr
𝐷
𝛾 (∆−)
Enr

]
,

is the moduli space of Enriques surfaces of nodal type ∆. By Remark 21.1.6 the
isomorphism class of such a moduli space indeed only depends on the nodal type.

Example 21.1.11. We consider the case of a general nodal Enriques surface
𝑌 = 𝑋/𝐺, i.e. ∆− (𝑋) = {𝑟−}. The corresponding moduli space has dimension 9.
By construction, the Néron–Severi group of 𝑋 contains 𝑟− as well as the invariant
lattice Λ𝐺. But we can say more using the notion of an 𝑆-marking where 𝑆 is
the smallest primitive sublattice of Λ containing Λ𝐺 and 𝑟−. The period domain
𝐷(𝑆) ∩ 𝐷Enr is precisely the period space 𝐷Enr,𝑟− since both have codimension 1.

Next, we compute the isometry classes of 𝑆 and 𝑇 . By Proposition 21.1.2,
we may assume that 𝑟− belongs to the 𝐸8 (−2)-copy in Λ𝐺 = 𝑈 ⦹ 𝑈 (2) ⦹ 𝐸8 (−2).
Since 𝑇 is orthogonal to 𝑟−, and since the orthogonal complement of any root in
𝐸8 is isometric to 𝐸7 as we already have seen (cf. Lemma 4.1.3), we deduce that
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𝑇 ≃ 𝑈 ⦹ 𝑈 (2) ⦹ 𝐸7 (−2). By Example 11.2.5.4 the discriminant form of 𝑇 is then
isometric to 𝑢1 ⦹ ⟨2−2⟩ ⦹ 𝑢⦹3

1 . Hence

𝑞#𝑆 = −𝑞#𝑇 ≃ 𝑢1 ⦹ ⟨−2−2⟩ ⦹ 𝑢⦹3
1 .

Next, from Examples 11.2.5 and using Corollary 14.4.3, we deduce that𝑆 is iso-
metric to the unique even lattice of signature (1, 10) with this discriminant form,
namely 𝑈 ⦹ ⟨−4⟩ ⦹ 𝐸8 (−2). Here we use that ℓ(dg𝑆) = 9 ≤ 11 = rank(𝑆).

21.2 Automorphisms of Enriques Surfaces

21.2.A General Enriques surfaces. Automorphisms of Enriques surfaces not
always act faithfully on cohomology as is the case for K3 surfaces. There are indeed
examples of this phenomenon. See [160] as well as the historical and bibliographical
remarks at the end of this chapter. We shall investigate automorphisms indirectly
by their effect on the cohomology of the universal cover and thus bypass this
problem.

Automorphisms of 𝑌 = 𝑋/𝐺 lift in two ways to automorphisms of 𝑋 commuting
with 𝑗. So

Aut(𝑌) = Aut(𝑋, 𝑗)/𝐺, Aut(𝑋, 𝑗) = {𝑔 ∈ Aut(𝑋) | 𝑔◦𝑗 = 𝑗◦𝑔}.

In order to relate isometries of ΛEnr to those of the K3 lattice, one identifies Λ𝐺 with
the lattice ΛEnr (2). By (21.1) its discriminant quadratic form is isometric to ⦹5𝑢1,
the non-degenerate quadratic form on the 𝔽2-vector space ΛEnr/2ΛEnr = 𝔽10

2 with
Arf invariant 0. Since Λ𝐺 = ΛEnr (2), the dual of Λ𝐺 is 1

2Λ
𝐺 and so the discriminant

group of Λ𝐺 can be identified with ΛEnr/2ΛEnr ≃ 𝔽10
2 . Hence the reduction map

𝜌ΛEnr (2) can be viewed as the mod 2 reduction map

𝜌2 : O (Λ𝐺) → O (ΛEnr/2ΛEnr).

The kernel of this reduction map, the mod 2 congruence subgroup which conform
(17.3)) is denoted O (Λ𝐺) [2], plays a central role:

Lemma 21.2.1. The map 𝜌2 is surjective and ker(𝜌2) = O# (Λ𝐺) = O (ΛEnr) [2].

Proof. It suffices to remark that 𝜌2 is surjective as explained in Example 14.5.6. □

The following concept similar to the terminology for K3 surfaces was introduced
by S. Mukai and H. Ohashi in [161]:

Definition 21.2.2. As before, let 𝑌 = 𝑋/𝐺 be an Enriques surface. An automor-
phism 𝑔 ∈ Aut(𝑌) is semi-symplectic if one of its two lifts to 𝑋 is symplectic.
The group of semi-symplectic transformations of 𝑌 is denoted Aut𝑠 (𝑌).
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Observe that the Picard number for the K3 cover of a general non-nodal
Enriques surface 𝑌 equals the Picard number of 𝑌, that is, it equals 𝜌 = 10.
This is why 𝐾10-genericity as in Eqn.(20.1) is going to play a role. Recall that
Lemma 20.1.9 states that this implies that then all automorphisms of 𝑌 are semi-
symplectic. The main result is as follows.

Theorem 21.2.3 ([16, 172]). Let 𝑌 be an Enriques surface without nodal curves.
Then

Aut𝑠 (𝑌) ≃ O#,− (Λ𝐺) ≃ O− (ΛEnr) [2].

In particular, Enriques surfaces without nodal curves have an infinite group of
automorphisms. If the period point of 𝑌 in 𝐷(Λ𝐺) is 𝐾10-generic, then all auto-
morphisms of 𝑌 are semi-symplectic.

Proof. Since 𝑌 is non-nodal we can identify the Néron–Severi lattice of 𝑋 with
𝑆 = Λ𝐺 and then 𝑇 = Λ𝐺 is the transcendental lattice.

Let 𝑔 ∈ Aut𝑠 (𝑌) and consider its symplectic lift 𝑔 on 𝑋. Being symplectic, it
induces the identity on 𝑇 and hence also on 𝑇 ∗/𝑇 ≃ 𝑆∗/𝑆. Furthermore it preserves
the ample cone (which coincides with the positive cone since there are no nodal
classes) and so 𝑔∗ |𝑆 ∈ O#,− (𝑆). Conversely, if 𝛾 ∈ O#,− (𝑆), the isometry 𝛾 ⊕ id𝑇
of 𝑆 ⦹ 𝑇 extends as an isometry to Λ. It preserves the ample cone and respects
the Hodge structure and so by Theorem 19.2.2 it is induced by a (symplectic)
automorphism of 𝑋. □

This has several applications as explained e.g. in [16]. As a typical example we
show:

Corollary 21.2.4. A non-nodal 𝐾10-generic Enriques surface 𝑌 has 17·31 distinct
elliptic fibrations.

Proof. By [15, LemmaVIII. 17.4] a primitive isotropic vector 𝑒 ∈ C𝑌 ⊂ ΛEnr corre-
sponds to a pair of half pencils, that is irreducible curves 𝐸,𝐸′ with 𝐸 + 𝐸′ = 𝐾𝑌 ,
and for which the linear system |2𝐸 | = |2𝐸′ | is an elliptic pencil2

Let Γ = O− (ΛEnr), the group of lattice isometries with (−)-spinor norm 1 (see
Section 16.1).The lattice theoretic part of the proof consists of the following steps:
Step 1: Transitivity on isotropic vectors. We claim that the full group
O (ΛEnr) acts transitively on primitive isotropic vectors 𝑒 and it then follows that
Γ = O− (ΛEnr) acts transitively on primitive isotropic vectors in the closure of the
positive cone. To show the claim, remark that by unimodularity of ΛEnr there
exists a vector 𝑓 ∈ ΛEnr with 𝑓 · 𝑒 = 1. Replacing 𝑓 with 𝑓 − 𝑞(𝑓) 𝑒, we may
assume that 𝑓 is also isotropic. But then {𝑒,𝑓} spans a hyperbolic plane 𝑈′ and
(𝑈′)⊥ ≃ 𝐸8 (−1) since it is unimodular, negative definite and of rank 8. This shows
that there is an isometry sending 𝑈′ to the copy 𝑈 inside ΛEnr and (𝑈′)⊥ to 𝐸8 (−1).
This isometry sends 𝑒 to a basis vector of 𝑈 and so O (ΛEnr) acts transitively on
primitive isotropic vectors. For the remainder of the proof we shall identify 𝑈′

with 𝑈 and (𝑈′)⊥ with 𝐸8 (−1).
2Recall that for an effective divisor 𝐷 on 𝑌, the associated linear system is given by |𝐷 | =

ℙ(𝐻0 (𝑌,O𝑌 (𝐷))).
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Step 2: Calculation of the stabilizer Γ𝑒 of 𝑒 in Γ. Let 𝛾 ∈ Γ𝑒, then 𝛾 induces
an isometry 𝑒⊥ mod ℤ𝑒 ≃ 𝐸8 (−1). The resulting map Γ𝑒 → O (𝐸8 (−1)) = W(𝐸8)
(the last equality follow from Corollary 17.2.3) is surjective since any element in
𝐸8 (−1) can be extended to ΛEnr by defining it as the identity on the 𝑈-summand.
As for the kernel of the map, we first note that for any 𝑦 ∈ 𝐸8 (−1) the Eichler–Siegel
transformation 𝜓𝑒,−𝑦 given by

𝜓𝑒,−𝑦 (𝑥) = 𝑥 − (𝑥 · 𝑦)𝑒 + (𝑥 · 𝑒)𝑦 − (𝑥 · 𝑒)𝑞(𝑦)𝑒, 𝑥 ∈ ΛEnr,

is in Γ𝑒. Conversely, if 𝛾 ∈ ker(Γ𝑒 → O (𝐸8 (−1))), then from 0 = 𝛾 (𝑒) · 𝛾 (𝑒) =

𝛾 (𝑓) · 𝛾 (𝑓), 1 = 𝛾 (𝑒) · 𝛾 (𝑓) we find 𝛾 (𝑓) = −𝑞(𝑦)𝑒 + 𝑓 + 𝑦 for some 𝑦 ∈ 𝐸8 (−1).
Similarly, we find 𝛾 (𝑧) = 𝑧− (𝑧 ·𝑦)𝑒 for 𝑧 ∈ 𝐸8 (−1). But then 𝛾 = 𝜓𝑒,−𝑦. This shows
that Γ𝑒 ≃ 𝐸8 ⋊ W(𝐸8) with twisted product (𝑦, 𝛾1) · (𝑦′, 𝛾′1) = (𝑦 + 𝛾1 (𝑦′), 𝛾1◦𝛾′1)
induced by the tautological action of W(𝐸8) on 𝐸8 (−1).
Step 3: Calculation of Γ[2]𝑒, the stabilizer of 𝑒 in Γ[2].3 The 2-congruence
subgroup of W(𝐸8) is {±id}. See for example [26, Exerc, Chap 6, §4]. Then
Γ[2]𝑒 = 2𝐸8 × {±id}.
Step 4: The order of the modulo 2 reduction of ΛEnr. By Example 8.2.4
the Arf invariant of ΛEnr/2ΛEnr is 0 and the form is isometric to ⦹5𝑢1. Then, by
the calculations in Section 16.3 we have

|O (⦹5𝑢1) | = 2 · 25·4 · (25 − 1) (22 − 1) (24 − 1) (26 − 1) (28 − 1) = 221 · 35 · 52 · 7 · 17 · 31.

Step 5: Final argument. The number of Γ[2]-orbits of 𝑒 can be found as follows.
The group Γ[2] is normal in Γ and so all Γ[2]-orbits are equivalent under Γ and
thus the desired number equals

|O (ΛEnr/2ΛEnr) |/[Γ𝑒 : Γ[2]𝑒].

Since Γ𝑒 = 𝐸8 ⋊W(𝐸8) and Γ[2]𝑒 = 2𝐸8 × {±id}, the index [Γ𝑒 : Γ[2]𝑒] equals

#(𝔽8
2) ·

1

2
|W(𝐸8) | = 28 · 213 · 35 · 52 · 7 = 221 · 35 · 52 · 7,

and we get the desired number of elliptic fibrations. □

21.2.B Automorphisms of Enriques surfaces of fixed nodal type. Let
(𝑋, 𝑗) be a K3 surface endowed with an Enriques involution, and which has nodal
type ∆ := ∆(𝑋). For simplicity of notation we also set ∆± := ∆± (𝑋) and we identify
∆(𝑌), 𝑌 = 𝑋/𝐺 with ∆.

With 𝑆 = ⟨Λ,∆−⟩, the smallest primitive sublattice of the K3 lattice Λ generated
by Λ𝐺 and ∆−, the moduli point of (𝑋, 𝑗) belongs to the period domain

𝐷Enr (𝑆) := 𝐷(𝑆) ∩ 𝐷Enr ⊂ 𝐷(𝑆) ∩ 𝐷(Λ𝐺),

the period domain of Enriques surfaces of nodal type ∆. The codimension of
𝐷(𝑆) in 𝐷(Λ) equals rank(𝑆) and so the Néron–Severi lattice of a general Enriques
surface 𝑋 of nodal type ∆ is precisely 𝑆.

3Recall that Γ[2] is the two-congruence subgroup of Γ (cf. (17.3)).
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Theorem 20.1.1 tells us that the group of symplectic automorphisms of 𝑋 equals
O−,# (𝑆)/W− (𝑆) while for 𝑌 = 𝑋/𝐺 we need to restrict to the corresponding sub-
group of O (𝑆, 𝜄Enr). By Proposition 21.1.3, the Weyl group of 𝑆 is generated by
reflections in the (−4)-roots 𝑠+ ∈ ∆+ and hence

Aut𝑠 (𝑋, 𝑗) ≃ O−,# (𝑆, 𝜄Enr)/W− (∆+).

Note that for all 𝑟 ∈ ∆ the composition 𝑠𝑟◦𝑠𝜄Enr𝑟 acts as 𝑠𝑟+ on Λ which gives a natural
extension of the action of W− (∆+) to 𝑆. Since 𝑆 = ⟨Λ𝐺 ⦹∆−⟩ and O (⟨Λ𝐺 ⦹ ∆−⟩) =
O (Λ𝐺 ⦹ ∆−), setting

𝐺(∆−) := O−,# (Λ𝐺) × O−,# (⟨∆−⟩) = O− (ΛEnr) × O− (⟨∆−⟩), (21.9)

we have shown

Theorem 21.2.5. Let 𝑌 be a general Enriques surface of nodal type ∆. Its group
of semi-symplectic automorphisms is given by Aut𝑠 (𝑌) = 𝐺(∆−)/𝑊− (⟨∆+⟩).

Remark 21.2.6. The group O− (⟨∆−⟩) contains W− (∆−). By Lemma 21.1.8 ∆− (− 1
2 )

is a root lattice and so is an orthogonal sum of (classical) irreducible root lattices
of type 𝐴-𝐷-𝐸. This decomposition is unique up to permuting isometric irreducible
sublattices (by the unicity of the decomposition of a positive definite lattice stated
by Theorem 1.12.3) and so by Corollary 17.2.3, O−,# (⟨∆−⟩)/W− (∆−) is a product
of permutation groups coming from isometric factors of the same type provided
∆− (− 1

2 ) does not contain irreducible sublattices of type 𝐷4. In that case the oc-
currence of such a factor contributes an extra factor, namely the cyclic group 𝐶3.

21.2.C Automorphisms of general nodal Enriques surfaces. In this section
𝑌 = 𝑋/𝐺 is a general nodal Enriques surface such that 𝑋 has Picard number 11,
as considered in Example 21.1.11. In this situation ∆− consists of a single pair
{𝑟−,−𝑟−}. We first calculate ∆(𝑌), the set of nodal classes of 𝑌 (up to sign).

Proposition 21.2.7. Let 𝑁 be the sublattice of the Enriques lattice generated by
the set 𝑹 of roots 𝒔 ∈ ΛEnr corresponding to 𝜄Enr-adapted root pair such that 𝑠− = 𝑟−.
Then 𝑁 = ℤ𝒓⦹ 2 · 𝒓⊥ and the roots of 𝑁 are precisely the roots that make up ∆(𝑌).

Proof. First we consider 𝑟 and 𝜄Enr (𝑟). Write 𝑟 = (𝑢,𝑤, 𝜄Enr (𝑤′)) ∈ 𝑈 ⦹𝑊 ⦹𝑊′.
Then 𝜄Enr (𝑟) = (−𝑢,𝑤′, 𝜄Enr (𝑤)) and 𝜌 := 𝑤 + 𝑤′ ∈ ΛEnr corresponds to 𝑟+. Setting
𝜏 = 𝑤 − 𝑤′, the vector 2𝑢 + 𝜏 ∈ 𝑈 ⦹ ΛEnr corresponds to 𝑟−. The conditions
𝑟 · 𝑟 = −2, 𝑟 · 𝜄Enr𝑟 = 0, 𝑟+ · 𝑟− = 0 are equivalent to the three conditions 𝜌 · 𝜌 = −2,
𝜏 · 𝜏 = −2− 2𝑢 · 𝑢 and 𝜌 · 𝜏 = 0. Since 𝜌 ± 𝜏 ∈ 2ΛEnr, we may write 𝑤 = 1

2 (𝜌 + 𝜏) and
𝑤′ = 1

2 (𝜌 − 𝜏).
Next we consider the set {𝑠, 𝜄Enr (𝑠)} ∈ ∆(𝑋) with 𝑠− = 𝑟−. Then, similarly as

above, 𝑠 = (𝑢, 12 (𝜎 + 𝜏), 12 𝜄Enr (𝜎 − 𝜏)), where 𝜎 ∈ ΛEnr corresponds to the root 𝒔.
Comparing with 𝑟 = (𝑢, 12 (𝜌 + 𝜏), 12 𝜄Enr (𝜌 − 𝜏)) one gets

𝑠 = 𝑟 + (0, 𝑡, 𝜄Enr (𝑡)), 2𝑡 = 𝜎 − 𝜌.
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Then 𝒔 = 𝒓 + 2𝑡 in ΛEnr and so 𝒔 · 𝒔 = −2 = −2 + 4𝒓 · 𝑡 + 4𝑡 · 𝑡 gives (𝒓 + 𝑡) · 𝑡 = 0. It
follows that 𝑎𝒓 + 𝑡 is orthogonal to 𝑟 if 𝑎 := − 1

2 𝑡 · 𝑡 and so

𝒔 = 𝒓 + 2𝑡 = (1 − 2𝑎)𝒓 + 2(𝑎𝒓 + 𝑡) ∈ ℤ𝒓 + 2𝒓⊥

and hence ∆(𝑌) ⊂ 𝑁. Conversely, if 𝑡 ∈ ΛEnr satisfies (𝒓+ 𝑡) · 𝑡 = 0, then 𝒔 := 𝒓+2𝑡 is
a root corresponding to 𝑠+, where 𝑠 = 𝑟+ 𝑡+ 𝜄Enr (𝑡). Since 𝑠− = 𝑟−, we have 𝑠 ∈ ∆(𝑋).

Now roots in ΛEnr are all conjugate and so we may assume that 𝒓 is a root in
the 𝐸8 (−1) summand. If {𝑒,𝑓} is the standard basis for the copy of 𝑈 in ΛEnr, then
setting 𝑡 = 𝑒 − 𝒓 or 𝑡 = 𝑓 − 𝒓, we see that (𝒓 + 𝑡) · 𝑡 = 0. So then 𝑈 ⊂ 𝑈 ⦹ 𝐸8 (−1)
belongs to 𝑁. Similarly this holds for 𝑡 = 𝑒 + 𝑓 − 𝑔, where 𝑔 ∈ 𝐸8 (−1) is a root
orthogonal to 𝑟. So ℤ𝒓 + 2𝒓⊥ ⊂ 𝑁 and hence we have equality. □

Remark 21.2.8. Using a reduction to (−4)-roots whose 𝑈-component is equal to 0,
one can show that ΓEnr acts transitively on roots 𝑠 ∈ ∆(𝑋) for which 𝑠− = 𝑟−.

Corollary 21.2.9. The group O− (𝑁)/W− (𝑁) = O (𝑁)/W− (𝑁) contains an infinite
abelian free group of rank 7.

Proof. With {𝑒,𝑓} the standard basis for the copy of 𝑈 in ΛEnr, write 𝑒 = 𝜋∗𝒆, 𝒆 in
the Enriques lattice, note that 2𝒆 is one of the generators of 𝑁. In this lattice 2𝒆
is primitive and isotropic and (2𝒆)⊥/2𝒆 ≃ ⟨−2⟩ ⊕ 2 ·𝐸7 (−1). Taking the root lattice
⟨−2⟩ of rank 1 in the statement of Proposition 17.3.7, the corollary follows. □

We now describe the automorphism group of a general nodal Enriques sur-
face 𝑌. At this point, recall that if the period point of the universal cover 𝑋 is
𝐾11-generic in the sense of Definition 20.1.8, then Lemma 20.1.9 implies that all
automorphisms of the Enriques surface are semi-symplectic as in Definition 21.2.2.
this case the group 𝐺(∆−) defined in formula (21.9) is just O (ΛEnr) [2] ×{id, 𝑠𝒓} and
hence:

Corollary 21.2.10 ([173, 187]). The group of semi-symplectic automorphisms of
the general nodal Enriques surface 𝑌 = 𝑋/⟨𝑗⟩ is isomorphic to

O (ΛEnr) [2] × {id, 𝑠𝒓}/W− (𝑁),

where 𝑁 ≃ ⟨−2⟩ ⦹ 2 · (𝑈 ⦹ 𝐸7 (−1)). If, moreover the period point of (𝑋, 𝑗) is
𝐾11-generic, then all automorphisms of 𝑌 are semi-symplectic.

From Corollary 21.2.9 we then deduce:

Corollary 21.2.11. The automorphism group of a general nodal Enriques surface
contains a free abelian group of rank 7 and hence is infinite.

Remark 21.2.12. Recall (cf. Lemma 4.1.5) that 𝑇2,3,6 is an isometric copy of the
Enriques lattice. Let 𝒓 be the root 𝛼9 in the diagram for Lemma 4.1.5. Then
ℤ𝒓⦹ 𝒓⊥ ⊂ ΛEnr is isometric to 𝑇2,4,6 ⊂ 𝑇2,3,6, the so-called Reye lattice . Note that
𝑁 = ℤ · 𝒓 ⦹ 2𝒓⊥ has index 2 in the Reye lattice. Since 𝑇2,4,6 has index 2 in ΛEnr,
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using the mod 2 reduction 𝜌2 : ΛEnr → ΛEnr/2ΛEnr, one can characterize the Reye
lattice as

𝑇2,4,6 = 𝜌−12 (𝜌2 (𝒓)) = {𝑥 ∈ ΛEnr | 𝑥 ≡ 𝒓 mod 2ΛEnr},

while 𝑁 = ker 𝜌2 |𝒓⊥. Using this, D. Allcock [1] and F. Cossec–I. Dolgachev [45]
gave an alternative proof of Corollaries 21.2.9 and 21.2.10.

Historical and Bibliographical Notes. For the moduli of complex Enriques sur-
faces there are two approaches. The first is E. Horikawa’s [100, 101] using degeneration
methods. The second method, used in Ch. VIII. 21 of the book [15] by W. Barth, K.
Hulek, C. Peters and A. van de Ven, is not geometric. In the present approach we use a
simpler variant of this which is essentially due to Y. Namikawa (cf. [166]).

The results on the automorphism group of Enriques surfaces without nodal curves are
due to W. Barth and C. Peters [16] as well as to I. Dolgachev [51] and V. Nikulin [172].
Those on nodal Enriques surfaces are due to D. Allcock [1] and F. Cossec–I. Dolgachev
[45] but we give here an alternative presentation based on [187] which depend on previous
results [45] by F. Cossec and I. Dolgachev and [173] by V. Nikulin respectively. The Reye
lattice coming up in Dolgachev’s presentation, has been named after Th. Reye who in
[193] constructed the Reye congruence, probably the first construction (in 1886!) of an
Enriques surface.

