Make a sequence or a list :

- with a default step of 1 or -1:
`j=a..b`or`j,a..b`(Maple-like syntax),`j,a,b`(TI-like syntax) - or with a specific step:
`j=a..b,p`(Maple-like syntax),`j,a,b,p`(TI-like syntax).

`$` is the infixed version of `seq` when `seq` has only two
arguments and returns always a sequence.
**Remark:**

- In
`Xcas`mode, the precedence of`$`is not the same as for example in`Maple`, in case of doubt put the arguments of`$`in parenthesis. For example, the equivalent of`seq(j`is`^`

2,j=-1..3)`(j`and returns`^`

2)$(j=-1..3)`(1,0,1,4,9)`. The equivalent of`seq(4,3)`is`4$3`and returns`(4,4,4)`. - With
`Maple`syntax,`j,a..b,p`is not valid. To specify a step*p*for the variation of*j*from*a*to*b*, use`j=a..b,p`or use the`TI`syntax`j,a,b,p`and get the sequence from the list with`op(...)`.

- with
`Maple`-like**syntax**`seq`has two arguments either an expression depending of a parameter (for example*j*) and*j*=*a*..*b*where*a*and*b*are reals, or a constant expression and an integer*n*.`seq`returns the sequence where*j*is replaced in the expression by*a*,*a*+ 1,...,*b*if*b*>*a*and by*a*,*a*- 1,...,*b*if*b*<*a*, or`seq`returns the sequence made by copying*n*times the constant.`seq`has three arguments an expression depending of a parameter (for example*j*) and*j*=*a*..*b*,*p*where*a*,*b*are reals and*p*is a real number.`seq`returns the sequence where*j*is replaced in the expression by*a*,*a*+*p*,...,*b*if*b*>*a*and by*a*,*a*-*p*,...,*b*if*b*<*a*.

Note that*j*,*a*..*b*is also valid but*j*,*a*..*b*,*p*is not valid.

`TI`**syntax**`seq`has four arguments an expression depending of a parameter (for example*j*), the name of the parameter (for example*j*),*a*and*b*where*a*and*b*are reals.`seq`returns the list where*j*is replaced in the expression by*a*,*a*+ 1,...,*b*if*b*>*a*and by*a*,*a*- 1,...,*b*if*b*<*a*.`seq`has five arguments an expression depending of a parameter (for example*j*), the name of the parameter (for example*j*),*a*,*b*and*p*where*a*,*b*and*p*are reals.`seq`returns the list where*j*is substitued in the expression by*a*,*a*+*p*,...,*a*+*k***p*(*a*+*k***p**b*<*a*+ (*k*+ 1)**p*or*a*+*k***p**b*>*a*+ (*k*+ 1)**p*). By default,*p*=1 if*b*>*a*and*p*=-1 if*b*<*a*.

Input to have a sequence with same elements :

`^`

3,j=1..4)`^`

3)$(j=1..4)`^`

3,j,1..4)`^`

3,j=-1..4,2)Input :

`^`

3,j,1,4)`^`

3,j,0,5,2)`^`

3,j,5,0,-2)`^`

3,j,5,0,2)`^`

3,j,1,3,0.5)`^`

3,j,1,3,1/2)- Find the third derivative of ln(
*t*), input:`diff(log(t),t$3)``-((-(2*t))/t``^`

4) - Input :
`l:=[[2,3],[5,1],[7,2]]``seq((l[k][0])$(l[k][1]),k=0 .. size(l)-1)``2,2,2,seq[5],7,7``eval(ans())`returns:`2,2,2,5,7,7` - Input to transform a string into the list of its characters :
f(chn):={ local l; l:=size(chn); return seq(chn[j],j,0,l-1); }

then input:`f("abracadabra")``["a","b","r","a","c","a","d","a","b","r","a"]`