next up previous contents index
suivant: fourier_an monter: Fourier transformation précédent: Fourier transformation   Table des matières   Index

Fourier coefficients : fourier_an and fourier_bn or fourier_cn

Let f be a T-periodic continuous functions on $ \mathbb {R}$ except maybe at a finite number of points. One can prove that if f is continuous at x, then;
f (x) = $\displaystyle {\frac{{a_0}}{{2}}}$ + $\displaystyle \sum_{{n=1}}^{{+\infty}}$ancos($\displaystyle {\frac{{2\pi
nx}}{{T}}}$) + bnsin($\displaystyle {\frac{{2\pi
  = $\displaystyle \sum_{{n=-\infty}}^{{+\infty}}$cne$\scriptstyle {\frac{}{}}$2i$\displaystyle \pi$nxT  

where the coefficients anbn, n $ \in$ N, (or cn, n $ \in$ Z) are the Fourier coefficients of f. The commandsfourier_an and fourier_bn or fourier_cn compute these coefficients.


giac documentation written by Renée De Graeve and Bernard Parisse