It is by no means true that all Enriques surfaces have an infinite isomorphism group.
The cited works give many examples of Enriques surface with only finitely many au-
tomorphisms. A systematic study thereof has been made by V. Nikulin [173] and S.
Kondō [126]. We also want to mention Chapter 9 in S. Kondō’s monograph [129] which
contains background on moduli spaces and automorphisms, and contains several instruc-
tive examples.

Finally, we want to point out that also in positive characteristic one can use lattice
theory to describe moduli and automorphisms of Enriques surfaces. See for instance the
forthcoming monograph [46, 53] by I. Dolgachev in cooperation with F. Cossec, C. Liedtke
(for part I) and S. Kondō (for part I and II).
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Background in Algebra and Number Theory

A.1 Modules over Principal Ideal Domains

We collect some standard results about modules over a principal ideal domain 𝑅. For

background and proofs of the results see for instance [242, Ch. 12].

Let 𝑀 be a finitely generated 𝑅-module. By definition its torsion submodule
equals

Tors(𝑀) = {𝑥 ∈ 𝑀 | ∃𝑟 ∈ 𝑅, 𝑟 ≠ 0 such that 𝑟𝑥 = 0}.
The quotient 𝑀/Tors(𝑀) is isomorphic to a direct sum of rank(𝑀) copies of 𝑅.
Such a module is called a free 𝑅-module . Any submodule of a free module is free
and a quotient of an 𝑅-module by a submodule of the same rank is torsion:

Lemma A.1.1. Let 𝑅 be a principal ideal domain and let 𝑀 be a free finitely
generated 𝑅-module and 𝑀′ ⊂ 𝑀 a submodule of the same rank. Then 𝑀/𝑀′ is
an 𝑅-torsion module and every torsion module is of this form. More precisely,
𝑀 admits a basis {𝑒1, . . . , 𝑒𝑟+𝑠} such that 𝑀′ = ⊕𝑟

𝑘=1
𝑅𝑒𝑘 ⊕ ⊕𝑠

𝑘=1
𝑅 · (𝑑𝑘𝑒𝑟+𝑘) with 𝑑𝑗

non-units such that 𝑑1 |𝑑2 | · · · |𝑑𝑠, and hence 𝑀/𝑀′ ≃ 𝑅/𝑑1𝑅 ⊕ · · · ⊕ 𝑅/𝑑𝑠𝑅.

This result leads to:

Theorem A.1.2 (Elementary divisor theorem). Let 𝑅 be a principal ideal domain
and let 𝑇 be a finitely generated torsion 𝑅-module. There is an isomorphism 𝑇 ≃
𝑅/𝑑1𝑅 ⊕ · · · ⊕𝑅/𝑑𝑠𝑅, with 𝑑𝑗 non-units such that 𝑑1 |𝑑2 · · · |𝑑𝑠. The ideals generated
by 𝑑𝑗, the elementary divisors, are uniquely determined by 𝑇 and the resulting
decomposition is the invariant factor decomposition of 𝑇 .

There is another canonical decomposition for 𝑇 . First some terminology. For
𝑝 ∈ 𝑅 irreducible, one says that a finitely generated torsion module is 𝑝-primary
if every element is annihilated by some power of 𝑝. Setting

𝑇𝑝 = {𝑥 ∈ 𝑇 | 𝑝𝑛 · 𝑥 = 0 for some power 𝑝𝑛 of 𝑝},

we obtain the maximal 𝑝-primary torsion submodule, the 𝑝-primary part of 𝑇 .
This leads to the 𝑝-primary decomposition , or Sylow decomposition :

𝑇 =
⊕

(𝑝) prime ideal

𝑇𝑝, 𝑇𝑝 ≃
⊕
𝑒≥1

𝑅/𝑝𝑒𝑅 ⊕ · · · ⊕ 𝑅/𝑝𝑒𝑅︸                      ︷︷                      ︸
𝑠𝑝,𝑒

. (A.1)

The 𝑠𝑝,𝑒 summands of the decomposition of 𝑇𝑝 with fixed 𝑒 are called the homo-
geneous summands of exponent 𝑒. Note that the above isomorphism for 𝑇𝑝 is
not canonically determined by 𝑇 as demonstrated in Example A.1.4.2 below.



A.1 Modules over Principal Ideal Domains 421

To relate this decomposition to the invariant factor decomposition, one uses
that if gcd(𝑟, 𝑟′) = 1 in 𝑅, then we obtain 𝑅/𝑟𝑟′𝑅 ≃ 𝑅/𝑟𝑅 ⊕ 𝑅/𝑟′𝑅. Write 𝑑𝑗 =

unit · ∏𝑝 irreducible 𝑝𝑎𝑗𝑝 , 𝑗 = 1, . . . , 𝑠. Then 𝑅/𝑑𝑗𝑅 ≃
⊕

𝑝 𝑅/𝑝𝑎𝑗𝑝𝑅 and so 𝑇𝑝 ≃⊕𝑠
𝑗=1 𝑅/𝑝𝑎𝑗𝑝𝑅.
We frequently use the concept of length: the length ℓ(𝐺) of a finite abelian

torsion 𝑅-module 𝐺 is equal to the minimal number of generators (by definition).
In particular, the length of 𝑇𝑝 is at most 𝑠, and for primes diving 𝑑1 the length
equals 𝑠.

If 𝑇 = 𝑇𝑝 is homogeneous of degree 𝑒, its length equals the number of summands
isomorphic to 𝑅/𝑝𝑒𝑅. So in (A.1) the length of 𝑇𝑝 equals

∑
𝑒 𝑠𝑝,𝑒 and we have:

Lemma A.1.3. The length of a torsion 𝑅-module 𝑇 of finite rank with Sylow
decomposition 𝑇 = ⊕𝑇𝑝 equals max(ℓ𝑝) = #(elementary divisors) where ℓ𝑝 is the
length of 𝑇𝑝.

Examples A.1.4. 1. If 𝑅 = ℤ a torsion module is the same as a finite abelian
group, and a 𝑝-primary ℤ-torsion module is the same as a 𝑝-primary group.

2. We assume 𝑅 = ℤ. Suppose the elementary divisors of 𝑇 are (4, 12, 48). Then
𝑇2 ≃ ℤ/4ℤ⊕ℤ/4ℤ⊕ℤ/16ℤ, 𝑇3 ≃ ℤ/3ℤ⊕ℤ/3ℤ and ℓ(𝑇 ) = 3. Suppose {𝑒1, 𝑒2, 𝑒3}
is an ordered basis of 𝑇2, i.e., a basis reflecting the above isomorphism. Then
{𝑓1 = 𝑒1 + 2𝑒2 + 4𝑒3,𝑓2 = 𝑒2 + 4𝑒3,𝑓3 = 3𝑒3} is also an ordered basis of 𝑇2 and
so the isomorphism 𝑇2 ≃ ℤ/4ℤ ⊕ ℤ/4ℤ ⊕ ℤ/16ℤ is not unique.

We finish this section by recalling some modular arithmetic. The multiplicative
group of units 𝑅× of the ring 𝑅 = ℤ/𝑚ℤ has order 𝜑(𝑚), the number of elements
modulo 𝑚 that are coprime with 𝑚. In what follows elements 𝑟 of 𝑅 are viewed
as additive classes of integers modulo 𝑚 and we write 𝑟 = 𝑥, where 𝑥 ∈ ℤ. If
the group (ℤ/𝑚ℤ)× is cyclic and 𝑟 is a generator, one says that 𝑟 is a primitive
generator modulo 𝑚. We denote the (multiplicative) cyclic group of order 𝑛 by 𝐶𝑛
(in contrast to the additive version ℤ/𝑛ℤ).

The next result can be found in elementary textbooks on number theory, e.g.
[113].

Lemma A.1.5. 1. The units of the finite cyclic groups have the following struc-
ture:
(a) For 𝑝 odd the groups (ℤ/𝑝𝑘ℤ)× and (ℤ/2𝑝𝑘ℤ)× are cyclic of order 𝑝𝑘 − 𝑝𝑘−1.
For 𝑝 = 2 we have

(ℤ/2𝑘ℤ)× =


1 if 𝑘 = 1

𝐶2 generated by −1 if 𝑘 = 2

𝐶2 × 𝐶2𝑘−2 generated by (−1,±3) if 𝑘 ≥ 3.

(b) In general, writing 𝑚 = 2𝑘
∏

𝑝 𝑝
𝑘𝑝 , where the product is over odd primes 𝑝, we

have

(ℤ/𝑚ℤ)× ≃ (ℤ/2𝑘ℤ)× ×
∏
𝑝

(ℤ/𝑝𝑘𝑝ℤ)×.
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In particular, only for 𝑚 = 2, 4,𝑝𝑘 and 2𝑝𝑘 there exist primitive generators modulo
𝑚.
2. The group D(ℤ/𝑚ℤ) of units of ℤ/𝑚ℤ modulo squares has the following struc-
ture:
(a) In the cases 𝑚 = 𝑝𝑘 and 2𝑝𝑘 the group D(ℤ/𝑚ℤ) is cyclic of order 2 and
generated by a non-square modulo 𝑝𝑘:

D(ℤ/𝑝𝑘ℤ) = {1,𝑢 mod 𝑝𝑘} ≃ 𝐶2, 𝑝 an odd prime and 𝑢 a non-square modulo 𝑝𝑘.

(b) For 𝑝 = 2 we have:

D(ℤ/2𝑘ℤ) =

{1̄} for 𝑘 = 1,

{1̄, 3̄} ≃ 𝐶2 for 𝑘 = 2,

{1̄, 3̄,−3̄,−1̄} ≃ 𝐶2 × 𝐶2 if 𝑘 ≥ 3.

A.2 The Field ℚ𝒑

We collect some basic properties of the 𝑝-adic field ℚ𝑝. The proofs can be found for

instance in [204, Chap. II].

The 𝑝-adic valuation and ℚ𝑝. The field of 𝑝-adic numbers ℚ𝑝 is the completion
of ℚ with respect to the 𝑝-adic valuation 𝑣𝑝 on ℚ which is defined as follows:
first, one sets 𝑣𝑝 (0) = ∞. Next, for a non-zero number 𝑥 = 𝑝𝑘 𝑢𝑣 with gcd(𝑢,𝑝) =
gcd(𝑣,𝑝) = 1, one sets

𝑣𝑝 (𝑥) = 𝑘, ∥𝑥∥𝑝 = 𝑝−𝑘. (A.2)

Obviously, one has
𝑣𝑝 (𝑥𝑦) = 𝑣𝑝 (𝑥) + 𝑣𝑝 (𝑦). (A.3)

Furthermore, 𝑣𝑝 is a non-archimedean valuation in the sense that

𝑣𝑝 (𝑥 + 𝑦) ≥ min(𝑣𝑝 (𝑥), 𝑣𝑝 (𝑦)) with equality if 𝑣𝑝 (𝑥) ≠ 𝑣𝑝 (𝑦). (A.4)

By definition of a completion, we have a natural embedding

𝜄𝑝 : ℚ ↩→ ℚ𝑝. (A.5)

We may think of ℚ𝑝 as the field of Laurent series of the form

𝑥−𝑚𝑝
−𝑚 + · · · + 𝑥−1𝑝−1 + 𝑥0 + 𝑥1𝑝 + · · · + 𝑥𝑘𝑝𝑘 + · · · , 𝑥𝑗 ∈ [0,𝑝 − 1].

The series without terms having negative powers of 𝑝 form the subring of the
integers ℤ𝑝; the units therein correspond to the power series starting with a non-
zero constant term. The ring ℤ𝑝 is a principal ideal domain: an ideal 𝐼 is generated
by an element 𝑥 ∈ 𝐼 with minimal valuation 𝑘, for example 𝑥 = 𝑝𝑘 so that 𝐼 = (𝑝𝑘).
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Laurent series having only a finite number of terms give rational numbers of
the form 𝑥/𝑝𝑚 with 𝑥 ∈ ℤ and gcd(𝑥,𝑝) = 1. The totality of such rational numbers
forms a subring ℚ(𝑝) ⊂ ℚ. The integers of course form a subring of ℚ𝑝 as well as
of ℤ𝑝. Since under the inclusions ℚ(𝑝) ↩→ ℚ ↩→ ℚ𝑝 the rational number 𝑦 = 𝑥/𝑝𝑚,
𝑥 ∈ ℤ, is a 𝑝-adic integer if and only if 𝑦 is an integer, one obtains an injection
ℚ(𝑝)/ℤ → ℚ𝑝/ℤ𝑝, and from the description of ℚ𝑝 as Laurent series in 𝑝, this is a
surjection as well. Hence, one obtains an isomorphism

ℚ(𝑝)/ℤ ≃ ℚ𝑝/ℤ𝑝.

There are also natural reduction homomorphisms

ℤ𝑝 → ℤ/𝑝𝑘+1ℤ, 𝑢 = 𝑥0+𝑥1𝑝+· · ·+𝑥𝑘𝑝𝑘 +· · · ↦→ 𝑥0+𝑥1𝑝+· · ·+𝑥𝑘𝑝𝑘 = 𝑢 mod 𝑝𝑘+1.

For 𝑘 = 0 this is a surjection ℤ𝑝 → 𝔽𝑝 with kernel the maximal ideal (𝑝) ⊂ ℤ𝑝.
The groups D(ℚ𝑝) and D(ℤ𝑝) are described by the following result.

Theorem A.2.1. 1. Suppose 𝑝 is an odd prime. Then 𝑥 ∈ ℚ×
𝑝 can be written

uniquely as 𝑥 = 𝑢𝑝𝑘 with 𝑢 a unit in ℤ𝑝. It is a square if and only if 𝑘 is
even and 𝑢 ≡ 1 mod 𝑝.
The group D(ℚ𝑝) is isomorphic to the Klein group with representatives 1,𝑝,
𝑢,𝑢𝑝, where 𝑢 is a unit in ℤ𝑝 such that 𝑢 mod 𝑝 is a non-square.
The group D(ℤ𝑝) is cyclic of order two, generated by a non-square in ℤ×

𝑝.

2. A dyadic number 𝑥 ∈ ℚ2 can be uniquely written as 𝑥 = 𝑢 ·2𝑘, 𝑢 a unit in ℤ2.
It is a square if and only if 𝑘 is even and 𝑢 ≡ 1 mod 8. The group D(ℚ2) is
isomorphic to 𝐶2 × 𝐶2 × 𝐶2 with generators 2, 3, 5 mod 8.
A unit 𝑢 ∈ ℤ2 is a square if and only if 𝑢 mod 8 is a square, and D(ℤ2) is
isomorphic to the Klein group (ℤ/8ℤ)× = 𝐶2 ×𝐶2 with generators 3, 5 mod 8.

Topology on ℚ𝑝. The 𝑝-adic valuation induces a distance on the field ℚ𝑝 given
by 𝑑(𝑥, 𝑦) = ∥𝑥 − 𝑦∥𝑝 and hence we get a topology, the 𝑝-adic topology . The
subring ℤ𝑝, being the projective limit of the finite groups 𝐴𝑛 = ℤ/𝑝𝑛ℤ can be
equipped with a topology by demanding that the 𝐴𝑛 have the discrete topology.
Hence ℤ𝑝 is compact. It turns out (cf. [204, Ch. II, Prop. 3]) that this topology
coincides with the 𝑝-adic topology. One then easily deduces ( [204, Ch. II, Prop.
4]):

Proposition A.2.2. The 𝑝-adic topology on ℚ𝑝 has the following properties:
1. ℚ𝑝 is locally compact and contains ℤ𝑝 as an open compact subring.
2. The field ℚ is dense in ℚ𝑝 and the ring ℤ is dense in ℤ𝑝.

A.3 Approximation Theorems Related to Vector Spaces and
Lattices

The classical approximation theorems gathered in this section play a role in Chapter 14.

We refer to [36, Chapter 9] and [122, §23,24] for more details.
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Recall that P is the set of places of ℤ, i.e., the set of prime numbers, finite places
of ℤ, together with ∞, the infinite place of ℤ. Given a finite subset 𝑆 ⊂ P, the
embeddings 𝜄𝑝 : ℚ ↩→ ℚ𝑝 (see (A.5)) and the natural embedding 𝜄∞ : ℚ ↩→ ℝ = ℚ∞
induce a diagonal embedding 𝜄𝑆 : ℚ ↩→ ∏

𝑣∈𝑆 ℚ𝑣. It enjoys a well-known density
property (cf. [204, Ch II.2.2]):

Proposition A.3.1 (Weak approximation). If 𝑆 is finite, the embedding 𝜄𝑆 is a
dense embedding with respect to the product topology.

We derive from this a result which is used in the main text:

Corollary A.3.2. Suppose that for some finite set 𝑆 ⊂ P and all 𝑝 ∈ 𝑆 we are
given 𝑐𝑝 ∈ ℚ×

𝑝. Then there exists 𝑐 ∈ ℚ× such that the coset of 𝑐 in D(ℚ𝑝) equals
the coset of 𝑐𝑝 for all 𝑝 ∈ 𝑆.

Proof. The crucial remark here is that any 𝑐 ∈ ℚ× sufficiently close to a represen-
tative of 𝑐𝑝 ∈ D(ℚ𝑝) still represents the class of 𝑐𝑝. For 𝑝 = ∞ this is clear. For
a prime 𝑝 we can write 𝑐𝑝 = 𝑐 − 𝑑𝑝, where 𝑐 =

∑
𝑗≤𝑘 𝛾𝑗𝑝

𝑗 ∈ ℚ and 𝑑𝑝 =
∑

𝑗>𝑘 𝛾𝑗𝑝
𝑗 ,

where 𝑘 is chosen so that 𝑐 = 𝑐𝑝 + 𝑑𝑝 with 𝑣𝑝 (𝑑𝑝) ≥ 𝑣𝑝 (𝑐𝑝) + 3. Setting 𝑒𝑝 = 𝑐−1𝑝 𝑑𝑝,
by (A.3) one has 𝑣𝑝 (𝑒𝑝) ≥ 3 and then the 𝑝-adic unit 1 + 𝑒𝑝 is a square by Theo-
rem A.2.1, and consequently 𝑐 = 𝑐𝑝 (1 + 𝑒𝑝) is equal to 𝑐𝑝 up to squares. In other
words, if the 𝑝-adic distance of 𝑐 to 𝑐𝑝 is less than 𝑝−3, then 𝑐 represents 𝑐𝑝 (ℚ×

𝑝)2.
The weak approximation theorem then gives us a rational number 𝑐 this close to
𝑐𝑝 for all 𝑝 ∈ 𝑆. □

Next let 𝑉 be a finite dimensional ℚ-vector space and let 𝑉𝑣, 𝑣 ∈ P, be its
localization. The latter vector space has a natural 𝑣-adic topology making 𝑉𝑣
homeomorphic to ℚ𝑛

𝑣 , 𝑛 = dim𝑉. The natural embedding 𝑉 ↩→ 𝑉𝑣, 𝑣 ∈ P, is
continuous for the 𝑣-adic topology and applying Proposition A.3.1, we find that
the natural diagonal embedding

𝑉 ↩→
∏
𝑣∈𝑆

𝑉𝑣, 𝑆 ⊂ P finite (A.6)

is dense. This embedding induces a natural embedding O (𝑉) ↩→ ∏
𝑣∈𝑆 O (𝑉𝑣).

Since an orthogonal transformation can have determinant ±1, this cannot be a
dense embedding, but for the special orthogonal group one has a density result:

Proposition A.3.3 (Weak approximation for the rotation group). Let (𝑉, 𝑞) be
a (non-degenerate) quadratic ℚ-vector space and let 𝑆 ⊂ P be a finite set of places.
Then the natural diagonal embedding SO (𝑉) ↩→ ∏

𝑣∈𝑆 SO (𝑉𝑣) is dense.

For proofs see, e.g., [36, Chapter 9, Thm. 7.2], [122, Satz 23.1].

Corollary A.3.4. Let (𝑉, 𝑞) be a (non-degenerate) quadratic ℚ-vector space of
dimension ≥ 2. Let 𝑆 ⊂ P be a finite set of places. Suppose that 𝑡 ∈ ℚ× is
represented by 𝑞. Then for given 𝑥𝑣 ∈ 𝑉𝑣, 𝑣 ∈ 𝑆 with 𝑞(𝑥𝑣) = 𝑡, there exists 𝑥 ∈ 𝑉
with 𝑞(𝑥) = 𝑡 which is as close to each of the 𝑥𝑣 as we want.
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Proof. Let 𝑧 ∈ 𝑉 be such that 𝑞(𝑧) = 𝑡. Since 𝑞(𝑧) = 𝑞(𝑥𝑣), within 𝑉𝑣 one can
apply Witt’s extension theorem 7.2.8 to extend the isometry 𝑧 ↦→ 𝑥𝑣 to an isometry
𝑔𝑣 ∈ O (𝑉𝑣). To get a rotation, we might have to replace 𝑔𝑣 by 𝑔𝑣◦𝜎𝑤 where 𝜎𝑤 is
the reflection in a vector 𝑤 orthogonal to 𝑣. This is possible since dim𝑉 ≥ 2. Now
approximate the 𝑔𝑣 by 𝑔 ∈ SO (𝑉), then 𝑥 = 𝑔(𝑧) approximates 𝑔𝑣 (𝑧) = 𝑥𝑣. □

Remark A.3.5. As to lattices, since ℤ𝑝 is open and compact in ℚ𝑝, any lattice 𝐿𝑝
in 𝑉𝑝 is open and compact in 𝑉𝑝. This is not the case for the place ∞. Also, the
subgroup O (𝐿𝑝) of O (𝑉𝑝) stabilizing a lattice 𝐿𝑝 ⊂ 𝑉𝑝 is an open subgroup.

There are also strong approximation results, valid for indefinite quadratic
spaces. The following result is a lattice version:

Theorem A.3.6 (Strong Approximation Theorem [36, Ch. 9, Thm. 1.5]). Let
(𝐿, 𝑏) be a non-degenerate indefinite integral lattice of rank ≥ 4 and 𝑡 a non-zero
integer. Suppose that

𝑏(𝑥𝑝,𝑥𝑝) = 𝑡 for some 𝑥𝑝 ∈ 𝐿𝑝 (and all 𝑝 ∈ P).

Then there exists 𝑥 ∈ 𝐿 such that 𝑏(𝑥,𝑥) = 𝑡.
Further, given a finite set of places 𝑆 ⊂ P, we can require 𝑥 ∈ 𝐿 to be 𝑝-adically

arbitrarily close to 𝑥𝑝 for all 𝑝 ∈ 𝑆.

This approximation theorem is at the heart of the proof of the strong approxi-
mation theorem for the spin group, Theorem 14.3.1. Let us give another application
which is used in the main text.

Corollary A.3.7. Let (𝐿, 𝑏) be an indefinite non-degenerate quadratic lattice of
rank ≥ 4 and let 𝑥 ∈ 𝐿 be a vector with 𝑏(𝑥,𝑥) = 𝑡 ≠ 0. Then there are infinitely
many 𝑦 ∈ 𝐿 with 𝑏(𝑦, 𝑦) = 𝑡.

Proof. Let 𝑆 = {𝑝} be an odd prime number such that 𝐿𝑝 is unimodular, which is
clearly possible (take for 𝑝 any odd prime not dividing disc(𝐿)). By Corollary 10.2.4
𝐿𝑝 has an isotropic vector and hence the hyperbolic plane 𝑈 splits off from 𝐿𝑝.
Relative to the standard basis {𝑒,𝑓} for 𝑈, a vector 𝑥 = 𝜉1𝑒 + 𝜉2𝑓 ∈ 𝐿𝑝 satisfies
𝑡 = 𝑏(𝑥,𝑥) if 2𝜉1𝜉2 = 𝑡. This equation has infinitely many solutions (2𝑢, 𝑡𝑢−1),
𝑢 ∈ ℤ×

𝑝, and so we have infinitely many 𝑦𝑖𝑝 ∈ 𝐿𝑝, 𝑖 = 1, 2, . . . , with 𝑏(𝑦𝑖𝑝, 𝑦𝑖𝑝) = 𝑡.

