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Abstract

A complex K3 surface or an algebraic K3 surface in characteristics distinct
from 2 cannot have more than 16 disjoint nodal curves.

1 Introduction
It is well known that quartic surfaces can have at most 16 ordinary double points
and if this is the case the surface is a (classical) Kummer surface. Indeed, project-
ing from a double point exhibits the quartic surface as a double cover of the plane
branched in a degree 6 curve with at most 15 double points and if there are 15 dou-
ble points, the branch locus consists of a union of 6 lines in general position and
its double cover is a classical Kummer surface as explained in [5, p. 774]. For a
proof based on a�ne geometry over the �eld F2, see [8]. See also [1, Prop. VIII.6.1]
where it is assumed that the 16 double points form an "even" set (to be explained
below).

The aim of this note is to give a simple proof that any complex K3 surface, alge-
braic or not, can acquire nomore than 16 ordinary double points, a result originally
due to V. Nikulin [8] who proved this by lattice theoretic methods. Remark that on
the minimal resolution of such a surface the nodes give disjoint nodal curves and
on a K3 surface these span a negative de�nite lattice in the Picard lattice, a priori
of rank ≤ 20 (recall that non-algebraic surfaces are allowed) and so it is somewhat
surprising that there cannot be more than 16 of them.

The proof is based on coding theory and applies equally well to double points
of A-D-E type, i.e. to du Val singularities where a re�nement can be given. See
Remark 4.7. The idea of using coding theory to obtain bounds on the number of
double points goes back to A. Beauville’s article [2] and has been further exploited
in A. Kalker’s thesis [6]. Applications of codes to characteristic 2 phenomena of K3
surfaces can be found in I. Shimada’s article [10].

The proof applies to algebraic aswell as non-algebraic complexK3 surfaces. The
algebraic nature of the proof ensures that it is also valid for algebraic K3 surfaces
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in characteristics distinct from 2. See Remark 4.2. In characteristic 2 the result is
false: there are supersingular K3 surfaces with 21 nodes: those with Artin invariant
10, see [9, §4].

Convention In this noteX is a compact complex surface, and in § 4 it is a K3 sur-
face. One assumes throughout that H2(X,ℤ) has no torsion. It will be considered
as a lattice equipped with the integral pairing induced by the cup product. In that
situation the Néron–Severi group NS(X) is to be considered as a sublattice spanned
by the classes of the divisors. This is a primitive sublattice ofH2(X,ℤ).

If L is an integral lattice and r ∈ ℚ, one denotes by L(r) the same ℤ-module as
L but with form multiplied by r.
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2 Codes and lattices
Abinary code is a linear subspace of some �nite dimensional spaceW over the �eld
F2. W shall be identi�ed with Fn2 , n = dimW. A vector x of a code C is also called a
word. The number of non-zero coordinates of x is itsweight,w(x). The dot-product
x ⋅y =

∑
xjyj ∈ F2 of two vectors x = (x1, … , xn) and y = (y1, … , yn) in Fn2 de�nes

a non-degenerate symmetric bilinear form and a code is called isotropic if C ⊂ C⟂
and self-dual if C = C⟂. Via the reduction modulo 2 map � ∶ ℤn → Fn2 a code
C lifts to a submodule �−1C of ℤn with 2 ⋅ ℤn ⊂ �−1C ⊂ ℤn. The �rst inclusion
shows that �−1C is of �nite index in ℤn. It inherits the structure of a lattice from
ℤn equipped with its dot-product. However, it turns out to be more convenient to
use a di�erent lattice structure, namely ℤn equipped with the standard euclidean
form scaled by 1

2
, which is ℤn

( 1
2

)
by the convention adopted in this paper. This

leads to the lattice

ΓC ∶= �−1C ⊂ ℤn (12) . (1)

One easily sees that the new product on ΓC has integral values if and only if C is
isotropic. See e. g. [3, § 1.3].

