Previous Up Next

15.2.4  Rational Jordan matrix

The rat_jordan command finds the rational Jordan form of a matrix.

Examples

Input not in Maple mode:

rat_jordan([[1,0,0],[1,2,-1],[0,0,1]])
     



010
101
011



,



200
010
001



          
rat_jordan([[1,0,0],[1,2,-1],[0,0,1]],P)
     



200
010
001



          
P
     



010
101
011



          
rat_jordan([[1,0,1],[0,2,-1],[1,-1,1]])
     



112
00−1
012



,



00−1
10−3
014



          
rat_jordan([[1,0,0],[0,1,1],[1,1,-1]])
     



−100
111
001



,



100
002
010



          

If A is symmetric and has eigenvalues with multiple orders, the matrix P returned by rat_jordan(A) will contain orthogonal eigenvectors (not always of norm equal to 1); that is, PTP will be a diagonal matrix where the diagonal is the square norm of the eigenvectors.

rat_jordan([[4,1,1],[1,4,1],[1,1,4]])
     



12−1
102
1−2−1



,



600
030
003



          

Previous Up Next