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Rigidity of Spreadings and Fields of Definition

Chris Peters

Varieties without deformations are defined over a number field. Several old and new
examples of this phenomenon are discussed such as Bely̆ı curves and Shimura varieties.
Rigidity is related to maximal Higgs fields which come from variations of Hodge struc-
ture. Basic properties for these due to P. Griffiths, W. Schmid, C. Simpson and, on
the arithmetic side, to Y. André and I. Satake all play a role. This note tries to give
a largely self-contained exposition of these manifold ideas and techniques, presenting,
where possible, short new proofs for key results.
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Introduction

Results stating that certain types of algebraic varieties are definable over a number
field are scattered in the literature. Arguably, those most studied form the class
of Shimura varieties [Sh, F, Mi]. Another famous example is Bely̆ı’s theorem [Bel]
which characterizes curves over Q̄ as those which have a Bely̆ı representation,
i.e., a branched cover of the line branched in exactly three points. In dimension
two, the fake projective planes [Pr-Y07, Pr-Y08] and the Beauville surfaces [Be,
Exercise X.13 (4)], [Ba-C-G] are known to have models over Q̄.

Such examples can be uniformly explained by constructing a suitable spread
of the varieties concerned as demonstrated in Sections 1.3 and 2.

Of a totally different flavor are the applications to special subvarieties of
Shimura varieties in Section 3.5 on the one hand, and to splittings of Higgs bundles
as given in Section 4.3 on the other hand. As has been known since the work of
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Viehweg and Zuo [Vie-Z], the last two are just facets of the same phenomenon:
Higgs bundles of a very special kind, those that they called ”maximal” are di-
rectly related to special subvarieties of certain Shimura varieties. I intend to show
that rigidity plays a central role in this and that, exploiting this, simplifies several
arguments.

The overall goal of this survey is to show how a few relatively simple ideas
plus some standard techniques from deformation theory and Hodge theory explain
a wide range of phenomena of the above kind. It brings together various known
results from very different subfields of mathematics. This is the reason why I
thought to explain some of the basic notions and techniques from these fields, and
also to search for new simpler proofs.

This note has been inspired by discussions with Stefan Müller-Stach. Equally
influentual has been [G-G, Ch. 4] as well as the last chapter of [Mu-O]. Thanks to
Ben Moonen for help with section 4.3. Finally I would like to thank Christopher
Deninger for pointing out the references [F, Sh].
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1. Spreads of varieties and rigidity

1.1. Spreads. The ”spread philosophy” roughly states that a complex algebraic
variety can be seen as a family over a base variety determined by specifying some
transcendence basis of the field of definition of the variety. Spreads are by no
means unique but all share the crucial property that, by construction, the total
family is always defined over a number field.

Although this construction can be phrased in varying generality [G-G, §4.1],
the following somewhat restricted version suffices for this note.

Proposition 1.1. Let X be smooth complex quasi projective variety. There exists
a smooth family f : X→ S defined over Q̄ such that

(1) X, S are smooth quasi-projective;

(2) there is a canonical point o ∈ S such that f−1o = X;

(3) if s ∈ S is a Q̄-rational point, the fiber Xs = f−1s is defined over Q̄.

Proof. Suppose for simplicity that the variety X is projective and is defined by a fi-
nite set of polynomials. The general case then follows from a glueing argument. See
e.g. the proof of [Mu-O, Prop. 4.1.4]. The coefficients of the defining polynomials
generate a field k of finite transcendence degree r over Q, say k = k0(α1, . . . , αr)
where {α1, . . . , αr} is a transcendence basis for k and where k0 is a number field,
say of the form Q[x0]/P with P some monic irreducible polynomial. Then k is
the function field of some complex algebraic variety S′. The deformation will be
constructed over a Zariski open subset S of S′.

The basic idea is to replace the coefficients αj of each of the polynomials
defining the variety X, by variables xj . A point s ∈ S′ corresponds to a field
k(s) isomorphic to k. If one replaces the coefficients in k of a defining set of
homogeneous equations for X by the corresponding coefficients in k(s) one gets a
variety Xs. The Xs glue to a variety X fibered over V (P ). Indeed, it is given by
the same equations as X except that the coefficients for these equations are not
considered as numbers but as Q-polynomials in the supplementary variables xj
tied by the extra equation P (x0, . . . , xr) = 0.

Substituting xj = αj gives a canonical k-valued point o ∈ S′ and by construc-
tion Xo = X. Since k/k0 is separable, this point is a non-singular point. Now
replace S′ by a suitable Zariski open neighborhood S of o such that the variety S
is smooth. Again by separability, this variety is smooth along Xo. But it might
still be singular or reducible. To remedy this, first take the component of Xwhich
contains f−1o. Then replace S by a smaller neighborhood of o such that not only
the total space is smooth, but also all of the fibers of the fibration are smooth. The
resulting family, still denoted f : X→ S, is a smooth deformation of X. By con-
struction, the Zariski-open subsets figuring in the construction are complements
of equations over Q̄, and so the resulting family is defined over Q̄.

Finally, since Q̄ is algebraically closed, S contains points s defined over Q̄. This
amounts to replacing the variables xj figuring in the coefficients for the equations
of X by suitable algebraic numbers and hence Xs is defined over Q̄.
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Remark 1.2. There are several variants of this result: one can spread pairs (X,Z)
with Z a closed subvariety of X. Similarly, one can spread a given morphism
f : X → Y between varieties.

1.2. Deformations and rigidity. Let me first recall some basic definitions and
facts. More details and proofs can be found for example in [Sern].

Kodaira-Spencer classes. A complex variety X is said to be infinitesimally,
respectively locally rigid if any infinitesimal deformation of X, resp. any local
deformation p : X→ S of X with S sufficiently small, is trivial, i.e. isomorphic to
the product deformation. This can be rephrased by saying that if o ∈ S is such
that the fiber of p over it is isomorphic to X, say ι : Xo = f−1o

'−→ X, then there
is a morphism S → Aut(X), s 7→ gs, go = idX inducing a product structure on
the family X→ S:

X × S '−→ X, (x, s) 7→ (ι◦gs(x), s).

As is well known, a varietyX is indeed infinitesimally or locally rigid ifH1(X,ΘX) =
0. If such a variety appears in a deformation p : X→ S of X ' Xo, o ∈ S, finer
information is present by looking at the Kodaira-Spencer class, by definition the
extension class of the exact sequence

0→ To(S)⊗ OX → ΘX|X → ΘX → 0 (1)

of OX -modules.1In other words, it gives a characteristic map

κp : To(S)→ H1(X,ΘX).

For a given deformation, it measures deviation of triviality of the deformation:

Theorem 1.3 ([K-S, Thm. 18.3]). Suppose that a family p : X→ S is regular
in the sense that dimH1(Xs,ΘXs

) is constant for s ∈ S. Then it is trivial if and
only if κp = 0.

Observe that this theorem gives back the criterion that X is rigid if and
only if H1(X,ΘX) = 0. Indeed, if this is the case, by the semi-continuity of
dimH(Xs,ΘXs

) (see e.g. [K, Chapter 7]), any sufficiently small deformation of X
is regular and the theorem applies to show rigidity.

