CC du 28 mars 2017, de 15h45 à 17h45.

Documents, calculatrices et ordinateurs ultraportables déconnectés du réseau autorisés. Ce sujet comporte 2 pages. Barême donné à titre indicatif et non contractuel.

Les exercices 1 et 2 d'une part et l'exercice 3 d'autre part sont à rédiger sur des copies séparées

1. APPROXIMATION DE L'EXPONENTIELLE (7 PTS)

On interpole la fonction exponentielle sur [-1,1] en n+1 points $x_0,...,x_n$ de [-1,1].

- (1) Donner une majoration de l'erreur d'interpolation en x fonction de x, n et de $x_0, ..., x_n$.
- (2) On choisit $x_0,...,x_n$ en les racines du polynôme de Tchebyshev $T_{n+1}(\cos(x)) = \cos((n+1)x)$. Déterminer n pour assurer une erreur absolue inférieure à 1e-10 sur [-1,1]. Même question pour avoir une erreur relative inférieure à 1e-10.
- (3) Pour cette valeur de n, déterminer un majorant de l'erreur si on prenait des points $x_0, ..., x_n$ équidistribués sur [-1,1]. Pour les études d'extremum de fonctions, vous pouvez donner le résultat calculé à la machine à condition d'indiquer les commandes utilisées sur la copie.
- (4) Quelle valeur de n faut-il choisir pour obtenir la même précision en approchant l'exponentielle par son développement de Taylor à l'ordre n en x = 0? Indication : il existe θ entre 0 et x tel que :

$$f(x) = \text{Taylor}_n(x) + e^{\theta} \frac{x^{n+1}}{(n+1)!}$$

(5) Soit $x \in [1, 2]$, on a

$$e^x = \left(e^{\frac{x}{2}}\right)^2, \quad \frac{x}{2} \in [0,1]$$

on peut donc approcher e^x en prenant le carré de l'approximation de $e^{x/2}$. Que peut-on alors dire de l'erreur?

2. APPROXIMATION AU SENS DES MOINDRES CARRÉS (3 PTS)

On cherche un polynôme du second degré $P(t) = \alpha t^2 + \beta t + \gamma$ approchant le mieux possible au sens des moindres carrés l'exponentielle aux points d'abscisses $t_1 = -1$, $t_2 = -1/2$, $t_3 = 0$, $t_4 = 1/2$ et $t_5 = 1$.

- (1) On pose $x = (\gamma, \beta, \alpha)$ et b le vecteur de composantes $(e^{t_1}, ..., e^{t_5})$ le problème revient alors à minimiser $||Ax b||_2$. Déterminer la matrice A en fonction des t_i .
- (2) Résoudre le problème.
- (3) Soit $f(t) = e^t P(t)$, calculer f' et f'', en déduire le tableau de variations de f' puis donner une majoration de l'erreur |f(t)| sur [-1,1].

3. Transformée de Fourier rapide (10 pts) (à rédiger sur une copie séparée)

Pour tout entier N, on appelle *transformée de Fourier discrète* l'application de \mathbb{C}^N dans \mathbb{C}^N qui envoie le N-uplet (x_0, \dots, x_{N-1}) sur le N-uplet (X_0, \dots, X_{N-1}) défini par

$$\forall j \in \{0, \dots, N-1\}, X_j = \sum_{k=0}^{N-1} x_k e^{-\frac{2i\pi}{N}jk}.$$

De façon équivalente, on a

$$\begin{pmatrix} X_0 \\ X_1 \\ X_2 \\ \vdots \\ X_{N-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{N-1} \end{pmatrix}$$

où $\omega=\omega_N=e^{-\frac{2i\pi}{N}}$. On notera $M_N=\left(\omega^{(j-1)(k-1)}\right)_{1\leq j,k\leq N}$ la matrice ci-dessus.

- (1) Combien d'opérations (additions et multiplications de nombres complexes) faut-il réaliser pour calculer une transformée de Fourier discrète avec les formules ci-dessus ?
- (2) Montrer que $M_N^*M_N=NI_N$ où M_N^* est la transposée de la conjuguée de M_N . En déduire la norme et le conditionnement de M_N pour la norme subordonnée à la norme hermitienne de \mathbb{C}^N (on rapelle que pour toute matrice $A\in \mathcal{M}_N(\mathbb{C})$ et pour tout $v\in \mathbb{C}^N$, $||Av||=\sqrt{\langle v|A^*Av\rangle}$).
- (3) On suppose que le N-uplet $x=(x_0,\ldots,x_{N-1})$ est connue avec une imprécision Δx . On note ΔX l'imprécision sur sa transformée $X=(X_0,\ldots,X_{N-1})$. Montrer que (pour la norme hermitienne) $\|\Delta X\|=\sqrt{N}\|\Delta x\|$ et $\frac{\|\Delta X\|}{\|X\|}=\frac{\|\Delta X\|}{\|X\|}$.
- (4) Même si les données sont connues avec précision, l'arrondi en virgule flottante est une source d'erreur que l'on se propose d'estimer.
 - (a) Donner, en fonction de $(x_1, ..., x_N)$ et de la précision des nombres flottants, une majoration de l'erreur absolue causée par les erreurs d'arrondis dans le calcul de la transformée de Fourier discrète.
 - (b) On suppose pour simplifier que tous les composants de $(x_0, ..., x_{N-1})$ sont de module proche de 1, et que ceux de $(X_0, ..., X_{N-1})$ sont tous de module proche de \sqrt{N} . Estimer l'erreur relative.

