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Abstract

Lawson homology has quite recently been proposed as an invariant
for algebraic varieties. Various equivalent definitions have been sug-
gested, each with its own merit. Here we discuss these for projective
varieties and we also derive some basic properties for Lawson homol-
ogy. For the general case we refer to Paulo Lima-Filho’s lectures in
this volume.

Keywords: Lawson homology, cycle spaces
MSC2000 classification: 14C25, 19E15, 55Qxx

Introduction

This paper is meant to serve as a concise introduction to Lawson homology
of projective varieties. For another introduction the reader should consult
[14].

It is organized as follows. In the first section we recall some basic topolog-
ical tools needed for a first definition of Lawson homology. Then some basic
examples are discussed. In the second section we discuss the topology of the
so-called “cycle spaces” in more detail in order to understand functoriality
of Lawson homology. In the third and final section we relate various equiv-
alent definitions. Here the language of simplicial spaces is needed and we
only summarize some crucial results from the vast literature on this highly
technical subject.

Finally we want to thank the referee for his suggestions to improve the
exposition.
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1 Basic Notions

1.1 Homotopy groups

We start by recalling the definition and the basic properties of the homotopy
groups. For any two pairs of topological spaces (X,A) and (Y,B) we use
the notation [(X,A), (Y,B)] for the set of homotopy classes of maps X → Y
sending A to B (any homotopy is supposed to send A to B as well). Then,
fixing a point s on the k-sphere Sk, we have

πk(X, x) = [(Ik, ∂Ik), (X, x)] = [(Sk, s), (X, x)].

There is a natural product structure on these sets (divide Ik in two and use
the first map on one half and the second map on the other half). This makes
πk(X, x) into a group, which turns out to be abelian for k ≥ 2.

Homotopy and homology are related through the Hurewicz homomor-
phism

hk : πk(Y, y)→ Hk(Y ),

defined by associating to the class of a map f : Sk → Y the image under f∗
of a generator of Hk(S

k). The following important result tells us when the
Hurewicz homomorphism actually is an isomorphism:

Theorem 1 (Hurewicz’ Theorem) Suppose that (X, x) is (k−1)-connected,
i.e. πs(X, x) = 1, s = 0, . . . , k − 1. Then hk is an isomorphism.

One can show that homotopic maps induce the same map in homology.
Hurewicz’ theorem tells us that any map inducing isomorphisms on the ho-
motopy groups will also induce isomorphisms on the homology groups. This
motivates the following definitions.

Definition 2

(1) A continuous map f : X → Y is a homotopy equivalence if there is a
continuous map g : Y → X such that f ◦g and g◦f are homotopic to the
identity.

(2) A continuous map f : X → Y is a weak homotopy equivalence if the
induced maps on the homotopy groups are all isomorphisms.

(3) Two topological spaces are (weakly) homotopically equivalent if there exist
a (weak) homotopy equivalence between them.

Example 3 A space X is said to be an Eilenberg-Maclane K(π, k)-space if
its only non-trivial homotopy group is πk(X) = π. Hence any space homo-
topy equivalent to a K(π, k)-space is again a K(π, k)-space. For instance S1

is a K(Z, 1), and the inductive union of projective spaces, P∞ is a K(Z, 2).
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An important class of topological spaces is the class of CW-complexes.
Here we don’t give the precise definition, but refer to [20]. Roughly speak-
ing, a CW-complex is inductively defined by specifying its cells in a given
dimension (k+ 1) together with the attaching maps of the cells to the union
of the cells of lower dimension, the k-skeleton. In general one needs infinitely
many cells, but a CW-complex has to satisfy a certain local finiteness con-
dition. Any topological space admitting a triangulation gives an example.
For instance (see [17]) any differentiable manifold has the structure of a CW-
complex. An important remark is that although an Eilenberg-Maclane space
need not be a CW-complex, it has the homotopy type of a CW-complex.

For CW-complexes any weak homotopy equivalence is a homotopy equiv-
alence. This result is due to Whitehead [20, p. 405]). Another important
result (loc. cit) for CW-complexes is the fact that K(Z,m) classifies coho-
mology:

[X,K(Z,m)] ∼= Hm(X; Z).

For CW-complexes with finitely many cells, there is a homomorphism
refining the Hurewicz map, due to Almgren ([1]). Recall that singular ho-
mology is computed as the cohomology of the singular complex S•(X). In-
stead, one can also use the complex of I•(X) “integral currents“, a refine-
ment due to Federer and Fleming [4] of the well known result that one can
use the complex of currents to compute real (co)homology. The so called
“flat-norm topology” makes the spaces of integral currents into topologi-
cal spaces so that we can speak of the homotopy group of the cycle spaces
Z ′k = ker (∂ : Ik(X)→ Ik−1(X)). We shall summarize this by saying that we
give Z ′k(X) the Federer topology. Almgren’s thesis tells us that any contin-
uous map f : Sr → Z ′k(X) of the r-sphere into this space can be seen as a
(k+ r)-cycle fk ∈ Z ′k+r(X) and so by the afore mentioned result by Federer
and Fleming, yields a class in the singular homology group Hk+r(X). This
map is an isomorphism:

Theorem 4 For a CW-complex X with finitely many cells (such as a pro-
jective manifold) equip the set of k-cycles Zk(X) with the Federer topology.
The map (as defined above)

πrZk(X) → Hr+k(X)
[f ] 7→ [fk]

is an isomorphism.

Intuitively, f is a continuous family of k-cycles on X and sweeps out a
(k + r)-cycle. Homotopic maps give rise to homologous cycles. For k = 0
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we can work with the usual notion of 0-cycles, obtaining a refinement of the
Hurewicz map. This gives the Dold-Thom theorem [3]

We next discuss the concept of a (Hurewicz) fibration. This is a contin-
uous surjective map between topological spaces p : E → B which has the
homotopy lifting property: given a map g : X → E, every homotopy of p◦g
can be lifted to a homotopy of g. For such a fibration any two fibers are
homotopy equivalent [20, p. 101] and with e ∈ E the base point and F the
typical fiber, one has the homotopy exact sequence ([20, p. 377])

· · ·πn(F, e)→ πn(E, e)→ πn(B, p(e))→ πn−1(F, e) · · ·

Examples include locally trivial fiber bundles such as smooth Kähler families
or smooth projective families.

Although fibrations look rather special, in homotopy theory all maps are
fibrations. Indeed, one can functorially replace any continuous map f : X →
Y by a Hurewicz fibration. Using the path space PY of continuous paths in
Y , the total space of the fibration is

Ef = {(x, γ) ∈ X × PY | γ(0) = f(x)}

and the map πf : Ef → Y given by sending a pair (x, γ) to the endpoint
γ(1) of γ gives it the structure of a fibration. The map s : X → Ef which
sends x to the pair (x, constant path at f(x)) is a homotopy equivalence so
that indeed f : X → Y may be replaced by the fibration πf : Ef → Y . The
homotopy fiber Ef (y) of f above y by definition is the fiber of πf above y.
Its homotopy type depends only on the path component to which y belongs.
So, if we start with a Hurewicz fibration over a path connected space, any
fiber is homotopy equivalent to the homotopy fiber.