Variants. 1. Infinitesimal deformations of pairs (X,Z) with Z a closed sub-
scheme of a smooth variety X. Any such deformation p with base (S, o) (i.e. with
fiber over o isomorphic to (X,Z)) is classified by its Kodaira-Spencer map

κp : ToS → H1(X,ΘX(Z)), (2)

1As usual, for any complex manifold X, ΘX stands for the sheaf of germs of holomorphic
vector foelds on X.
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where2 ΘX(Z) is the sheaf of germs of vector fields on X tangent to Z. This
deformation is rigid precisely when κp = 0 as before.
2. Deformations of morphisms f : X → Y . These are given by a commutative
diagram

X
f

// Y

Xo

ι'

OO

� _

��

F |Xo

// Yo

ι′ '

OO

� _

��
X

F
//

p1   

Y

p2~~
S.

A deformation of morphism as above is a deformation keeping the source, respec-
tively target fixed if p1 resp. p2 are a trivial deformations. A morphism f is rigid, if
all infinitesimal deformations of f are trivial in the sense that there are morphisms

S → Aut(X) s 7→ gs, go = idX

S → Aut(Y ) s 7→ g′s, g
′
o = idY .

which trivialize the deformation: for all s ∈ S there is a commutative diagram

X

' ι◦gs

��

f // Y

'ι′◦g′s
��

Xs
F |Xs

// Ys.

Two special cases will be used in this note:

a) Deformations of a morphism f : X → Y between non-singular varieties
keeping source and target fixed. Such morphisms are classified by the vector
space H0(X, f∗ΘY ).

b) Deformations of closed embeddings f : Z ↪→ X between smooth varieties
with target fixed. Here the characteristic morphism is

κF : ToS → H0(Z,NZ|X),

where NZ|X is the normal bundle of Z in the ambient manifold X. Note
that automorphisms of X yield non-trivial deformations of f but these are
trivial as deformations of Z itself. Indeed, there is an exact sequence

0→ H0(Z,ΘZ)
i∗−−→ H0(Z,ΘX |Z)→ H0(Z,NZ|X)

δ−→ H1(Z,ΘZ).

2This is Sernesi’s notation; if Z is a normal crossing divisor it is dual to Ω1
X(logZ) and other

auhors use ΘX(− logZ) in this case.



6 Chris Peters

The quotient H0(ΘX |Z)/i∗H0(ΘZ) is the space of isomorphisms classes of
infinitesimal deformations of f keeping Z and X fixed; the next term in
the sequence, H0(X,NZ|X), is the space of infinitesimal deformations of f
keeping only X fixed and δ maps such a deformation to the corresponding
deformation of Z, i.e., it is the forgetful map. The embedding f is rigid
in this case precisely if κF = 0. If Z itself is rigid, this would follow if
H0(Z,ΘZ) → H0(Z,ΘX |Z) is surjective. In case Z admits no vector fields
we have H0(Z,ΘZ), and this then implies H0(Z,ΘX |Z) = 0. For later use,
consider the following special case, that of a totally geodesic submanifold Z
of X:

Observation 1.4 ([Ca-MS-P, Sect. 11.5] ). Let X be a manifold equipped
with a hermitian metric, and let Z ⊂ X be a totally geodesic submanifold
for which H0(Z,ΘZ) = 0. Then the tangent bundle sequence for Z ⊂ X
splits. Hence H0(Z,ΘX |Z) = 0 ⇐⇒ H0(Z,NZ|X) = 0. It follows that Z
is rigidly embedded (keeping the target fixed) if and only if the embedding is
rigid keeping source and target fixed.

In particular, since δ is the zero map in this case, it is irrelevant whether Z
itself is rigid or not.

Kodaira-Spencer classes and spreading. The Kodaira-Spencer class of the
spread family f : X→ S from Prop. 1.1 incorporates arithmetic information, since
the dual of To(S) is the complex vector space Ωk/Q⊗QC. Also, Ω1

X|X = Ω1
X/k, the

sheaf of Kähler differentials on the k-variety X. The dual of the exact sequence
(1) then reads

0→ Ω1
X → Ω1

X/k → Ωk/Q ⊗C OX → 0.

The extension class of the dual of the above sequence is the Kodaira-Spencer class
for the spread family f : X→ S at o. It depends on the choice of the field k:

κX/k ∈ H1(HomOX (Ω1
X ,Ωk/Q ⊗C OX)) ' HomC(ToS,H

1(X,ΘX)). (3)

Corollary 1.5. The spread family from Prop. 1.1 is regular. It is a trivial defor-
mation if and only if the Kodaira-Spencer class (3) vanishes.

Proof. To see regularity, first observe that dimH1(X,ΘX) depends on the isomor-
phism class of X as an abstract algebraic variety. Secondly, since all Xs, s ∈ S
with the property that s corresponds to a transcendental number are mutually
isomorphic as abstract algebraic varieties, dimH1(Xs,ΘXs) is the same for all
such s ∈ S. This set corresponds to points in S not lying on any proper subvariety
of S and hence is dense in S. Upper semicontinuity of dimH1(Xs,ΘXs

) then im-
plies that this dimension is locally constant, i.e., the family is regular. The result
follows from Theorem 1.3.
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1.3. Rigidity and fields of definition.

Proposition 1.6. (1) Let X be a smooth complex quasi-projective variety. As-
sume that the Kodaira-Spencer class (3) of some spread family of X vanishes
(e.g. in case X is rigid). Then X has a model over a number field, i.e.,

X ' X ′ ⊗Q̄ C, X ′ is defined over Q̄,

and where the isomorphism is defined over C. This model is unique if
H0(ΘX) = 0.

(2) Let (X,Z) be a pair of varieties, where X is smooth and Z ⊂ X a closed
embedding. Assume that the Kodaira-Spencer class (2) of a spread family
for (X,Z) vanishes (e.g. in case (X,Z) is rigid). Then the pair (X,Z) has
a model over a number field, The model is unique if H0(ΘX(Z)) = 0.

(3) In the relative situation of a morphism f : X → Y between complex quasi-
projective varieties suppose that f is rigid. Then X,Y and f have a model
over Q̄.

(4) In the relative situation, suppose that Y is defined over Q̄ and that f is rigid
fixing the target. Then the same conclusion as in (3) holds.

Proof. (1) Rigidity implies that the fibers of any sufficiently small deformation of
X are isomorphic to X. This holds in particular for the spread f : X→ S from
Prop. 1.1. So, if s ∈ S(Q̄), one has an isomorphism Xs ' Xo = X and since Xs

is defined over Q̄, X has a model over Q̄. If, moreover, H0(ΘX) = 0 there is no
non-trivial deformation of idX and the isomorphism Xs ' Xo is unique (compare
with the definition above).
(2) The argument is as for (1), using an obvious variant of Prop. 1.1 for pairs. See
remark 1.2.

