** suivant:** Conservative flux field :
** monter:** Multivariate calculus
** précédent:** Rotationnal : curl
** Table des matières**
** Index**

##

Potential : `potential`

`potential` takes two arguments : a vector field
in *R*^{n} with respect to *n* real variables
and the vector of these variable names.

`potential` returns, if it is possible, a function *U* such that
. When it is possible we
say that
derive of the potential *U*, and
*U* is defined up to a constant.

`potential` is the reciprocal function of `derive`.

Input :
`potential([2*x*y+3,x``^`

2-4*z,-4*y],[x,y,z])

Output :
`2*y*x``^`

2/
2+3*x+(x`^`

2-4*z-2*x`^`

2/2)*y

Note that in
^{3}
a vector
is a gradient if and only if it's
rotationnal is zero i.e. if `curl(V)=0`.
In time-independant electro-magnetism,
=
is the
electric field and *U* is the electric potential.

giac documentation written by Renée De Graeve and Bernard Parisse