1.2 Lawson homology

Let X be a complex projective variety. An effective (algebraic) m-cycle on X
is a finite formal linear combination Z =

∑
nV [V ], nV ∈ N of (irreducible)

subvarieties V ⊂ X of dimension m. The union ∪V is called the support of
Z and will be denoted supp(Z). If a projective embedding is fixed, one can
speak of the degree of the cycle degZ =

∑
nV deg V . The set Cm,d(X) which

parametrizes the effective m-cycles of degree d is known to be a projective
variety (see Elizondo’s lectures in this volume). It comes with the complex
topology. Now we take the the disjoint union Cm(X) of the Chow varieties of
effectivem-cycles of degree d = 0, 1, 2, . . . . The cycle 0 ∈ Cm(X) by definition
is the cycle with empty support and serves as a natural base point. It also
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acts as a zero for the addition of cycles, making Cm(X) into a monoid. Let
us put

Zm(X) = Cm(X)× Cm(X)/ ∼
(x, y) ∼ (x′, y′) ⇔ x+ y′ = x′ + y (the näıve group completion).

The complex topology induces a natural topology on the monoid Cm(X) and
one equips Zm(X) with the quotient topology. We can be more specific.
Introduce the compact sets

Kd =
⋃

d1+d2≤d

Cm,d1(X)× Cm,d2(X)/ ∼

which filter Zm(X). Then B ⊂ Zm(X) is closed if and only if its intersection
which each of the Kd is closed.

In the next chapter we’ll review the proof that this topological space is
independent of the chosen embedding of X into a projective space. The
induced topology will be called the Chow topology.

An algebraic cycle on a projective variety defines an integral current (via
integration over its smooth locus), and the inclusion Zm(X) ⊂ Z ′2m(X) is
continuous. Using Federer’s theorem (Theorem 4) this yields maps

π`−2mZm(X)
cm,`−−−→ H`(X)

motivating the following definition.

Definition 5 The Lawson homology groups of a complex projective algebraic
variety X are the homotopy groups of the cycle space:

LmH`(X) =

{
π`−2mZm(X) if ` ≥ 2m
0 if ` < 2m.

Lawson homology incorporates usual homology in view of an old result of
Dold and Thom (see [3]) which can be reformulated as a natural isomorphism

co,` : L0H`(X)
∼−→ H`(X).

This reformulation will be explained in Chapter 2 (see Example 26 and 33).
As with the Chow groups, there are relatively few classes of varieties for

which one can compute Lawson homology.
One of the breakthroughs was Lawson’s computation [13] of these groups

for projective spaces. He used a powerful tool, the Suspension Theorem.
To formulate it, we introduce some notation. Let X ⊂ PN be a projective
variety and a point v ∈ PN+1 not in the subspace PN in which X lies. Let
ΣX ⊂ PN+1 be the projective cone over X with v as its vertex.
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Theorem 6 (Lawson’s Suspension Theorem) The map which associates
to an m-cycle Z of degree d on X its projective cone ΣZ, an (m + 1)-cycle
of degree d on ΣX, induces a weak homotopy equivalence

Σ : Zm(X)→ Zm+1(ΣX).

In particular we have

LmH`(X)
∼−→ Lm+1H`+2(X).

1.3 Examples

1. Two cycles that are algebraically equivalent belong to the same con-
nected component of the cycle space. One can show ([5]) that the
converse also holds. So π0(Zm(X)) can be identified with the group of
equivalence classes of cycles modulo algebraic equivalence:

L2mHm(X) = π0(Zm(X)) = Chalg
m (X) = Chm(X)/{algebraic equivalence}.

This is the first indication that Lawson homology reflects also the al-
gebraic nature of the variety, for a priori it could only be a topological
invariant of its analytic topology.

2. Look at zero cycles on curves X. The Abel-Jacobi map

C0,d(X)→ Jac(X)

is surjective for d large enough with fiber a projective space Pd−g. This
shows that

lim
d→∞

C0,d(X) ∼ Jac(X)× P∞

and so we know its homotopy type: its is a K(Z2g, 1)×K(Z, 2). Later
we shall show that the limit computes the homotopy type of the cycle
space Z0(X) and so we have shown:

πk(Z0(X)) ∼= Hk(X)

and this is a special case of the Dold-Thom theorem.

3. Look at irreducible curves of degree d in the projective plane P2. Choose
a point p not on a given curve C and choose coordinates such that
p = (0 : 0 : 1). Projection from this point is then given by (x : y : z) 7→
(x : y : 0) and it fits in a one-parameter family of maps πt : P2 → P2,
t ∈ C given by

πt(x : y : z) = (x : y : tz).
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For t 6= 0 this is an automorphism and for t = 0 we get our projection.
The curve Ct = πtC degenerates to dL where L is the line z = 0. If
p ∈ C, one can see that the curve degenerates into aL+

∑
j bjMj, where

a+
∑

j b = d and Mj are the tangents of C in p. So the space C1,d(P2)

is connected and simply connected. It follows that π0(Z1(P2)) ∼= Z and
that also Z1(P2) is simply connected.

4. The Suspension theorem generalizes this to arbitrary varieties. The
role of L being played by an arbitrary variety X and P2 is seen as the
projective cone ΣL over the line L. As an application of this, recall that
the Dold-Thom theorem states that the m-th homotopy group of cycle
space Z0(X)) is equal to Hm(X) and so Z0(X) is homotopy equivalent
to the product of the Eilenberg-Maclane spaces K(Hm(X),m). If X =
PN the homology groups being Z (for m ≤ 2N even) or 0 (otherwise)
we get:

Z0(Pn−m) = K(Z, 0)×K(Z, 2)× · · · ×K(Z, 2(n−m)).

Using the Suspension theorem we thus find

Zm(Pn) = K(Z, 0)×K(Z, 2)× · · · ×K(Z, 2(n−m))

and thus

LmH`(Pn) = π`−2m(Pn) =

{
0 if ` odd
Z if ` = 2k, k = m, . . . , n.

2 Chow-varieties and cycle spaces

2.1 Chow-varieties

In this section we recall the definition of the Chow-variety of a projective
variety X in a fixed embedding

i : X ⊂ PN = P.

This variety Cm,d(X) parametrizes the effective degree d cycles on X. For
more details see Elizondo’s lectures in the present volume.