Note that (3) and (4) can be reduced to embeddings, since f is rigid if and
only the embedding of graph of f in X × Y is a rigid morphism, and the graph is
defined over Q̄ precisely when f is. For embeddings i : X ↪→ Y , to find a variety
over which to spread, start with equations for Y and let k1 be the field extension
of Q obtained by adjoining the coefficients. The embedding is then specified by
supplementary equations whose coefficients are adjoined to k1. The resulting field
k = Q̄(S) is the function field of the base variety S. Observe that if the variety Y
is defined over a number field, k1 is also a number field and then S parametrizes
a deformation of X in the fixed variety Y . Rigidity in both cases ensures that the
embedding has a model over a number field.

Examples 1.7. (1) Fake projective planes are compact complex surfaces of gen-
eral type with pg = q = 0 and with K2 = 9. They are known to be quotients
of the complex unit 2-ball by an arithmetic subgroup, and are also known
to be rigid. See [Pr-Y07, Pr-Y08].

(2) Let S be a Beauville surface [Be, Exercise X.13.(4)] and [Ba-C-G]. These
are certain minimal surfaces of general type with K2 = 8, pg = q = 0. Such
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a surface is rigid [Cat] and so, by Proposition 1.6, it has a model over Q̄.
Its complex conjugate cousin, also a Beauville surface, is rigid as well.

(3) By [Ba-C-G], there are a two more types of surfaces similar to Beauville’s
examples in that they are all quotients of a product of two curves of genera
> 1 by a freely acting finite group G and having moduli spaces of dimension
0. Here G is one of two non-abelian groups of order 256. The first gives
an example whose moduli space consists of three 0-dimensional components,
the second group leads to a unique example.

The next result gives an application in the relative setting. It leads up to Bely̌ı
curves:

Proposition 1.8. Suppose X,Y are smooth projective of the same dimension,
p : X → Y is a surjective finite morphism with smooth branch locus B ⊂ Y .
Assume that Y is rigid and that B is rigidly embedded in Y . Then X has a model
over a number field.

Proof. One constructs a spread of the morphism p : X → Y as in the proof of
Cor. 1.6.3. Call it p̃ : X→ Y ×S. We do not now that p is rigid. But the induced
deformation of p, the family X→ Y × S → S, is differentiably locally trivial over
S and so the topological structure of the fibers ps : Xs → Y × {s} of the map p̃
does not vary. Away from the branch locus Bs, the map ps is a finite étale cover
and so the complex structure on

X0
s := p−1

s (Y −Bs) ⊂ Xs

is locally determined by the complex structure on Y −Bs, which by rigidity of the
embedding of B in Y is independent of s. The differentiable structure of Xs is fixed
and so it only has to be checked that the complex structure on it is completely
determined by the complex structure on the Zariski open subset X0

s .
To show this, note that holomorphic functions on Y are bounded near the

branch locus and so, by Riemann’s extension theorem, their lifts to X0
s can be

extended uniquely to Xs. So indeed, up to isomorphism, the complex structure on
Xs does not depend on s. As before, pick any s ∈ S defined over Q (which exists
since S is by construction defined over Q̄). Then, not only Ys is defined over Q,
but also Xs is, and hence, by rigidity, so is the variety Xo = X.

Remark . In [Mu-O, p. 468–473] a variant of the above proof is given which is
apparently due to Carlos Simpson.

Examples 1.9. (1) Recall that a Bely̆ı curve [Bel] is a complex projective curve
admitting a cover to P1 ramified only in the three points 0, 1,∞. Three dis-
tincts points in P1 define a rigid divisor since three distinct points can always
be mapped to three given distinct points by a projective transformation of
P1. Bely̆ı showed (loc. cit.) that a complex projective curve can be de-
fined over Q̄ if and only if it is isomorphic to a Bely̆ı curve. The above
Proposition shows that the fact that Bely̆ı curves are defined over a number
field is an example of a quite general phenomenon. The converse statement
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however requires an explicit construction which is very particular to curves.
See [Mu-O, Sect. 9.2] for a proof in the style of this paper.

(2) For higher dimensional examples, including branched covers of P2 branched
in 4 or less lines, see [Pa].

2. Further examples of models over number fields

2.1. Locally symmetric spaces. Let D = G(R)/K be a hermitian symmetric
domain, Γ a torsion free arithmetic subgroup of G(R) and let X = Γ\D be the
corresponding locally symmetric space. Such X give examples of Shimura varieties
for which it is known that they can be defined over a number field. See e.g. [Mi]
for background. Shimura varieties will be investigated more in detail below in
Section 3.3.

Here I want to present another approach, due to Faltings which is more in the
spirit of this note.

Proposition 2.1 ([F]). The pair (X, ∂X) has a unique model over Q̄.

Proof. I give a sketch of Faltings’ proof.3 The specific Kodaira-Spencer class
κ(X,∂X) coming from the derivations of C/Q given by (3) lands in the vector

space H1(X,ΘX(∂X)) measuring infinitesimal deformations of the pair (X, ∂X).
Using harmonic theory, Faltings shows that each of these can be represented by
a unique vector valued harmonic form Hκ(X,∂X) on D of type (0, 1). Moreover,

the assigment (X, ∂X) 7→ Hκ(X,∂X) is functorial and equivariant with respect to
group actions.

Using this property for the various Hecke correspondences, one shows that
such a harmonic form is Γ-invariant for all possible arithmetic subgroups Γ ⊂ G.
This form lifts to D as a G(Q)-invariant harmonic 1-form with values in the
tangent bundle. By density it is then G(R)-invariant on D. But such a form must
vanish. One sees this as follows. By [Helg, Ch. VIII, §7] the complex structure
on the tangent space ToD at a any point o of the hermitian symmetric domain
D is induced from the action of the center Z ' U1 of the isotropy group of o
on D: z ∈ Z induces multiplication with z. Hence, if α is a global (0, 1)-form
on D with values in the tangent bundle, at the point o the action is given by
z∗(α) = (z̄−1 ·z) ·α. So Z-invariance, implies α(o) = 0. Since o is arbitrary, α = 0.

Next, one observes that the spread family for the pair (X, ∂X) is regular in
the Kodaira-Spencer sense. The proof is similar to the proof of Cor. 1.5. Hence
one may apply (a relative variant of) Theorem 1.3: (X, ∂X) is rigid, and hence
this pair has model over Q̄.

Uniqueness then follows from H0(X,ΘX(∂X)) = 0 (no vectorfields can be
tangent along the boundary divisor). Faltings reduces the proof of this to the
assertion that there exists no G(R)-invariant holomorphic vector fields on D. For

3For more details and a generalization of the results of [Cal-V] to the non-compact situation
see [Pe16].
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the last assertion in loc. cit. no proof is given, but the argument is similar to what
we did before: The element z ∈ Z = {center of the isotropy group of G(R) at o}
acts as multiplication with z on tangent vectors at o and so, invariance implies that
any global tangent vector field on D invariant under the action of G(R) vanishes
at o and hence everywhere.

2.2. Holomorphic maps into locally symmetric spaces. As before, let X =
Γ\G/K be a locally symmetric space of hermitian type. To D = G/K and a
parabolic subgroup P ⊂ G one associates a boundary component D(P ) which is
also a bounded symmetric domain. Introduce

rank of D = `(D) = min
P

dimD(P ).