Taking 𝑦𝑖𝑝 ∈ 𝐿𝑝 for this fixed prime 𝑝, and the localization 𝑥𝑞 of the vector 𝑥 at
places 𝑞 ≠ 𝑝, the strong approximation theorem (with 𝑆 = {𝑝}) provides a vector
𝑦𝑖 ∈ 𝐿 for which 𝑏(𝑦𝑖 , 𝑦𝑖) = 𝑡 and such that its localization at 𝑝 is as close as we
want to any of the given 𝑦𝑖𝑝. This gives infinitely many vectors 𝑦𝑖 ∈ 𝐿 for which

𝑏(𝑦𝑖 , 𝑦𝑖) = 𝑡. □

A.4 Hilbert Symbols

The reader finds here properties of the Hilbert symbols relevant for this book, as treated

in [204, Ch. II and Ch. III].
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In this section Legendre symbols are employed whose definition we recall. Let
𝑝 be a prime, then for 𝑥 . 0 mod 𝑝(

𝑥

𝑝

)
=

{
1 if 𝑥 is a square mod 𝑝

−1 else.

The Legendre symbol is multiplicative in the sense that
(
𝑥𝑦
𝑝

)
=

(
𝑥
𝑝

)
·
(
𝑦
𝑝

)
. This

can be used to calculate these symbols effectively. For more information, see e.g.
[204, Chap. I].

Definitions and Properties. Let 𝑣 ∈ P and let 𝑎 , 𝑏 ∈ ℚ×
𝑣 . Define the Hilbert

symbol (at 𝑣) as follows:1

(𝑎 , 𝑏)𝑣 =
{
1 if 𝑧2 = 𝑎𝑥2 + 𝑏𝑦2 has a non-trivial solution (𝑧,𝑥, 𝑦) in ℚ3

𝑣 ,

−1 otherwise.

This symbol only depends on the class of 𝑎 and 𝑏 modulo multiplication by a
square. For the place 𝑣 = ∞ one has

(1, 1)∞ = (1,−1)∞ = (−1, 1)∞ = 1, (−1,−1)∞ = −1.

To compute these symbols at primes, Hensel’s Lemma (cf. [204, II.2.2, Cor. 1])
is useful:

Lemma A.4.1 (Hensel’s lemma). Let 𝑓(𝑋1, . . . ,𝑋𝑛) ∈ ℤ𝑝 [𝑋1, . . . ,𝑋𝑛] and suppose
that 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝔽𝑛𝑝 is a simple zero of 𝑓 mod 𝑝, that is, 𝑓(𝒂) ≡ 0 mod 𝑝 and
the gradient ∇𝑓 at 𝒂 is not identically zero mod 𝑝. Then this zero can be lifted to
ℤ𝑛𝑝. In other words, there exists 𝒃 ∈ ℤ𝑛𝑝 with 𝑓(𝒃) = 0 and 𝒂 ≡ 𝒃 mod 𝑝.

Example A.4.2. Suppose 𝑝 is an odd prime. The equation 𝑎𝑥2+𝑏𝑦2 = 𝑐, 𝑎 , 𝑏 ∈ 𝔽×
𝑝,

and 𝑐 ∈ 𝔽𝑝 has at least one solution by the “shoe box principle”. Indeed, consider
𝐷 = {0, 1, . . . , 12 (𝑝 − 1)}; then the maps

𝐷 → 𝔽𝑝, 𝑥 ↦→ 𝑎𝑥2, 𝑦 ↦→ 𝑐 − 𝑏𝑦2

are injective and so their images have at least one element in common. Of course,
this could be the trivial solution in case 𝑐 = 0, but, if 𝑎 , 𝑏, 𝑐 lift to units in ℤ𝑝, the
equation 𝑎𝑥2 + 𝑏𝑦2 = 𝑐 has a solution in ℤ𝑝 as we see from Hensel’s Lemma A.4.1.
In particular, taking 𝑐 = 1, we see that (𝑎 , 𝑏)𝑝 = 1 in this case.

We also need a more subtle dyadic version (cf. [204, II.2.2 Cor. 3]):

Lemma A.4.3 (Hensel’s lemma, II). Let 𝑞 be a unimodular dyadic quadratic form
of rank 𝑛, and let 𝑎 ∈ ℤ2. If a primitive dyadic solution for 𝑞(𝑥) ≡ 𝑎 mod 8 exists,
then there is also a ”true” dyadic solution for 𝑞(𝑥) = 𝑎.

1Also written as
(𝑎 ,𝑏
𝑣

)
.
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The Hilbert symbol at 𝑣 is a symmetric bilinear function

D(ℚ𝑣) × D(ℚ𝑣)
(−,−)𝑣−−−−−→ {±1}.

To calculate the symbol, it is enough to know it on a set of generators (see e.g.
[204, Ch. III, Thm. 1]):

Theorem A.4.4. Let 𝑎 , 𝑏 ∈ ℚ𝑝, 𝑝 prime. Write 𝑎 = 𝑝𝛼𝑢, 𝑏 = 𝑝𝛽𝑣 with 𝑢, 𝑣 ∈ ℤ×
𝑝.

Then, recalling that

𝜀(𝑢) =
{
0 if 𝑢 ≡ 1 mod 4,

1 if 𝑢 ≡ −1 mod 4,
and 𝜔(𝑢) =

{
0 if 𝑢 ≡ ±1 mod 8,

1 if 𝑢 ≡ ±3 mod 8,

one has:

1. If 𝑝 is odd, (𝑎 , 𝑏)𝑝 = (−1)𝛼𝛽𝜀(𝑝)
(
𝑢
𝑝

)𝛽 (
𝑣
𝑝

)𝛼
. In particular, if 𝑎 and 𝑏 are units,

(𝑎 , 𝑏)𝑝 = 1.

2. For 𝑝 = 2, write 𝑎 = 2𝛼𝑢, 𝑏 = 2𝛽𝑣 with 𝑢, 𝑣 ∈ ℤ×
2 . Then

(𝑎 , 𝑏)2 = (−1)𝜀(𝑢)𝜀(𝑣)+𝛼𝜔(𝑣)+𝛽𝜔(𝑢) .

Consult [204, III.1] for a proof. It is a consequence of the following rules. Here
𝑎 , 𝑎 ′, 𝑏, 𝑐 ∈ ℚ×

𝑣 .

(𝑎 , 𝑏)𝑣 = (𝑏, 𝑎)𝑣, (A.7)

(𝑎 , 𝑐2)𝑣 = 1, (A.8)

(𝑎 ,−𝑎)𝑣 = (𝑎 , 1 − 𝑎)𝑣 = 1, (A.9)

(𝑎𝑎 ′, 𝑏)𝑣 = (𝑎 , 𝑏)𝑣 (𝑎 ′, 𝑏)𝑣 (A.10)

(𝑎 , 𝑏)𝑣 = (𝑎 ,−𝑎𝑏)𝑣 = (𝑎 , (1 − 𝑎)𝑏)𝑣. (A.11)

We give an application to solve the question ”for how many vectors 𝑏 ∈ D(ℚ𝑝) one
has (𝑎 , 𝑏)𝑝 = 1 or (𝑎 , 𝑏)𝑝 = −1? ”. The answer is needed in Chapter 3. Note that
this makes sense since (𝑎 , 𝑏)𝑝 only depends on the classes of 𝑎 and 𝑏 in D(ℚ𝑝).
Since the formulation of the result uses linear algebra over the field 𝔽2, observe
that the ring D(ℚ𝑝) can be considered as a vector space 𝑉 over the field 𝔽2, and
Theorem A.2.1 gives its dimension:

𝑟 := dim𝑉 =

{
2 if 𝑝 ≠ 2

3 if 𝑝 = 2.

The result we are after is as follows:

Lemma A.4.5. 1. Let 𝑟 = dim𝔽2
D(ℚ𝑝) and let 𝑎 ∈ D(ℚ𝑝). For 𝑎 ≠ 1 and

𝜀 ∈ {1,−1}, the equation (𝑎 ,𝑥)𝑝 = 𝜀 has 2𝑟−1 solutions. For 𝑎 = 1 one has
(𝑎 ,𝑥)𝑝 = 1 for all 𝑥 ∈ D(ℚ𝑝) and (1,𝑥)𝑝 = −1 has no solutions.
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2. Let 𝑎 , 𝑎 ′ ∈ D(ℚ𝑝). Assume that for some 𝜀, 𝜀′ ∈ {1,−1} each of the two
equations (𝑎 ,𝑥)𝑝 = 𝜀 and (𝑎 ′,𝑥)𝑝 = 𝜀′ has a solution in D(ℚ𝑝). Then no
common solution exists if and only if one has simultaneously 𝑎 = 𝑎 ′ and
𝜀 = −𝜀′.

Proof. 1. This can be seen as follows. The equation (𝑎 ,𝑥)𝑝 = 1 gives the kernel of
the homomorphism of groups 𝑥 ↦→ (𝑎 ,𝑥)𝑝 and so defines a hyperplane in D(ℚ𝑝). It
contains 2𝑟−1 elements and its complement {𝑥 ∈ D(ℚ𝑝) | (𝑎 ,𝑥)𝑝 = −1} is an affine
hyperplane, also counting 2𝑟−1 elements. The last statement is (A.8).
2. If each of the equations has solutions and the sets of solutions 𝐻𝜀

𝑎 , 𝐻
𝜀′
𝑎′ are

disjoint, both sets must contain 2𝑟−1 elements and also 𝜀 = −𝜀′. But then𝐻±1
𝑎 = 𝐻±1

𝑎′

and so (𝑥, 𝑎)𝑝 = (𝑥, 𝑎 ′)𝑝 for all 𝑥 ∈ D(ℚ𝑝). This implies that also 𝑎 = 𝑎 ′. □

Global properties Consult [204, Ch. III.2]) for the following two results.

Theorem A.4.6 (Hilbert’s product formula). Given 𝑎 , 𝑏 ∈ ℚ×, then (𝑎 , 𝑏)𝑣 = 1
for all but a finite number 𝑆 of places and for those

∏
𝑣∈𝑆 (𝑎 , 𝑏)𝑣 = 1.

Theorem A.4.7 (Existence of rational numbers with given Hilbert symbol).
Given a finite set of non-zero rational numbers {𝑎𝑗}𝑗∈𝐼 and a family of numbers
{𝜀𝑗,𝑣}𝑗∈𝐼,𝑣∈P, each equal to ±1. Suppose that the following conditions are verified

1. All but a finite number of the 𝜀𝑗,𝑣 are equal to 1.

2. For all 𝑗 ∈ 𝐼 one has
∏

𝑣∈P 𝜀𝑗,𝑣 = 1.

3. (Local existence) For all 𝑣 ∈ P there exists 𝑥𝑣 ∈ ℚ𝑣 such that (𝑎𝑗 ,𝑥𝑣)𝑣 = 𝜀𝑗,𝑣
for all 𝑗 ∈ 𝐼.

Then there exists a non-zero rational number 𝑥 such that

(𝑎𝑗 ,𝑥)𝑣 = 𝜀𝑗,𝑣 for all 𝑗 ∈ 𝐼 and all 𝑣 ∈ P.

Conversely, if such 𝑥 exists, 1, 2 and 3 must hold.

A.5 Symplectic Forms and Symplectic Groups

In this section the reader finds basic material on the symplectic group; see D. Taylor’s

book [223].

Let 𝑉 be a finite dimensional vector space over some field 𝑘 which is equipped
with an alternating bilinear form 𝑏, that is a bilinear form for which

𝑏(𝑥,𝑥) = 0, 𝑥 ∈ 𝑉.

Consequently, since 0 = 𝑏(𝑥 + 𝑦,𝑥 + 𝑦) = 𝑏(𝑦,𝑥) + 𝑏(𝑥, 𝑦), the form 𝑏 is skew-
symmetric. If the characteristic of 𝑘 is different from 2, then the converse is true.



A.5 Symplectic Forms and Symplectic Groups 429

The pair (𝑉, 𝑏) is called a symplectic 𝑘-space . As for symmetric bilinear
forms, one can define orthogonality and orthogonal direct sums. A symplectic
form 𝑏 is non-degenerate if any 𝑥 for which 𝑏(𝑥,𝑉) = 0 necessarily vanishes.

Examples A.5.1. 1. The standard example of a non-degenerate symplectic space

is the symplectic plane 𝐽 with basis {𝑒,𝑓} and symplectic form

(
0 1
−1 0

)
. The

basis {𝑒,𝑓} is called a symplectic pair .
2. We get examples in all even dimensions by taking orthogonal direct sums
𝐽⦹𝑛 = 𝐽⦹ · · ·⦹𝐽 (𝑛 copies). Reordering basis vectors, we find that 𝐽⦹𝑛 is isometric
to the standard symplectic form

𝐽𝑛 =

(
0𝑛 1𝑛
−1𝑛 0𝑛

)
.

In other words, in a suitable basis 𝑬 = {𝑒1, . . . , 𝑒2𝑛}, the form becomes

𝑏𝑬 (𝑥, 𝑦) =
𝑛∑︁
𝑖=1

(𝑥𝑖𝑦𝑛+𝑖 − 𝑦𝑖𝑥𝑛+𝑖) , 𝑥 =

2𝑛∑︁
𝑗=1

𝑥𝑗𝑒𝑗 , 𝑦 =

2𝑛∑︁
𝑗=1

𝑦𝑗𝑒𝑗 .

3. If char(𝑘) = 2, the polar form 𝑏𝑞 of a non-degenerate quadratic form 𝑞 is a
non-degenerate symplectic form. This explains why symplectic forms come up
naturally in the study of quadratic forms in characteristic 2.

A 𝑘-linear map between symplectic 𝑘-spaces preserving the symplectic form is
called a symplectic map and two symplectic spaces are isometric if there exists
a symplectic isomorphism between them. Isometries of (𝑉, 𝑏) are called symplec-
tic automorphisms and these form a subgroup Sp(𝑉) of GL (𝑉), the symplectic
group of 𝑉. The classification of non-degenerate symplectic forms up to symplec-
tic isomorphism is very straighforward since any non-degenerate symplectic form
is isometric to the standard form:

Proposition A.5.2. A non-degenerate 𝑘-symplectic space (𝑉, 𝑏) is isometric to
(𝑘2𝑛, 𝐽⦹𝑛), and in particular must be even dimensional. In a suitable basis the
Gram matrix of 𝑏 is 𝐽𝑛, the standard symplectic form.

Proof. Let 𝑒 be any non-zero vector. Since 𝑏 is non-degenerate, there is a vector
𝑓 with 𝑏(𝑒,𝑓) ≠ 0, and by scaling 𝑓 if necessary, one may assume that 𝑏(𝑒,𝑓) = 1.
Then {𝑒,𝑓} spans a symplectic plane 𝐽 and 𝑉 = 𝐽 ⦹ 𝐽⊥ as for symmetric bilinear
forms. One concludes by induction. □

We next show that the symplectic group of 𝑉 is generated by the so-called
symplectic transvections. Recall that an ordinary transvection of a 𝑘-vector
space 𝑉 along the hyperplane 𝐻 ⊂ 𝑉 is a 𝑘-linear transformation 𝜏 : 𝑉 → 𝑉 such
that ker(𝜏 − id) = 𝐻 and Im(𝜏 − id) ⊂ 𝐻. Phrased in geometric terms, the points
fixed by 𝜏 form a hyperplane 𝐻 and 𝜏 moves points of 𝑉 parallel to the hyperplane
𝐻.
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Suppose that 𝑉 in addition admits a non-degenerate symplectic form 𝑏. Given
𝑢 ∈ 𝑉 and a non-zero constant 𝑎 ∈ 𝑘, the standard example of a transvection
preserving the symplectic form is given by

𝜏𝑢,𝑎 (𝑥) = 𝑥 + 𝑎 · 𝑏(𝑢,𝑥)𝑢.

The fixed hyperplane 𝐻 is given by the equation 𝑏(𝑢,𝑥) = 0 and since 𝑏(𝑢,𝑢) = 0,
the point 𝑢 belongs to 𝐻 and so 𝜏𝑢,𝑎 (𝑥) − 𝑥 ∈ 𝐻, i.e., 𝜏𝑢,𝑎 is indeed a transvection.
These are the only ones as we show now:

Lemma A.5.3. In a non-degenerate symplectic 𝑘-space, a symplectic transvection
𝜏 is of the form 𝜏 = 𝜏𝑢,𝑎 .

Proof. Let 𝜏 be a symplectic transvection along the hyperplane𝐻. This hyperplane
can be written as 𝐻 = 𝑢⊥ for some 𝑢 ∈ 𝑉. In particular, 𝜏(𝑥) = 𝑥 for 𝑥 ∈ 𝑢⊥. Since
Im(𝜏− id) is a one-dimensional subspace of 𝐻, there exists 𝑤 ∈ 𝐻, 𝑎 ∈ 𝑘, such that

𝜏(𝑥) = 𝑥 + 𝑎 · 𝑏(𝑢,𝑥)𝑤.

Consider (𝑥, 𝑦) = (𝜏(𝑥), 𝜏(𝑦)) = (𝑥, 𝑦)+𝑎 ·𝑏(𝑢,𝑥)𝑏(𝑤, 𝑦)+𝑎 ·𝑏(𝑥,𝑤)𝑏(𝑢, 𝑦). Chosose
𝑥 such that 𝑏(𝑥,𝑤) = −1. Then 𝑏(𝑢, 𝑦) = 𝑏(𝑢,𝑥)𝑏(𝑤, 𝑦) for every 𝑦, and so
𝑢⊥ = 𝑤⊥. But then 𝑤 and 𝑢 are linearly dependent and so 𝜏 is of the desired
form. □

Proposition A.5.4. The symplectic group Sp(𝑉) is generated by symplectic transvec-
tions.

Proof. Let 𝐺 be the subgroup of Sp(𝑉) generated by symplectic transvections. We
show that 𝐺 = Sp(𝑉).
Step 1: 𝐺 acts transitively on non-zero vectors. To show this, let 𝑥, 𝑦 ∈ 𝑉
be two non-zero vectors. Distinguish two cases:
(1a): 𝑏(𝑥, 𝑦) ≠ 0 so that we have a transvection 𝜏𝑥−𝑦,𝑎 with 𝑎 = 𝑏(𝑥, 𝑦)−1. Then

𝜏𝑥−𝑦,𝑎 (𝑥) = 𝑥 + 𝑏(𝑥, 𝑦)−1 · 𝑏(𝑥,𝑥 − 𝑦) (𝑥 − 𝑦)
= 𝑥 − (𝑥 − 𝑦) = 𝑦.

The above formula exhibits transvections that permute non-orthogonal vectors
while fixing vectors orthogonal to their difference, an observation which we shall
use below:

𝑏(𝑥, 𝑦) ≠ 0, 𝑏(𝑧,𝑥 − 𝑦) = 0 =⇒ ∃𝜏 ∈ 𝐺 such that 𝜏(𝑥) = 𝑦, 𝜏(𝑧) = 𝑧. (A.12)

(1b): 𝑏(𝑥, 𝑦) = 0. There exists a vector 𝑧 ∈ 𝑉 in the complement of 𝑥⊥ ∪ 𝑦⊥. We
then apply the first case to (𝑥, 𝑧) and (𝑧, 𝑦) successively.
Step 2: 𝐺 acts transitively on symplectic pairs. So let {𝑒,𝑓} and {𝑒′,𝑓′}
be two symplectic pairs. By Step 1 there exists a 𝛾 ∈ 𝐺 with 𝛾 (𝑒) = 𝑒′, and so 𝛾
transforms the pair {𝑒,𝑓} in, say, {𝑒′,𝑓′′}. We search for a 𝜏 ∈ 𝐺 with 𝜏(𝑒′) = 𝑒′
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but 𝜏(𝑓′′) = 𝑓′. Again we have two cases:
(2a): 𝑏(𝑓′′,𝑓′) ≠ 0. Observe that then

𝑏(𝑓′′ − 𝑓′, 𝑒′) = 𝑏(𝑓′′, 𝑒′) + 1

= 𝑏(𝛾 (𝑓), 𝛾 (𝑒)) + 1 = 0,

and so we may apply (A.12) to find the desired element in 𝐺.
(2b): 𝑏(𝑓′′,𝑓′) = 0. Observe that in this case {𝑒′,𝑓′′}, {𝑒′, 𝑒′ + 𝑓′′}, {𝑒′,𝑓′} are
symplectic pairs satisfying 𝑏(𝑓′′, 𝑒′ + 𝑓′′) ≠ 0 and 𝑏(𝑒′ + 𝑓′′,𝑓′) ≠ 0. So by the
previous case, there exist 𝜏1 ∈ 𝐺 with 𝜏1 (𝑒′) = 𝑒′, 𝜏1 (𝑓′′) = 𝑒′ + 𝑓′′, and 𝜏2 ∈ 𝐺 with
𝜏2 (𝑒′) = 𝑒′ and 𝜏2 (𝑒′ + 𝑓′′) = 𝑓′. So 𝜏2◦𝜏1 ∈ 𝐺 is as required.
Step 3: Completion of the proof . The proof for dim𝑉 = 2 follows from Step
2 and for dim𝑉 > 2 one applies induction: pick any symplectic pair {𝑒,𝑓} and let
𝑃 be the plane they span. Then 𝑉 = 𝑃 ⦹ 𝑃⊥. If 𝜎 ∈ Sp(𝑉) then {𝜎(𝑒),𝜎(𝑓)} is
a symplectic pair and by Step 2 there is an element 𝜏 ∈ 𝐺 such that 𝜏◦𝜎(𝑒) = 𝑒
and 𝜏◦𝜎(𝑓) = 𝑓. By induction on the dimension, 𝜏◦𝜎 restricts to 𝑃⊥ as a product
of transvections and by extending the latter to transvections of 𝑉 by letting them
act as the identity on 𝑃 we see that 𝜏◦𝜎 ∈ 𝐺 and so 𝜎 ∈ 𝐺. □

A.6 Cohomology of Groups and Group Actions

We present a rudimentary introduction to group (co)homology and applications to free

group actions on manifolds. For more details we refer to the books [32] by K. Brown,

[247] by Ch. Weibel, and [94] by A. Hatcher. In the following 𝐺 is a finite group.

A 𝐺-module is an abelian group 𝑀 equipped with a 𝐺-action, or, equivalently,
a ℤ[𝐺]-module. Given a 𝐺-module 𝑀, we set

𝑀𝐺 = {𝑥 ∈ 𝑀 | 𝑔𝑥 = 𝑥, ∀𝑔 ∈ 𝐺},
𝑀𝐺 = 𝑀/𝐼𝑀, 𝐼 = ⟨𝑔𝑥 − 𝑥⟩,𝑥 ∈ 𝑀, 𝑔 ∈ 𝐺.

In other words, 𝑀𝐺 is the largest submodule on which 𝐺 acts as the identity and
𝑀𝐺 is the largest quotient of 𝑀 on which 𝐺 acts trivially.

Group (co)homology of 𝐺 can be defined topologically as the (co)homology of
a topological space 𝑋 which has fundamental group 𝐺 and has no higher homotopy
groups. These groups turn out to be independent of the choice of such 𝑋.

As an example, for 𝐺 = ℤ, one takes for 𝑋 the circle and hence 𝐻0 (𝐺) =

𝐻1 (𝐺) = ℤ and 𝐻𝑘 (𝐺) = 0 for 𝑘 ≠ 0, 1. It is easy to see that 𝐻∗ (𝐺) can equivalently
be defined in a purely algebraic way as the homology of any free resolution 𝐹• of ℤ
over the group ring ℤ[𝐺]. The definition of 𝐻∗ (𝐺) is slightly more elaborate and
we give it below for any 𝐺-module 𝑀.

There is also a topological approach to (co)homology of 𝐺-modules, but the
algebraic definition is simpler to state: Let 𝐹• a free ℤ[𝐺]-resolution of ℤ, one
defines

𝐻𝑞 (𝐺,𝑀) = 𝐻𝑞 (𝐹• ⊗ℤ[𝐺] 𝑀), 𝐻𝑞 (𝐺,𝑀) = 𝐻𝑞 (Hom𝐺 (𝐹•,𝑀)).
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If 𝑀 = ℤ with the trivial group action, these groups give back the ordinary group
(co)homology.