First of all, one constructs the Chow variety for P itself as follows. Let
Z be an m-dimensional subvariety of P. The (m + 1)-tuples of hyperplanes
whose intersection meets Z form a hypersurface in (P∨)(m+1) of multidegree
(d, . . . , d), where d is the degree of Z ⊂ P. This hypersurface FZ defines the
Chow point in P(m, d), the projective space of forms of multidegree (d, . . . , d).
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The Chow-coordinates of this point are the corresponding (m + 1)d homo-
geneous coordinates. The variety Z can be reconstructed from FZ , or its
Chow-point since one can show that z ∈ Z if and only if for any m+ 1-tuple
(l0, . . . , lm) of hyperplanes passing through z, one has FZ(l0, . . . , lm) = 0. If
now Z is a cycle

∑
nV [V ], its Chow-point is the point corresponding to the

hypersurface
∏
F nV
V . All cycles of P of fixed degree d and dimension m fill

up the Chow variety of P, a projective subvariety Cm,d(P) ⊂ P(m, d). Cycles
belonging to a fixed subvariety X ⊂ P belong to the Chow-variety of X, a
subvariety Cm,d(X) ⊂ Cm,d(P).

Let us next discuss the functoriality of this construction. First of all,
there is no universal family over the Chow variety. A weak approximation of
this is the incidence correspondence Γn,d(X) ⊂ Cn,d×X, which is the closure
inside Cm,d(X) of the variety of pairs (Chow point of Z, x) of irreducible
m-dimensional subvarieties Z ⊂ X of degree d such that x belongs to Z.
The scheme-theoretic fiber over the Chow point of a possibly reducible Z =∑
nV [V ] does have support in Z but the multiplicities are not necessarily

the same. This causes failure of universality and is the source of a lot of
technical problems when dealing with Chow-varieties.

Let us briefly describe what sort of families of m-cycles over a base T do
give rise to a morphism T → Cm,d(X). The following concept is crucial.

Definition-Lemma 7 Let T be a projective variety. A subscheme Z ⊂
T × X is an equi-dimensional effective relative m-cycle of X over T if the
projection p1 : Z → T is surjective and for all t ∈ T the scheme-theoretic
fiber Zt over t has dimension m. The set of these cycles forms a Zariski-open
subset

Cm,d(X;T ) ⊂ Cm+t,d(T ×X), t = dimT.

The fact that the complement is a Zariski-closed set follows from upper-
semi-continuity of the dimensions of the fibers of the incidence correspon-
dence {(Z, x, y) ∈ Cm+t,d(T ×X)× (X×Y ) | (x, y) ∈ support of Z} over the
first factor.

A standard example of such a situation arises when Z dominates T and
p1 : Z → T is flat. To any scheme like Zt one can associate a cycle [Zt] =∑
nV [V ], where V runs over the irreducible components of Zt and nV is the

length of the local artinian ring OV,Zt (see [10], 1.5]). In our situation, if Z is
flat over T the degree of the cycle [Zt] is constant and one indeed does have
an associated map ϕZ : T → Cm,d(X) which is a morphism as we’ll indicate
below. In fact, one has
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Lemma 8 Let Z be a flat relative m-cycle of degree d dominating a smooth
projective variety T . The map

ϕZ : T → Cm,d

sending t to the cycle associated to the scheme-theoretic fiber of Z → T over t
is a morphism. Conversely, a morphism ϕ : T → Cm,d determines (by taking
the fiber product over Cm,d of T and the incidence correspondence Γm,d(X))
a flat relative m-cycle of degree d whose associated morphism is ϕ.

The following example, taken from [9, p.29] illustrates what happens in
the non-flat case.

Example 9 Take T = C2 with coordinates (x1, x2), X = P2 with homoge-
neous coordinates (X0, X1, X2) and Z given by the union of the two varieties
Z1 = {X1 = x1X0, X2 = x2X0} and Z2 = {X1 = −x1X0, X2 = −x2X0}.
The scheme-theoretic fiber Za,b consists of two points ((1 : ±a : ±b) ∈ P2 for
(a, b) 6= (0, 0), while the scheme-theoretic fiber over the origin is (1 : 0 : 0) ∈
P2 with multiplicity 3.

To obtain a constant degree cycle over the smooth locus, one has to
replace [Zt] by the intersection-theoretic fiber

Z · [t] =
∑

eV [V ], eV = (eZtZ)V = i(V, {t} · Z;T )

as in [10, Ch. 7]. Here eV is Samuel’s multiplicity of the primary ideal
determined by Zt in the local ring OV,Z . This multiplicity is bounded above
by length(OV,Zt) and is equal to it if for instance Zt is a regular subscheme
of Z, which happens for points t ∈ U , where U is the set of smooth points of
T over which f is flat (use [10, Prop. 7.1] and [loc. cit, Example A.5.5]). In
the above example, Z · {0} = 2(1 : 0 : 0) which has the correct multiplicity
2 < 3.

To see that this degree is constant we recall that the notion of degree
of an n-dimensional subvariety X ⊂ P defined as the cardinality of X ∩ L,
where L is a general linear space of codimension n in P can also be defined
using the intersection product on Chow-groups (see e.g. [10])

Chp(X)× Chq(X)
•−→ Chp+q−n

as deg(X) = degree of the cycle [X] • [L]. Now one applies the ”principle
of conservation of number” (see [10, §10.2] which says that the degree of the
class of the zero cycle (Z · [t]) · [L], L ⊂ P a subvariety of complementary
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dimension, is constant, say d and is called the degree of Z over T . Over the
Zariski open subset U ⊂ T consisting of smooth points over which Z is flat,
this is the degree of the scheme-theoretic fiber as defined above.

The rational map

ϕZ : T → Cm,d
t 7→ {Chow point of Z · [t]}

is defined over the smooth locus of T . It is a morphism over the locus where
Z is flat. To see that it extends as a morphism over the smooth locus, one
needs the following continuity property of Chow-varieties.

Lemma 10 Suppose that S a smooth variety and let Z be a relative effective
m-cycle of X over S. Let U ⊂ S be the Zariski-open over which Z is flat.
Fix s0 ∈ S. For any sequence {sn | n = 1, 2, . . .} of points sn ∈ U converging
to s0, the limit of the Chow-points of the cycles Zsn exists and is equal to the
Chow point of the intersection theoretic fiber Z · [s0]. In particular, this limit
is independent of the chosen sequence in U .

The relevance of this Lemma in this context shows itself when one wants
to prove that a rational map f : T 99K V defined over U is everywhere defined
(but only as a continuous map in the complex topology). One considers its
graph Γf ⊂ T ×V whose points above t are in fact the limit points (tn, f(tn))
where tn ∈ U converges to t. So, if the limit limn→∞ f(tn) is independent
of the chosen sequence, the rational map extends to an everywhere defined
continuous map whose graph maps bijectively to V under the projection.
This is the meaning of the following

Definition 11 Let T , V be projective varieties. A (set-theoretic) map f :
T → V is called a continuous algebraic map if its graph Γf is a subvariety of
T×V and projection onto T induces a birational bijective morphism Γf → T .
More generally, if T and V are (not necessarily finite) disjoint unions of
projective algebraic varieties, a map f : T → V is continuous algebraic map
if its restriction to each of the corresponding irreducible components Tα of T
induces a continuous algebraic map f |Tα : Yα → Vβ, Vβ a component of V .
A bi-continuous algebraic map is a bijective continuous algebraic map whose
inverse is a continuous algebraic map.