The numbers `(D) for D irreducible are collected in Table 1 which is copied from
[Su]. The rigidity result I use here is due to Sunada:

Table 1. Hermitian symmetric domains

Domain dimD `(D)
Ip,q = SU(p, q)/S(U(p)×U(q)) pq (p− 1)(q − 1)

IIg = SO∗(2g)/U(g) 1
2g(g − 1) 1

2 (g − 2)(g − 3)
IIIg = Sp(g)/U(g) 1

2g(g + 1) 1
2g(g − 1)

IVn = SOo(2, n)/SO(2)× SO(n) n 1
V = E6/SO(10) · SO(2) 16 1
V I = E7/E6 · SO(2) 27 8

Proposition 2.2 ([Su]). With the above notation, let M be projective, f : M ↪→
X = Γ\D with X compact, is rigid keeping source and target fixed, whenever
dimM ≥ `(D) + 1.

From Prop. 1.4, Cor. 1.6.3, together with the fact that X is defined over Q̄
whenever Γ is arithmetic, we deduce:

Corollary 2.3. If moreover, Γ ⊂ G is a neat congruence subgroup, and M is
embedded in D as a totally geodesic submanifold, then M has a model over a
number field.

Examples 2.4. 1. Since the unit ball Bn in Cn can be represented as the do-
main I1,n and since `(I1,n) = 0, all (positive dimensional) geodesically embedded
subvarieties of a compact arithmetic quotient of the unit ball have models over a
number field.
2. A domain of type IVn with n ≤ 18 is classifies lattice polarized K3 surfaces,4

and since `(IVn) = 1, using the local Torelli theorem for K3 surfaces, we deduce
that if we have a family of K3 surfaces over a compact base B of dimension ≥ 2
whose period map is injective and gives a geodesic embdedding, the base manifold
B has a model over a number field.

4See [Do] and [B-H-P-V, Chapter VIII] for background.
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3. Applications to variations of Hodge structure

3.1. Hodge theory revisited. As a preliminary to the topic of Shimura vari-
eties, it is useful to view a Hodge structure as a representation space for a certain
algebraic torus, as observed by Deligne. See e.g. [Del-M-O-S, Chap. I], [Ca-MS-P,
Chap. 15].

To explain this briefly, giving a Hodge structure on a real vector space V is the
same as giving a morphism

h : S→ GL(V ), S = Res
C/R

Gm,

where I recall that the Weil restriction ResC/R Gm is just the group C× considered
as a real group. In other words, a real Hodge structure is just a rational (or
”algebraic”) representation of the torus group S. One sees this by observing that
on the complexified vector space VC = V ⊗R C the action of S diagonalizes and
the Hodge subspace V p,q ⊂ VC by definition is the subspace where h(z) acts as
multiplication with zpz̄q.

If the Hodge structure has pure weight k this shows up as follows: via the
natural inclusion w : R× → S, the action of t ∈ R× is multiplication by tk. This
motivates introducing

wh = h◦w : Gm → GL(V ), the weight morphism.

If, moreover, V has a rational structure, say V = VQ ⊗R, this weight morphism
is obviously defined over Q. When this is the case, one defines the Mumford-Tate
group of h as the smallest closed subgroup M = M(h) of GL(VQ) such that h
factors through the real algebraic group MR.

Hodge structures coming from geometry carry a polarization, where I recall
that a polarization consists of a Q-valued bilinear form b on VQ satisfying the two
Riemann relations

(1) bC(x, y) = 0 if x is in V p,q and y is in V r,s for (r, s) 6= (k − p, k − q), where
k is the weight of the Hodge structure;

(2) ip−qb(x, x) > 0 if x is a nonzero vector in V p,q.

A Hodge structure is polarizable if such a b exists and then M is known to be
reductive. See [Del-M-O-S, Prop. I.3.6], [Ca-MS-P, Prop. 15.2.6]. Using this
language, one singles out a CM-Hodge structure as one whose Mumford-Tate group
is abelian and hence, by reductivity, an algebraic torus.

Let me next discuss the notion of a variation of Hodge structure. It consists
of a local system V on a smooth quasi-projective variety S of finite dimensional
Q-vector spaces, such that all fibers admit a polarizable Hodge structure. More
precisely, V should come from a representation of the fundamental group of S in
a finite dimensional vector space V equipped with a non-degenerate bilinear form
b such that

(1) the locally free sheaf V = V ⊗ OS carries a descending filtration F• by
holomorphic subbundles;
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(2) the natural flat connection ∇ on V lowers degrees of this filtration by at
most 1 (Griffiths’ transversality);

(3) b and F• induce a polarized Hodge structure in each stalk.

Given such a variation of Hodge structure, the Hodge structure over x ∈ S
corresponds to hx : S→ GL(V ) and its Mumford-Tate group may vary, However,
outside a countable union of proper subvarieties, M = M(hx) is the same, the
generic Mumford-Tate group, and a point with this Mumford-Tate group is called
Hodge generic.

The group

G = Aut(V, b)

is a Q-algebraic group. The representation of π1(S, x) in V defining the local
system V preserves the polarization b and the image Γ of π1(S, x) in G(R) is
discrete. It is called the monodromy group of the variation.

Definition 3.1. The connected component of the Q-Zariski closure of the mon-
odromy group in G is called the algebraic monodromy group.

The group G(R) acts transitively on a so called period domain D, which clas-
sifies the Hodge structures on V with a fixed set of Hodge numbers polarized by
b. The obvious map p : S → Γ\D is holomorphic; it is called the period map. The
Griffiths’ transversality condition is in general a further constraint. It is vacuous
for weight one variations and also for those coming from K3-surfaces, or more
generally, those of K3-type:

Definition 3.2. A variation of K3-type is a variation of weight 2 Hodge structure
with h2,0 = 1.

3.2. Application to variations of weight 1 and 2. For a weight two vari-
ation with Hodge numbers h2,0 = p, h1,1 = q, the period domain has shape
D = SO(2p, q)/U(p) × SO(q), the K3-case corresponding to p = 1, q = 19. For
weight two domains one further introduces the rank `(D) of D which generalizes
the concept for hermitian symmetric spaces from Table 1:

`(D) =


1 if p = 1,

q − 1 if p = 2,

(p− 1)t+ ε if p ≥ 3, t = b 1
2 (q − 1)c, ε =

{
0 if q odd

1 if q even.

One has the following rigidity result:

Theorem 3.3 ([Pe91, Theorem 3.1]). Let D be a period domain for polarized
weight 1 or 2 Hodge structures. An immersive period map f : S → Γ\D with S
quasi-projective is rigid keeping source and target fixed as soon as dimS ≥ `(D)+1.

Using Prop. 1.4, as a corollary, we get:
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Corollary 3.4. Let D be a period domain for polarized weight 1 or 2 Hodge
structure. Let S be quasi-projective and f : S → Γ\D an immersive period map of
rank ≥ `(D) + 1. Suppose moreover, that S is geodesically embedded, then S has
a model over Q̄.