We state (without proofs) some facts about group (co)homology that are used
below:

Lemma A.6.1. 1. Let 𝑀 be a 𝐺-module. Then 𝐻0 (𝐺,𝑀) = 𝑀𝐺 and 𝐻0 (𝐺,𝑀) =
𝑀𝐺. In particular, 𝐻0 (𝐺) = 𝐻0 (𝐺) = ℤ.

2. If 𝐺 is a finite group of order 𝑛, then the groups 𝐻𝑞 (𝐺,𝑀), 𝐻𝑞 (𝐺,𝑀), 𝑞 ≥ 1,
are 𝑛-torsion. If 𝐺 is a finite abelian group and 𝐺 acts trivially on 𝑀, then
𝐻1 (𝐺,𝑀) ≃ Hom(𝐺,𝑀), 𝐻1 (𝐺,𝑀) ≃ 𝐺 ⊗ 𝑀 and, in particular, 𝐻1 (𝐺) = 0
and 𝐻1 (𝐺) ≃ 𝐺.

3. If 𝐺 is a finite abelian group 𝐻2 (𝐺) = Ext1 (𝐺,ℤ) ≃ 𝐺.

4. If 𝐺 is cyclic of order 𝑛, then 𝐻𝑗 (𝐺) = 0 for 𝑗 odd and 𝐻𝑗 (𝐺) ≃ 𝐺 for 𝑗 > 0
even, while 𝐻𝑗 (𝐺) ≃ 𝐺 for 𝑗 odd and 𝐻𝑗 (𝐺) = 0 for 𝑗 > 0 even.

We now turn to applications in topology. Assuming that 𝑋 is a CW-complex,
one has the Cartan–Leray spectral sequence ([32, Thm. VII.7.9])

𝐸
𝑝,𝑞
2 = 𝐻𝑝 (𝐺,𝐻𝑞 (𝑋)) =⇒ 𝐻𝑝+𝑞 (𝑌).

This spectral sequence expresses the (integral) cohomology of the quotient in terms
of the group (co)homology of the 𝐺-module 𝐻∗ (𝑋) and it implies:

Proposition A.6.2. Suppose 𝑋 is a connected CW-complex with finite rank co-
homology groups and with 𝐻1 (𝑋) = 0. If 𝐺 is a finite abelian group acting freely
on 𝑋 with quotient map 𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺, then

1. 𝐻2 (𝑋) has no torsion and Tors𝐻2 (𝑌) = Ext1 𝐺.

2. There is a natural map 𝛿 : 𝐻2 (𝑋)𝐺 → 𝐻3 (𝐺) and an exact sequence

0 → Ext1 𝐺 → 𝐻2 (𝑌) 𝜋∗
−−→ ker(𝐻2 (𝑋)𝐺 𝛿−→ 𝐻3 (𝐺)) → 0.

Moreover, there is an induced isomorphism

𝐻2 (𝑌)/Tors(𝐻2 (𝑌)) ∼−→ ker(𝛿).

In case 𝐺 is cyclic, 𝛿 = 0 and hence 𝜋∗ surjects onto 𝐻2 (𝑋)𝐺.

Proof. 1. By the universal coefficient theorem, Tors𝐻2 (𝑋) = Ext1𝐻1 (𝑋) = 0 and
Tors𝐻2 (𝑌) = Ext1𝐻1 (𝑌). The first equality proves the first assertion. Since 𝐺
is an abelian covering group for the covering 𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺, it follows that
𝐻1 (𝑌) = 𝐺, proving the second assertion. Indeed, the abelianization of the exact
sequence

1 → 𝜋1 (𝑋,𝑥0)
𝜋∗−−→ 𝜋1 (𝑌,𝜋(𝑥0)) → 𝐺 → 1
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gives the exact sequence 0 = 𝐻1 (𝑋) 𝜋∗−−→ 𝐻1 (𝑌) → 𝐺 → 0.
2. We invoke the cohomology Cartan–Leray spectral sequence

𝐸
𝑝,𝑞
2 = 𝐻𝑝 (𝐺,𝐻𝑞 (𝑋)) =⇒ 𝐻𝑝+𝑞 (𝑌), 𝑝 + 𝑞 = 2.

The 𝐸2-page and the 𝐸3-page are as follows:

𝐻2 (𝐺) 𝐻3 (𝐺)

𝐻2 (𝑋)𝐺

0 0

1 2 3
𝑝

0

1

22

𝑞

𝐻2 (𝐺) 𝐻3 (𝐺)

𝐻2 (𝑋)𝐺

0

1 2 3
𝑝

0

1

22

𝑞

By the universal coefficient theorem 𝐻1 (𝑋,ℤ) = 0 implies 𝐻1 (𝑋,ℤ) = 0 and so
𝐸
𝑝,𝑞
2 = 0 for 𝑞 = 1. It follows that 𝐸1,1

∞ = 0. The spectral sequence gives a filtration

0 ⊂ 𝐹2 ⊂ 𝐹1 ⊂ 𝐹0 = 𝐻2 (𝑌) whose graded groups are 𝐸
𝑝,2−𝑝
∞ = 𝐹𝑝/𝐹𝑝+1 and so

𝐹2 = 𝐹1. Equivalently, there is an exact sequence

0 → 𝐸2,0
∞ → 𝐻2 (𝑌) → 𝐸0,2

∞ → 0. (A.13)

One has 𝐻2 (𝐺) = 𝐸2,0
2 = 𝐸2,0

∞ . Also, 𝐸0,2
3 = 𝐸0,2

2 = 𝐻2 (𝑋)𝐺 since 𝐸2,1
2 = 0, and

𝐸0,2
∞ = 𝐸0,2

4 = ker(𝛿 = 𝑑0,2
3 : 𝐻2 (𝑋)𝐺 → 𝐻3 (𝐺)). Since 𝐻2 (𝐺) = Ext1 𝐺, the

sequence (A.13) becomes

0 → Ext1 𝐺 → 𝐻2 (𝑌) 𝜋∗
−−→ ker(𝐻2 (𝑋)𝐺

𝛿=𝑑0,2
3−−−−−→ 𝐻3 (𝐺)) → 0.

Combining this with item 1, we see that 𝜋∗ induces the stated isomorphism between
the resulting free groups. If 𝐺 is cyclic, 𝐻3 (𝐺) = 0 and then 𝜋∗ surjects onto
𝐻2 (𝑌)𝐺. □
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Background on Complex Surfaces

In the present book only Kähler surfaces will play a role. For the notions we use from

complex and Kähler geometry one may consult e.g. [88, 105].

B.1 Generalities on Kähler Geometry

Let us briefly recall here the basics. A hermitian metric on a complex manifold
can be given by its associated metric (1, 1)-form 𝜅. This is a real form which in
local coordinates (𝑧1, . . . , 𝑧𝑛) is given by the expression

𝜅 =
√
−1

𝑛∑︁
𝑖,𝑗=1

ℎ𝑖𝑗 𝑑𝑧𝑖 ∧ 𝑑𝑧𝑗 , ℎ𝑖𝑗 = ℎ𝑗𝑖 .

The metric is Kähler if 𝜅 is a closed form, which then is called the associated
Kähler form . So its class is a (real) cohomology class of type (1, 1). A manifold
admitting a Kähler metric is called a Kähler manifold . Prominent examples are
smooth complex projective varieties, and complex tori. Using the Kähler form 𝜅,
we shall make use of a general positivity condition related to complex submanifolds
𝑌 ⊂ 𝑋, namely the inequality∫

𝑌
𝜅 ∧ · · · ∧ 𝜅︸       ︷︷       ︸

𝑘

> 0, 𝑘 = dim𝑌. (B.1)

We shall also be using numerical invariants defined for any compact complex
manifold 𝑋 by way of the sheaf Ω𝑝

𝑋 of holomorphic 𝑝-forms on 𝑋:

𝐻𝑝,𝑞 (𝑋) = 𝐻𝑞 (𝑋,Ω𝑝
𝑋), ℎ𝑝,𝑞 (𝑋) = dim𝐻𝑞 (𝑋,Ω𝑝

𝑋) (the Hodge numbers).

If 𝑋 is Kähler, the groups 𝐻𝑝,𝑞 (𝑋) can be viewed as subspaces of the De Rham
cohomology (with complex coefficients) and one of the cornerstones of Kähler ge-
ometry is the assertion that 𝐻𝑝,𝑞 (𝑋) ⊂ 𝐻𝑝+𝑞 (𝑋,ℂ) is the subspace of cohomology
representable by closed forms of type (𝑝, 𝑞). As a consequence one obtains the
Hodge decomposition:

𝐻𝑘 (𝑋,ℂ) =
⊕
𝑝+𝑞=𝑘

𝐻𝑝,𝑞 (𝑋), 𝐻𝑝,𝑞 (𝑋) = 𝐻𝑞,𝑝 (𝑋).
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B.2 Basic Invariants of Surfaces

Topological invariants. Since 𝑋 is a connected oriented compact four-manifold,
the Betti numbers satisfy

𝑏0 (𝑋) = 𝑏4 (𝑋) = 1, 𝑏1 (𝑋) = 𝑏3 (𝑋).

The cup-product form is a symmetric bilinear unimodular pairing

𝑆𝑋 : H𝑋 × H𝑋 −→ ℤ H𝑋 = 𝐻2 (𝑋,ℤ)/torsion, (B.2)

also called the intersection form of 𝑋.1 Its signature is denoted (𝑏+ (𝑋), 𝑏− (𝑋))
and the index is

𝜏(𝑋) = 𝑏+ (𝑋) − 𝑏− (𝑋).
There are further invariants, a priori depending on the (almost) complex structure:
the Chern classes 𝑐1 (𝑋) ∈ 𝐻2 (𝑋,ℤ) and 𝑐2 (𝑋) ∈ 𝐻4 (𝑋,ℤ). Also 𝑐21 (𝑋) = 𝑐1 (𝑋) ·
𝑐1 (𝑋) belongs to 𝐻4 (𝑋,ℤ). The classes 𝑐21 (𝑋) and 𝑐2 (𝑋) can and will be considered
as integers (and called Chern numbers) via the isomorphism 𝐻4 (𝑋,ℤ) ≃ ℤ given
by the canonical orientation of 𝑋. The Chern numbers are (oriented) topological
invariants: 𝑐2 (𝑋) can be identified with the Euler number 𝑒(𝑋); that 𝑐21 (𝑋) is a
topological invariant is a consequence of a deep theorem, the index theorem ( [98,
Thm. 8.2.2]):

Theorem B.2.1 (Index theorem – special case). For a compact differentiable 4-
manifold 𝑋 admitting a complex structure, the index 𝜏(𝑋) satisfies

𝜏(𝑋) = 1

3
(𝑐21 (𝑋) − 2𝑐2 (𝑋)).

Remark B.2.2. The Chern class 𝑐1 (𝑋) ∈ 𝐻2 (𝑋,ℤ) is also represented by the class of
the inverse of the canonical line bundle2 𝐾𝑋 . In particular, for a compact complex
surface 𝑋 one has 𝑐21 (𝑋) = 𝐾𝑋 · 𝐾𝑋 .

Complex Invariants. From now on we assume that 𝑋 is a compact connected
Kähler surface. The Hodge decomposition for 𝐻1 and 𝐻2 reads as follows:

𝐻1 (𝑋,ℂ) = 𝐻1,0 (𝑋) ⊕ 𝐻0,1 (𝑋), 𝐻1,0 (𝑋) = 𝐻0,1𝑋)
𝐻2 (𝑋,ℂ) = 𝐻2,0 (𝑋) ⊕ 𝐻1,1 (𝑋) ⊕ 𝐻0,2 (𝑋) 𝐻2,0 (𝑋) = 𝐻0,2𝑋)

𝐻1,1 (𝑋) = 𝐻1,1 (𝑋).

 (B.3)

We make frequently use of the Hodge index theorem3:

1The name comes from the intersection product on homology classes which corresponds to
cup product under Poincaré duality.

2For the notion of canonical line bundle, see the discussion on page 444 about the Kodaira
dimension.

3It can also be regarded as a consequence of the Lefschetz decomposition for surfaces (cf.
[105, Cor. 3.3.16]).
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Theorem B.2.3 (Hodge Index Theorem). For a Kähler surface 𝑋 the intersection
form gives the real vector space 𝐻1,1 (𝑋)ℝ = 𝐻1,1 (𝑋) ∩𝐻2 (𝑋,ℝ) the structure of a
hyperbolic space, i.e., the signature of the restriction of the intersection form on
this space is (1,ℎ1,1 (𝑋) − 1).

It follows that the considerations of Example 16.1 apply to 𝐻1,1 (𝑋)ℝ: the light
cone {𝑥 ∈ 𝐻1,1 (𝑋)ℝ | 𝑥 · 𝑥 > 0} consists of two connected components. In the
present situation, the positive cone is the one that contains the Kähler classes.
The set of Kähler classes is a convex cone and so has to belong to just one connected
component of the light cone. We denote it by

C𝑋 = component of {𝑥 ∈ 𝐻1,1 (𝑋)ℝ | 𝑥 · 𝑥 > 0} containing Kähler classes. (B.4)

The Kähler classes span a subcone, the Kähler cone .
Another important formula is Noether’s formula [15, p. 26], a special case

of the Riemann–Roch formula:

𝜒(O𝑋) = 1 − 𝑞(𝑋) + 𝑝𝑔 (𝑋) (the arithmetic genus) =
1

12
(𝑐21 (𝑋) + 𝑐2 (𝑋)). (B.5)

Since 𝑞(𝑋) = 1
2𝑏1 (𝑋) is a topological invariant, it follows from Noether’s formula

that the same is true for 𝑝𝑔 (𝑋). Because of the Hodge decomposition (B.3), this
is likewise true for ℎ1,1 (𝑋) = 𝑏2 (𝑋) − 2𝑝𝑔 (𝑋). Hence, for compact Kähler surfaces
the Hodge numbers ℎ𝑝,𝑞 (𝑋) are topological invariants. Consequently, the signature
(and hence the index) can be expressed in terms of Hodge numbers:

𝑏+ (𝑋) = 2𝑝𝑔 (𝑋) + 1, 𝑏− (𝑋) = ℎ1,1 (𝑋) − 1 =⇒ 𝜏(𝑋) = 2𝑝𝑔 (𝑋) + 2 − ℎ1,1 (𝑋). (B.6)

This shows that the intersection form 𝑆𝑋 can only be indefinite or positive definite.
In the indefinite case, by the main result of Chapter 2, this unimodular form is
uniquely determined by its parity and signature. If the form happens to be positive
definite, by (B.6) we have 𝜏 = 2𝑝𝑔 + 1. The index theorem B.2.1 combined with
the Noether formula (B.5) then yields the following expressions for 𝑐21 and 𝑐2:

𝑐21 = 10𝑝𝑔 − 8𝑞 + 9,

𝑐2 = 2𝑝𝑔 − 4𝑞 + 3,

so that 𝑐21 − 3𝑐2 = 4(𝑝𝑔 + 𝑞). From the table of the classification theorem B.5.4, we
see that 𝑐21 − 3𝑐2 ≤ 0 except for ruled surfaces and, possibly, for surfaces of general
type. The former have indefinite forms as we shall see in Section B.3, and for the
latter the inequality is precisely the Bogomolov–Miyaoka–Yau inequality for which
we refer to [15, §VII.4]. Hence 𝑝𝑔 = 𝑞 = 0 and then necessarily4 𝑆𝑋 ≃ ⟨1⟩. So we
have shown:

Lemma B.2.4. Let 𝑋 be a Kähler surface. If 𝑆𝑋 is definite, 𝑆𝑋 ≃ ⟨1⟩.

Therefore, in all cases the intersection form 𝑆𝑋 is uniquely determined by its
parity and signature.

4One can show that for simply connected surfaces this only happens for the projective plane.
See e.g. [15, Thm. V.1.1].
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Invariants related to divisors. A divisor 𝐷 on a surface 𝑋 defines a cohomology
class [𝐷] ∈ 𝐻2 (𝑋,ℤ). Divisors with the same class are said to be homologically
equivalent and so the group of divisors on 𝑋 modulo homological equivalence, by
definition the Néron–Severi group NS(𝑋), embeds in 𝐻2 (𝑋,ℤ). Its rank is the
Picard number 𝜌(𝑋) of 𝑋. We shall identify NS(𝑋) with its image in 𝐻2 (𝑋,ℤ).
The resulting cohomology classes are the algebraic classes. By the Lefschetz (1, 1)-
theorem these are precisely the classes of Hodge type (1, 1):

Proposition B.2.5. Let 𝑋 be a complex surface. Then NS(𝑋) is the subgroup of
𝐻2 (𝑋,ℤ) consisting of classes of type (1, 1).

The intersection form 𝑆𝑋 induces the structure of an integral lattice on the
free group NS(𝑋)/torsion, the Néron–Severi lattice or Picard lattice . Usually
one uses a dot to denote the intersection product of divisor classes. For non-
algebraic surfaces the resulting lattice might be negative definite or it could be
totally isotropic (and hence degenerate). However, as soon as there exists a divisor
𝐷 for which [𝐷] · [𝐷] > 0, the surface is projective algebraic (cf. [15, Thm. IV.6.2])
and there is a classical result that states that then the Picard lattice is of Lorentzian
type:

Theorem B.2.6 (Algebraic Index Theorem [15, IV, Cor. 2.16], [19, p. 8]).
Let 𝑋 be a smooth complex projective surface. The intersection pairing restricts
non-degenerately to the Néron–Severi group NS(𝑋) and has signature (1, 𝜌−1). In
particularly, if 𝐷 is a divisor with 𝐷 · 𝐷 > 0, any class in NS(𝑋) orthogonal to 𝐷
has negative self-intersection.

One uses often the so-called adjunction formula or genus formula for an
irreducible curve 𝐷 on a surface 𝑋 (cf. [15, Ch. II, 11], [19, p. 8]):

2𝑝𝑎 (𝐷) − 2 = 𝐾𝑋 · 𝐷 + 𝐷 · 𝐷, 𝑝𝑎 (𝐷) = 𝑔(𝐷) + 𝛿, (B.7)

where 𝑝𝑎 (𝐷) is called the arithmetic genus of 𝐷, 𝐷 is a smooth model of 𝐷, 𝑔(𝐷)
its genus, and 𝛿 ≥ 0 its defect, which vanishes precisely when 𝐷 is smooth.

The transcendental lattice. Recall the Hodge decomposition of 𝐻2 (𝑋,ℂ),
𝐻2 (𝑋,ℂ) = 𝐻2,0 (𝑋) ⊕ 𝐻1,1 (𝑋) ⊕ 𝐻0,2 (𝑋). We just saw that the Néron–Severi
lattice is the sublattice of H𝑋 consisting of integral classes of Hodge type (1, 1). In
other words,

𝑆 (𝑋) = NS(𝑋)/torsion = H𝑋 ⊗ ℂ ∩𝐻1,1 (𝑋),

and so it is the largest (primitive) sublattice of H𝑋 such that 𝑆 (𝑋) ⊗ ℂ ⊂ 𝐻1,1 (𝑋).
Complementary to it we have the transcendental lattice of 𝑋:

Trs(𝑋) = the smallest primitive sublattice 𝑇 ′ of H𝑋 such that 𝐻2,0 (𝑋) ⊂ 𝑇 ′ ⊗ ℂ.

The transcendental lattice is a sub Hodge structure of𝐻2 (𝑋,ℤ), since being integral
one has Trs(𝑋) ⊗ ℂ = 𝐻2,0 (𝑋) ⊕ 𝐻0,2 ⊕ [𝐻1,1 ∩ Trs(𝑋)]. By type considerations,
under cup-product 𝐻2,0 (𝑋) ⊕ 𝐻0,2 (𝑋) is orthogonal to 𝐻1,1 (𝑋) and so Trs(𝑋)⊥ is
contained in 𝑆 (𝑋) but need not be equal to it, since in the non-projective case
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𝑆 (𝑋) can be degenerate. From what has been said so far, we clearly have equality
otherwise:

Lemma B.2.7. Let 𝑋 be a compact Kähler surface such that its Néron–Severi
lattice is non-degenerate (e.g. if 𝑋 is projective), then Trs(𝑋) and NS(𝑋)/torsion
are orthogonal complements of each other in H𝑋 .

B.3 Examples

1. The most basic examples of surfaces are ℙ2 and ℙ1 ×ℙ1. These are birationally
equivalent to each other (see e.g. Example B.5.1) and any surface birational to ℙ2

is called a rational surface . Apart from the just mentioned surfaces also the
Hirzebruch surfaces 𝑭𝑛,𝑛 ∈ ℕ, belong to this class. The surface 𝑭𝑛 is the total
space of the ℙ1-bundle over ℙ1 possessing a unique section 𝐶𝑛 with self-intersection
−𝑛. The Hirzebruch surface 𝑭0 is just ℙ1 × ℙ1 and only 𝑭1 has an exceptional
curve. These surfaces are all simply connected and 𝑏2 (ℙ2) = ℎ1,1 (ℙ2) = 1 while
𝑏2 (𝑭𝑛) = ℎ1,1 (𝑭𝑛) = 2.

Let us describe the intersection lattices.

• The class ℓ of a line generates 𝐻2 (ℙ2,ℤ) and since ℓ2 = 1 we get 𝑆ℙ2 ≃ ⟨1⟩.

• For a quadric, the classes ℓ and ℓ′ of the two rulings give a basis for 𝐻2 (ℙ1 ×
ℙ1,ℤ), and since ℓ2 = (ℓ′)2 = 0 and ℓ · ℓ′ = 1 we find 𝑆ℙ1×ℙ1 ≃ 𝑈, the
hyperbolic plane.

• For 𝑭𝑛 the class of a fiber and the class of 𝐶𝑛 give a basis for H𝑭𝑛 . The Gram

matrix is

(
0 1
1 −𝑛

)
. Now use Example 1.13.1.(5). We deduce that 𝑆𝑭𝑛 ≃ 𝑈 if

𝑛 is even and 𝑆𝑭𝑛 ≃ 𝑊 = ⟨1⟩ ⦹ ⟨−1⟩ if 𝑛 is odd. Since these two lattices are
not isometric, the Freedman result 2.5.2 implies that the Hirzebruch surfaces
belong to two distinct topological types.

2. A ruled surface of genus 𝑔 is a ℙ1-bundle over a curve of genus 𝑔. If 𝑔 > 0
these are not simply connected; in fact 𝑏1 = 2𝑞 = 2𝑔 and 𝑏2 = ℎ1,1 = 2 for them. As
for Hirzebruch surfaces the intersection lattice has rank 2 and is either isometric
to 𝑈 or to ⟨1⟩ ⦹ ⟨−1⟩. See [19, Prop. III.18].
3. Smooth surfaces of degree 𝑑 in ℙ3. These are simply connected and
𝑏2 = 𝑑3 − 4𝑑2 + 6𝑑 − 2. See e.g. [15, V. Prop. 2.1]. For 𝑑 = 2 we get a smooth
quadric which is isomorphic to ℙ1 × ℙ1 (think of the two rulings on a quadric
surface). For 𝑑 = 4 we get a K3 surface, a class of surfaces we discuss below as the
next example.