Clearly, a continuous algebraic map is the same thing as a rational map
which is everywhere defined and continuous (in the complex topology) and
for Y normal, it is just a morphism (every bijective birational map from a
normal variety Y to Z is a morphism). Bi-continuous algebraic maps are
always homeomorphisms in the complex topology.

To understand continuous algebraic maps, one introduces
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Definition-Lemma 12 The weak normalization w : Xwn → X of X is the
unique morphism of varieties over which the normalization n : Xn → X
factors and such that w is a homeomorphism. It is characterized by the
property that w∗OXwn is the sheaf of continuous meromorphic functions on
X.

If X = Xwn we say that X is weakly normal. Weakly normal curves are
precisely the unibranch curves, i.e., those that are locally irreducible. Any
continuous algebraic map f : X → Y gives rise to a morphism f ◦w : Xwn →
Y and conversely. For weakly normal varieties the continuous algebraic maps
are precisely the morphisms.

Example 13 1. Let Y be a cuspidal cubic and X → Y its normalization.
This is a bi-continuous algebraic map but not an isomorphism. The
curve Y is unibranch (and hence weakly normal).

2. If T is smooth, the map ϕZ : T → Cm,d(X) defined in the preceding
Lemma is a continuous algebraic map and hence a morphism. In case
t0 ∈ T is a singular point at which T is locally irreducible, one can still
define a cycle Zt0 of degree d, which differs from the cycle associated
to the scheme theoretic fiber in such a way that for weakly normal
T the resulting map

ϕZ : T → Cm,d(X)

is a continuous algebraic map and hence a morphism. See [2] and [8].

3. The addition Cm(X) × Cm(X) → Cn+m(X) is is clearly an algebraic
morphism. In terms of Chow points, this amounts to multiplication of
Chow forms (by definition), which is an algebraic map.

2.2 Functoriality

The aim here is to discuss the nature of the map on Chow varieties induced by
morphisms f : X → Y between projective varieties. Let us start with cycles
themselves. Recall [10, p. 11] that to any variety V ⊂ X there is associated
a push-forward cycle f∗V which by definition is 0 if dim f(V ) < dimV and
otherwise equals f(V ) with multiplicity (C(V ) : C(W )). This map then is
extended by linearity to all effective cycles on X, yielding a morphism of
monoids of effective cycles

f∗ : Cm(X)→ Cm(Y ).

Also [10, p. 18]), if f : X → Y is flat of relative dimension c = dimX −
dimY , for each variety W the scheme-theoretic inverse image f−1W is a
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pure (c+ dimW )-dimensional scheme whose associated cycle defines the flat
pull back f ∗[W ] of the cycle [W ]. Again, this is extended by linearity to all
effective cycles of Y , yielding a morphism of monoids

f ∗ : Cm(Y )→ Cm+c(X).

We want to discuss now the maps induced on Chow-varieties by a given
morphism f : X → Y . In particular, we want that the above maps induce
continuous algebraic maps.

Proposition 14 Fix some component U ⊂ Cm,d(X) and consider the proper
push-forward cycles f∗(Zu) where Zu is the cycle with Chow-point u. Assume
that this degree is generically e. Then the degree is e for all u ∈ U and the
map

f : U → Ce,m(Y )

u 7→ Chow point of f∗(u)

is a continuous algebraic map.

Proof: Note first that f is a rational map. To see this, assume for simplicity
that f : X → Y is induced by a morphism F : P → P ′ of projective spaces.
Then for an irreducible subvariety V ⊂ P the Chow form FW of the proper
push-forward f(V ) = W is characterized by FW ((l′0, . . . , l

′
m) = 0 if and only if

l′0 ∩ · · · ∩ l′m ∩W 6= ∅. This is the case if and only if FV (F ∗l′0, . . . , F
∗l′m) = 0.

So the rational map P (m, d) → P ′(m, d) defined by F ∗l′k = lk sends the
component U to Cm,d(Y ). Next, let us see that this map is defined at any
point u0 ∈ U and is continuous there. One chooses a pointed smooth curve
(C, c0) and a morphism (C, c0)

ϕ−→ (U, u0) such that a pointed disk around c0
maps entirely in the locus where f is defined. Let {cn}n=1,... be a sequence of
points in this neighborhood converging to c0 and put xn = fcn.

The equidimensional relative m-cycle Zϕ over C yields the equidimen-
sional relative m-cycle (1×f)∗Zϕ with fiber f∗Zu0 over u0. This cycle defines
in its turn the morphism ψ = f◦ϕ : C → Cm,e(Y ). By Proposition 10 the
limit of the Chow-points f(un) is equal to limψ(cn), the Chow point of f∗Zu0 .
But this limit is independent of the chosen curve and hence the map f is a
continuous algebraic map. �

In a similar fashion one can prove (see [5, Prop. 2.9])

Proposition 15 Let f : X → Y be a flat morphism of relative dimension
c = dimX − dimY . Let V ⊂ Cm,d(Y ) be a component. If the degree of
the flat pull back f ∗[Zv] is e, where [Zv] is a generic cycle with Chow point
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v ∈ V , the degree of all flat pull backs of cycles with Chow point in V are e
and there results a continuous algebraic map

V → Cm+c,e(X).

2.3 Cycle spaces and their group completions

The next step is to define

Cm(X) = Cm(X, i) =
∐
d≥0

Cm,d(X)

with the topology on each component given by a fixed projective embedding
i : X ↪→ P. To show that this topology in fact does not depend on the
embedding, one considers another embedding i′ : X ↪→ P′ and the Segre
embedding P × P′ → P′′. This defines an embedding i′′ : X → P′′ domi-
nating both embeddings. There are evident bijections Cm(X, i′′)→ Cm(X, i)
and Cm(X, i′′) → Cm(X, i′) induced by the projections from P × P ′ onto its
factors. These are continuous algebraic maps. This can be seen as follows.
Let Xi, i = 1, . . . , N resp. Yj, j = 1, . . . ,M be homogeneous coordinates
on P resp. P′. Then Tij, i = 1, . . . , N, j = 1, . . . ,M can be taken as ho-
mogeneous coordinates on P′′ with Segre embedding given by Tij = XiYj.

If the Chow point of Z in the embedding i′′ is given by the form F (T
(α)
ij )

separately homogeneous of the same degree d in each of the m + 1 sets of
variables T

(α)
ij , α = 0, . . . ,m, we may write F (X

(α)
i Y

(α)
j ) as a sum of products

Gs(X
(α)
i )Hs(Y

(α)
j ), s = 1, . . . , S such that Gs and Hs are bihomogeneous in

each set of variables. The greatest common divisor G(X
(α)
i ) of G1, . . . , Gs is a

form and this form is the Chow form of Z in the embedding i. The assignment
F 7→ G is algebraic in the sense that the coefficients of G depend rationally
on the coefficients of F and hence the bijection Cm(X, i′′) → Cm(X, i) is a
(birational) morphism and hence a bi-continuous algebraic map. It follows
that the induced bijection Cm(X, i)→ Cm(X, i′) is a bi-continuous algebraic
map. It is in particular a homeomorphism and the topology on Cm(X, i) is
therefore independent of the embedding i. In the sequel we therefore omit
the reference to i.

