20.4.16 Weibull distribution
The probability density function for the Weibull distribution.
The Weibull distribution depends on three parameters; k>0, λ
> 0 and a real number θ. The probability density at x is
given by
| | ⎛
⎜
⎜
⎝ | | ⎞
⎟
⎟
⎠ | | e−(x−θ)2λ2.
(11) |
The weibull
or weibulld
command compute this density function.
-
weibull takes three mandatory and one optional
argument:
-
k, a positive integer.
- λ, a positive real number.
- Optionally θ, a real number (by default 0).
- x, a real number.
- weibull(k,λ ⟨,θ ⟩, x) returns the value
of the Weibull density function, given in (11).
Example
or:
The cumulative distribution function for the Weibull distribution.
The weibull_cdf
(or weibulld_cdf)
command computes the cumulative distribution function for the Weibull distribution.
-
weibull_cdf (or weibulld_cdf) takes three
mandatory arguments and two optional arguments:
-
k, a positive integer.
- λ, a positive real number.
- Optionally θ, a real number (by default 0).
- x, a real number.
- Optionally, y, a real number. If this optional argument
is included, then θ must also be included.
- weibull_cdf(k,λ ⟨,θ ⟩,x) returns
Prob(X ≤ x) for the Weibull distribution with parameters
k, λ and θ.
- weibull_cdf(k,λ ⟨,θ ⟩,x,y) returns
Prob(x ≤ X ≤ y).
In this case, the Weibull cumulative distribution function is
given by the formula
weibull_cdf(k,λ,θ,x)= 1−e−(x−θ)2λ2.
Examples
or:
weibull_cdf(2.2,1.5,0.4,1.9) |
weibull_cdf(2.2,1.5,0.4,1.2,1.9) |
The inverse distribution function for the Weibull distribution.
The weibull_icdf
(or weibulld_icdf)
command computes the inverse distribution for the Weibull distribution.
-
weibull_icdf (or weibulld_icdf) takes
three mandatory arguments and one optional argument:
-
k, a positive integer.
- λ, a positive real number.
- Optionally θ, a real number (by default 0).
- h, a real number between 0 and 1.
- weibull_icdf(k,λ ⟨,θ ⟩,h) returns the inverse
distribution for the Weibull distribution with parameters
k, λ and θ; namely, the value of x for which
Prob(X ≤ x)=h.
Example
weibull_icdf(2.2,1.5,0.4,0.632) |