The canonical class, Chern classes and (some) intersection lattices of the pre-
ceding surfaces are given in Table B.3.1. Here, ℎ is the class of a hyperplane, 𝑓
the class of a fiber and 𝑠 the class of a section.
4. A K3 surface is a simply connected surface with trivial canonical bundle.
Such a surface is not necessarily algebraic but always Kähler. All K3 surfaces are
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Table B.3.1: Invariants of the surfaces of examples 1, 2 and 3

𝑋 𝐾𝑋 = −𝑐1 (𝑋) 𝑐21 (𝑋) 𝑐2 (𝑋) 𝑆𝑋
ℙ2 −3ℎ 9 3 ⟨1⟩

𝑭𝑛, 𝑛 even −(2 + 𝑛)𝑓 − 2𝑠 8 4 𝑈
𝑭𝑛, 𝑛 odd −(2 + 𝑛)𝑓 − 2𝑠 8 4 𝑊 = ⟨1⟩ ⦹ ⟨−1⟩

ruled surface (2𝑔 − 2 + 𝑠2)𝑓 − 2𝑠 8(1 − 𝑔) 4(1 − 𝑔) 𝑈 or 𝑊
degree 𝑑

surface in ℙ3 (𝑑 − 4)ℎ 𝑑(𝑑 − 1)2 𝑑(𝑑2 − 4𝑑 + 6) —

known to be diffeomorphic to each other. For proofs of these assertions see for
instance [15, Ch. VIII]. Examples are

• Kummer surfaces. These are minimal resolutions of singularities of quotients
of 2-dimensional complex tori by the natural involution 𝑧 ↦→ −𝑧.

• Smooth degree four surfaces in ℙ3.

• Smooth complete intersections of three quadratics in ℙ5.

Curious how a K3 surface might look like? In Fig. B.3.1 one finds a picture
of (the real part of) a K3 surface constructed with the SURFER software. See
https://imaginary.org/program/surfer.

The invariants of a K3 surface 𝑋 are as follows (cf. [15, Ch. VIII]):

𝑏1 (𝑋) = 0, 𝑏2 (𝑋) = 22.

𝑆𝑋 = ΛK3 = 𝑈 ⦹𝑈 ⦹𝑈 ⦹ 𝐸8 (−1) ⦹ 𝐸8 (−1).

We contend ourselves explaining how to determine 𝑆𝑋 , given its rank 𝑏2 (𝑋). By
Proposition 2.5.4 the intersection form is even since the canonical bundle of 𝑋 is
trivial; indeed the nowhere zero holomorphic two-form gives a trivialization of the
canonical bundle. The index formula (Theorem B.2.1) tells us that the index is
1
3 (−24) = −16. But then by Corollary 2.4.3 the lattice 𝑆𝑋 is uniquely determined
and hence isometric to the K3 lattice.

In the special case of a Kummer surface we shall explain in detail how to
calculate the Betti numbers. The surjectivity of the period map (see 19.2.1) implies
that all K3 surfaces can be put in one family with a connected base and then these
are necessarily all diffeomorphic to one another (Ehresmann’s theorem, cf. [105,
Prop. 6.2.2]) and so have the same Betti numbers.
Kummer surfaces. In this book Kummer surfaces play a special role and we
shall investigate them in some more detail.

To explain their construction we start with a complex two-torus 𝐴 = ℂ2/Γ.
Here Γ ≃ ℤ4 is a lattice inside ℂ2 ≃ ℝ4. The quotient of 𝐴 by the standard
involution 𝑖 : 𝑧 ↦→ −𝑧 yields a singular Kummer surface 𝐴/⟨𝜄⟩. This is not a
manifold, since the involution has 24 = 16 fixed points, the 2-torsion points of 𝐴.

https://imaginary.org/program/surfer
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Figure B.3.1: The K3 surface 𝑥4 + 𝑦4 + 𝑧4 − 𝑡4 + 60𝑥𝑦𝑧𝑡 = 0 in ℙ3.

Our first task is to change 𝐴/⟨𝜄⟩ at these singularities in a controlled way to make
it into a manifold. Locally in coordinates around a fixed point, the involution
looks like (𝑧1, 𝑧2) ↦→ (−𝑧1,−𝑧2). The invariant functions 𝑢 = 𝑧21,𝑤 = 𝑧1𝑧2, 𝑣 = 𝑧22
obey the relation 𝑢𝑣 = 𝑤2 and one deduces that the quotient looks locally like a
cone given by these equations. Its vertex at the origin is an ordinary double point.
The latter can be resolved by a blowing up process in ℂ3. This means that one
replaces the origin of ℂ3 with the ℙ2 parametrizing the directions at the origin.
Explicitly, one takes the closure ℂ̃3 in ℂ3 ×ℙ2 of the graph of the tautological map
sending (𝑢, 𝑣,𝑤) ∈ ℂ3 − {0} to (𝑈 : 𝑉 : 𝑊) = (𝑢 : 𝑣 : 𝑤). The projection onto the
first factor induces a holomorphic map 𝜋 : ℂ̃3 → ℂ3 which is biholomorphic away
from the origin and 𝐷 = 𝜋−1 (0, 0, 0) = (0, 0, 0) × ℙ2 is a hypersurface, the so-called
exceptional divisor. One thus obtains a smooth manifold which intersects 𝐷 in a
smooth conic and thus ≃ ℙ1. Doing this for all 16 singularities results in a smooth
surface Km(𝐴) where the 16 singularities have been replaced by 16 rational curves
𝐸𝑗 . One can show that their cohomology classes 𝑒𝑗 ∈ 𝐻2 (Km(𝐴),ℤ) are roots, that
is, 𝑒𝑗 · 𝑒𝑗 = −2, where the dot is the intersection pairing. Let us for clarity assemble
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the maps in the above construction in a commutative diagram

𝐴
𝜋

//

��

𝐴

��

𝑖ff

Km(𝐴)
𝜋
// 𝐴/⟨𝜄⟩.

Here 𝜋 : 𝐴 → 𝐴 is the blow-up map with respect to the sixteen two-torsion points
of the torus 𝐴, and which covers 𝜋.

Next, we calculate the Betti numbers. First note that there are no non-zero
invariant holomorphic 1-forms on 𝐴 and hence no holomorphic 1-forms on Km(𝐴).
Thus 𝑏1 (Km(𝐴)) = 0 by the Hodge decomposition (B.3). Secondly, Km(𝐴) admits
a nowhere vanishing holomorphic 2-form: the 2-form 𝑑𝑧1 ∧ 𝑑𝑧2 on ℂ2 is invariant
under translations and the involution (𝑧1, 𝑧2) ↦→ (−𝑧1,−𝑧2), and so descends to
the (singular) Kummer surface. It is not hard to see that it lifts to Km(𝐴) as
a nowhere zero holomorphic two-form. Hence the canonical bundle of Km(𝐴) is
trivial. Now, since Km(𝐴) is known to be simply connected, it follows that the
Kummer surface is a K3.

Let us compute 𝑏2 (Km(𝐴)) explicitly. Since the Euler number is the alternating
sum of the Betti numbers 𝑏𝑗 , and since 𝑏0 = 𝑏4 = 1 while 𝑏1 = 𝑏3 = 0, to calculate 𝑏2
it suffices to calculate the Euler number 𝑒 = 2+𝑏2. To do this we exploit additivity
of the Euler number: if 𝑍 is a closed subset of a compact manifold 𝑋, we have
𝑒(𝑋) = 𝑒(𝑋−𝑍) +𝑒(𝑍). So, if we remove from the torus 𝐴 the 16 two-torsion points
we get a manifold with Euler number 0 − 16. Taking the quotient by a fixed point
free involution halves this number to −8 and inserting the 16 exceptional curves,
which are two-spheres with Euler number 2 (a conic is isomorphic to ℙ1) yields
𝑒(Km(𝐴)) = −8 + 16 · 2 = 24 and hence 𝑏2 (Km(𝐴)) = 22.
5. An Enriques surface is a surface with 𝑝𝑔 = 𝑏1 = 0 and 𝐾⊗2 trivial (hence
its class is a torsion class with zero self-intersection). The universal cover can be
shown to be a K3 surface which doubly covers the surface. Since 𝑝𝑔 = 𝑞 = 0 and
𝑐21 = 𝐾2 = 0, from (B.5) we find 𝑐2 = 2 + 𝑏2 = 12 and hence 𝑏2 = ℎ1,1 = 10. Then
we deduce from Lemma B.2.4 that the intersection lattice has signature (1, 9). It
is also even. This is the case since all classes are algebraic and since for a divisor
𝐷 the genus formula (B.7) shows that 𝐷2 = 𝐷2 + 𝐷 · 𝐾 is even. Consequently, the
intersection lattice is isometric to ΛEnr = 𝑈 ⦹ 𝐸8 (−1).

Example ( [19, 4.18]). Let (𝑥1 : 𝑦1 : 𝑧1 : 𝑥2 : 𝑦2 : 𝑧2) be projective coordinates in
ℙ5 and define

𝜄(𝑥1 : 𝑦1 : 𝑧1 : 𝑥2 :, 𝑦2 : 𝑧2) = (𝑥1 : 𝑦1 : 𝑧1 : −𝑥2 : −𝑦2 : −𝑧2).

An invariant quadric is of the form 𝑄′(𝑥1, 𝑦1, 𝑧1) + 𝑄′′(𝑥2, 𝑦2, 𝑧2). For a generic
choice of three such quadrics, the intersection is a smooth surface and the calcu-
lation rules for complete intersections tell us that this is a K3 surface. Note that
the fixed point set of 𝜄 consists of the two planes 𝑥𝑖 = 𝑦𝑖 = 𝑧𝑖 = 0, 𝑖 = 1, 2, and
three invariant quadrics cut out three conics on each of these planes and so their
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intersection is empty for a generic choice of the quadrics. If this is the case, the
involution acts on the intersection without fixed points. By what we just said, the
quotient is an Enriques surface. All Enriques surfaces can be shown to either arise
in this way or they are, in a technical sense, “limits” of such surfaces; in particular
they are all algebraic.

B.4 Period Domains

Since intersection form on a surface 𝑋 by definition comes from the wedge product
of (closed) forms and taking the wedge of two type (2, 0)-classes is zero while for
a single class 𝜔 ≠ 0 of type (2, 0) the product 1

4𝜔 ∧ �̄� is the volume form, the
Riemann bilinear relations result:

𝑆𝑋 (𝑢,𝑢′) = 0, 𝑢,𝑢′ ∈ 𝐻2,0 (𝑋) (B.8)

𝑆𝑋 (𝑢,𝑢) > 0, 𝑢 ∈ 𝐻2,0 (𝑋), 𝑢 ≠ 0. (B.9)

Secondly, since 𝛼∧𝛽 = 0 if 𝛼 is a 2-form of type (2, 0) and 𝛽 a 2-form of type (1, 1),
we see that 𝐻2,0 (𝑋) and 𝐻1,1 (𝑋) are orthogonal. The Hodge decomposition (B.3),
shows then that

𝐻1,1 (𝑋) = 𝐻1,1
ℝ

(𝑋) ⊗ ℂ =
[
𝐻1,1 (𝑋) ∩𝐻2 (𝑋,ℝ)

]
ℂ

𝐻2,0 (𝑋) ⊕ 𝐻0,2 (𝑋) = 𝐻1,1
ℝ

(𝑋)⊥ ⊗ ℂ.

By (B.9) the intersection pairing on the second space, a real space of dimension
2𝑝𝑔 (𝑋), is positive definite. Type considerations further show that under the
intersection pairing one has

𝐻2,0 (𝑋)⊥ = 𝐻2,0 (𝑋) ⊕ 𝐻1,1 (𝑋).

This implies that the Hodge decomposition on the ℂ-quadratic space 𝐻𝑋 ⊗ ℂ is
completely determined by 𝐻2,0 (𝑋) alone. This subspace defines a point in the
Grassmann variety of 𝑝𝑔-dimensional subspaces of 𝐻2 (𝑋,ℂ) which captures the
Hodge structure on 𝐻2 (𝑋).

This can be rephrased using the abstract concept of ”Hodge structure”:

Definition B.4.1. 1. A Hodge structure of weight 2 on a free ℤ-module 𝐿
of finite rank consists of a decomposition

𝐿ℂ = 𝐿2,0 ⊕ 𝐿1,1 ⊕ 𝐿0,2,

such that 𝐿2,0 is the complex conjugate of 𝐿0,2 and 𝐿1,1 is self-conjugate. This
implies that there exist subspaces 𝐿 and 𝐿′′ of 𝐿ℝ such that

𝐿ℝ = 𝐿′ ⊕ 𝐿′′, 𝐿′ℂ = 𝐿1,1, 𝐿′′ℂ = 𝐿2,0 + 𝐿0,2.
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2. If 𝑏 is a non-degenerate integral form on 𝐿 we say that 𝐿 is polarized by 𝑏,
if the two Riemann bilinear relations (B.8) and (B.9) hold. 5

3. A polarized weight 2 Hodge structure is said to be of K3 type if dim𝐿2,0 = 1
and 𝐿′ ⊂ 𝐿ℝ is of Lorentzian type, that is, has signature (1,dim𝐿′ − 1).

Polarized weight 2 Hodge structures on (𝐿, 𝑏) with fixed Hodge number ℎ2,0 ≠ 0
are in one to one correspondence with points of the corresponding period domain

𝐷(𝐿, 𝑏) = {[𝑃] ∈ Gr(ℎ2,0,𝐿ℂ) | 𝑃 is 𝑏ℂ-isotropic, and 𝑏ℂ (𝑢,𝑢) > 0 for all 𝑢 ∈ 𝑃 − {0}}.

Here, [𝑃] denotes the point in the Grassmann variety Gr(ℎ2,0) corresponding to the
subspace 𝑃 of 𝐿ℂ. If we have a Hodge structure of K3 type, then the Grassmann
variety is just the projective space of lines [𝑢] in 𝐿ℂ and one can rewrite the period
domain as

𝐷(𝐿, 𝑏) = {[𝑢] ∈ ℙ(𝐿ℂ) | 𝑏ℂ (𝑢,𝑢) = 0, and 𝑏ℂ (𝑢,𝑢) > 0 }. (B.10)

Period domains admit descriptions as a homogeneous domains. The form 𝑏 has
signature (𝑟+, 𝑟−) with 𝑟+ = 2ℎ2,0 + 1, 𝑟− = ℎ1,1 − 1 and the group O (𝑟+, 𝑟−) acts
transitively on 𝐷(𝐿, 𝑏) with isotropy group SO (𝑟+ − 1) × O (1, 𝑟−):

𝐷(𝐿, 𝑏) = O (𝑟+, 𝑟−)/SO (𝑟+ − 1) × O (1, 𝑟−)
= SO (𝑟+, 𝑟−)/SO (𝑟+ − 1) × SO (1, 𝑟−).

}
(B.11)

One deduces from Proposition 13.3.7 that 𝐷(𝐿, 𝑏) is connected.
Coming back to the intersection lattice, via a choice of isometry 𝜑 : 𝐻𝑋

∼−→ 𝐿,
the polarized Hodge structure can be transported to 𝐿. Such a marking deter-
mines a point in the period domain 𝐷(𝐿), the period point {𝜑(𝐻2,0 (𝑋)) ⊂ 𝐿ℂ} ∈
Gr(𝑝𝑔,𝐿ℂ).

B.5 Surface Classification

Minimal models. Classification of surfaces begins with a reduction to minimal
surfaces. To explain this, we need the concept of a (−1)-curve6 𝐸 on a complex
algebraic surface; by definition 𝐸 is a smooth rational curve with 𝐸 · 𝐸 = −1. Such
a curve arises under the process of blowing up a surface at a point. To describe
this, we assume that we have chosen coordinates (𝑢, 𝑣) in an open subset 𝑈 on the
surface such that the point 𝑝 is the origin. Now consider

𝑈 := {((𝑢, 𝑣), (𝑈 : 𝑉)), ∈ 𝑈 × ℙ1 | (𝑢 : 𝑣) = (𝑈 : 𝑉)}
5Usually, a polarized Hodge structure of weight two on 𝐿 is such that 𝑏ℝ is positive definite on

𝐿′′ and negative definite on 𝐿′. This is the case for the orthogonal complement of a hyperplane
class inside the intersection lattice of a projective surface, the so-called primitive cohomology.

6Also called “exceptional curve of the first kind”.
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and let 𝜎 : 𝑈 → 𝑈 be induced by the projection onto the first factor. Then 𝑈
contains the curve 𝐸 := (0, 0) × ℙ1 which by 𝜎 gets contracted to the point 𝑝
while 𝜎 is biholomorphic outside 𝐸. One can show that 𝐸 · 𝐸 = −1. Castelnuovo’s
contractibility criterion (see [15, Thm. III (4,1)] or [19, II.17]) tells us that,
conversely, a (−1)-curve in a surface 𝑋 can be contracted to give a point 𝑝 on
a smooth surface 𝑋 and 𝑋 is the blow-up of 𝑥 in the point 𝑝. It follows then
that any complex algebraic surface has a (not necessarily unique) minimal model,
a minimal surface which one obtains after blowing down successively all (−1)-
curves. See [15, Thm. III(4.5)].

Example B.5.1. Let 𝑝, 𝑞 ∈ ℙ2 be two distinct points and let 𝐿 be the line con-
necting 𝑝 and 𝑞. Blowing up ℙ2 in 𝑝 and 𝑞 transforms the line 𝐿 in an exceptional
curve.7 Blowing down this curve yields ℙ1 × ℙ1 and this procedure shows that ℙ2

and ℙ1 × ℙ1 are two distinct minimal models within the same birationality class.

We frequently need to compare the cohomology of a surface and of its blow-up.
The result we shall use is the following special case of a more general result, a
proof of which can be found e.g. in [88, Section 4.6].

Lemma B.5.2. Let 𝑋 be a compact complex surface, 𝜎 : 𝑋 → 𝑋 the blow-up in a
point 𝑝 and 𝐸 = 𝜎−1𝑝 the exceptional curve. Recalling (B.2) for the notation, we
have the following cohomological results:

1. 𝜎∗ : 𝐻2 (𝑋,ℤ) → 𝐻2 (𝑋,ℤ) is an injection;

2. H𝑋 ≃ H𝑋 ⦹ ⟨−1⟩, where the second summand is spanned by the class of 𝐸.

Intermezzo on the Kodaira dimension. In this subsection we broaden our
scope and change notation accordingly: 𝑋 stands for a compact Kähler variety
and 𝐿 for a holomorphic line bundle on 𝑋. Assuming 𝐿 has holomorphic sections,
a choice of a basis {𝑠0, 𝑠1, . . . , 𝑠𝑁} for the vector space of holomorphic sections
defines the meromorphic map

𝑓𝐿 : 𝑋 d ℙ𝑁

𝑥 ↦→ (𝑠0 (𝑥) : 𝑠1 (𝑥) : · · · : 𝑠𝑁 (𝑥𝑠)).

This is not defined at points where all sections of 𝐿 vanish.
If 𝑓𝐿 is everywhere defined and is an embedding, 𝐿 is called very ample and

likewise for a divisor 𝐷 with 𝐿 = O𝑋 (𝐷). Lastly, 𝐿 (or 𝐷) is called ample if for
some positive 𝑚 the bundle 𝐿⊗𝑚 (or the divisor 𝑚𝐷) is very ample. This implies
that 𝐿 · 𝐶 > 0 for all curves 𝐶 ⊂ 𝑋, since 𝐿 · (𝑚𝐶) is the degree of the curve 𝐶
as embedded in ℙ𝑁 by means of 𝑓𝐿⊗𝑚 . Similarly, if 𝑋 has dimension 𝑑, we have
𝐿 · · · 𝐿︸ ︷︷ ︸
𝑑 times

> 0. We conclude that if 𝑑 = 2, for 𝐷 ample, we have 𝐷 · 𝐶 > 0 and 𝐷2 > 0.

The converse is the Kleiman criterion: a divisor 𝐷 on a surface with positive
self-intersection and such that 𝐷 · 𝐶 > 0 for all curves 𝐶 is an ample divisor.

7In technical terms, this is the “proper” transform of 𝐿.
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The canonical bundle 𝐾𝑋 of 𝑋 is the line bundle associated to the sheaf Ω𝑛
𝑋

of holomorphic 𝑛-forms where 𝑛 = dim𝑋. A divisor whose line bundle is 𝐾𝑋 is
called a canonical divisor , also denoted by 𝐾𝑋 . The 𝑚-th tensor power of 𝐾𝑋 is
the 𝑚-th pluricanonical bundle and we set

𝑃𝑚 (𝑋) = ℎ0 (𝐾⊗𝑚
𝑋 ), the 𝑚-th plurigenus of 𝑋.

These numbers determine the Kodaira dimension:

Definition B.5.3. Let 𝑋 be a compact complex variety. The Kodaira dimen-
sion of 𝑋 is the number

𝜅(𝑋) =
{
−∞ if 𝑃𝑚 (𝑋) = 0 for all 𝑚 ∈ ℕ

max𝑚∈ℤ>0
dim𝑓𝐾⊗𝑚

𝑋
(𝑋) otherwise.

On the classification. To explain the classification of minimal Kähler surfaces,
we need some terminology.

1. A bielliptic surface8 is a surface with 𝑏2 = 2 admitting a holomorphic,
locally trivial fibre bundle structure over an elliptic curve with fibre an elliptic
curve. These are all of the form 𝐸 × 𝐶/𝐺, with 𝐸 and 𝐶 elliptic, 𝐺 ⊂ 𝐶 a
finite group of translations acting on 𝐸 not only by translations. There are
only 7 possible groups 𝐺 (see [15, Ch. V. 5 BII]). The canonical bundle is
not trivial: it has no sections.

2. A properly elliptic surface is a surface 𝑋 of Kodaira dimension 1 admitting
an elliptic fibration, i.e., a holomorphic map 𝑓 : 𝑋 → 𝐶 with general fibre an
elliptic curve.

3. A surface of general type is a surface 𝑋 with 𝜅(𝑋) = 2. Its minimal model
can be characterized as being a non-rational surface with 𝑐21 > 0. See [15,
IV, Table 10].

We now can state the classification theorem.

Theorem B.5.4 (Enriques–Kodaira classification). Every minimal compact Kähler
surface belongs to exactly one of the following classes ordered according to their
Kodaira dimension 𝜅:

8In older literature the terminology hyperelliptic surface is used.
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𝜅 Class 𝑏1 𝑐21 𝑐2
−∞ • minimal rational surfaces all algebraic 0 8 or 9 4 or 3

• ruled surfaces over a
curve of genus 𝑔 > 0 all algebraic 2𝑔 8(1 − 𝑔) 4(1 − 𝑔)

0 • Two-dimensional tori 4 0 0
• K3 surfaces 0 0 24
• Enriques surfaces all algebraic 0 0 12
• bielliptic surfaces all algebraic 2 0 0

1 • minimal properly elliptic
surfaces 0 ≥ 0

2 • surfaces of general type all algebraic > 0 > 0

Historical and Bibliographical Notes. The classification of algebraic surfaces

over a field of characteristic zero goes back to F. Enriques [71]. For modern accounts see

e.g. [19]. The extension of the classification to compact complex surfaces is completely

due to K. Kodaira. See the monograph [15] by W. Barth, K. Hulek, C. Peters and A.

van de Ven for an overall exposition.
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Quadratic Forms: Specialized Topics

C.1 On Witt’s Extension Theorem

𝑅 is a local ring with maximal ideal 𝔪 in which 2 is not invertible, 𝑘 = 𝑅/𝔪.

In this section we present an elaborated English version of the material in M. Kneser’s

book [122, I.4] on Witt’s theorems. These results are important for the local study of

quadratic forms at the prime 2, but we could not find a treatment in the English language

elsewhere.

Recall that for any 𝑅-module 𝑉 equipped with a symmetric form 𝑏 the correlation
map 𝑏𝑉 : 𝑉 → 𝑉∗ is defined by sending 𝑥 ∈ 𝑉 to the functional 𝑏𝑉 (𝑥) which on
𝑦 ∈ 𝑉 has the value 𝑏(𝑥, 𝑦). The form 𝑏 is non-degenerate, respectively unimodular,
precisely if 𝑏𝑉 is injective, respectively bijective. If 𝑊 ⊂ 𝑉 is an 𝑅-submodule,
restricting this functional to 𝑊 gives a map 𝛽𝑊 : 𝑉 → 𝑊∗.

Assume from now on that 𝑉 is a free 𝑅-module of finite rank and 𝑊 ⊂ 𝑉 a free
submodule.