From propositions 14 and 15 one immediately gets:

Proposition 16 A morphism f : X → Y between projective varieties in-
duces a continuous algebraic map

f∗ : Cm(X)→ Cm(Y )

13



and if f is flat, there is an induced continuous algebraic map

f∗ : Cm(Y )→ Cm+c(Y ), c = dimX − dimY.

The last step consists in considering the group of possibly non-effective
m-cycles on projective variety X.

Definition 17 The näıve group completion Zm(X) of Cm(X) consists of con-
sidering the set of m-cycles as the topological quotient

µm : Cm(X)× Cm(X)→ Zm(X)

under the equivalence relation (Z1, Z2) ∼ (Z ′1, Z
′
2) if Z1 + Z ′2 = Z ′1 + Z2. In

other words µm(Z1, Z2) = Z1−Z2 a is well-defined m-cycle and any m-cycle
can be written as a unique equivalence class.

We already explained how to put a topology on the näıve group-completion.
As to functoriality, the preceding Proposition implies:

Corollary 18 A morphism f : X → Y between projective varieties induces
a group homomorphism which is a continuous map

f∗ : Zm(X)→ Zm(Y )

and if f is flat, there is an induced group homomorphism which is a contin-
uous map

f∗ : Zm(Y )→ Zm+c(Y ), c = dimX − dimY.

3 Defining Lawson homology

3.1 Simplicial Stuff

Apart from the definition given in the introduction, there are various other
equivalent definitions, each having its advantage. These definitions all use
the language of simplicial spaces, and so we’ll first briefly review this.

Recall that the standard p-simplex ∆p is the convex hull in Rp+1 of the
p+ 1 standard unit-vectors

∆p = {(x0, . . . , xp) | xi ≥ 0,
∑
i

xi = 1}.

Its boundary consists of the (p − 1)-simplices ∆q
p = ∆p ∩ {xq = 0}, q =

1, . . . , p+1 inducing the embeddings ∆q : ∆p−1 → ∆p. Its vertices, the p+1

14



standard unit-vectors, are often identified with elements from the ordered set
{0, . . . , p} by the correspondence i ⇐⇒ ei. The standard p-simplex will also
be denoted by [p], which means the ordered set {0, . . . , p}. Thus, the maps
∆q are examples of non-decreasing maps [p − 1] → [p]. Other examples of
non-decreasing maps are the degeneration maps σq : ∆p → ∆p−1, q = 0, . . . , p
defined by σqe0 = e0, . . . , σ

qeq = σqeq+1 = eq, σ
qeq+2 = eq+1, . . . σ

qep = ep−1.
All non-decreasing maps are obtained upon composing face and degeneracy
maps.

The standard simplices and all its face- and degeneracy-maps form a co-
simplicial set

∆0 ∆1 ∆2 ∆3 · · ·-
�

-

-
�

-
�

-

-
�

-
�

-
�

-

Non-decreasing maps form the morphisms of a category ∆ whose objects
are the standard simplices ∆n. All information of this category is given by
the corresponding co-simplicial set. Dually, a simplicial set K• is a collection
of sets K0, K1, . . . together with mappings K(f) : Kp → Kq, one for each
nondecreasing map f : [q]→ [p] such that

K(id) = id, K(g◦f) = K(f)◦K(g).

In other words, if considering the collection of standard simplices with non-
decreasing maps as a category, a simplicial set is just a contravariant functor
of this category to the category of sets. So, a simplicial set can be given as
a diagram as before, but by reversing the arrows.

· · ·K3 K2 K1 K0-
�

-

-
�

-
�

-

-
�

-
�

-
�

The arrows correspond to the face and degeneracy maps, so we have face maps
dj : Kn → Kn−1 for j = 0, . . . , n and degeneracy maps sj : Kn → Kn+1,
j = 0, . . . , n. These satisfy certain compatibility relations (the simplicial
identities to be found in [16], §1, they do not play a role here) which can
be used to define a simplicial space directly. Using these, one may write any
non-decreasing map in a unique way in the form sjt◦ · · · sj1◦dis◦ · · · ◦di1 , which
makes precise how the simplicial set is completely determined by the data of
face and degeneracy maps.

Example 19 1. The complex of singular simplices S•(X) (with the usual
face and degeneracy maps).

2. Any simplicial complex can be viewed as a simplicial set by considering
its simplices as non-degenerate simplices and by adding to these the
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degenerate simplices obtained by letting the face and degeneracy maps
act on these. The simplicial unit interval I, or more generally, the
ordinary n-simplices ∆n thus define simplicial sets denoted ∆[n]. The
standard boundary maps ∆j : ∆n−1 → ∆n (inclusion of the j-th face)
and degeneracy maps σj : ∆n+1 → ∆n (collapsing by leaving out the
j-th vertex) induce simplicial maps (∆j)∗ : ∆[n−1]→ ∆[n] and (sj)∗ :
∆[n+ 1]→ ∆[n].

Using this language two degree-preserving simplicial maps f, g : K• →
L• are homotopic if there exists a simplicial map h : K• ×∆[1] → L•
such that d0h = f and d1h = g.

3. Let SS be the category of simplicial sets. Then for any two simplicial
sets K• and L• the set

HomSS(K•, L•)

is also a simplicial set. Here we define an n-simplex as a simplicial map
f : K• × ∆[n] → L•, the boundary maps are defined by dif(k, t) =
f(k, (σi)∗t) and the degeneracy maps by sif(k, t) = f(k, (∆i)∗t), k ∈
Kq, t ∈ (∆[n])q.

4. A Kan complex is a simplicial set satisfying the extension property:
given exactly n+1 simplices σ0, σ1, . . . , σk−1, σk+1, . . . , σn+1 whose bound-
aries match (diσj = dj−1σi), i < j, i 6= k, j 6= k), there exists an
(n+ 1)-simplex σ, whose i-th boundary is σi. In other words, the sim-
plicial set contains a simplex, if all but one of its faces are already in
it. A standard example of a Kan complex is the singular complex (any
continuous map defined on all but one of the n-dimensional faces of
∆n+1 extends to ∆n+1).

A simplicial map from K• to L• is a degree preserving map which com-
mutes with face and degeneracy operators. Equivalently, it is a natural trans-
formation of functors.

One can define a pointed simplicial set as a simplicial set K• together
with a map [0] → K•. Standard examples are obtained from subcomplexes
K• ⊂ L• by considering for each n the equivalence classes Ln/Kn, where
all elements of Kn are made equivalent. This yields the quotient simplicial
complex (L/K)• with natural base point the equivalence class of points inK•.
The standard example is the simplicial sphere S[n] obtained by identifying
all (n− 1)-faces except the last in ∆[n].

