** suivant:** The integer Euclidean remainder
** monter:** Integers (and Gaussian Integers)
** précédent:** The divisors of a
** Table des matières**
** Index**

##

The integer Euclidean quotient : `iquo intDiv`

`iquo` (or `intDiv`) returns the integer quotient *q* of the
Euclidean division of two integers *a* and *b* given as arguments.
(*a* = *b***q* + *r* with
0 *r* < *b*).

For Gaussian integers, we choose *q* so that *b***q* is as near by *a* as
possible and it can be proved that *r* may be choosen so that
| *r*|^{2} | *b*|^{2}/2.

Input :
`iquo(148,5) `

Output :
`29`

`iquo` works with integers or with Gaussian integers.

Input :
`iquo(factorial(148),factorial(145)+2 )`

Output :
`3176375`

Input :
`iquo(25+12*i,5+7*i) `

Output :
`3-2*i`

Here
*a* - *b***q* = - 4 + *i* and
| - 4 + *i*|^{2} = 17 < | 5 + 7**i*|^{2}/2 = 74/2 = 37

giac documentation written by Renée De Graeve and Bernard Parisse