Pour accélérer les calculs, particulièrement dans le cas $N=2^n$, l'algorithme de Cooley-Tukey utilise une stratégie de type "diviser pour régner". On commence par calculer (récursivement) deux transformées de Fourier discrètes de taille moitié : le N/2-uplet $(A_0,\ldots,A_{N/2-1})$, transformée des termes d'indice pair (x_0,x_2,\ldots,x_{N-2}) , et le N/2-uplet $(B_0,\ldots,B_{N/2-1})$, transformée des termes d'indice impair (x_1,x_3,\ldots,x_{N-1}) .

(5) Montrer que pout tout $j \in \{0, ..., N-1\}$,

$$X_{j} = \sum_{k=0}^{N/2-1} x_{2k} e^{-\frac{4i\pi}{N}jk} + e^{-\frac{2i\pi}{N}j} \sum_{k=0}^{N/2-1} x_{2k+1} e^{-\frac{4i\pi}{N}jk}.$$

- (6) En déduire que pour tout $j \in \{0, \dots, N/2 1\}$, $X_j = A_j + e^{-\frac{2i\pi}{N}j}B_j$ et $X_{j+N/2} = A_j e^{-\frac{2i\pi}{N}j}B_j$ (on fera attention que A_j et B_j ne sont a priori définis que pour $0 \le j \le N/2 1$).
- (7) En déduire une méthode de calcul de la transformée de Fourier discrète utilisant seulement $O(n2^n) = O(N\log(N))$ additions et multiplications de nombres complexes.
- (8) On s'intéresse à nouveau à l'impact des erreurs d'arrondi.
 - (a) Pour tout j, on note $\Delta A_j = \hat{A}_j A_j$, respectivement $\Delta B_j = \hat{B}_j B_j$ l'erreur (absolue) sur le calcul de A_j , respectivement B_j . Montrer que l'erreur absolue pour le calcul de X_j est majorée en module par $|\Delta A_j| + |\Delta B_j| + \varepsilon (|A_j| + |B_j|)$, où ε est la précision des nombres flottants.
 - (b) On suppose pour simplifier que tous les composants de (X_0,\ldots,X_{N-1}) sont de module proche de $\sqrt{N}=2^{n/2}$, et que ceux de $(A_0,\ldots,A_{N/2-1})$ et $(B_0,\ldots,B_{N/2-1})$ sont tous de module proche de $\sqrt{N/2}=2^{(n-1)/2}$. On note u_{n-1} une borne sur l'erreur relative du calcul des A_j et des B_j . Montrer qu'une borne sur l'erreur relative du calcul des X_j est

$$u_n = \sqrt{2}(u_{n-1} + \varepsilon).$$

(c) En déduire que u_n est de l'ordre de $\varepsilon\sqrt{2^n}$ (indication : on pourra utiliser la commande rsolve). Comment ce résultat se compare-t-il à celui de la question 4?

Question bonus : Une multiplication de deux nombres complexes stockés sous forme algébrique revient à faire 4 multiplications réelles, à moins que l'un des facteurs ne soit réel ou imaginaire pur. Pour simplifier les calculs, Rader et Brenner ont proposé de remplacer $(B_0,\ldots,B_{N/2-1})$ par $(C_0,\ldots,C_{N/2-1})$, transformée de Fourier discrète de $(x_1-x_{N-1}-Q,x_3-x_1-Q,\ldots,x_{N-1}-x_{N-3}-Q)$ avec $Q=\frac{2}{N}\sum_{k=0}^{N-1}x_{2k+1}$. On obtient alors les formules suivantes, que l'on ne demande pas de justifier :

$$X_0 = A_0 + C_0$$
, $X_{N/2} = A_0 - C_0$, et pour tout $j \neq 0, N/2$, $X_j = A_j + \frac{C_j}{2i\sin(\frac{2\pi}{N}j)}$

(9) Expliquer pourquoi cette méthode n'est pas satisfaisante en terme de stabilité numérique.