It should be clear what is meant by a homotopy between two simplicial
maps between (pointed) simplicial sets. This however is not an equivalence
relation in general. For this reason Kan complexes have been introduced,
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since homotopy is an equivalence on HomSS(K•, L•) whenever L• is a Kan
complex (see [16, §6]) and so for these we can introduce the set

[K•, L•]

of equivalence classes of pointed simplicial maps from K• to L• under the
homotopy relation. So for a Kan complex L•, there are homotopy groups

πn(L•) = [S[n], L•] =
= {` ∈ Ln | di` = ∗, ∀i}/ ∼,

where ` ∼ `′ if there exists some z ∈ Ln+1 whose boundary components
dz = (d0z, . . . , dn+1z) are given by dz = (∗, . . . , ∗, `, `′, ∗, . . . , ∗)). In fact, one
can introduce a product in these sets as follows. If [x], [y] ∈ πn(L), by the
Kan property, there exists v ∈ Ln+1 such that dv = (x, ?, y, ∗, . . . , ∗) and one
sets [xy] = [?]. This does yield a group structure for n ≥ 1, which is abelian
if n > 1 (see [16, §4]).

The functor which to any topological space X associates the simplicial
set S•(X) of singular simplices has a natural adjoint functor, the geometric
realization functor. This functor associates to any simplicial set K• the
topological space

|K| =

(
∞∐
p=0

∆p ×Kp

)/
R,

where the equivalence relation R is generated by identifying (s, x) ∈ ∆q×Kq

and (f(s), y) ∈ ∆p×Kp if x = K(f)y and f : ∆q → ∆p is any non-decreasing
map. The topology on |K| is the quotient topology under R obtained from
the direct product topology, where the setsKp are given the discrete topology.
Observe that |K| has a natural structure as a CW-complex.

Let us make explicit that the geometric realization functor is adjoint
to the functor of singular simplices. Given a simplicial complex K• and a
topological space X, there are natural bijections

(∗)

{
HomSS(K,S•X)

φ−→ { Continuous maps |K| → X}
{ Continuous maps |K| → X} ψ−→ HomSS(K,S•X)

given by φ(f)(t, k) = f(k)t and ψ(g)(k)t = g(t, k). These preserve homo-
topies and so in particular, taking for K the simplicial n-sphere S[n], one
has

Lemma 20 For any topological space X, the bijection (*) induces an iso-
morphism

πn(X) ∼= πn(S•X).

17



While this assertion is quite straightforward (see [16, §16]), the fact that for
a Kan complex K• the analogous isomorphism

πn(K•) ∼= πn(|K|)

holds, is more difficult. See loc. cit.
Even more is true. The above bijections induce adjunction morphisms

K• → S•|K|
X → |S•X|

(take K = S•X and the identity, resp. X = |K| and the identity in (*)
above). These induce isomorphisms on the level of homotopy (see [19, §8.6].
We have seen that a weak homotopy equivalence between CW-complexes is
a homotopy equivalence. In particular, any Kan complex K has the same
homotopy type as the singular complex of its geometric realization (i.e. K•
is homotopy equivalent to S•(|K|)), and any CW-complex X has the same
homotopy type as the geometric realization of its associated singular com-
plex (i.e X is homotopy equivalent to |S•X|). So, in homotopy theory CW-
complexes can be replaced by Kan complexes.

Simplicial sets are very flexible. For instance the Kp could have extra
structure, i.e. they could be topological spaces, complex varieties, groups,
monoids etc. In fact, a simplicial object in a category C is a contravariant
functor from the category ∆ of standard simplices to the category C. We then
speak of a simplicial topological space, simplicial complex variety, simplicial
group, simplicial monoid etc.

A simplicial group is a Kan complex [19, Theorem 8.3.1.] Its homotopy
groups πi are all abelian for i ≥ 1; in fact this is true for a Kan monoid
complex [16, Prop. 17.3.]. The homotopy groups can be calculated as the
homology groups of a (not necessary Abelian) chain complex the normalized
chain complex

NG• = {· · · → NGn
d0−→ NGn−1

d0−→ · · ·NG2
d0−→ NG1},

where NGn / Gn is the intersection of the kernel of all face maps except d0.
Since Imd0 is a normal subgroup of Kerd0 one can form the quotient group
Hn(NG•, d0). One has [19, Theorem 8.3.2]

πn(G•) = Hn(NG•, d0).

In case G• is abelian, the normalized chain complex is a subcomplex of a
complex, naturally associated to the simplicial set, and denoted by the same
letter:

G• = {· · ·Gp

∂p−→ Gp−1

∂p−1−−−→ Gp−2 · · ·
∂1−→ G0.}
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where ∂p =
∑p

q=0(−1)qG(iq). The inclusion of NG• ⊂ G• is a chain homo-
topy [19, Theorem 8.5.1], and so, for Abelian groups

Hn(G•, ∂) ∼= Hn(NG•, d0) ∼= πn(G•).

This is useful if one wants to define long exact sequences of homotopy
groups.

Lemma 21 Let H• ⊂ G• be an inclusion of simplicial abelian groups. The
quotients Gn/Hn then form a simplicial abelian group (G/H)• and there is a
long exact sequence

· · ·πp(H•)→ πp(G•)→ πp((G/H)•)→ πp−1(H•)→ · · ·

Proof: The exact sequence of simplicial abelian groups

0→ H• → G• → (G/H)• → 0

induces a short exact sequence for the normalized chain complexes. The long
exact sequence in homology then gives the result. �

Example 22 To any simplicial set K• one associates the simplicial Abelian
group ZK•, obtained upon replacingKn by the free abelian group onKn (and
the naturally induced face and degeneracy maps). This makes it possible to
define homology groups for simplicial sets:

Hn(K•) = Hn(ZK•).

Clearly, the complex of singular homology on a space X is just the complex
defined by the simplicial abelian group associated the simplicial set S•(X)
of singular simplices. So its homology is singular homology of X. One can
further show that the adjunction morphism K• → S•|K| and its inverse
|S•X| → X induce homology isomorphisms ([19, Theorem 8.5.5]) so that
there is no ambiguity when speaking of homology of simplicial sets and topo-
logical spaces.

Let C be any category. Its classifying space is the simplicial space given
by

BCn = set of strings of morphisms{a0 → a1 → · · · an}

with face map di defined by leaving out ai, replacing ai−1 → ai+1 by the
composition of the arrows ai−1 → ai and ai → ai+1; the degeneracy map sj
is defined by inserting aj and idaj

between aj and aj+1. See [18].
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This can be applied to obtain the classifying space for any group G by
regarding it as a category with one object ∗ and whose morphisms are given
by the group elements, multiplication defining composition of morphisms.
This yields BG where

(BG)p = G× · · · ×G︸ ︷︷ ︸
p times

and for any non-decreasing f : [q]→ [p] one has

BG(f)(g1, . . . , gp) = (h1, . . . , hq), hi =

f(i)∏
j=f(i−1)+1

gj (= e if f(i− 1) = f(i)).

