** suivant:** Integer and fractional part
** monter:** Rational fractions
** précédent:** Simplify : simp2
** Table des matières**
** Index**

##

Common denominator : `comDenom`

`comDenom` takes as argument a sum of rational fractions.

`comDenom` rewrite the sum as a unique rational fraction.
The denominator of this rational fraction is the common denominator of the
rational fractions given as argument.

Input :
`comDenom(x-1/(x-1)-1/(x``^`

2-1))

Output :
`(x``^`

3+-2*x-2)/(x`^`

2-1)

giac documentation written by Renée De Graeve and Bernard Parisse