next up previous contents index
suivant: Limite et intégrale monter: Les fonctions et les précédent: Somme de Riemann :   Table des matières   Index


Limites : limit limite

Pour calculer une limite, on utilise la commande limit que l'on trouve dans le menu Calc sous-menu Limit series (ou on le tape en mode $ \alpha$).
limit peut aussi calculer des limites par valeurs supérieures ou par valeurs inférieures en utilisant un paramètre supplementaire :
1 pour dire "par valeurs supérieures" et -1 pour dire "par valeurs inférieures".
limit a trois ou quatre arguments :
une expression, le nom de la variable (par exemple x), le point limite (par exemple a) et un argument optionnel, égal à 0 par défaut, qui indique que la limite est unidirectionnelle. Cet argument est égal à -1 pour une limite à gauche (x<a) ou est égal à 1 pour une limite à droite (x>a) ou à 0 pour une limite.
L'argument optionnel est donc utilisé lorsque l'on veut calculer une limite à droite (+1) ou une limite à gauche (-1).
limit renvoie la limite demandée.
Remarque
On peut aussi mettre comme argument x=a à la place de x,a donc : limit a aussi comme arguments une expression dépendant d'une variable, une égalité (variable =la valeur où l'on veut calculer la limite) et éventuellement 1 ou -1 pour indiquer la direction.
On tape :
limit(1/x,x,0,-1)
ou
limit(1/x,x=0,-1)
On obtient :
-(infinity)
On tape :
limit(1/x,x,0,1)
ou
limit(1/x,x=0,1)
On obtient :
+(infinity)
On tape :
limit(1/x,x,0,0)
ou
limit(1/x,x,0)
ou
limit(1/x,x=0)
On obtient :
infinity
cela veut dire que abs(1/x) tend vers + $ \infty$ quand x tend vers 0.
Exercices :

Pour calculer quelquefois des limites plus aisément, il peut être judicieux de quoter le premier argument.
On tape par exemple :

limit('(2*x-1)*exp(1/(x-1))',x=+infinity)
On remarquera que l'on a quoté ici le premier argument pour qu'il ne soit pas évalué c'est à dire pour qu'il ne soit pas simplifié.
On obtient :
+(infinity)


next up previous contents index
suivant: Limite et intégrale monter: Les fonctions et les précédent: Somme de Riemann :   Table des matières   Index
Documentation de giac écrite par Renée De Graeve