3.3. Shimura varieties. One needs a Hodge theoretic interpretation of Shimura
varieties, i.e., varieties of the formX = Γ\D for whichD = G(R)/K is a Hermitian
symmetric domain of non-compact type and G is a connected Q-algebraic group.
For details of the discussion that follows see e.g. [Ca-MS-P, Chap. 16,17], [Mi].

A point x ∈ D turns out to correspond to a unique hx : S → GR and so a
given representation of G in V defines a real Hodge structure. If the representation
comes from a Q-representation ρ : G → GL(VQ) one might not get a rational
Hodge structure. However, we do get a direct sum of such structures (possibly of
different weights) if the weight morphism ρ◦hx◦w : R× → GL(V ) is defined over
Q. Such representations exist: take the adjoint representation, with H = LieG
and ρ = ad : G → GL(V): its weight is zero and hence the weight morphism is
automatically defined over Q.

The group G(R) acts by conjugation on hx. Let h
(g)
x denote the conjugate of

hx by g ∈ G(R). Then one has the basic equality

hgx = h(g)
x

and hence, since G(R) acts transitively on D, one may view D as an entire conju-
gacy class of maps h : S→ GR. Each point in D can be identified with such a map
since h = h(g) precisely if g belongs to the isotropy group of the corresponding
Hodge structure. For clarity, let me write [h] for the point in D corresponding
to h ∈ Mor(S, G(R)). Not any G(R)-conjugacy class of a morphism S → GR

underlies a Hermitian symmetric domain. For this to be true, such a morphism
has to verify certain axioms, as given in [Del]. If this is the case, the corresponding
pair (G,D) is called a Shimura datum and D is called a Shimura domain. By the
previous remarks about the adjoint representation, all Hermitian symmetric do-
mains arise as such, with G the group of holomorphic automorphisms of D, which
is indeed known to be Q-algebraic and of adjoint type.

It makes sense to define the Mumford-Tate group of a point [h] ∈ D as the
smallest closed subgroup M(h) of G such that h factors through the real algebraic
group M(h)R. Then ρ(M(h)) is the Mumford-Tate group of the Hodge structure
ρ◦h. The orbit of h ∈ D under its Mumford-Tate group M(h) is a holomorphic
submanifold of D which turns out to be a Shimura domain for M(h). It is called
the submanifold of Hodge type passing through [h]. Its image in X is called a
special subvariety.

As recalled above, for a point [h] ∈ D outside a countable union of proper
closed subvarieties in D, the Mumford-Tate group is precisely G. Call such a point
Hodge-generic. For such points, D is the submanifold of Hodge type through [h].
At the other end of the spectrum one has the CM-points in D, by definition those
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points [h] for which M(h) is abelian (i.e. an algebraic torus). In this case it is its
own submanifold of Hodge type. Concerning these points, one has:

Lemma 3.5 ([Ca-MS-P, Corr. 17.1.5]). A Shimura subdomain contains a dense
set of CM-points.

3.4. Monodromy and rigidity. The geometry of the variation is reflected in
the algebraic monodromy, which as I recall, is the connected component Mmon of
the Q-Zariski closure in GL(V ) of the monodromy group of the variation. Any
reductive group such as M has a canonical almost direct product decomposition

M = Mder · (center of M),

where Mder is the derived subgroup of M , its maximal semi-simple subgroup.
There are two important results concerning the relation of the two groups:

Theorem 3.6. (1) [An, Thm] The algebraic monodromy group is a normal sub-
group of the generic Mumford-Tate group. In fact, one has Mmon / Mder.

(2) [An, Prop. 2] If there are CM-points in the variation, this is an equality:
Mmon = Mder.

Let me now consider a more general situation of a holomorphic map p : S →
Γ\D to a Shimura variety, i.e. D = G(R)/K is a bounded Hermitian symmetric
domain. This defines a polarizable variation of Hodge structures on S where
Griffiths’ transversality is automatic. Here Γ is the monodromy group of the
variation. The group that determines the deformations of p is the centralizer of
the algebraic monodromy group inside the group G:

G′ := ZG(Mmon).

Indeed, one has:

Proposition 3.7. Under the assumption that X = Γ\D is a Shimura variety, the
”period map” p : S → Γ\D is rigid if and only if G′(R) is compact.

Proof. The Lie algebra g of G(R) consists of the endomorphisms of V that are
skew with respect to b. The Cartan involution induces a direct sum decomposition
g = k ⊕ p where k is the Lie algebra of the maximal compact subgroup K(R) ⊂
G(R). The Lie algebra has a natural structure of a weight zero Hodge structure
inherited from the one on End(V ). Indeed

gC = g−1,1 ⊕ g0,0 ⊕ g1,−1, g0,0 = kC.

The Lie algebra g′ ⊂ g of G′(R) consists of those endomorphisms in g that com-
mute with the action of the monodromy group. This subalgebra inherits a weight
zero Hodge structure and by [Pe90, Theorem 3.4], the tangent space to infinites-
imal deformations of p is isomorphic to (g′C)−1,1 and in this case, as a real space
it is isomorphic to p ∩ g′. Hence p ∩ g′ = 0 if and only if g′ = k ∩ g′ if and only if
G′(R) is compact.
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Observe next that G′ is also a reductive group of Hermitian type: D2 :=
G′(R)/K ∩ G′(R) is a bounded subdomain of D and if S̃ is a universal cover of
S with lifting p̃ : S̃ → D, there is an induced holomorphic map P̃ : S̃ ×D2 → D
extending p̃. This maps parametrizes the deformations of p̃ keeping S and D fixed.
If P̃ embeds S̃ as a subdomain D1 ⊂ D, i.e. if p̃ is a geodesic embedding, then
one has a product situation

P̃ : D1 ×D2 ↪→ D.

In other words, the deformations of the embedding Γ1\D1 ↪→ Γ\D between two
Shimura varieties are parametrized by a Shimura variety of the form Γ2\D2. By
Prop. 1.4 one then concludes:

Corollary 3.8 ([Ab, §2]). Let G be a Q-algebraic group of Hermitian type, G1

a reductive subgroup of G, and let D = G(R)/K, D1 = G1(R)/K ∩ G1(R) the
corresponding domains. Put G2 = ZGG1, D2 = G2(R)/G2(R) ∩ K. Let Γ be a
neat arithmetic subgroup of G(Q) such that Γi = Γ ∩Gi(Q) i = 1, 2 is also neat.
The embedding Γ1\D1 ↪→ Γ\D between the corresponding Shimura varieties is rigid
with fixed target precisely when G′(R) is compact. In particular, the embedding
Γ1\D1 × Γ2\D2 ↪→ Γ\D is rigid.

Let me next consider the algebraic monodromy group Mmon ⊂ G from an
arithmetic perspective. According to e.g. [Sat71, p. 64] for any Q-simple algebraic
group G there is a totally real number field F and an absolutely simple F -group
G̃ (i.e. one that stays simple after any field-extension) such that

G = Res
F/Q

G̃.

Here ResF/Q is the Weil-restriction whereby an F -group is viewed in a functorial

way as a Q-group. For a real embedding σ : F ↪→ R let G̃σ be the corresponding
conjugate of G̃. It is called a factor of G. Then

GR =
∏
σ∈S

G̃σR, S the set of embeddings F ↪→ R.