Lemma C.1.1. Let {𝑤1, . . . ,𝑤𝑟} be a basis of 𝑊. Then 𝛽𝑊 is surjective if and
only if there exists vectors 𝑣1, . . . , 𝑣𝑟 ∈ 𝑉 with 𝑏(𝑤𝑖 , 𝑣𝑗) = 𝛿𝑖𝑗. If 𝛽𝑊 (𝑍) = 𝑊∗ for
some submodule 𝑍 ⊂ 𝑊, then we may assume that the vectors 𝑣𝑖 belong to 𝑍.

A quadratic form 𝑞 on 𝑉 is non-degenerate precisely if its polar form 𝑏𝑞 is
non-degenerate. Recall also that any vector 𝑥 ∈ 𝑉 with 𝑞(𝑥) a unit defines a
reflection 𝜎𝑥 : 𝑉 → 𝑉 given by 𝑦 ↦→ 𝑦 − 𝑏𝑞 (𝑥, 𝑦)𝑞(𝑥)−1𝑥. The quadratic form 𝑞

on an 𝑅-module 𝑉 induces the 𝑘-valued quadratic form 𝑞 on 𝑉 = 𝑉 ⊗𝑅 𝑘 = 𝑉/𝔪𝑉
defined by 𝑞(𝑥) = 𝑞(𝑥) mod 𝔪 and 𝑞 is unimodular if and only if the form 𝑞 is
unimodular (see § 6.3.B, Example 6).

Proposition C.1.2. Let (𝑉, 𝑞) be a quadratic inner product space over 𝑅 of finite
rank, and 𝑊,𝑊′,𝑍 submodules. Let 𝑊,𝑊′ be free and assume that

𝛽𝑊 (𝑍) = 𝑊∗, 𝛽𝑊′ (𝑍) = 𝑊′∗. (C.1)

Suppose 𝑡 : 𝑊
≃−→ 𝑊′ is an isometry such that

𝑡(𝑥) − 𝑥 ∈ 𝑍 for all 𝑥 ∈ 𝑊. (C.2)

Then 𝑡 extends to an isometry �̃� : 𝑉
∼−→ 𝑉 such that �̃� = id on the orthogonal

complement of 𝑍. Moreover, �̃� is a product of reflections in vectors of 𝑍 if we are
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in one of the following cases:

𝑘 ≠ 𝔽2 and 𝑞(𝑍) ≠ 0, (C.3)

𝑘 = 𝔽2 and 𝑞(𝑍⊥) ≠ 0. (C.4)

Taking 𝑍 = 𝑉 gives an unconditional extension of 𝑡 to 𝑉 which generalizes
Corollary 7.2.8:

Corollary C.1.3 (Witt’s extension theorem over local rings). Let (𝑉, 𝑞) be a
quadratic inner product space over 𝑅 of finite rank, 𝑊,𝑊′ primitive free submodules
such that 𝛽𝑊 and 𝛽𝑊′ are surjective (this is in particular the case for unimodular
submodules 𝑊 and 𝑊′) and let 𝑡 : 𝑊 → 𝑊′ be an isometry. Then 𝑡 extends to an
isometry of 𝑉. If 𝑘 ≠ 𝔽2, then this extension is a product of hyperplane reflections.

Remark. 1. As we have observed (see Remark 7.2.9.1), Witt’s extension theorem is
equivalent to Witt’s cancelation theorem 7.2.7. The proof of this does not depend
on 2 being invertible or not, and so Witt’s cancelation theorem likewise holds over
any local ring.
2. We may take 𝑊 = 𝑊′ which implies that in case 𝑘 ≠ 𝔽2, every isometry
is a product of hyperplane reflections. Below we discuss the case 𝑘 = 𝔽2. See
Theorem C.1.4.

Proof of Proposition C.1.2. The extra condition on 𝑍 gives some flexibility en-
abling to prove the proposition first under the restrictive conditions (C.3) and
(C.4) on the field 𝑘. So we first assume we are in one of these cases and then show
the result. We shall demonstrate by induction on 𝑟 := rank(𝑊) = rank(𝑊′) that
in this situation 𝑡 can be written as a product of reflections in vectors of 𝑍 and
hence provides the desired extension. Finally we show how to handle the situation
if we are not in one of the cases (C.3) or (C.4). In the proof we simplify notation
and use 𝑏 = 𝑏𝑞 for the polar form of 𝑞.

Step 1: 𝑟 = 1. Then 𝑊 = 𝑅𝑤,𝑊′ = 𝑅𝑤′ and (by assumption) 𝑡(𝑤) = 𝑤′ = 𝑤 + 𝑧,
𝑧 ∈ 𝑍. We claim:

𝑏(𝑤, 𝑧) = −𝑞(𝑧), 𝑏(𝑤 + 𝑧, 𝑧) = 𝑞(𝑧), (C.5)

To see this, note that since 𝑡 is an isometry, 𝑞(𝑤) = 𝑞(𝑤 + 𝑧) and so 𝑏(𝑤, 𝑧) =

𝑞(𝑤 + 𝑧) − 𝑞(𝑤) − 𝑞(𝑧) = −𝑞(𝑧), proving the first equality. From 𝑏(𝑧, 𝑧) = 2𝑞(𝑧) the
second equality follows.

• In case 𝑞(𝑧) ∈ 𝑅×, it follows from 𝑏(𝑤, 𝑧) = −𝑞(𝑧) that 𝑡(𝑤) = 𝑤 + 𝑧 = 𝜎𝑧 (𝑤).
The isometry 𝜎𝑧 on 𝑉 thus extends 𝑡. Since 𝜎𝑧 (𝑦) = 𝑦 for 𝑦 ∈ 𝑍⊥, 𝑡 extends
as a reflection in an element from 𝑍 inducing the identity on 𝑍⊥ showing the
proposition in this case.

• Suppose now that 𝑞(𝑧) is not a unit. We search for 𝑥 ∈ 𝑍, 𝑞(𝑥) a unit, which
gives a reflection 𝜎𝑥. We introduce 𝑥′ = 𝑤′ − 𝜎𝑥 (𝑤) which we rewrite as

𝑥′ = 𝑏(𝑤,𝑥)𝑞(𝑥)−1𝑥 + 𝑧 (and so 𝑥′ ∈ 𝑍 if 𝑥 ∈ 𝑍). (C.6)
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Moreover, since

𝑞(𝑥′) = (𝑏(𝑤,𝑥)𝑏(𝑤,𝑥) + 𝑏(𝑧,𝑥)) · 𝑞(𝑥)−1 + 𝑞(𝑧),

one finds
𝑞(𝑥′) = 𝑏(𝑤,𝑥)𝑏(𝑤′,𝑥)𝑞(𝑥)−1 + 𝑞(𝑧). (C.7)

Now assume that in addition to 𝑞(𝑥) being invertible, also 𝑞(𝑥′) is invertible.
From (C.6), (C.5) and (C.7) we get

𝑏(𝑥′,𝑤′) = 𝑏(𝑥,𝑤)𝑏(𝑥,𝑤′)𝑞(𝑥)−1 + 𝑏(𝑧,𝑤′)
= 𝑏(𝑥,𝑤)𝑏(𝑥,𝑤′)𝑞(𝑥)−1 + 𝑞(𝑧) = 𝑞(𝑥′).

It follows that 𝜎𝑥′ (𝑤′) = 𝑤′ − 𝑏(𝑥′,𝑤′)𝑞(𝑥′)−1𝑥′ = 𝑤′ − 𝑥′ = 𝜎𝑥 (𝑤) and hence
�̃� := 𝜎𝑥′ ◦𝜎𝑥 is the desired extension of 𝑡.

To complete Step 1, it suffices to find 𝑥 ∈ 𝑍 such that both 𝑞(𝑥) and 𝑞(𝑥′) are
invertible, i.e., are not in the maximal ideal 𝔪 ⊂ 𝑅. Taking into account (C.7) and
remembering that 𝑞(𝑧) is not a unit, we see that it suffices to assure that 𝑥 ∈ 𝑍
exists with the following properties:

𝑞(𝑥) ∉ 𝔪, 𝑏(𝑤,𝑥) ∉ 𝔪, 𝑏(𝑤′,𝑥) ∉ 𝔪.

The last two conditions can be regarded as statements about the sets

𝐻 = {𝑥 ∈ 𝑍 | 𝑏(𝑥,𝑤) ≡ 0 mod 𝔪}
𝐻′ = {𝑥 ∈ 𝑍 | 𝑏(𝑥,𝑤′) ≡ 0 mod 𝔪}.

By assumption, the functional on 𝑊 which has value 1 on the basis 𝑤 of 𝑊 is of
the form 𝑥 ↦→ 𝑏(𝑥, 𝑠) for some 𝑠 ∈ 𝑍. In other words 1 = 𝑏(𝑤, 𝑠) and so 𝑠 ∉ 𝐻 and
𝑠 ∉ 𝐻 (with 𝐻 ⊂ 𝑉 = 𝑉/𝔪). Hence 𝐻 is a hyperplane in 𝑍, and likewise for 𝐻′

(using that 𝛽𝑍 (𝑊′) = (𝑊′)∗). Since 𝑍 → 𝑍 is surjective, it thus suffices to show
that 𝑞 is not identically zero on

𝑍0 := 𝑍 − [𝐻 ∪𝐻′]

so that we may take 𝑥 ∈ 𝑍 such that 𝑥 ∈ 𝑍0 with 𝑞(𝑥) ≠ 0. Note that for all scalars
𝑎 ∈ 𝑘 and all 𝑥 ∈ 𝐻 ∩ 𝐻′ and 𝑦 ∈ 𝑍0 = 𝑍 − [𝐻 ∪ 𝐻′], the vector 𝑎𝑥 + 𝑦 ∈ 𝑍 does
not belong to 𝐻 ∪ 𝐻′. So, if we assume that on the contrary, 𝑞 |𝑍0

= 0, we would
have for all 𝑎 ∈ 𝑘

0 = 𝑞(𝑎𝑥 + 𝑦) = 𝑎2𝑞(𝑥) + 𝑎𝑏(𝑥, 𝑦) + 𝑞(𝑦).

We now distinguish the cases in which (C.3) or (C.4) hold. Supposing that (C.3)
holds, 𝑘 has three or more elements and so in that case

𝑞(𝑥) = 𝑏(𝑥, 𝑦) = 𝑞(𝑦) = 0. (C.8)

Since 𝑏(𝑤, 𝑧) = −𝑞(𝑧) and 𝑞(𝑧) ∈ 𝔪, one has 𝑏(𝑤, 𝑧) = 0 so that 𝑧 ∈ 𝐻, and

similarly 𝑧 ∈ 𝐻
′
. But then, by the above argument, 𝑏(𝑧, 𝑦) = 0 for all 𝑦 ∈ 𝑍0 and
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hence 𝑏(𝑧,𝑍) = 0 since the complement of two hyperplanes generates the entire
vector space. Since 𝑤′ = 𝑤 + 𝑧, this implies 𝐻 = 𝐻′ (by the definition of 𝐻 and 𝐻′)
and so every vector of 𝑍 either belongs to 𝐻 ∩𝐻′ = 𝐻 or to 𝑍0 = 𝑍 −𝐻, yielding
𝑞(𝑍) = 0 by (C.8). This contradicts (C.3). So 𝑞 |𝑍0

is not identically zero.

Next, suppose that (C.4) holds (and 𝑞 |𝑍0
= 0), so in particular 𝑘 = 𝔽2. Assum-

ing that 𝑥, 𝑦 ∈ 𝑍 ∩ (𝑍)⊥, then (C.8) still holds. From the definition of 𝐻 and 𝐻′ it

follows that 𝐻 ∩ 𝑍
⊥
= 𝐻′ ∩ 𝑍

⊥
. So every vector from 𝑍

⊥
either belongs to 𝐻 ∩𝐻′

or to 𝑍0 and, as before, 𝑞 is identically zero on 𝑍
⊥
which contradicts (C.4).

Step 2: induction. Now assume 𝑟 > 1. We choose a basis 𝑾 = {𝑤1, . . . ,𝑤𝑟} for
𝑊. By assumption (C.1), and Lemma C.1.1 there are vectors 𝑧1, . . . , 𝑧𝑟 in 𝑍 such
that 𝑏(𝑤𝑖 , 𝑧𝑗) = 𝛿𝑖𝑗 . These span a subspace 𝐻 ⊂ 𝑍 and 𝑍 = 𝐻 ⊕ 𝐻′, 𝐻′ = 𝑍 ∩𝑊⊥.
Moreover, {𝑧1, . . . , 𝑧𝑟} is a basis of 𝑍 modulo 𝐻′. By induction, 𝑡 restricted to the
span of the vectors 𝑤1, . . . ,𝑤𝑟−1 extends as a product 𝑠 of reflections in vectors
of 𝑍 (by assumption (C.3) or (C.4)). Replacing 𝑡 with 𝑠−1𝑡 we then may assume
that 𝑡(𝑤𝑖) = 𝑤𝑖 for 𝑖 = 1, . . . , 𝑟 − 1. This implies that for all 𝑤 ∈ 𝑊 one has
𝑏(𝑡(𝑤) − 𝑤,𝑤𝑖) = 𝑏(𝑡(𝑤), 𝑡(𝑤𝑖)) − 𝑏(𝑤,𝑤𝑖) = 0, 𝑖 = 1, . . . , 𝑟 − 1. In particular,
𝑡(𝑤𝑟) − 𝑤𝑟 is perpendicular to 𝑤1, . . . ,𝑤𝑟−1. Adding a suitable multiple of 𝑧𝑟 to
𝑡(𝑤𝑟) − 𝑤𝑟 we obtain an element in 𝑊⊥ ∩ 𝑍. So 𝑡(𝑤𝑟) − 𝑤𝑟 ∈ 𝑍0 := 𝑅 · 𝑧𝑟 +𝐻′ and
hence

𝑡(𝑤) − 𝑤 ∈ 𝑍0 for all 𝑤 ∈ 𝑊. (C.9)

The idea now is to replace 𝑊,𝑊′,𝑍 with 𝑊0 := 𝑅 · 𝑤𝑟, 𝑊
′
0 = 𝑅 · 𝑡(𝑤𝑟) and 𝑍0.

By (C.9) the condition (C.2) holds for 𝑊0 and 𝑍0. Clearly, (C.1) holds for 𝑊0 and
𝑍0. It also holds for 𝑊′

0 and 𝑍0 as we see as follows. First of all, (C.1) holds for
𝑡(𝑊) = 𝑊′ by assumption, and so there exists 𝑧′ ∈ 𝑍 with 𝑏(𝑡(𝑤𝑟), 𝑧′) = 1 while 𝑧′

is perpendicular to 𝑡(𝑤𝑖) = 𝑤𝑖, 𝑖 = 1, . . . , 𝑟 − 1. On the other hand 𝑧′ − 𝑏(𝑧′𝑟,𝑤𝑟)𝑧𝑟
belongs to 𝑍 and is orthogonal to 𝑤𝑟 (and hence to all 𝑤𝑗) and so belongs to
𝐻′ = 𝑍 ∩𝑊⊥. In other words, 𝑧′ ∈ 𝑍0 and 𝑏(𝑧′, 𝑡(𝑤𝑟)) = 1.

If the remaining conditions would hold, then by the argument for 𝑟 = 1, the
linear map 𝑡 would extend to an isometry of 𝑉 inducing the identity on 𝑍⊥

0 ⊃ 𝑍⊥.
Since 𝑧𝑟 and 𝐻′ = 𝑍 ∩𝑊⊥ are orthogonal to 𝑤1, . . . ,𝑤𝑟−1 it would then follow that
𝑡 = id on the span of 𝑤1, . . . ,𝑤𝑟−1 and so is an extension of 𝑡 which is a product of
reflections in vectors in 𝑍0 ⊂ 𝑍.

So, if in addition either (C.3) or (C.4) holds (but now for 𝑍0 which requires
adapting the basis for 𝑊 from which the vectors 𝑧1, . . . , 𝑧𝑟 were constructed), the
result would follow. Hence we are left to show that either (C.3) or (C.4) hold in
the present situation.

By the original assumption (C.3), respectively (C.4) for 𝑍, there is a vector

𝑥 ∈ 𝑍, respectively 𝑥 ∈ 𝑍
⊥
with 𝑞(𝑥) ≠ 0. In the second case we are done since

𝑍⊥
0 ⊃ 𝑍⊥. In the first case we choose a vector 𝑧𝑟 ∈ 𝑍 −𝐻

′
in such a way that 𝑥 ∈

𝑘·𝑧𝑟+𝐻
′
= 𝑍0. We show now that another basis𝑾 for𝑊 can be constructed so that

the above argument still applies. First, observing that dim(𝑍/𝑍0) = 𝑟 − 1, choose
𝑧𝑗 , 𝑗 = 2, . . . , 𝑟 so that {𝑧1, . . . , 𝑧𝑟} is a basis of 𝑍 modulo 𝑍0. Representing vectors
𝑧1, . . . , 𝑧𝑟 give a basis for 𝑍 modulo 𝑍0. Then for 𝑾 we take the basis {𝑤1, . . . ,𝑤𝑟}
of 𝑊 dual to {𝑧1, . . . , 𝑧𝑟}. Leaving 𝐻′ unchanged, the previous argument now
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applies to 𝐻 = span(𝑧1, . . . , 𝑧𝑟), and the new basis 𝑾.
Disposing of condition (C.3), respectively (C.4). We enlarge 𝑉 to 𝑉 := 𝑉⦹𝑈,
where 𝑈 is a hyperbolic plane over 𝑅, say with standard basis {𝑒,𝑓}, 𝑞(𝑒) = 𝑞(𝑓) =
0, 𝑏(𝑒,𝑓) = 1. Since 𝑞(𝑒 + 𝑓) = 1 either (C.3) or (C.4) holds with respect to
𝑍 := 𝑍 ⦹ 𝑅 · (𝑒 + 𝑓). Setting 𝑊 := 𝑊 ⦹ 𝑅 · 𝑒, 𝑊′ := 𝑊′ ⦹ 𝑅 · 𝑒, (C.1) and (C.2)
hold for the triple (𝑊,𝑊′,𝑍). We apply the previous argument in this setting to
𝑡′ = 𝑡 + id𝑅·𝑒. We get an extension �̃�′ which leaves 𝑒 invariant. Since 𝑏(𝑍, 𝑒 −𝑓) = 0,
it also leaves 𝑒 − 𝑓 and hence the summand 𝑈 invariant. Then �̃�′ has the shape
�̃�⦹ id𝑈 so that �̃� is the desired extension of 𝑡. □

We shall next use Proposition C.1.2 to extend the Cartan–Dieudonné theo-
rem 7.2.4 to quadratic inner product spaces over local rings where 2 is not invert-
ible.

Theorem C.1.4 (Cartan–Dieudonné over local rings). Every isometry of a quadratic
inner product space (𝑉, 𝑞) over a local ring (𝑅,𝔪) is a product of hyperplane re-
flections, except if 𝑘 = 𝑅/𝔪 = 𝔽2, rank(𝑉) = 4 with quadratic form isometric to
𝑥2 + 𝑥𝑦 + 𝑦2 + 𝑢2 + 𝑢𝑣 + 𝑣2 or if 𝑘 = 𝑅/𝔪 = 𝔽2, rank(𝑉) = 2.

Proof. If 𝑘 ≠ 𝔽2 the result follows from Corollary C.1.3 (take 𝑊 = 𝑊′ = 𝑍 = 𝑉)
and so we may assume that 𝑘 = 𝔽2. With 𝑡 an isometry, we distinguish several
cases:
Case 1: There exists 𝑥 ∈ 𝑉 with 𝑞(𝑥) ∉ 𝔪 and such that 𝑡(𝑥) = 𝑥. Since
𝑞(𝑥) ∉ 𝔪 the submodule 𝑅 · 𝑥 is free and hence 𝑉 = 𝑅 · 𝑥 ⊕ 𝑊 for some free
submodule 𝑊. We can apply Proposition C.1.2 to 𝑡 |𝑊 , 𝑊′ := 𝑡(𝑊) and 𝑍 := 𝑥⊥

since first of all 𝑡 restricts to 𝑡 : 𝑍
�−→ 𝑍 since 𝑡(𝑥) = 𝑥. Secondly the condition that

𝛽𝑊 (𝑍) = 𝑊∗ is satisfied since any functional on 𝑊 can be extended by defining it
to be zero on 𝑥, and the resulting element 𝑢 ∈ 𝑉 that represents this functional
evidently belongs to 𝑍. Similarly 𝛽𝑊′ (𝑍) = (𝑊′)∗ since 𝛽𝑊 (𝑧) = 𝑡∗◦𝛽𝑊′ ◦𝑡(𝑧), 𝑧 ∈ 𝑍,
so that surjectivity of 𝛽𝑊 : 𝑍 → 𝑊∗ implies surjectivity of 𝛽𝑊′ : 𝑍 → (𝑊′)∗.

Since 𝑥 ∈ 𝑍
⊥
and 𝑞(𝑥) ≠ 0, (C.4) applies. So there exists a product of reflections

of vectors in 𝑍 which extends 𝑡 |𝑊 . Such reflections leave 𝑍⊥ = 𝑅𝑥 invariant and so
𝑡 itself is a product of reflections.
Case 2: No vector 𝑥 ∈ 𝑉 with 𝑞(𝑥) ∉ 𝔪 is left invariant by 𝑡. The idea is to
search for a product �̃� of reflections so that �̃�(𝑥) = 𝑡(𝑥), where 𝑥 is any vector with
𝑞(𝑥) ∉ 𝔪. If such �̃� exists, �̃�−1◦𝑡 leaves 𝑥 invariant and Case 1 shows that it is a
product of reflections, and hence so is 𝑡. Such �̃� exists by Proposition C.1.2 applied
to (𝑊 = 𝑅 ·𝑥,𝑊′ = 𝑅 · 𝑡(𝑥),𝑍) if a submodule 𝑍 ⊂ 𝑉 exists satisfying the conditions
(C.1), (C.2), (C.4) required to apply this proposition to 𝑡𝑊 . Such a submodule can
be found as follows. Take any 𝑦 ∈ 𝑉 with 𝑞(𝑦) ∉ 𝔪 and provisionally set

𝑍 := 𝑦⊥ +𝔪 · 𝑉.

Reducing mod 𝔪 shows that 𝑍 = 𝑦⊥ and so 𝑦 belongs to 𝑍
⊥
and since 𝑞(𝑦) ≠ 0,

condition (C.4) holds. Now observe that condition (C.2), reading 𝑡(𝑥) − 𝑥 ∈ 𝑍 can
be phrased as

𝑦 ∈ 𝐻 = [𝑡(𝑥) − 𝑥]⊥ ⊂ 𝑉.
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Next, condition (C.1) stating in this case that 𝑏(𝑥,𝑍) = 𝑏(𝑡(𝑥),𝑍) = 𝑅 translates

as 𝑏(𝑥,𝑍) = 𝑘 = 𝔽2 and similarly for 𝑡(𝑥). Since 𝑍 = 𝑦⊥, the vanishing of 𝑏(𝑥, 𝑦⊥)
would be equivalent to 𝑥 ∈ (𝑦⊥)⊥ = 𝔽2 · 𝑦, and so we need 𝑦 ≠ 𝑥, and similarly we
need 𝑡(𝑥) ≠ 𝑦.

Summarizing, conditions (C.1), (C.2) (C.4) hold if we can find a non-isotropic

𝑦 ∈ 𝐻 = [𝑡(𝑥) − 𝑥]⊥ distinct from 𝑥 and from 𝑡(𝑥). Since 𝐻 may or may not
contain the non-isotropic vectors 𝑥 or 𝑡(𝑥), this is possible if 𝐻 contains more than
2 non-isotropic vectors.

