C.A.M. Peters

ON ARAKELOV’S FINITENESS THEOREM FOR HIGHER
DIMENSIONAL VARIETIES

1. Introduction.

Fix a smooth complex-projective curve B and a subset S ot B con-
sisting of finitely many points and consider families over B\S (i.e. proper
smooth morphisms X —> B\S) whose fibres belong to some pre-selected class

V of smooth projective varieties:

V{(B,S)= {families over B\S with fibres in V}/isomorphisms .

If V contains infinitely many non-isomorphic varieties, V(B,S) 1s infinite.
So if one wants a finiteness statement, one should put further restrictions on
the sort of families one considers. A celebrated theorem of Arakelov implies

finiteness for V = {curves of genus g}, 8§22, p.ro.vided one restricts oneself
to families th;t—: do not becomec trivial after 2 flmte. base ch%mge (c.f, .[A]),
Recently, Faltings considered V = {principally polgr}zed abelian varieties of
dimensio; g} and he introduced the following condition:

f

In [F] Faltings shows

(1) {f€ V(B,S); () holds} 1 finite,
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(2) {f€V(B,S); (*); is not true} is either empty
or contains a positive dimensional component, S.m(.)oth at f. Moreover
there is at least one example where (*)f is not satisfied.

Since (*)s 1s a property of the variation of Hodge structure underlying
R'f,Z, one expects a purely Hodge-theoretic proof .for these results, Ip
section 2 I sketch how to achieve this by replacing Faltings argument for the
boundedness statement by a Hodge-theoretic proof. I should remark that
as a consequence the same proof is valid also In case one does not have g
principal polarisation. See also [Z] for a different proof.

After having communicated my results to Deligne, received his recent
preprint [D2] in which the same bound as the one in Proposition 2 can be
found. The main result of [D2] is entirely in the spirit of this note. It is the
following beautiful finiteness result:

THEOREM (Deligne). Fix a smooth complex algebraic variety S, a point
O0ES and an integer N. There are at most finitely many isomorphism
Classes of representations

0:m(S,0) = Aut H*(X,,Q) , dim H*(X,,Q)=N

arizing from algebraic families {X,},cs.

This theorem has been proved independently by C. Simpson [SI].

The 1nvestigations leading to the results exposed on the conference were
very much inspired by questions of Phil Griffiths and by reading Faltings’

article. Finally I want to express my thanks to Joseph Steenbrink, Gerd
Faltings and in particular to Pierre Deligne for many helpful remarks.

2. A Hodge-theoretic proof of Faltings theorem.

The setting 1s as follows. Over B® = B\S one has a local system VY° of

free Z-modules of rank 2g equipped with a non-degenerate integral skew
form (,) and a holomorphic subbundle FO of o =y0 & 0.0 such that
B

Vo=F'eF, F' istotally Isotrapic with respect to () and finally i{f,f)>0
for all nonzero local.holomorphic sections f of F'. The pair (V© F9) is call:
ed a variation of weight one Hodge structure (underlying Y0) ’

Since the period space in this case 1s nothin
space hy = {Z EM,(C) Z = Z

g but the Siegel upper half
, Im Z> 0} the period map is a holomorphic
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map

- - o, 2. 0 W e W — e —— —_— - -

¢°:BO > A, i=T\\hy,

where [y 1s a suitable symplectic group. Giving a locally liftable holomor-
phic map as ¢° is equivalent to giving a variation of weight one Hodge struc-
cure up to [g-action and one sayé that ¢° satisfies (*)¢o if the correspond-
ing variation satisfies the equivalent of

(*)g0 : Every skew-symmetric endomorphism of ¥° is of type (0,0).

For technical reasons one has to assume that all the local monodromies of
V0 around points of S are unipotent, One can always achieve this by pass-
ing to a finite ramified covering of B and given (B,S) for the various local
systems over B\S one only needs a finite collection of ramified covers of
B, so for finiteness one may indeed make this assumption. Now ¥ ® 0o
has a canonical extension to a locally free sheaf ¥ on B and f' extends
to a algebraic subbubdle F of V in such a way that the Hodge-metric

i(v,w) on F' has at most logarithmic singularities near S. It follows that
¢° extends to a holomorphic map

¢ : B> A, = Satake-compactification of A, .

If one starts off with a family f: X = B\S of polarized abelian varieties of
dimension g, V¥°=R!f,Z underlies the obvious variation of weight one
Hodge structure and if all local monodromies are unipotent the assignment
f— period map of f induces a map from V(B,S) to the set Mor¥(B%, A,)
of locally liftable morphisms B° » A, (Le. locally factoring over the Siegel
upper half space hy).

This map has finite fibres and hence to prove Faltings’ theorem it suf-
fices to show

PROPOSITION 1. The set of ¢° € Mor®(B®, A,) such that (*)go is verified,
is finite.

The idea how to prove this 1s due to Arakelov (see [M, Lecture 11, appendix|
for a nice outline of Arakelov’s proof). One first observes that Mor#(B° Ay) =
={¢:B> A}, ¢"‘(A;\Ag) C S}, hence has the structure of a scheme. Now
the proof continues as follows

(1) First, one shows that for a suitable ample line bundle L on Aj there is

a universal bound on deg ¢* L, hence Mor®(B® A,) has finitely many
irreducible components, (Boundedness).
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# ) 0
(2) Next, one COmMpULES the tangent spacc to Mor (B. ,Ag) at ¢” and
;hc;w',s that (*) ¢ implies that this tangent spacc 1S reduced to (0).

