** suivant:** Factorization in /p[x] :
** monter:** Compute in /p[x] using
** précédent:** Euclidien remainder: Rem
** Table des matières**
** Index**

##

GCD in
/*p*[*x*] : `Gcd`

`Gcd` is the inert form of `gcd`.

`Gcd` returns the gcd (greatest common divisor) of two polynomials
(or of a list of polynomials or of a sequence of polynomials) without
evaluation.

It is used in conjonction with `mod` in Maple syntax mode to compute
the gcd of two polynomials with coefficients in
/*p* with *p* prime
(see also 1.25.7).

Input in `Xcas` mode :
`Gcd((2*x``^`

2+5,5*x`^`

2+2*x-3)%13)

Output :
`gcd((2*x``^`

2+5)%13,(5*x`^`

2+2*x-3)%13)

you need to `eval(ans())` to get :
`(1%13)*x+2%13`

Input in `Maple` mode :
`Gcd(2*x``^`

2+5,5*x`^`

2+2*x-3) mod 13

Output :
`1*x+2`

Input:
`Gcd(x``^`

2+2*x,x`^`

2+6*x+5) mod 5

Output :
`1*x`

giac documentation written by Renée De Graeve and Bernard Parisse