Observe that since 𝑞 is unimodular, 𝑉 ≃ ⦹𝑚𝑈𝑘 or 𝑉 ≃ ⦹𝑚𝑈𝑘 ⦹ 𝑉𝑘, where
𝑉𝑘 is represented by the form 𝑥2 + 𝑥𝑦 + 𝑦2 (see e.g. Theorem 8.3.3). Note that
𝐻 = 𝑉 or 𝐻 is a hyperplane in 𝑉, and so for the count we may assume that
𝐻 is a hyperplane, say 𝐻 = ℎ⊥. If ℎ is isotropic, then we may assume that ℎ
belongs to some summand 𝑈𝑘 (here we use Witt’s extension theorem C.1.3 and
the fact that 𝑉𝑘 does not contain isotropic vectors). If ℎ is not isotropic, then
again by Corollary C.1.3 we may assume that ℎ belongs to some summand 𝑈𝑘

or to the summand 𝑉𝑘 (in the second case). Hence either 𝑞 |𝐻 ≃ ⦹𝑚−1𝑈𝑘 ⦹ ⟨1⟩,
𝑞 |𝐻 ≃ ⦹𝑚−1𝑈𝑘 ⦹ ⟨0⟩ (in the first case), 𝑞 |𝐻 ≃ ⦹𝑚𝑈𝑘 ⦹ ⟨1⟩, 𝑞 |𝐻 ≃ ⦹𝑚𝑈𝑘 ⦹ ⟨0⟩ (in
the second case). Then by the results of Section 16.3, the number of non-isotropic
vectors on 𝐻 is at least 22𝑚−3, dim𝑉 = 2𝑚. So, if 𝑚 ≥ 3 we can find 3 non-isotropic
vectors.

In case dim𝑉 = 4 we can easily see that only if 𝑉 = ⊕2𝑈𝑘 and 𝐻 is such that
𝑞 |𝐻 ≃ 𝑈𝑘 ⦹ ⟨0⟩, there are precisely 2 non-isotropic vectors. This can indeed occur:
take 𝐻 the diagonal in ⦹2𝑈𝑘. Since ⦹2𝑈𝑘 ≃ ⦹2𝑉𝑘 (this follows like equation (I)
in Appendix C.3.A), we can apply the observation of Example 7.2.6.1: exchanging
the two summands (an obvious isometry) is not a product of reflections. □

C.2 Index Invariants for Torsion Forms

We present the material from [156, Ch.III] on invariants for torsion forms which is used

in § C.3.A to refine the normal form classification in the 2-primary case.

Generalized Gauss Sums. Let (𝐺, 𝑞) be a non-degenerate quadratic torsion
group. The invariant 𝜏8 (𝑞) is the mod 8 index of a non-degenerate integral
quadratic lattice of which 𝑞 is the discriminant form. We saw in Section 12.2 that
this is a well-defined invariant. In this section we discuss an alternative approach
to the index modulo 8 which is based on Gauss sums of the form

𝛾(𝐺,𝑞) :=
1√︁
|𝐺 |

∑︁
𝑥∈𝐺

exp(2𝜋𝒊𝑞(𝑥)) ∈ ℂ.

This obviously is an invariant of (𝐺, 𝑞). It figures in the following result which is
equivalent to Corollary 12.2.4:
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Theorem C.2.1 (Milgram). Let 𝐿 be a non-degenerate integral quadratic lattice

with discriminant form (𝐺, 𝑞). Then 𝛾(𝐺,𝑞) = 𝜌
𝜏8 (𝑞)
8 , 𝜌8 = exp(2𝜋𝒊/8).1

There are further generalized Gauss sum invariants for possibly degenerate
quadratic forms 𝑞 on a finite Abelian group 𝐺, namely

𝛾(𝐺,𝑞) (𝑓) =
1√︁
|𝐺 |

∑︁
𝑥∈𝐺

exp 2𝜋𝒊 (𝑓◦𝑞(𝑥)) ,

which involve a ℤ-homomorphism 𝑓 : ℚ/ℤ → ℚ/ℤ. Taking for 𝑓 the identity we
get back the invariant 𝛾(𝐺,𝑞) . If 𝑓 is multiplication with an integer 𝑁, then 𝑁 · 𝑞 is
also a torsion quadratic form, but, even if 𝑞 is non-degenerate, the new form 𝑁 · 𝑞
can be a degenerate quadratic form.

The basic properties of Gauss sums for possibly degenerate quadratic forms
are:

Proposition C.2.2. (1) If 𝜄 : (𝐺, 𝑞) ≃ (𝐺′, 𝑞′) is an isometry of torsion quadratic
forms and 𝑓,𝑓′ : ℚ/ℤ → ℚ/ℤ homomorphisms for which 𝑓′◦𝑞′◦𝜄 = 𝑓◦𝑞, then
𝛾(𝐺′,𝑞′) (𝑓′) = 𝛾(𝐺,𝑞) (𝑓).
(2) Let (𝐺, 𝑞) = (𝐺′, 𝑞′) ⦹ (𝐺′′, 𝑞′′), then for all homomorphisms 𝑓 : ℚ/ℤ → ℚ/ℤ
one has 𝛾(𝐺,𝑞) (𝑓) = 𝛾(𝐺′,𝑞′) (𝑓) · 𝛾(𝐺′′,𝑞′′) (𝑓).
(3) If 𝐻 is a totally isotropic subgroup of (𝐺, 𝑞) then 𝛾(𝐺,𝑞) =

√︁
|𝐻 | 1√

|𝐺/𝐻⊥ |
·𝛾(𝐻⊥/𝐻, 𝑞).

If, moreover, (𝐺, 𝑞) is non-degenerate, then 𝛾(𝐺,𝑞) = 𝛾(𝐻⊥/𝐻, 𝑞).

(4) The quotient group2 𝐺 = 𝐺/rad(𝑞) with induced quadratic form 𝑞 satisfies

𝛾(𝐺,𝑞) (𝑓) =
√︁
| rad(𝑞) | · 𝛾(𝐺,𝑞) (𝑓) for every homomorphism 𝑓 : ℚ/ℤ → ℚ/ℤ..

(5) Suppose that rad(𝑞) ≠ 𝐺⊥, then 𝛾(𝐺,𝑞) (= 𝛾(𝐺,𝑞) (id)) = 0.

Proof. (1) is clear since one sums the complex numbers exp 2𝜋𝒊 (𝑓◦𝑞(𝑥)) over all
𝑥 ∈ 𝐺, and 𝜄 translates this into summing the complex numbers exp 2𝜋𝒊 (𝑓′◦𝑞′(𝑥′)),
𝑥′ ∈ 𝐺′.
(2) This follows since |𝐺 | = |𝐺′ | · |𝐺′′ | and 𝑞(𝑥+𝑦) = 𝑞(𝑥)+𝑞(𝑦)+𝑏(𝑥, 𝑦) = 𝑞(𝑥)+𝑞(𝑦)
if 𝑥 ∈ 𝐺′, 𝑦 ∈ 𝐺′′.
(3) Let 𝑏 be the polar form of 𝑞. Choose a complete set {𝑥1, . . . ,𝑥𝑚} of 𝑚 = |𝐺/𝐻 |
representatives for 𝐺/𝐻, such that the set {𝑥1, . . . ,𝑥𝑚} ∩ 𝐻⊥ is a complete set of
representatives for 𝐻⊥/𝐻, and sum over 𝑥𝑗 + 𝑦, 𝑗 = 1, . . . ,𝑚, 𝑦 ∈ 𝐻. This gives

𝛾(𝐺,𝑞) =
1√︁
|𝐺 |

·
∑︁
𝑥𝑗

exp
(
2𝜋𝒊𝑞(𝑥𝑗)

)
·
∑︁
𝑦∈𝐻

exp
(
2𝜋𝒊𝑏(𝑥𝑗 , 𝑦)

)
.

The (restricted) adjoint map 𝐺 → Hom(𝐻,ℚ/ℤ) sending 𝑥𝑗 to 𝑏(𝑥𝑗 ,−)|𝐻 is the
zero map if and only if every 𝑥𝑗 ∈ 𝐻⊥. In that case

∑
𝑦∈𝐻 exp

(
2𝜋𝒊𝑏(𝑥𝑗 , 𝑦)

)
=

|𝐻 |. Otherwise, 𝑏(𝑥𝑗 ,𝐻) is a torsion subgroup of ℚ/ℤ, say of order 𝑚, and∑
𝑦∈𝐻 exp

(
2𝜋𝒊𝑏(𝑥𝑗 , 𝑦)

)
is a sum over all 𝑚-th roots of unity, each counted |𝐻 |/𝑚

1A nice short proof of Milgram’s theorem can be found in [151, Appendix 4].
2Recall that the radical rad(𝑞) is the subgroup of the null-space 𝐺⊥ of the polar form of 𝑞 on

which 𝑞 is identically zero.
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times, and hence contributes zero. In other words, using |𝐺/𝐻 | = |𝐺/𝐻⊥ | · |𝐻⊥/𝐻 |,
we find

𝛾(𝐺,𝑞) =
1√︁
|𝐺 |

· |𝐻 | ·
∑︁

𝑥𝑗∈𝐻⊥
exp

(
2𝜋𝒊𝑞(𝑥𝑗)

)
=

√︁
|𝐻 | · 1√︁

|𝐺/𝐻 |
·

∑︁
𝑥𝑗∈𝐻⊥

exp
(
2𝜋𝒊𝑞(𝑥𝑗)

)
=

√︁
|𝐻 | 1√︁

|𝐺/𝐻⊥ |
· 𝛾(𝐻⊥/𝐻,𝑞) .

In the non-degenerate situation one has |𝐻 | = |𝐺/𝐻⊥ | and the last assertion of (3)
follows.
(4) Clearly, rad(𝑞) is isotropic for the quadratic form 𝑓◦𝑞 on 𝐺 while (rad(𝑞))⊥ = 𝐺.
But then, by (3),

𝛾(𝐺,𝑞) (𝑓) = 𝛾(𝐺,𝑓◦𝑞) =
√︁
| rad(𝑞) | · 𝛾(𝐺,𝑓◦𝑞) =

√︁
| rad(𝑞) | · 𝛾(𝐺,𝑞) (𝑓).

(5) By (4) we may assume that rad(𝑞) = 0. Now 𝐺 = 𝐺⊥⦹𝐻 for any supplement 𝐻
of 𝐺⊥ in 𝐺, and so by (2) it suffices to show that 𝛾(𝐺⊥,𝑞) = 0. We first show that 𝐺⊥

has only one non-zero element 𝑥 ∈ 𝐺⊥. If 𝑥 would be 2-divisible, say 𝑥 = 2𝑦, then
𝑞(2𝑥) = 4𝑞(𝑥) = 2𝑏(𝑦, 𝑦) = 𝑏(𝑥, 𝑦) = 0 and 𝑥 ∈ rad(𝑞), contrary to assumption.
Now observe that 𝑞 : 𝐺⊥ → ℚ/ℤ is additive, since 𝑞(𝑢 + 𝑣) = 𝑞(𝑢) + 𝑞(𝑣) + 𝑏(𝑢, 𝑣) =
𝑞(𝑢) + 𝑞(𝑣) for all 𝑢, 𝑣 ∈ 𝐺⊥. Hence 4𝑞(𝑥) = 𝑞(2𝑥) = 𝑞(𝑥 +𝑥) = 2𝑞(𝑥) and 𝑞(𝑥) ≡ 1

2
(mod Z). If 𝑥′ ∈ 𝐺⊥ is also a non-zero element, we find 𝑞(𝑥 − 𝑥′) = 0 and so,
𝑥 = 𝑥′ since rad(𝑞) = 0. In other words 𝐺⊥ = {0,𝑥} and exp(2𝜋𝒊𝑞(0)) = 1 while
exp(2𝜋𝒊𝑞(𝑥)) = −1. □

Calculating Index Invariants. Viewing powers 𝑝ℓ as homomorphisms from
ℚ/ℤ → ℚ/ℤ, the Gauss sums lead to generalized index invariants 𝛾(𝐺,𝑞) (𝑝ℓ) for
𝑝-primary torsion forms. We calculate their values on the basic building blocks
⟨𝑢 · 𝑝−𝑘⟩, 𝑢 a unit mod 𝑝, 𝑢𝑘, 𝑣𝑘:

Proposition C.2.3. (1) Let 𝑝 be a prime and 𝐺 = ℤ/𝑝𝑘ℤ, 𝑘 ≥ 1. Then

𝛾(𝐺,⟨𝑢·𝑝−𝑘⟩) (𝑝ℓ) =


𝑝𝑘/2 if ℓ > 𝑘

𝑝ℓ/2 if ℓ = 𝑘, 𝑝 ≠ 2

0 if ℓ = 𝑘, 𝑝 = 2

𝑝ℓ/2 · 𝛾(𝐺,⟨𝑢·𝑝−(𝑘−ℓ⟩) if ℓ < 𝑘

(2) For 𝑢𝑘, 𝑣𝑘, 𝐺 = ℤ/2𝑘ℤ ⊕ ℤ/2𝑘ℤ, we have

𝛾(𝐺,𝑢𝑘) (2ℓ) =
{
2𝑘 if ℓ ≥ 𝑘

2ℓ · 𝛾(𝐺,𝑢𝑘−ℓ) if ℓ < 𝑘
and 𝛾(𝐺,𝑣𝑘) (2ℓ) =

{
2𝑘 if ℓ ≥ 𝑘

2ℓ · 𝛾(𝐺,𝑣𝑘−ℓ) if ℓ < 𝑘

Proof. (1) The form 𝑞′ = 𝑝ℓ⟨𝑢 · 𝑝−𝑘⟩ is identically zero if ℓ > 𝑘, and so by Propo-

sition C.2.2.4, 𝛾(𝐺,𝑞′) =
√︁
|𝐺 | = 𝑝𝑘/2.
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Let 𝑒 generate the cyclic group ℤ/𝑝𝑘ℤ. For 𝑝 odd and ℓ < 𝑘, one has (𝐺, 𝑞′)⊥ =

rad(𝑞′) = ⟨𝑝𝑘−ℓ · 𝑒⟩, and the induced form on 𝐺/(𝐺, 𝑞′)⊥ ≃ ℤ/𝑝𝑘−ℓℤ is given by
𝑥 ↦→ 1

2 · 𝑢 · 𝑝ℓ−𝑘𝑥2. The same argument holds for 𝑝 = 2 and ℓ < 𝑘.
Finally, if 𝑝 = 2 and 𝑘 = ℓ, rad(𝑞′) ⊊ (𝐺, 𝑞′)⊥ and so by Proposition C.2.2(5)

we get 𝛾(𝐺,𝑞′) = 0 in this case.
(2) The proof is similar to (1), but here for ℓ < 𝑘 one has 𝐺⊥ = rad(𝑞) ≃ ℤ/2ℓℤ ⊕
ℤ/2ℓℤ. □

Let 𝐺 = ⦹𝑗𝐻𝑗 with 𝐻𝑗 homogeneous 𝑝-primary of exponent 𝑗 and length 𝑟𝑗 .
The above calculations suggest to introduce

Definition C.2.4. 𝜌𝐺 (ℓ) =
∑

𝑗≤ℓ 𝑗 · 𝑟𝑗 + ℓ ·
∑

𝑗>ℓ 𝑟𝑗 , 𝜎ℓ (𝐺, 𝑞) = 𝛾(𝐺,𝑞) (𝑝ℓ) ·𝑝− 1
2
𝜌𝐺 (ℓ) .

Corollary C.2.5. (1). Let 𝑝 be a prime and 𝐺 = ℤ/𝑝𝑘ℤ. Then

𝜎ℓ (𝐺, ⟨𝑢 · 𝑝−𝑘⟩) =


1 if ℓ > 𝑘

1 if ℓ = 𝑘, 𝑝 ≠ 2

0 if ℓ = 𝑘, 𝑝 = 2

𝛾(𝐺,⟨𝑢·𝑝−(𝑘−ℓ⟩) if ℓ < 𝑘.

(2) For 𝑢𝑘, 𝑣𝑘, 𝐺 = ℤ/2𝑘ℤ ⊕ ℤ/2𝑘ℤ, we have

𝜎ℓ (𝐺,𝑢𝑘) =
{
1 if ℓ ≥ 𝑘

𝛾(𝐺,𝑢𝑘−ℓ) if ℓ < 𝑘
and 𝜎ℓ (𝐺, 𝑣𝑘) =

{
1 if ℓ ≥ 𝑘

𝛾(𝐺,𝑣𝑘−ℓ) if ℓ < 𝑘.

Table C.2.1: Values of 𝜎ℓ (𝑞).

𝑝 odd, 𝑞 = ⟨𝑢 · 𝑝−𝑘⟩
(
𝑢
𝑝

)
𝑘 − ℓ > 0 even 𝑘 − ℓ > 0 odd ℓ = 𝑘 ℓ > 𝑘

𝑝 ≡ 1 mod 8 1 1 1 1 1
−1 1 −1 1 1

𝑝 ≡ −1 mod 8 1 1 𝒊 1 1
−1 1 −𝒊 1 1

𝑝 ≡ 3 mod 8 1 1 −𝒊 1 1
−1 1 𝒊 1 1

𝑝 ≡ −3 mod 8 1 1 −1 1 1
−1 1 1 1 1

𝑝 = 2 𝑢 mod 8 𝑘 − ℓ > 0 even 𝑘 − ℓ > 0 odd ℓ = 𝑘 ℓ > 𝑘

𝑞 = ⟨𝑢 · 2−𝑘⟩ 1 𝜌8 𝜌8 0 1
−1 −𝜌38 −𝜌38 0 1
3 𝜌38 −𝜌38 0 1
−3 −𝜌8 𝜌8 0 1

𝑞 = 𝑢𝑘 1 1 1 1
𝑞 = 𝑣𝑘 1 −1 1 1

Table C.2.1 has been established using the tables from Propositions 12.3.2 and
12.3.3 for the index modulo 8.
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C.3 Normal Forms for 2-Primary Torsion Quadratic Forms

We present some of the material from [156, Ch.IV] on the normal form classification for

2-primary torsion forms. The results of the first section below are used in the main body

of the book.

C.3.A The homogeneous case. For 𝑝 odd, we gave the normal forms for (ho-
mogeneous) 𝑝-primary torsion forms in Section 11.1, but we did not give a unique
normal form in case 𝑝 = 2. Recall that the normal form decomposition we estab-
lished in Section 11.2 used the isometries I,II,III of Lemma 11.2.1. In Section 14.6
we also used another relation, relation IV. Here we shall prove these relations which
we state again for convenience.

As usual, there are similar relations for torsion quadratic forms where 2𝑘 is
replaced by 2−𝑘, 𝑈𝑘 and 𝑉𝑘 by 𝑢𝑘 and 𝑣𝑘. In what follows 𝑢,𝑢′,𝑢′′ are units in ℤ2.
Note that 𝑢𝑢′+𝑢𝑢′′+𝑢′𝑢′′ is a unit and can be checked to assume only the values 3
and −1 modulo 8. Further isometries involving lattices of different exponents are
stated as Lemma C.3.3.

𝑈𝑘 ⦹𝑈𝑘 ≃ 𝑉𝑘 ⦹ 𝑉𝑘, 𝑘 ≥ 0, (I)

(⟨𝑢⟩ ⦹ ⟨𝑢′⟩ ⦹ ⟨𝑢′′⟩)(2𝑘) ≃


𝑉𝑘 ⦹ ⟨(𝑢 + 𝑢′ + 𝑢′′) · 2𝑘⟩

in case 𝑢𝑢′ + 𝑢𝑢′′ + 𝑢′𝑢′′ ≡ 3 mod 8

𝑈𝑘 ⦹ ⟨(𝑢 + 𝑢′ + 𝑢′′) · 2𝑘⟩
in case 𝑢𝑢′ + 𝑢𝑢′′ + 𝑢′𝑢′′ ≡ −1 mod 8

𝑘 ≥ 0 (II)

(⟨𝑢⟩ ⦹ ⟨𝑢′⟩)(2𝑘) ≃ (⟨−3𝑢⟩ ⦹ ⟨−3𝑢′⟩)(2𝑘), 𝑘 ≥ 0 (III)

𝑈𝑘 ⦹ (⟨𝑢⟩ ⦹ ⟨𝑢′⟩)(2𝑘) ≃ 𝑉𝑘 ⦹ (⟨𝑢 − 2⟩ ⦹ ⟨𝑢′ + 2⟩)(2𝑘),𝑢 ≡ 𝑢′ mod 4, 𝑘 ≥ 1. (IV)

Proof. For the verifications that follow, we use base changes. In each case the
conditions are such that the proposed change of basis matrix is invertible in ℤ2. It
suffices to verify each relation for the smallest value of the integer 𝑘.
(I) Use 𝑉𝑘 (−1) ≃ 𝑉𝑘 by Lemma 10.1.2 and

𝐶
©«
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

ª®®®¬𝐶
T =

©«
2 1 0 0
1 2 0 0
0 0 −2 −1
0 0 −1 −2

ª®®®¬ , with 𝐶 =

©«
1 1 0 0
0 1 1 1
1 −1 −1 0
1 −1 0 −1

ª®®®¬ .
(II) First make a change of basis:

𝐶
©«
𝑢 0 0
0 𝑢′ 0
0 0 𝑢′′

ª®¬𝐶T =
©«
𝑢 + 𝑢′ + 𝑢′′ 0 0

0 𝑢(𝑢′)2 + 𝑢2𝑢′ 𝑢𝑢′𝑢′′

0 𝑢𝑢′𝑢′′ 𝑢(𝑢′′)2 + 𝑢2𝑢′′

ª®¬ ,
where 𝐶 =

©«
1 1 1
𝑢′ −𝑢 0
𝑢′′ 0 −𝑢

ª®¬. Since 𝑢,𝑢′,𝑢′′ are units, 𝑢(𝑢′)2 + 𝑢2𝑢′ and 𝑢(𝑢′′)2 +

𝑢2𝑢′′ are even, say 𝑢(𝑢′)2 + 𝑢2𝑢′ = 2𝑎 and 𝑢(𝑢′′)2 + 𝑢2𝑢′′ = 2𝑐 and 𝑢𝑢′𝑢′′ = 𝑏 is
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odd. So, by Lemma 10.1.2 the binary form with matrix

(
2𝑎 𝑏
𝑏 2𝑐

)
, which splits

off, is indecomposable. Moreover, it is isometric to 𝑈 if and only if 1
4 · 4𝑎𝑐 =

1
2

(
𝑢(𝑢′)2 + 𝑢2𝑢′

)
· 1
2

(
𝑢(𝑢′′)2 + 𝑢2𝑢′′

)
is even. Since a square of a unit is 1 modulo

8, we find
(
𝑢(𝑢′)2 + 𝑢2𝑢′

)
·
(
𝑢(𝑢′′)2 + 𝑢2𝑢′′

)
≡ 1 + (𝑢𝑢′ + 𝑢𝑢′′ + 𝑢′𝑢′′) mod 8. Hence,

in this setting 𝑎𝑐 is even if and only if 𝑢𝑢′ + 𝑢𝑢′′ + 𝑢′𝑢′′ ≡ −1 mod 8, which proves
the isometry for 𝑘 = 0.
(III) This uses that in 𝐷(ℤ2) we have 𝑢+4𝑢′ = 5𝑢 and so also 𝑢𝑢′(𝑢+4𝑢′) = 5𝑢2𝑢′ =
5𝑢′ which implies(

1 2
2𝑢′ −𝑢

) (
𝑢 0
0 𝑢′

) (
1 2𝑢′

2 −𝑢

)
=

(
𝑢 + 4𝑢′ 0

0 𝑢𝑢′(𝑢 + 4𝑢′)

)
≃

(
5𝑢 0
0 5𝑢′

)
,

which proves the relation for 𝑘 = 0.
(IV) We have

𝐶
©«
0 2 0 0
2 0 0 0
0 0 2𝑢 0
0 0 0 2𝑢′

ª®®®¬𝐶
T =

©«
4 2 0 0
2 2(𝑢 + 𝑢′) 0 0
0 0 2𝑎 𝑏
0 0 𝑏 2𝑐

ª®®®¬ , 𝐶 =

©«
1 1 0 0
0 1 1 1
−𝑢 𝑢 1 0
−𝑢′ 𝑢′ 0 1

ª®®®¬ ,
𝑎 = −2𝑢2 + 𝑢, 𝑏 = −4𝑢𝑢′, 𝑐 = −2(𝑢′)2 + 𝑢′.