(Rigidity).
Let me proceed by giving some details of these two steps.

(1) Boundedness. Since b, is contained (in a natural way) in the Grassmap-
nian of g-planesin €* one hasa I'g-invariant tautological subbundle (y, on
bh,. Its determinant extends to a “line-bundle” [ €Pic (A; ) ® Q which is
well known to be ample. Clearly ¢* L = det ¥ and the bound follows from

PROPOSITION 2. deg¢* [ <g(g—1+ —;:— #S5), (g =genus B) whenever 0

1S non-constant.

Sketch of proof. The Gauss-Manin connection induces a homomorphism
K:F>F* e Q. (S)

between (;-modules of rank g It 6=(F/Kerx):' ‘then k' induces s
homomorphism of maximal rank % = rank, k, x generic:

K:G—>(Gv? ®Q;(S)
and hence a non-zero morphism between the determinant line-bundles
detik : A*G - (A"G”) ® Qé (S)m

This is only possible if deg G < deg G” + deg Q. (S), i.c

(*) deg G <k(g—1+ 1,2 #3S) .



A standard inequality then yields:

COROLLARY 1. Hom, (Sym?F, (

g) = {flat sections of Sym?F?
with constant Hodge norm}.

Since any gbbal section ¢ of Sym2F® induces one of Hom, (F, F¥) =
= Homg (F, F) (via the Hodge metric), one gets a global endomorphism 7

of by. defining 7 to be zero on F. If ¢ is tlat, actually 7€ End ¥ ® C
and t being symmetric implies 7 is antl-symmetric, hence:

COROLLARY 2. T¢ (Mor#(BO, Ag))={7€End X ®C; 7 antli-symmetric and
7 of type (-1, 1)}.

It follows that (*);0 implies T, (Mor®(B?, A,)) = {0}.

3. Discussion for Higher weights.

Arakelov’s procedure, as sketched in section 2 gives several problems,
which I'11 briefly comment upon.

1) If D= G/V is a classifying space of Hodge structures of welght m and
given type, the quotient G/D in general 1s not quasi-projective. But never-
theless one can prove that

Mor¥#(B®, G, /D) = {¢°: B > Gg/D, ¢° locally liftable
with horizontable lifts}

is a complex variety. Indeed, fix a monodromy representation
p:m(B%) > Gy

and let ¥, be the resulting local system on B®. The variations of weight

m Hodge structure (polarizable as usual) on V.° =¥z ® 040 are parame-
trized in a natural way by the points of a (possibly efnpty) .perlod .dc‘>mam.
This follows from [D2], Proposition 1 13. Combined with Deligne’s finiteness

statement (cf. Introduction) this shows:
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THEOREM. Mor™(B?,
at most finitely many components.

Below I discuss an alternate proof of this theorem which then (obviously)

would reprove Deligne’s finiteness.

2) Let L° be the “linebundle” on Gg/D arizing from the determinant
of the Hodge bundle of level m on D. The linebundle‘ (@°)*L° on BO
extends. It is the determinant of the canonical extension F™ of the Hodge
bundle of level m on B° (I am assuming unipotent local monodromy

along S).

PROPOSITION 3. One has the inequalitites
OSdeg F" S b *m-(g— 1+ —%— #S)

where h™ 0 =rank F™ .

The first inequality is in [P]. The second inequality can be proved as
in the proof of Proposition 2. Originally I had a cruder bound, but Deligne
showed me how to refine my argument as to obtain the preceding bound.

One hopes to use bounds like these to reprove the theorem in 3.1. Al
terpatlvely one could make use of the distance decreasing property of the
period 11.12.1ps .to show.that Mor"@'t(Bo,GZ /D) has compact closure in the

3) The tangent space at ¢ to Mor#(BO, Gz /D) can be identified with

the subspace of End, (1) consisting of endomorphisms which relative to
the Hodge-decomposition of |/ decompose as

0 0
Z Zj € Homy (F//Fi* | Fi-y/Fiy
0.2+
01 O , (Z,v,w)+(v, Lip-jrqw) =0
S

1 ©...0Z,, €Homy (S*F", 0)
C of le"g_th- It can be considered as an
ERNAC Consequ vee {"m, m)%idk (Zv,w) = (-1)" (v, Zw),
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LEMMA. Using the previous notations, if

(*)go: [UEENA ¥, U is (-1)"-symmetric]=m = g
then Z = 0.

This seems not sufficient to conclude that Z; =0 Vi, even in the case
= - 2,0 2 .. . =t
m=2. 1t m=2, b2 =1 the condition (*)¢o 1s equivalent to ¢° being
constant. The result here is a follows:

PROPOSITIOh.I . There are only finitely non-trivial variations o f weight 2 Hodge
structures with b*° =1 and for which Hom, (F2, FYF?)=0.

It seems hard to decide when the condition of the previous proposition holds.

The condition (*)¢o in general certainly is not equivalent to ¢° being
constant, even in the case m =1, where Deligne has given arithmetic con-
ditions on End ¥ garanteeing (*)go (cf. [D, Prop. 4.4.1]).

4) In [SI] the following immediate generalization of Faltings’ results is
proved:

THEOREM (Simpson). There are at most finitely many (polarizable) varia-
tions of Hodge structure of weight m on X baving the property that End W

bas pure type (0,0).

It seems hard to find conditions on End ¥ as in [D] implying that
End ¥ admits only those variations of Hodge structure. In particular it is

not clear whether (*)¢o implies Simpson’s property, even for weight 2,
b4»9 =1 asin 3).
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