next up previous contents index
suivant: Quotient euclidien : Quo monter: Arithmétique des polynômes précédent: Liste des diviseurs :   Table des matières   Index


Quotient euclidien : quo

quo donne le quotient de la division euclidienne de deux polynômes (division selon les puissances décroissantes).
On peut donner les polynômes soit par la liste de leurs coefficients selon les puissances décroissantes, soit sous leurs formes symboliques et dans ce cas la variable doit être rajoutée comme troisième argument (par défaut la variable est x).
On tape :
quo(x^2+2x+1,x+3)
On obtient :
x-1
On tape :
quo(t^2+2t+1,t+3,t)
On obtient :
t-1
ou on tape :
quo([1,2,1],[1,3])
On obtient :
$ \talloblong$1, -1$ \talloblong$
c'est à dire le polynôme poly1[1,-1].
Pour avoir le quotient de x3 + 2x + 4 par x2 + x + 2, on tape :
quo(x^3+2x+4,x^2+x+2)
On obtient :
x-1
Ou on tape :
quo([1,0,2,4],[1,1,2])
On obtient :
$ \talloblong$1, -1$ \talloblong$
c'est à dire le polynôme poly1[1,-1] ou encore le polynôme x-1.
On tape :
quo(t^3+2t+4,t^2+t+2,t)
On obtient :
t-1
On tape si on ne met pas la variable t comme dernier argument :
quo(t^3+2t+4,t^2+t+2)
On obtient :
(t^3+2*t+4)/(t^2+t+2)


next up previous contents index
suivant: Quotient euclidien : Quo monter: Arithmétique des polynômes précédent: Liste des diviseurs :   Table des matières   Index
Documentation de giac écrite par Renée De Graeve