In terms of face and degeneracy maps this comes indeed down to

di(g1, . . . , gp) = (g1, . . . , gi−1, gigi+1, gi+2, . . . , gp)
si(g1, . . . , gp) = (g1, . . . , gi−1, e, gi+1, . . . , gp−1).

This pointed simplicial set has indeed the desired property that π1(BG) = G
and πi(BG) = 0 as in the case of the ordinary classifying space.

If instead we take a simplicial group we have to modify this as follows:

(BG)p = Gp−1 × · · · ×G0, p ≥ 1
(BG)0 = ∗, one point.

We leave the determination of face and degeneracy operators as an exercise
for the reader.

Note that the notation (BG)• is consistent in that it gives back the old
construction for a simplicial group associated to a group. It can be proved
that this simplicial set plays the role of the classifying space in the set-up of
Kan complexes. See [16, §21].

Note also that the simplicial complexes K• = (BG)• thus obtained are
reduced, meaning that K0 is a single point. There is an adjoint functor from
reduced complexes K• to group complexes which plays the role of the loop-
space functor and which is defined as follows. One sets

(ΩK)n = (free group on Kn+1) / ∼,
s0x ∼ 1, ∀x ∈ Kn

and one defines face and degeneracy maps on the generators as follows (here
[−] denotes the class of − ∈ Kn+1 in (ΩK)n and x ∈ Kn+1)

d0[x] = [d0x]
−1[d1x]
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di[x] = [di+1x], i ≥ 1
si[x] = [si+1x], i ≥ 0.

Of course (ΩK)n is a free group, and the maps above extend uniquely to
group homomorphisms, making (ΩK)• into a simplicial group.

See [16, §27] for a proof that Ω and B are adjoint functors. Kan has
shown (see [12]):

Lemma 23 The adjunction morphism

Ψ(G•) : ΩBG• → G•.

is a homotopy equivalence.

Note also that the B-construction makes sense for any simplicial monoid
M•, since one only needs multiplication and a unity for the formulas to make
sense. In the sequel, we’ll assume that the monoid-law is abelian and we’ll
write it additively.

Definition 24 Let M• be a simplicial abelian monoid. Its homotopy theo-
retic group completion is (ΩBM)•. Its näıve group completion M+

• is built
from the näıve group completions M+

n of the constituent monoids Mn.

The näıve group completion imitates the construction from Z out of the
natural numbers. So M+

n consists of pairs (x, y) ∈ M+
n modulo the equiva-

lence relation (x, y) ∼ (x′, y′) if x+y′ = x′+y. Clearly, the monoid operation
induces one on M+

n , making it into an abelian group. Also, face and degen-
eracy maps uniquely extend to give M+

• the structure of a simplicial abelian
group. Moreover, the natural injective monoid morphisms Mn → M+

n given
by x 7→ (x, 0) extend to

i : M• →M+
• , ( the plus morphism).

The plus morphism induces a natural homomorphism of simplicial abelian
groups

u : ΩBM•
ΩB(i)
−−−→ ΩBM+

•
Ψ−→M+

• .

Quillen has shown (see [9, Appendix Q]) that the map

BM•
B(i)
−−−→ B(M+

• )

is a homotopy equivalence. Since ΩB(i) is then also a homotopy equivalence,
and one knows already that Ψ is a homotopy equivalence, this holds likewise
for the composition u. So in homotopy theory there is no difference between
the näıve group completion and the homotopic theoretic group completion.
Summarizing, one has

21



Proposition 25 Let M• be a simplicial abelian monoid. There is natural
homotopy equivalence ΩBM• → M+

• between the the homotopy theoretic
group completion and the näıve group completion. This holds in particu-
lar for abelian monoids themselves and for the simplicial monoid of singular
simplices S•X of a topological space X.

3.2 Base systems

The fundamental idea behind this is that one wants to glue together the
components of a topological Abelian monoid M by choosing base points in
each connected component and using the addition for the gluing procedure.
Formally, a base system for M is a pair (I, b) consisting of a set I and a map
b : I →M such that every connected component of M contains at least one
point in the image of b. The free group F (I) has a natural partial ordering
given by λ ≤ µ if ∃ν ∈ F (I) with µ = λ + ν. This ordering can be used to

define the associated directed monoid
−→
M b by taking one copy M = Mλ for

each element λ ∈ F (I) and by defining bλµ : Mλ → Mµ by x 7→ x + b(ν).
This map is a continuous base point preserving map (but it does not preserve
the addition). The topological space

lim−→
b

−→
M b

is defined to be the infinite mapping telescope obtained by taking the disjoint
union of the Mλ × I and identifying (x, 1) with (bλµ(x), 0). It can be viewed
as the limit space associated to the directed monoid.

Identifying M with M0, where 0 ∈ F (I) is the zero element, there is a
natural map

ib : M →
−→
M b

which induces a map to the mapping telescope and which will be denoted by
the same letter.

Example 26 Let X be a connected topological space and let X(d) be its d-
th symmetric power. Let ∗ be a base point in X and use ∗d as the base point
in X(d). One takes I = N and one defines b(d) = ∗d. Using the inclusions
X(e) ↪→ X(d+e) defined by [x] 7→ [(x, ∗d)] one builds an inductive system
whose limit is X(∞). The disjoint union

X [∞] :=
∐
d≥0

X(d)

is an abelian monoid and the choice of base points induces the structure of

a directed monoid
−→
X ∗ whose limit is exactly X(∞).

The classical Dold-Thom theorem [3] states:
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Theorem 27 Let X be a CW-complex X. There are natural isomorphisms

πk(X
(∞))

∼−→ Hk(X)

such that the Hurewicz map πk(X) → Hk(X) is obtained after composing
this isomorphism with the homomorphism πk(X)→ πk(X

(∞)) induced by the
obvious inclusion X → X(∞).

Let us next define the homotopy groups of a directed monoid
−→
M b by first

applying the homotopy functor to the directed monoid and then taking the
direct limit of the associated direct system.

πk(
−→
M b) := lim−→

λ

πk(Mλ).

Of course this equals the homotopy group πk( lim−→
b

−→
M b) of the corresponding

mapping telescope, but one rarely uses this.

Let us next compare
−→
M b with the associated singular simplicial directed

set
−−→
S•M b. Again, it is clear that the functor S applied to the directed monoid

yields a direct system of simplicial sets and one may form

lim−→
b

−−→
S•M b,

its direct limit. Also, the map ib : M →
−→
M b induces the monoid homomor-

phism

S(ib) : S•(M)→ lim−→
b

−−→
S•M b

and the result from [9, §2.7]states that this in fact up to homotopy is the
+-construction (näıve group completion). Note that the monoid structure
on M induces one on S•M and it is this monoid structure that is meant to
be completed. To define the comparison map, let bn(λ) ∈ Sn(M), λ ∈ F (I)
be the totally degenerate n-simplex at the point b(λ). Then define

Sn(Mλ) → (SnM)+

s 7→ s− bn(λ).