The so-called Reed–Muller codes play an essential role. The de�nition runs as
follows. Let I be a �nite set of sizeN. Then the functions I → F2 form the F2-vector
space FI2. Suppose that I itself consists of the points of an F2-vector space W of
dimensionm so that N = 2m. One orders these points as follows. Let {e0, … , em−1}
be a basis forW and identify a point x =

∑m−1
j=0 xjej with the binary expansion nx =

2



∑m−1
j=0 xj2

j of an integer between 0 and 2m−1. The natural order gives an ordering
of the points ofW. A function f onW determines a vector (f0, … , fN−1) ∈ FN2 as
follows. First note that a point x ∈ W determines the unique integer j = nx ∈
[0, … ,N − 1] and then one sets fj = f(x). The polynomial functions of degree k
onW together with the zero function de�ne a subspace of FN2 and this is also the
case for polynomial functions of degree≤ k. The latter de�ne the k-th orderReed–
Muller code S≤k(W) ⊂ FN2 ,N = 2m. For an extensive treatment of these codes one
may consult [7, Chap. 4.5.].

Example 2.1. Takem = 4 and k = 1. ThenN = 24 = 16 and S≤1(F42) ⊂ F162 is gen-
erated by the 4 code words given as the rows of the following 4×16matrix together
with the vector with all coordinates equal to 1 arising from the constant function 1.
The columns correspond to the binary expansions of the numbers 0, ..., 15 and the
rows correspond to the coordinate functions x0, x1, x2, x3:

⎛
⎜
⎜
⎝

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞
⎟
⎟
⎠

. (2)

The code

Dm+1 ∶= S≤1(W) (3)

is a code of dimensionm+1 given by the a�ne linear functions onW. One can view
it as generated by the code Cm ∶= S1W, consisting of the linear functions onW,
together with the constant function 1. This last word has weight 2m while the non-
zero weights of Cm are all 2m−1 since the characteristic function of a hyperplane
interpreted as a code word has this weight. So the weights ofDm itself (lowering the
index by one) are 0, 2m−2 and 2m−1. The code Dm can be characterized as follows:

Lemma2.2 ([2, §4]). LetC ⊂ Fn2 be a code of dimensionm andwithnon-zeroweights
≥ 1

2
n. Then n ≥ 2m−1 and equality holds if and only if C ≃ Dm in which case it only

has non-zero weights 1
2
n = 2m−2 and n = 2m−1.

A further property of the code Dm will be used:

Lemma 2.3. Suppose n > 2m−1. There is no code C ⊂ Fn2 with the property that
the intersection of C with every 2m−1-dimensional coordinate subspace of Fn2 is a code
isomorphic to Dm.

Proof. SetN = 2m−1. Visualize the codeDm ⊂ FN2 as generated by (1, … , 1) together
with the rows of the (m − 1) × N matrix, say M, whose columns are the binary
expansions of the numbers 0, … ,m − 1 ordered as in (2) wherem = 5,N = 16.

Suppose that one has a code C with the stated properties. Then C contains
at least (m − 1) vectors whose �rst N coordinates form the matrixM. In Fn2 these
vectors yield amatrixwhich is denoted M̃. It is easy to see that it su�ces to consider
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the case n = N + 1. Suppose that the last column of M̃ corresponds to the binary
expansion of k ∈ [0, … ,N − 1]. Then this column is the same as the k-th column
Mk ofM. Form now the (m − 1) × N matrixM′ by deleting from M̃ a columnMl
of the submatrixM with l ≠ k. Since all columns ofM are di�erent, there is a row
j such that the entryMjl ofMl is distinct from the entryMjk ofMk. This implies
that the j-th row of the newmatrixM′ has weight 1

2
N±1which is a contradiction.

Hence such C does not exist.

