Previous Up Next

20.4.16  Weibull distribution

The probability density function for the Weibull distribution.

The Weibull distribution depends on three parameters; k>0, λ > 0 and a real number θ. The probability density at x is given by

k
λ



x−θ
λ



2



 
 e−(x−θ)2λ2.     (11)

The weibull or weibulld command compute this density function.

Example

weibull(2,1,3)

or:

weibull(2,1,0,3)
     
6
e9
          
The cumulative distribution function for the Weibull distribution.

The weibull_cdf (or weibulld_cdf) command computes the cumulative distribution function for the Weibull distribution.

In this case, the Weibull cumulative distribution function is given by the formula weibull_cdf(k,λ,θ,x)= 1−e−(x−θ)2λ2.

Examples

weibull_cdf(2,3,5)

or:

weibull_cdf(2,3,0,5)
     
1−e
25
9
 
          
weibull_cdf(2.2,1.5,0.4,1.9)
     
0.632120558829           
weibull_cdf(2.2,1.5,0.4,1.2,1.9)
     
0.410267239944           
The inverse distribution function for the Weibull distribution.

The weibull_icdf (or weibulld_icdf) command computes the inverse distribution for the Weibull distribution.

Example

weibull_icdf(2.2,1.5,0.4,0.632)
     
1.89977657604           

Previous Up Next