This induces
h : lim−→

b

−−→
S•M b → (S•M)+

and one has
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Proposition 28 In following commutative diagram

S•M
S(ib)−−−−−−−−−−−−→ lim−→

b

−−→
S•M b

(S•M)+

@
@

@R

�
�

�
��+

h

the map h is a homotopy-equivalence.

The proof of this result uses the full strength of Quillen’s result repro-
duced in [9, Appendix Q].

3.3 Tractable monoids

One final comparison has to be made; one needs to know as to what sense
the plus construction and the simplicial functor commute. To explain this,
one has to remark that the näıve group completion of an abelian monoid M
is the quotient of M × M under the diagonal action of M and there is a
natural map

SM : S•(M ×M)/S•M → S•((M ×M)/M).

Suppose that one can prove that this is a homotopy-equivalence. Then one
can combine it with the next easy Lemma to conclude that the natural map
(S•M)+ → S•(M

+) is a homotopy equivalence as well.

Lemma 29 S•(M ×M)/S•(M) is naturally isomorphic to (S•M)+.

Proof of the Lemma: Let us map S•(M ×M) to S•M × S•M by sending
u ∈ Sn(M × M) to (p1u, p2u) ∈ Sn(M) × Sn(M), where p1 and p2 are
induced by the projections. Since the diagonal action of S•M on both sides
is equivariant with respect to this map, there is an induced map between the
quotients. This is a homomorphism between simplicial groups. The inverse is
induced from the map S•M → S•(M ×M) which sends s to s×0. This map
can be extended in a natural way to a map (S•M)+ → S•(M ×M)/S•M by
sending (s, t) to s× t. That this is the sought after inverse follows from the
observation that, letting 0n, the totally degenerate n-simplex at 0 ∈ M act
on a singular n-simplex s : ∆n →M×M , yields the (degenerate) 2n-simplex
π1s× π2t : ∆2n →M ×M . �

So, more generally, for a monoid M acting on a topological space T , one
needs to compare the singular simplicial set of a quotient space T/M and
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the quotient S•T/S•M . The notion of tractable monoid-action of M on a
topological space T is conceived just so that the natural map

S•T/S•M → S•(T/M)

induces isomorphisms on homotopy groups. To explain tractability we’ll
recall an auxiliary notion, that of a particular kind of inclusion, a cofibration
i : A ↪→ X. This means by definition that, given a map f̃ : X → Y whose
restriction f = f̃ |A fits into a homotopy H : A×I → Y (i.e. f(x) = H(x, 0)),
fits itself in a homotopy H̃ : X × I → Y extending H.

Definition-Lemma 30 An abelian monoid M acts tractably on a topolog-
ical space T , if there is a filtration T0 ⊂ T1 · · · ⊂ Tn ⊂ whose topological
union is T and such that there are cofibrations Rn ⊂ Sn such that for n ≥ 1
the inclusions Tn−1 ⊂ Tn fit in a pushout square (or fiber co-product)

Rn ×M ↪→ Sn ×My y
Tn−1 ↪→ Tn.

If the cofibrations Rn ⊂ Sn are relative CW-complexes, we say that (T,M)
is a tractable CW-space. For these T/M is a CW-complex.

If the diagonal action of M on M × M is tractable, one says that the
monoid M is tractable.

If M acts tractably on T and if M has the ”cancellation property” (sx =
sy implies x = y), the natural map

S•T/S•M → S•(T/M)

induces isomorphisms on homotopy, and so since a a tractable monoid M
has the cancellation property, the natural map

(S•M)+ → S•(M
+)

induces isomorphisms on homotopy.

The proof of this is not hard. It can be found in [7, Theorem 1.4]. See
also [6, Lemma 1.3].
Remark. The terminology tractable monoids is just another way to call
certain properties of monoids introduced in [15].
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Example 31 Let X be a projective variety and M = Cm(X) be the monoid
of effective algebraic m-cycles with the Chow topology. Let us verify that
this is a tractable monoid. So one considers T = M ×M with the diagonal
action of M . One takes Md to be the degree d cycles (with respect to a fixed
projective embedding). Now fix some bijection ν : N× N→ N and set

Tn :=
[⋃

ν(a,b)≤nMa ×Mb

]
·M

Sn := Man ×Mbn , ν(an, bn) = n
Rn := Im

[⋃
c>0Man−c ×Mbn−c ×Mc →Man ×Mbn

]
.

It is easily verified that these fit into a push-out diagram as above. One
can now inductively provide Sn with a semi-algebraic triangulation so that
Rn ⊂ Sn is a subcomplex. Here one uses that any projective algebraic variety
can be triangulated by semi-algebraic simplices in such a way that any given
finite union of semi-algebraic closed subsets figures as a subcomplex (see
[11]) together with the fact that the image of a semi-algebraic map under a
continuous algebraic map (such as the multiplication maps which define Rn)
stays semi-algebraic. This also shows that Rn ⊂ Sn is relative CW-complex
and so Zm(Y ) is a tractable CW-space.

3.4 Application to Lawson homology

Let us apply the results of the previous two sections to the topological monoid
Cm(X) of algebraic m-cycles on a projective variety X, where one puts the
Chow topology on Cm(X). One chooses any base system b : I → Cm(X) (see
§3.2).

Collecting the results from the previous sections, one gets

Theorem 32

1) There is a natural homotopy equivalence

ΩBCmX → ZmX

from the homotopy theoretic group completion ΩBCmX of CmX to the group
ZmX of algebraic m-cycles with the Chow topology.

2) There are natural homotopy equivalences

lim−→
b

−−−−→
S•CmXb → (S•(CmX))+←− S•(ZmX).

3) There are natural isomorphisms

πk
−−−−−−→
S•(CmX)b

∼−→ πk (S•(CmX))+ .
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and hence natural isomorphisms

πk
−−→
CmXb

∼−→ πk (S•(CmX))+ ∼←− πk(ZmX)
∼←− πk(ΩBCmX).

Proof:

1. This follows directly from Proposition 25. It is stated explicitly in [15].

2. The first homotopy equivalence is Proposition 28. The second homo-
topy equivalence follows from the fact that CmX is a tractable monoid
(Example 31) and from Definition-Lemma 30.

3. This follows from the fact that direct limits commute with homotopy
groups.

The last assertions follows from the previous assertions together with the fact
that the homotopy groups of a topological space are isomorphic to those of
the associated simplicial set of singular simplices (Lemma 20). �

Example 33 Continuing with Example 26, let us look at a complex projec-
tive variety X. The group of zero-cycles Z0(X) is the näıve group comple-
tion of the abelian monoid X [∞] of effective zero-cycles. Since πk(Z0(X)) ∼=
πk(
−−→
C0Xb) ∼= πk(X

(∞)), the classical Dold-Thom theorem can thus be re-
interpreted as the existence of a canonical isomorphism

πk(Z0(X))
∼−→ Hk(X).
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