20.4.4 Negative binomial distribution
The probability density function for the negative binomial distribution.
If you repeatedly perform an experiment with probability of success
p, then, given an integer n, the probability of k failures that
occur before you have n successes is given by the negative binomial
distribution, which can be computed by
The negbinomial
command finds the density function for the negative binomial distribution.
-
negbinomial takes three arguments:
-
n and k, integers.
- p, a probability (a real number between 0 and 1).
- negbinomial(n,k,p) returns the value of the
negative binomial distribution, given in (2).
Example
Note that
The second formula makes sense even if n is negative, and you can
write
negbinomial(n,k,p)= | | pn (p−1)k,
|
from which the name negative binomial distribution comes
from. This also makes it simple to determine the mean (n(1−p)/p)
and variance (n(1−p)/p2). The negative binomial is also called the
Pascal distribution (after Blaise Pascal) or the Pólya
distribution (after George Pólya).
The cumulative distribution function for the negative binomial distribution.
The negbinomial_cdf
command finds the cumulative distribution function for the negative binomial distribution.
-
negbinomial_cdf takes three mandatory arguments and
two optional arguments:
-
n, an integer.
- p, a probability (between 0 and 1).
- x, a number.
- Optionally, y, a number.
- negbinomial_cdf(n,p,x) returns
Prob(X ≤ x)=negbinomial(n,0,p)+⋯+negbinomial(n,⌊ x⌋,p).
|
- negbinomial_cdf(n,p,x,y) returns
Prob(x ≤ X ≤ y)=negbinomial(n,⌈ x⌉,p)+⋯ +
negbinomial(n,⌊ y⌋,p)
|
Examples
negbinomial_cdf(4,0.5,2,5) |
The inverse distribution function for the negative binomial distribution.
The negbinomial_icdf
command gives the inverse distribution function for the negative binomial distribution.
-
negbinomial_icdf takes three arguments:
-
n, a positive integer.
- p, a probability (a real number between 0 and 1).
- h, a real number between 0 and 1.
- negbinomial_icdf(n,p,h) returns the value of the inverse
distribution for the negative binomial distribution with n and
probability p; namely, the smallest value of x for which
Prob(X ≤ x) ≥ h.
Example
negbinomial_icdf(4,0.5,0.9) |