Hence, assuming for simplicity that the algebraic monodromy group is simple over
Q, one may write:

Mmon = Res
F/Q

M̃mon =⇒ G′ = Res
F/Q

ZG̃M̃
mon.

In particular, for every factor (M̃mon)σ there is a corresponding factor G̃′σ. This
can be used in the weight one case as follows:

Corollary 3.9. Let there be a weight one variation over a quasi-projective variety
with Q-simple algebraic monodromy group. Assume that Mmon has no compact
factor. Then the variation (and the period map) is rigid.
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Proof. In the weight one case, by [Sat80, Prop. IV.4.3], Mmon(R) and G′(R) are
in a sense ”dual”: every non-compact factor (M̃mon)σ corresponds to a compact
factor G̃′σ. The assumption implies that all factors of G′ must be compact and so
the deformation is rigid.

This result implies a quite curious result that states that non-trivial mon-
odromy at the boundary implies rigidity:

Proposition 3.10 ([Sa, Th. 8.6]). A weight one variation over a quasi-projective
variety S with a non-trivial unipotent element in the monodromy is rigid.

The monodromy at the boundary is quasi-unipotent (”Monodromy Theorem”,
[Ca-MS-P, Theorem 13.7.3]), and so this holds indeed if S is not compact and
there is at least one non-finite local monodromy operator at infinity. From previous
results (cf. Corollary 2.3), if moreover S is geodesically embedded, it has a model
over Q̄.

Proof. First I need a result about ranks of simple groups. Recall that a reductive
k-algebraic group G has k-rank zero if it has no k-split tori. By [Bo, §6.4] this
is the case if and only if G has no non-trivial characters over k and no unipotent
elements g ∈ G(k), g 6= 1. For k = R, the R-rank is zero precisely when GR is
compact. Now I can state the auxiliary result:

Lemma 3.11. If G is a Q-simple group such that GR has at least one compact
factor, then the Q-rank of G is zero. In particular, G contains no unipotent
elements g 6= 1.

Proof of the lemma. As before, write G = ResF/Q G̃, where G̃ is absolutely simple
and defined over a (totally real) number field F . A character χ for G induces a
character χσ for G̃σ and any unipotent g ∈ G gives a unipotent element gσ in G̃σ.
Suppose G̃σR is compact. Then χσ = 1 and gσ = 1 and also χ = 1, g = 1. This
finishes the proof of the Lemma.

To finish the proof of the Proposition, note that Lemma implies that the al-
gebraic monodromy group has no compact factors and hence, by Cor. 3.9 the
deformation is rigid.

A similar result can be shown for variations of K3-type (cf. Definition 3.2):

Proposition 3.12 ([Sa-Zu, Cor. 5.6.3]). Suppose we have a variation of K3-
type over a quasi-projective variety S with a non-trivial unipotent element in the
monodromy. Assume that the variation is not isotrivial. Suppose moreover, that
the rank of the stalk of the variation is different from 4. Then the period map
p : S → Γ\D is rigid, and if, moreover, p is a geodesic embedding, then S has a
model over Q̄.

Proof. Here Lemma 3.11 is used in a different manner: for a non-isotrivial iso-
typical variation which is non-rigid, Mmon(R) has one conjugate isomorphic to
SL(2,R) with representation space R2 ⊗ R2 and the remaining conjugates are
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' SU(2) with representation space C2. It follows from the Lemma that the only
possibility to accommodate a non-trivial unipotent element T is when no compact
conjugates are present and then the local system has rank 4.

3.5. Special subvarieties of Shimura varieties. Recall (§3.3) that a special
subvariety of a Shimura variety X = Γ\G/K, or a subvariety of Hodge type, comes
from the orbit of a point in D = G/K under its own Mumford-Tate group. In this
subsection we study them in more detail.

A morphism of Shimura varieties

X1 = Γ1\ G1(R)/K1︸ ︷︷ ︸
D1

→ X2 = Γ2\ G2(R)/K2︸ ︷︷ ︸
D2

is by definition induced by an equivariant morphism of Shimura domains. Such
a morphism is given by a morphism ϕ : G1 → G2 of Q-algebraic groups. It then
induces a holomorphic maps of Shimura domains f : D1 → D2 by stipulating
that f([h1] = [(ϕ◦h1)] for one hence all points [h1] ∈ D1. The Mumford-Tate
group of [h1] maps under ϕ to the Mumford-Tate group of f([h1]). It follows that
the subvariety f(D1) is special in D2: if [h1] is Hodge generic, then f([h1) has
Mumford-Tate group ϕ(G1) and f(D1) is the orbit of this group acting on f([h1]).
If f is an embedding, one may assume that ϕ is also an embedding. It is not hard
to see that f is a totally geodesic embedding. See e.g. [Ca-MS-P, Chap 11.5].

Other geodesic embeddings i : D1 ↪→ D2 are conjugates f (g′), g′ ∈ G2(R) of f .
Such an embedding may or may not arise from a morphism of Shimura domains.
By Lemma 3.5, if this would be the case, D = i(D1) would have CM-points.
I claim that this is the crucial property which ensures that i is a morphism of
Shimura domains, or, equivalently, that D is of Hodge type inside D2:

Lemma 3.13. Let D1, D2 two Shimura domains and let be i = f (g′) : D1 ↪→ D2

as above. Then i is a morphism of Shimura domains if and only if i(D1) contains
a CM-point of D2.

Proof. Consider the restriction of the variation of Hodge structure on D2 to D.
It descends to give one on its image in X2. The monodromy of the last variation

is Γ
(g′)
1 . Let Mmon be the algebraic monodromy group, which, in this situation

is the connected component of the Zariski closure of Γ
(g′)
1 in G2. Suppose that

it is as large as possible, that is – by the first part of André’s Theorem 3.6 –
Mmon = Mder, the largest semi-simple subgroup of the generic Mumford–Tate
group of the variation of Hodge structure on D. Then D would be of Hodge type,
since Mmon acts transitively on D. So one needs to see that the existence of a
CM-point implies maximality of the monodromy in the above sense. But this is
precisely the content of the second assertion of Theorem 3.6.

This Lemma can be used to give a simple proof of Abdulali’s criterion [Ab,
Thm. 3.4]:
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Proposition 3.14. Let i : X1 ↪→ X2 be a totally geodesic embedding of Shimura
varieties. If the embedding is rigid, i(X1) is a special subvariety.

Proof. Since Shimura varieties are defined over a number field (cf. [Mi]), one may
apply Cor. 1.6.4. So, if the embedding is rigid, the image is defined over a number
field. To show that the image is a special subvariety, by the previous Lemma,
it suffices to find a CM-point in the image. But, if x ∈ X1 is a CM-point, then
i(x) is also a CM-point since the Mumford-Tate group of the Hodge structure
corresponding to x is an algebraic torus and hence, so is the one associated to i(x)
since i is defined over Q̄.