To the matrix

(
𝑎 1

2𝑏
1
2𝑏 𝑐

)
we apply Lemma 10.1.2. So the corresponding form is

decomposable. Also 𝑎 = −2𝑢2 + 𝑢 ≡ 𝑢 − 2 mod 8, 𝑐 ≡ 𝑢′ − 2 so that

𝑑 = 𝑎𝑐 − 1

4
𝑏2 ≡ (𝑢 − 2) (𝑢′ − 2) − 4(𝑢𝑢′)2 ≡ 𝑢𝑢′ − 2(𝑢 + 𝑢′) mod 8.

But since 𝑢 ≡ 𝑢′ mod 4 we get

𝑎𝑑 ≡ (𝑢 − 2) (𝑢𝑢′ − 4𝑢′) ≡ 𝑢′ − 4 + 2𝑢𝑢′ ≡ 𝑢′ + 4 + 2𝑢2 ≡ 𝑢′ + 2 mod 8,

which shows the claim for 𝑘 = 1. □

For classification purposes one further invariant will be used, the reduced dis-
criminant 𝛿, introduced in Section 9.1.B. We recall that 𝛿 is a well defined integer
mod 8 if 𝑘 ≥ 2 and mod 4 in case 𝑘 = 1. We are now ready to establish a finer
normal form:

Proposition C.3.1. Let (𝐺, 𝑞) be a homogeneous 2-primary quadratic torsion
group of exponent 𝑘 and length ℓ(𝐺). Then
(1) 𝑞 ≃ 𝑤𝑘 ⦹𝑏 𝑣𝑘 ⦹𝑐 𝑢𝑘, where 𝑤𝑘 is an orthogonal direct sum of 𝑎 cyclic groups,
𝑎 ≤ 2, 𝑏 ≤ 1, 𝑐 = 1

2 (ℓ(𝐺) − 𝑎) − 𝑏, and where 𝑎 is an isometry invariant of 𝑞.
(2) If 𝑎 = 2, 𝑏 = 0, then 𝑤𝑘 is isometric to one of the following:

⟨2−𝑘⟩ ⦹ ⟨2−𝑘⟩, ⟨−2−𝑘⟩ ⦹ ⟨−2−𝑘⟩, with 𝛿(𝑞) = 1

⟨−2−𝑘⟩ ⦹ ⟨3 · 2−𝑘⟩, ⟨2−𝑘⟩ ⦹ ⟨−3 · 2−𝑘⟩ with 𝛿(𝑞) = −3
⟨2−𝑘⟩ ⦹ ⟨−2−𝑘⟩, with 𝛿(𝑞) = −1

⟨2−𝑘⟩ ⦹ ⟨3 · 2−𝑘⟩, with 𝛿(𝑞) = 3.
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(3) If 𝑎 = 2, 𝑏 = 1, one may assume that 𝑤𝑘 ⊕ 𝑣𝑘 is one of the following:

⟨2−𝑘⟩ ⦹ ⟨3 · 2−𝑘⟩ ⦹ 𝑣𝑘 with 𝛿(𝑞) = 1

⟨2−𝑘⟩ ⦹ ⟨−2−𝑘⟩ ⦹ 𝑣𝑘 with 𝛿(𝑞) = −3.

Proof. Since we proved the relations I–III,(1) follows from the discussion in Sec-
tion 11.2. To make further reductions, we use relation (III). To show (2), we use
relation (I) to eliminate 4 of the 10 possible decomposable length 2 quadratic tor-
sion groups of exponent 𝑘. Finally, (3) follows from relation (IV) since if one of
the first four possibilities of (2) comes with a copy of 𝑣𝑘, the copy of 𝑣𝑘 can be
exchanged with a copy of 𝑢𝑘. □

A normal form as in Proposition C.3.1 is called a reduced homogeneous
normal form . Such normal forms are collected in the following table.

Table C.3.1: Reduced homogeneous normal forms 𝑞 = ⦹𝑎 ⟨𝑢 · 2−𝑘⟩ ⦹
⦹𝑏𝑣𝑘 ⦹

1
2
(ℓ(𝐺)−𝑎)−𝑏 𝑢𝑘 for dyadic forms (𝐺, 𝑞), 𝐺 ≃ (ℤ/2𝑘ℤ)ℓ(𝐺) .

𝑞′ 𝑎 𝑏 ℓ(𝐺) mod 2 (−1) 1
2
(ℓ(𝐺)−𝑎)𝛿(𝑞) 𝜎𝑘−1 (𝑞)

⟨2−𝑘⟩ 1 0 1 1 𝜌8
⟨−3 · 2−𝑘⟩ ⦹ 𝑣𝑘 1 1 1 1 −𝜌8
⟨2−𝑘⟩ ⦹ ⟨−2−𝑘⟩ 2 0 0 1 1

⟨2−𝑘⟩ ⦹ ⟨3 · 2−𝑘⟩ ⦹ 𝑣𝑘 2 1 0 1 −1
⟨−3 · 2−𝑘⟩ 1 0 1 −3 𝜌8

⟨1 · 2−𝑘⟩ ⦹ 𝑣𝑘 1 1 1 −3 −𝜌8
⟨2−𝑘⟩ ⦹ ⟨3 · 2−𝑘⟩ 2 0 0 −3 1

⟨2−𝑘⟩ ⦹ ⟨−2−𝑘⟩ ⦹ 𝑣𝑘 2 1 0 −3 −1
⟨−2−𝑘⟩ 1 0 1 −1 −𝜌38

⟨3 · 2−𝑘⟩ ⦹ 𝑣𝑘 1 1 1 −1 𝜌38
⟨−2−𝑘⟩ ⦹ ⟨−2−𝑘⟩ 2 0 0 −1 −𝒊
⟨2−𝑘⟩ ⦹ ⟨2−𝑘⟩ 2 0 0 −1 𝒊

⟨3 · 2−𝑘⟩ 1 0 1 3 −𝜌38
⟨−2−𝑘⟩ ⦹ 𝑣𝑘 1 1 1 3 𝜌38

⟨−2−𝑘⟩ ⦹ ⟨3 · 2−𝑘⟩ 2 0 0 3 −𝒊
⟨2−𝑘⟩ ⦹ ⟨−3 · 2−𝑘⟩ 2 0 0 3 𝒊

Corollary C.3.2. Every 2-primary homogeneous quadratic form has a unique
reduced normal form given in Table C.3.1. For 𝑘 ≥ 2 these forms are mutually
non-isometric. For 𝑘 = 1 the forms with 𝛿 = 1,−3 with corresponding remaining
invariants are isometric and the same holds for forms with 𝛿 = −1, 3.

Proof. The reduced discriminant is multiplicative on homogeneous orthogonal sums
and this determines its value on the reduced normal forms. Note that ℓ(𝐺) − 𝑎
is even and half this number is the sum of the number of copies 𝑢𝑘 plus 𝑣𝑘. The
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contribution of the number of copies of 𝑢𝑘 to 𝛿 is therefore ±(−1) (ℓ(𝐺)−𝑎)/2 accord-
ing to whether 𝑏 = 0 or 𝑏 = 1. This implies that the contribution 𝛿′ to 𝛿 coming
from the summands under 𝑞′ in the table has to be multiplied with this factor. In
other words, ±𝛿′ · (−1) (ℓ(𝐺)−𝑎)/2 gives 𝛿. This explains the fifth column. Table C.2.1
can be used for the last column exhibiting 𝜎𝑘−1 which is likewise multiplicative on
orthogonal homogeneous sums.

The table then exhibits a complete set of invariants showing the various normal
forms are mutually non-isometric: forms with fixed reduced determinants 𝛿 are in
consecutive rows separated by double lines, 𝑎 is a distinguishing invariant and 𝜎𝑘−1
is then needed to distinguish forms with the same 𝛿 and 𝑎 .

Note that for 𝛿 = 1,−3 the remaining invariants are line by line the same and
likewise for 𝛿 = −1, 3. For 𝑘 = 1 the corresponding forms are the same which should
be the case since here 𝛿 is only well defined modulo 4. □

C.3.B The non-homogeneous case.

Further relations. In Section C.3.A we presented the relations (I)–(IV) which
are valid for homogeneous latices. As announced, there are further relations be-
tween non-homogeneous lattices:

Lemma C.3.3. Let 𝑢,𝑢′,𝑢′′ be units in ℤ2. Then the following relations hold
between non-homogeneous dyadic forms.

⟨𝑢 · 2𝑘−1⟩ ⦹𝑈𝑘 ≃ ⟨−3𝑢 · 2𝑘−1⟩ ⦹ 𝑉𝑘 for 𝑘 ≥ 1 (V)

𝑈𝑘−1 ⦹ ⟨𝑢 · 2𝑘⟩ ≃ ⟨3𝑢 · 2𝑘⟩ ⦹ 𝑉𝑘−1 for 𝑘 ≥ 1 (VI)

⟨𝑢 · 2𝑘−1⟩ ⦹ ⟨𝑢′ · 2𝑘⟩ ≃ ⟨(𝑢 + 2𝑢′) · 2𝑘−1⟩ ⦹ ⟨(𝑢′ + 2𝑢) · 2𝑘⟩ for 𝑘 ≥ 1, (VII)

(⟨𝑢⟩ ⦹ ⟨𝑢′⟩)(2𝑘−1) ⦹ ⟨2𝑘⟩ ≃ (⟨𝑢 + 2⟩ ⦹ ⟨𝑢′ − 2⟩)(2𝑘−1) ⦹ ⟨−3 · 2𝑘⟩ (VIII)

if 𝑢 ≡ 𝑢′ mod 4, 𝑘 ≥ 1.

⟨𝑢 · 2𝑘−2⟩ ⦹ ⟨𝑢′ · 2𝑘⟩ ≃ ⟨−3𝑢 · 2𝑘−2⟩ ⦹ ⟨−3𝑢′ · 2𝑘⟩, for 𝑘 ≥ 3. (IX)

Similar relations hold for their quadratic torsion forms, that is, for the 2-primary
quadratic torsion groups where the exponents 2𝑗 are replaced by 2−𝑗, and for 𝑢𝑘
and 𝑣𝑘 instead of 𝑈𝑘 and 𝑉𝑘, respectively.

Proof. (V). This uses the computation

©«
1 1 1
−2 𝑢 0
−2 0 𝑢

ª®¬ ©«
𝑢 0 0
0 0 2
0 2 0

ª®¬ ©«
1 −2 −2
1 𝑢 0
1 0 𝑢

ª®¬ =
©«
𝑢 + 4 0 0
0 22 · 𝑢 2(𝑢2 + 2𝑢)
0 2(𝑢2 + 2𝑢) 2 · 2𝑢

ª®¬ .
Since 𝑢 + 4 ≡ −3𝑢 mod 8 and using Lemma 10.1.2.2 for the second summand, the
claim follows for 𝑘 = 1.
(VI). This can be proved in a similar way, using the computation

©«
2 2 1
𝑢 0 −1
0 𝑢 −1

ª®¬ ©«
0 1 0
1 0 0
0 0 2𝑢

ª®¬ ©«
2 𝑢 0
2 0 𝑢
1 −1 −1

ª®¬ =
©«
2(𝑢 + 2) 0 0

0 2𝑢 𝑢2 + 2𝑢
0 𝑢2 + 2𝑢 2𝑢

ª®¬ .
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As in the proof of (V) this gives the result for 𝑘 = 1.
(VII). We have(

1 1
−2𝑢′ 𝑢

) (
𝑢 0
0 2𝑢′

) (
1 −2𝑢′
1 𝑢

)
=

(
𝑢 + 2𝑢′ 0

0 2(𝑢′𝑢2 + 2𝑢𝑢′2)

)
,

which gives the result since 𝑢2 ≡ (𝑢′)2 ≡ 1 mod 8.
(VIII). First, note that

©«
1 0 1
−2 0 𝑢
0 1 0

ª®¬ ©«
𝑢 0 0
0 𝑢′ 0
0 0 2

ª®¬ ©«
1 −2 0
0 0 1
1 𝑢 0

ª®¬ =
©«
𝑢 + 2 0 0
0 2(𝑢2 + 2𝑢) 0
0 0 𝑢′

ª®¬ .
Then use (VII) to see that ⟨2(𝑢2+2𝑢)⟩⦹⟨𝑢′⟩ is isometric to ⟨𝑢′+2𝑢2+4𝑢⟩⦹⟨2𝑢2+4𝑢+
4𝑢′⟩. Since 𝑢 ≡ 𝑢′ mod 4, we have 𝑢′+2𝑢2 +4𝑢 ≡ 𝑢′+2+4𝑢 ≡ 5𝑢′+2 ≡ 𝑢′−2 mod 8
and 2𝑢2 + 4𝑢 + 4𝑢′ ≡ 2 mod 8 ≡ −3 × 2 mod 8, so that this form is isometric to
⟨−3 · 2⟩ ⦹ ⟨𝑢′ − 2⟩, which proves the formula for 𝑘 = 1.
(IX). This uses(

1 1
−4𝑢′ 𝑢

) (
2𝑢 0
0 8𝑢′

) (
1 −4𝑢′
1 𝑢

)
=

(
2(𝑢 + 4𝑢′) 0

0 8𝑢𝑢′(𝑢 + 4𝑢′)

)
≃

(
2 · −3𝑢 0

0 8 · −3𝑢′
)
,

where we make changes by using different representations in 𝐷(ℤ2) of elements on
the diagonal. This completes the proof for 𝑘 = 3. □

Remark C.3.4. The relations (V)–(IX) from Lemma C.3.3 involving different ex-
ponents give further reductions of non-homogeneous forms whose homogeneous
summands are already in reduced normal form. These relations affect three con-
secutive exponents. Starting with the largest exponent and going down, this gives
a new reduced normal form as is shown in [156, Ch.4.4]. Furthermore, as a conse-
quence, every 2-primary quadratic torsion form and every quadratic dyadic lattice
has a reduced normal form and no two such forms are isometric.
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[128] Kondō, S. Niemeier lattices, Mathieu groups, and finite groups of symplectic
automorphisms of K3 surfaces. Duke Math. J. 92 (1998), 593–603. 373, 405
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Boston, MA, 1983. 361

[166] Namikawa, Y. Periods of Enriques surfaces. Math. Ann. 270, 2 (1985),
201–222. 419

[167] Niemeier, H.-V. Definite quadratische Formen der Dimension 24 und
Diskriminante 1. J. Number Theory 5 (1973), 142–178. 55, 58

[168] Nikulin, V. V. Kummer surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 39, 2
(1975), 278–293, 471. v, 2, 142, 388, 405

[169] Nikulin, V. V. Finite groups of automorphisms of Kählerian K3 surfaces.
(Russian). Trudy Moskov. Mat. Obshch. 38 (1979), 75–137. v, 142, 275, 351,
375, 376, 379, 404, 405

[170] Nikulin, V. V. Quotient-groups of groups of automorphisms of hyperbolic
forms of subgroups generated by 2-reflections. (russian). Dokl. Akad. Nauk
SSSR 248, 6 (1979), 1307–1309. v, 323, 365

[171] Nikulin, V. V. Integral symmetric bilinear forms and some of their geo-
metric applications. Math. USSR Izv. Integral symmetric bilinear forms and
some of their geometric 49, 4 (1980), 103–167. v, 1, 4, 30, 47, 48, 58, 216,
229, 232, 237, 240, 242, 280, 291

[172] Nikulin, V. V. On quotient groups of the automorphism groups of hyper-
bolic forms by the subgroups generated by 2-reflections. algebraic-geometric
applications. In Current problems in mathematics, vol. 18. Akad. Nauk SSSR,
Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981, pp. 3–114. v,
312, 313, 314, 320, 323, 365, 405, 415, 419

[173] Nikulin, V. V. Description of automorphism groups of Enriques surfaces.
(Russian). Dokl. Akad. Nauk SSSR 227 (1984), 1324–1327. v, 418, 419

[174] Oguiso, K. On Jacobian fibrations on the Kummer surfaces of the product
of nonisogenous elliptic curves. J. Math. Soc. Japan 41, 4 (1989), 651–680.
384

[175] Ogus, A. Supersingular K3 crystals. In Journées de Géométrie Algébrique
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— on reflections, 164
Cartan–Leray spectral sequences, 432
characteristic element, 60
class number of a genus, 51
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geometric —, 434
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invariant, 69, 205
principle, 47, 69, 77

Hasse–Minkowski theorem, 77
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Hilbert

product formula, 428
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Hirzebruch surface, 438
Hodge

decomposition, 434
index theorem for surfaces, 436
numbers, 434
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structure of K3 type, 443
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plane, 70, 152, 153
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hyperbolic plane, 17
hyperplane reflection, 26, 158
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of a sublattice, 18
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index theorem, 435
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quadratic form, 19
quadratic lattice, 19

intersection form, 64
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forms, 145
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— of lattices, 25
group, 157
of 𝑅-modules, 145
of vector spaces, 17

isospectral tori, 56
isotropic

subspace, 20
totally —, 146
vector, 20, 73

isotropic torsion subgroup, 31

Jacobi inversion, 303
jacobian of a curve, 301
Jordan splitting, 200

𝐾-generic period point, 367
K3 lattice, 57
K3 surface, 438

𝑆-marking, 347
marking, 344
strong marking, 350

K3 type
Hodge structure of —, 443

Kähler
metric/form, 434

Kodaira dimension, 445
Kodaira’s list of singular elliptic fibers,

110
Kummer

involution, 388
lattice, 128, 388
surface, 389, 439

Kuranishi family (of K3 surfaces), 349

lattice
2-elementary —, 36, 274
𝑅- —, 144

Γ𝑛, 24
Γ16 and 𝐸8 ⦹ 𝐸8, 216
𝑝-elementary —, 35, 120, 272
equivalence, 259
overlattice, 276
Borcherd —, 314
dual —, 28
dyadic —, 46
Enriques —, 57, 81
hexagonal —, 115
hyperbolic —, 22
indecomposable —, 54, 56
integral —, 17, 144
K3 —, 57
Kummer —, 128
Leech —, 54, 55, 123, 314
Lorentz —, 84, 313
Lorentzian —, 312, 313
Milnor —, 333
Mordell–Weil —, 114
Néron–Severi —, 437
neighbour —, 34
Niemeier —, 55, 124, 135, 314, 372
Nikulin —, 129
non-degenerate 𝑝-adic —, 42
non-degenerate —, 18, 20
overlattice, 37
𝑝-adic —, 42, 144
Picard —, 437
primitive —, 18
reflective —, 310
root —, 24, 79, 88
transcendental —, 437
trivial – (of elliptic fibration), 111
unimodular 𝑝-adic —, 42
unimodular —, 18
vanishing —, 325

length of torsion module, 421
lens space, 99
linking pairing, 101
localization of an integral lattice, 44, 217

Mathieu group, 123, 372
Meyer’s theorem, 77
Milgram’s theorem, 453
Milnor
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number, 333

mod 𝑛 reduction map, 309
module

free —, 420
torsion —, 420

moduli space
for Enriques surfaces, 408
for K3 surfaces, 347

monodromy group
associated to a singularity, 336
of singularity, 333

Mordell–Weil
group/lattice, 114
rank, 114, 117

Néron–Severi group/lattice, 437
Nikulin

involution, 129, 375, 377, 386, 391
lattice, 129, 375, 394

nodal
class, 343
curve, 126, 343
type of an Enriques surface, 413

non-degenerate
symmetric form, 146

norm form, 132, 153, 159, 177
normal form

of a 2-primary torsion form, 211
of a 𝑝-adic lattice, 207
of a dyadic lattice, 211
reduced homogeneous —, 458

null-space, 20, 146
number field, 131

odd form, 18, 144
ordered basis of torsion module, 181
orientation

𝑞±- —, 294
of a vector space, 293

orthogonal
complement, 16, 20, 146
group, 157
reduced — group, 253

overlattice, 37, 276

𝑝-adic
lattice, 194
homogeneous — of exponent 𝑘,

200
Jordan splitting, 200
normal form, 207

topology, 423
valuation, 422

𝑝-elementary lattice, 35, 120, 272
𝑝-primary torsion module, 420
parity (of a lattice), 18
period domain, 442
period map for K3 surfaces, 345
Picard

group, 301
lattice, 437
number, 346, 437
variety, 301

pin group, 253
polar form, 14, 144
polarization

of K3-surface, 347
polarized Hodge structure (weight 2), 443
primitive

vector, 18, 152
primitive closure, 19
primitive cohomology, 338

quadratic
form, 14
integral — form, 19
integral — lattice, 19
𝑅-module, 144
torsion form, 145, 208

quadratic module
semi-unimodular —, 151

quaternion algebra
Hamilton —, 136, 246, 249

quintic with 31 nodes, 130
quotient singularity, 108

𝑅-lattice, 144
radical, 16, 20

of a quadratic 𝑅-module, 146
reduced discriminant
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of torsion bilinear (quadratic) form,
183

reduction
homomorphisms, 159
mod 𝑝 (of a lattice), 59

reflection, 25, 88, 158, 244, 255, 259
Cartan–Dieudonné theorem, 164
existence of 𝑝-adic —, 198
hyperplane —, 26, 158

reflection group
𝐴𝑛,𝐷𝑛,𝐸𝑛, 310
𝐹4, 91
𝐺6, 90

regular form, 149
Riemann’s

constant, 303
singularity theorem, 303
theorem, 303
theta function, 302

Riemann–Mumford relation, 305
ring of integers of a number field, 132
Rohlin’s theorem, 66
root, 27

associated to reflection, 308
lattice, 27
Leech —, 314
sublattice, 308

root lattice
𝐴𝑛 (−1), 79, 82
𝐷𝑛 (−1), 81
𝐸𝑛 (−1), 𝐴𝑛 (−1),𝐷𝑛 (−1),𝐸𝑛 (−1), 82
of type 𝐸8, 24, 25

rotation, 25, 158
characteristic 2, 298

Satake–Baily–Borel compactification, 352
scaled form, 146
semi-discriminant, 151
semi-symplectic

automorphism, 414
semi-unimodular

form, 151, 176
semi-universal unfolding, 334
Shioda–Inose structure, 394
sign structure, 293
signature, 23, 171

singularity
adjacent —, 334
deformation theory, 334
du Val —, 108
exceptional unimodal —, 337
hyperbolic —, 335, 336
𝑚-modal —, 334
quotient —, 108
rational —, 108
unimodal —, 334

skew symmetric
form, 144

socle (of special set of roots), 326
spin

group, 253
spinor

equivalence, 260
genus, 260
norm, 251, 255
𝜖—, 293
signed —, 293

stable equivalence, 219
sublattice, 18

primitive —, 18, 152
primitive closure, 18

supersingular K3 surface, 360
surface

bi-elliptic —, 445
elliptic —, 109, 438, 445
Enriques —, 441
Hirzebruch —, 438
K3 —, 438
Kummer —, 439
minimal —, 443
of general type, 445
rational —, 438
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singularity, 106

Sylow decomposition, 420
Sylvester’s law, 23, 170
symmetric

𝑅-module, 151
bilinear form, 14
torsion form, 145

symmetric form
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symplectic

automorphism, 364, 414
form, 144, 428
group, 428
pair, 428
space, 428

Ternary form, 139
theta

characteristic (odd or even), 303
divisor, 302
function, 55, 302

Tjurina number, 334
Torelli’s theorem for K3 surfaces, 345
Torsion group

ordered basis, 32
torsion group

symmetric/quadratic —, 30, 43
torsion module

ordered basis, 181
trace form, 131, 153
transcendental lattice, 437
transfer homomorphism, 399
transvection, 429

symplectic —, 157
type I,II 2-elementary lattice, 36, 187,

193, 274, 360

unimodular
𝑅-module, 149
form, 18, 65, 150
lattice, 18, 42

vanishing
cycle, 333
lattice, 325

variable homology, 338
Vinberg–Dynkin diagram, 356

weak approximation, 424
Weil

pairing, 304
reciprocity, 301

Weyl
chamber, 311

Weyl group, 27, 308, 325
Witt

cancellation theorem, 165
decomposition, 27, 167
extension theorem, 166
group, 169
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ring, 169
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