Previous Up Next

15.2.9  Minimal polynomial

The minimal polynomial of a square matrix A is the polynomial P having minimal degree such that P(A)=0. The pmin command finds the minimal polynomial of a matrix.

Examples

pmin([[1,0],[0,1]])
     

1,−1
          
pmin([[1,0],[0,1]],x)
     
x−1           

Hence the minimal polynomial of [

10
01

] is x−1.

pmin([[2,1,0],[0,2,0],[0,0,2]])
     

1,−4,4
          
pmin([[2,1,0],[0,2,0],[0,0,2]],x)
     
x2−4 x+4           

Hence, the minimal polynomial of [

210
020
002

] is x2−4x+4.


Previous Up Next