Here are some examples of this phenomenon for weight one Hodge structures:

Examples 3.15. (1) The group G1 = SL(2) can be embedded in Sp(g) as fol-

lows. Set Vk = (R2k, Jk), Jk =

(
0 1k
−1k 0

)
. The direct sum ⊕kV1 is

isomorphic to the symplectic space Vk. Whence a faithful representation ρk
of SL(2): (

a b
c d

)
ρk−−→

(
a1k b1k
c1k d1k

)
.

For any k = 1, . . . , g the direct sum representation ρk⊕ (rank (g− k) trivial
representation) induces a holomorphic embedding h ↪→ hg. It gives the
non-compact embedded Shimura curves starting from the Shimura datum
(SL(2), h). There is no locally constant factor if and only if k = g and then
the embedding is rigid. This follows from Corollary 3.9. These non-compact
rigid curves are often called rigid curves of Satake type.

(2) There are also examples where G1 has compact factors. Here I use again
the Satake ”duality” mentioned before, but in its precise form as explained
in [Sa, §7]. It applies to G1 and G′1 := ZSp(g)G1 and gives:

(G1)R ' SL(2)× SU(2)× · · · × SU(2)︸ ︷︷ ︸
m−1

=⇒ (G′1)R ' SO(2)× SU(1)× · · · × SU(1)︸ ︷︷ ︸
m−1

.

The latter group is compact and hence the deformation is rigid. There are
indeed examples of such embeddings, the Mumford type curves. See [Ad,
§6.2].

4. Applications to Higgs bundles

4.1. Basic notions. A Higgs bundle5 over a complex manifold B is a pair (V, τ)
of a holomorphic bundle together with an End(V)-valued 1-form τ such that

5For more details on Higgs bundles see e.g. [Ca-MS-P, Chapter 13].



Rigidity of Spreadings and Fields of Definition 19

τ ◦τ = 0. The form τ can also be viewed as a Higgs field, a homomorphism
τ : V→ V⊗Ω1

B . A graded Higgs bundle is a Higgs bundle such that V= ⊕rVr,
with Vr locally free and such that τ |Vr : Vr → Vr−1 ⊗ Ω1

B .

The standard example comes from polarized complex variations of Hodge struc-
tures on B. Recall [Simp, §4] that such a system consist of

• a local system of C-vector spaces V equipped with a flat non-degenerate
bilinear form. In other words, if π is the fundamental group of B based at
o ∈ S, V comes from a representation ρ : π → GL(V, b), V the fiber of V at
o;

• a direct sum decomposition V⊗C∞B = ⊕rVr
∞ into locally free C∞B -modules

such that

– the hermitian form h(x, y) = (−1)rb(x, ȳ) on Vr
∞ is positive definite

and the above decomposition is h-orthogonal;

– the natural flat connection ∇ on V ⊗ C∞B obeys

Vr ∇−−→ A
1,0
B (Vr−1)

∞︸ ︷︷ ︸
↓

⊕ A1
B(Vr

∞)︸ ︷︷ ︸
↓

⊕ A
0,1
B (Vr+1

∞ )︸ ︷︷ ︸
↓

τ + d + τ∗,

where τ∗ is the h-adjoint of τ .

These demands imply that Fp = ⊕r≥pVr
∞ is a holomorphic subbundle of V ⊗ OB

and that Griffiths’ transversality holds. This filtration is the Hodge filtration. It
also follows that the holomorphic bundle

V= ⊕pFp/Fp+1, C∞B (Fp/Fp+1) = Vp
∞

with the underlying local system V admits the structure of a graded Higgs bundle
with τ the Higgs field. Flatness (i.e., ∇◦∇ = 0) implies the Higgs condition τ ◦τ =
0. Moreover, the Chern connection, that is, the unique holomorphic connection
on this Higgs bundle which is metric with respect to the hermitian metric h turns
out to be ∂̄ + τ . So on any subbundle on which τ = τ∗ = 0, the flat connection ∇
induces the Chern connection and so the metric h coincides with the flat metric.
Moreover, such a subbundle comes from a local subsystem of V since it is preserved
by ∇. Also, it is unitary since it admits the flat unitary metric h. This holds in
particular for the largest subbundle for which τ = τ∗ = 0:

U= U⊗ OB : the maximal unitary Higgs subbundle.

There is an h-orthogonal splitting

V = U⊕W, W = U⊥. (4)
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4.2. Logarithmic variant. If B is quasi-projective, one usually considers Higgs
bundle with logarithmic growth near the boundary. To explain this, assume for
simplicity that dimB = 1 and that B gets compactified to a a smooth projective
curve B. Then the boundary Σ = B−B consists of finitely many points. A graded
logarithmic Higgs bundle V = ⊕pVp on B, with Vp locally free, by definition
admits a Higgs field with components

τ : Vp → Vp−1 ⊗ Ω1
B

(log Σ).

For a variation of Hodge structure on B with unipotent monodromy at the punc-
tures, one lets Vbe the associated graded of the Deligne extended Hodge filtration.
Then the Gauss-Manin connection induces a Higgs field as above.

Even more is true. Choose a coordinate patch (∆, t) around a puncture and
let T be the (unipotent) local monodromy operator around the puncture. For v a
local holomorphic section of V on the disc, write

∇v = R
dt

t
, R ∈ End(V|∆).

Then
N := R(0) = log(T ) ∈ End(V )

and the Higgs field at the puncture is given by

τ(0) : V0 → V0 ⊗
dt

t
, vp 7→ (GrpN)vp ⊗ dt

t
. (5)

Suppose k is the first index in the grading for which Vk 6= 0 and k+w+ 1 the
last. Then the number w is called the width.

In this general setting, one says that for a Higgs bundle of width w, the Higgs
field is generically maximal if for all p ∈ [k, k + w + 1] one has Vp 6= 0 and if,
moreover, τ |Vp generically an is an isomorphism for p = k, . . . , p+ w.

4.3. Rigid maximal Higgs subsystems. The following rigidity result [Vie-Z,
Lemma 3.1], stated without proof, can be formulated in a slightly different way
which fits better within the general framework set up so far:

Proposition 4.1. Let B be a smooth quasi-projective variety, V be a local system
on B of finite dimensional Q-vector spaces and let WC a subsystem of V ⊗ C.
Suppose WC is rigid as a subsystem of V ⊗ C. Then WC is defined over Q̄ in
the sense that WC = W ⊗ C, where W is a local system of F -vector spaces for
some number field F .

Proof. Let π be the fundamental group ofB(C) based at o ∈ B(C) and let V be the
fiber at o of VC, considered as a π-representation space. The group π acts on the
Grassmannian G(r, V ) of r-dimensional subspaces W ⊂ V , where r = rank WC.
A fixed point [W ] of this action corresponds to a complex subsystem of V ⊗ C.
More precisely, the corresponding π-invariant subspace is the fiber U[W ] at [W ] of
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the tautological bundle U → G(r, V ). The spread of the point [W ] is a subvariety
Y ⊂ G(r, V ) contained in the locus of fixed points of the π-action, because this
action is defined over Q. The tautological subbundle over Y gives a deformation
of WC ⊂ VC, and so rigidity implies that Y (Q̄) = [W ], an isolated point. Hence
the local system WC, which corresponds to U[W ], is defined over Q̄.