3 Sets of nodal curves on a surface
Let X be a compact complex surface containing a �nite set E= {E1, … , En} of dis-
joint smooth rational curves with E2i = −2, i = 1, … , n. Such curves are also
called nodal curves, since these arise as minimal resolutions of ordinary double
points. Let L = ℤE1 ⦹ ⋯ ⦹ ℤEn be the abstract lattice with basis the classes
of the nodal curves1 which can be identi�ed with ℤn(−2). Its dual is given by
L∗ = 1

2
L ≃ ℤn

(
− 1
2

)
. The quotient map L∗ → L∗∕L = 1

2
L∕L ≃ Fn2 is just the

modulo 2map � ∶ ℤn → Fn2 used to construct lattices from codes (see (1)). Revers-
ing the procedure, one starts with the lattice

NE ∶= primitive closure of L in NS(X),

where NS(X) is the Néron–Severi lattice of X. Since there are inclusions L ⊂ NE ⊂
N∗

E
⊂ L∗ ≃ ℤn(− 1

2
), setting

CE = NE∕L ⊂ L∗∕L = Fn2 , (4)

the lattice NE(−1) is precisely the inverse image of the code CE under the mod 2
map. In other words,

NE = ΓCE
(−1). (5)

Using thatNE is primitive in the latticeNS(X), one arrives at an equivalent descrip-
tion of the code CE, namely

CE ≃ ker (Fn2 = ⊕jF2Ej ≃ L∕2L
'
−→ L∕2NE ⊂ NE∕2NE ⊂ NS(X)∕2NS(X)) .

Here primitivity is used to establish the rightmost inclusion.
The �rst consequence of this description is a bound for dimCE. Since NS(X) is

primitive inH2(X,ℤ), the quotientNS(X)∕2NS(X) injects intoH2(X,ℤ)∕2H2(X,ℤ) =
H2(X, F2), a symplectic inner product space inwhich the image of' is totally isotropic
and so has dimension ≤ 1

2
b2(X). It follows that

dimCE ≥ n − 1
2b2(X). (6)

Secondly, using the notion of an "even set of nodal curves", which means that the
sum of the nodal curves is divisible by 2 in NS(X), there is a further consequence:

1Here⦹ denotes orthogonal direct sum.

4



Lemma 3.1. Non-zero code words in CE correspond to even subsets of disjoint nodal
curves, and conversely. More precisely, with e1, … , en the standard basis ofFn2 , the sum∑

i∈J ei belongs to the code CE if and only if
∑

i∈J Ei is even in NS(X). The weight of a
word in CE is the cardinality of the corresponding set.

4 Applying coding theory to nodal K3 surfaces
There are severe restrictions on even sets of disjoint nodal curves on a complex K3
surface:

Lemma 4.1. LetX be a complex K3 surface containing an even set of k disjoint nodal
curves. Then k = 0, 8 or 16. If k = 8 the associated double cover is a K3 surface and
if k = 16 it is a complex torus.

Proof. Let E= {E1, … , Ek} be an even set of double curves on X and from the cor-
responding double cover. The inverse images of the double curves are exceptional
curves and blowing these down results in aminimal surface, sayYk. Since the Euler
number of X equals e(X) = 24, one calculates easily that e(Yk) = 48 − 3k.

On the other hand, the canonical bundle of Yk is trivial2 so that pg(Yk) = 1
and c21(Yk) = 0. The classi�cation theorem [1, Ch. VI, Table 10] then gives two
possibilities: Yk is either a torus or a K3-surface. Combining this with Noether’s
formula

1
12 ⋅ e(Yk) = 2 − q(Yk) =

1
12(48 − 3k),

gives two possibilities: either k = 8 and then Yk is a K3 surface, or k = 16 and then
Yk is a torus.

Remark 4.2. The preceding argument is also valid for algebraic K3 surfaces in char-
acteristics di�erent from 2 since in that case there are only "classical" Enriques and
bi-elliptic surfaces having the same invariants as in characteristic 0. Compare the
table on page 373 of [4].