As a direct application, one has:

Proposition 4.2 ([Vie-Z, Lemma 3.3] ). Let B = B − Σ as above. Suppose
that V underlies a polarizable Q-variation of Hodge structure and let (V, σ) the
corresponding graded logarithmic Higgsbundle over B with unipotent monodromy
around points of Σ. Let VC = U ⊕W the splitting (4). Suppose that the log-
arithmic Higgs subbundle W corresponding to W is a generically maximal Higgs
subbundle. Then the splitting is defined over Q̄.

Proof. To show how this result is implied by Proposition 4.1, it is enough to show
that W is rigidly embedded in V. Again, with V a typical fiber of V, small
deformations of W are parametrized by the tangent space to the fixed locus under
the π-action on the Grassmannian G(r, V ) at a π-invariant point [W ]. A tangent
vector is therefore represented by a homomorphism of local systems

q : W→ V/W = U

which is compatible with the structure as a complex system of Hodge bundles:
a small deformation of W within V inherits this structure from the one on V
and the map q is the embedding of the deformed V followed by projection to U.
But the Higgs field for the left hand is generically an isomorphism while on the
right hand it is zero. This is impossible unless q = 0. In other words, W has no
deformations and Proposition 4.1 applies.

Remark . A variant of this can be found in [Vie-Z]: assume that W is a direct
sum of complex systems of Hodge bundles of different widths, all with generically
maximal Higgs field. Then almost the same argument shows that also this splitting
is defined over Q̄. There is one subtlety here: one has to compare projections
between complex systems of different widths and then one needs semi-simplicity for
variations of Hodge structures. This property is a highly non-trivial consequence
of another rigidity property due to Schmid [Sch]. See [Pe-St, §5] for details.

To close this discussion, I want to recall a beautiful argument from [Vie-Z]
which shows that the above splitting is in fact defined over Q as soon as there is
a puncture about which the local monodromy is infinite:

Proposition 4.3. The situation is as in Prop. 4.2. In particular, all local mon-
odromy operators at the boundary are unipotent. Assume that at least one local
monodromy operator has infinite order. Then the splitting V = U⊕W from (4)
is defined over Q and U extends as a local system to B. The monodromy of this
last system is finite.



22 Chris Peters

Proof. The property that a Higgs field is an isomorphism on B extends to B. If
all graded fields τp are isomorphisms, at a puncture (5) implies that the GrpN are
isomorphisms and hence that N is an isomorphism. This holds for W, while the
fact that the Higgs field for U remains zero at a puncture implies that the local
monodromy for U is the identity and thus that this local system extends to B.

Suppose that we have a splitting as above, valid over a Galois extension F/Q.
The property that N is an isomorphism or zero is preserved by the action of
the Galois group G. It follows that for σ ∈ G the natural inclusion followed by
projection

Uσ → V→ V/U = W

sends the fiber Uσ
s at a puncture s ∈ Σ to zero. In other words Us = Uσ

s for
all σ ∈ G and so this fiber is defined over Q. Since U extends to B, and since
the entire monodromy action is defined over Q, the local system U which is built
from the monodromy representation on some fiber Us is then defined over Q.
The polarization is defined over Q as well and hence W = U⊥ is defined over
Q. The finiteness of the monodromy follows since the system is defined over Q
and the polarization h on it is a positive definite Q-valued form preserved by the
monodromy.

Example 4.4 (An interesting Shimura curve in the Torelli locus). The above
result definitely fails when B = B: the global monodromy of U may be infinite.
The simplest example from [M-O, Example 5.1] is a Shimura curve and can be
described as follows. Consider the family of projective curves with affine equation

y5 = x(x− 1)(x− t).

This gives a family Ct over P1 of genus 4 curves. The fibers are smooth for
t 6= 0, 1,∞. Note however that local monodromy operators are quasi-unipotent in
this case, but this does not really matter since this could be taken care of by a
finite branched cover of P1. For simplicity this will not be done since the above
analysis still works after some minor modification.

Let ζ5 be primitive root of unity. Then the cyclic group Z/5Z generated by
(x, y) 7→ (ζ5y, x) preserves Ct and the Hodge structure H1(Ct) of weight one admit
an action of Z/5Z. Let F = Q(ζ5). The Galois group G of F/Q is generated by
the element σ which sends ζ5 to ζ2

5 . It permutes the eigenspaces of Z/5Z acting
on Vt = H1(Ct,C) as in the following table.

Table 2. Eigenspaces for Z/5Z on Vt

Eigenvalue h1,0 h0,1

ζ5 0 2
σ(ζ5) = ζ2

5 2 0
σ2(ζ5) = ζ4

5 1 1
σ3(ζ5) = ζ3

5 1 1
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Next, consider the splitting of the corresponding Higgs bundle. The Higgs bun-
dle splits also in eigenspace subbundles; the Higgs field is zero for the subbundles
corresponding to the first two rows and an isomorphism for those corresponding
to the last two. So the Higgs bundle is maximal and one has

U = Vζ5 ⊕ Vζ25 , V = Vζ45 ⊕ Vζ35 .

If Mmon is the algebraic monodromy group of this family, one has a corresponding
splitting

Mmon(R) = SU(2)× SU(1, 1).

The actual monodromy group Γ in this case is dense in both factors and hence
cannot be finite for the local system U. Proposition 4.3 then implies that the local
monodromy around the punctures cannot be of infinite order. Indeed, one can
show that the local monodromy operators are all of order 5 in this case. Hence the
period map extends over the punctures and the period map embeds the base curve
as a compact curve in the period domain. This is consistent with the fact that
fibers over the punctures are of so called compact type: their generalized Jacobians
are products of principally polarized Abelian varieties whose dimensions sum up
to 4.

Note also that this is an elementary example giving a negative answer to the
following question of Fujita [Ue]:

”for a family f : X → B of complex algebraic manifolds over a curve B, is the
sheaf f∗ωX/B is semi-ample?”

In the above example the latter sheaf is just the graded part H1,0 = U1,0⊕V1,0

of the Higgs bundle and while the second bundle is ample, the first is flat and would
be semi-ample if and only if its global monodromy would be finite, but this group
is dense in Mmon(R). The reader is invited to compare this example with the
much more elaborate examples given in [Cat-D].
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[An] Y. André, Mumford-Tate groups of mixed Hodge structures and the theo-
rem of the fixed part. Compositio Math. 82 (1992), 1–24.

[B-H-P-V] W. Barth, K. Hulek, C. Peters and A. Van de Ven. Compact Complex
Surfaces, Second enlarged Edition. Ergebnisse Math, 3 Springer-Verlag,
New York, Berlin, etc. (1993).

[Ba-C-G] I. Bauer, F. Catanese and F. Grunewald, The classifications of surfaces
with pg = q = 0 isogenous to a product. Pure Appl. Math. Q. 4 (2008),
no. 2, Special Issue: In honor of Fedor Bogomolov. Part 1, 547–586.
ArXiv,math/0610267.



24 Chris Peters

[Be] A. Beauville, Complex algebraic surfaces, Cambridge Univ. Press (1983)
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