Combining Lemma 3.1, Lemma 2.2 and (6) one deduces:

Corollary 4.3. For a set E of disjoint nodal curves on a complex K3 surface the
weights of the associated code are 0, 8 or 16. If Econsists of 16 nodal curves, the asso-
ciated code CE is isomorphic to D5 where D5 is the Reed–Muller code (3). If Econsists
of 8 nodal curves the code consists of the line in F82 spanned by (1, … , 1).

Proof. The �rst assertion is a direct translation of Lemma 4.1 using Lemma 3.1.
Assume that #E = 16. The estimate (6) for the code CE ⊂ F162 states that

m = dimCE ≥ 16− 1
2
⋅22 = 5. Then, since the non-zeroweights are≥ 8, Lemma 2.2

implies 16 ≥ 2m−1 ≥ 24. Hence, since then equality holds, CE = D5.
The assertion for k = 8 is clear.

2Indeed, the canonical bundle is trivialized on X by a non-zero holomorphic two-form. On the dou-
ble cover it lifts as a holomorphic two-form which is non-zero outside the branch locus and descends
a holomorphic two-form ! on Yk , nowhere zero except maybe in the points pj . But a section of a line
bundle can at most have zeros along a divisor and so ! trivializes KYk .
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Since the code D5 contains the word (1, … , 1), the sum of all the nodal curves is
even and so any set of 16 disjoint nodal curves on a K3 surfaceX is an even set. This
reproves a result by V. V. Nikulin [8]. Forming the double cover gives a complex
two-torus blown up in 16 points and the quotient by the standard involution is a
Kummer surface whose minimal resolution of singularities is X. Hence:

Proposition 4.4. Let X be a complex K3 surface containing a set E of 16 disjoint
nodal curves. Then E is an even set, and X is the minimal resolution of a Kummer
surface. Moreover, the primitive sublattice of NS(X) spanned by E is isometric to the
lattice ΓD5(−1).

The lattice spanned by 16 disjoint nodal curves on a (desingularised) Kummer
surface is also called theKummer lattice. Its characterization as the abstract lattice
ΓD5(−1)makes it possible to show the main result of this note:

Theorem 4.5 ([8, Corollary 1]). A K3 surface cannot contain more than 16 disjoint
nodal curves.

Proof. Suppose there is a set E consisting of n > 16 disjoint nodal curves on the
surface. A subset of 16 nodal curves de�nes a coordinate subspace of the codeCE ⊂
Fn2 , which, by Corollary 4.3 must be isomorphic to D5. Lemma 2.3 then implies the
result.

Suppose X̄ is a compact complex surface with at most du Val singularities, i.e.
double points of type An-Dn-En. The corresponding lower case letter denoting the
number of each type, put

�(X) =
∑
(an + en) ⋅ [

n + 1
2 ] + dn ⋅ [

n + 2
2 ] ,

whereX is the minimal resolution of singularities of X̄. The number �(X) gives the
number of disjoint nodal curves on X coming from desingularizing X̄ and so one
�nds:

Corollary 4.6 ([8, Corollary 2]). IfX is a K3 surface which is the minimal resolution
of singularities of a surface having at most du Val singularities, then �(X) ≤ 16.

In particular, X̄ can have at most 16 ordinary nodes, or A1-singularities. More
generally, �(X) = 16 if there are only A1 or A2 singularities, but otherwise it is
strictly smaller. In addition, since the Picard number can be at most 20, the total
number of nodal curves is at most 20 and so, among the types appearing as Du Val
singularities, one can have at most one A16 and two D7, E7 or E8. Also note the
discrepancy with the Milnor number �(X) =

∑
n(an + dn + en). Indeed the more

singularities with high Milnor number, the closer �(X)∕�(X) gets to 1
2
.

Remark 4.7. One can say more for speci�c types of projective K3 surfaces. For
instance, a degree six K3 surface in ℙ5, necessarily a complete intersection of a
quadric and a cubic, can have no more than 15 double points. See [6].
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