The rat_jordan command finds the rational Jordan form of a matrix.
J=P−1AP |
rat_jordan(A) (in Maple mode) only returns the matrix J.
Input not in Maple mode:
rat_jordan([[1,0,0],[1,2,-1],[0,0,1]]) |
|
rat_jordan([[1,0,0],[1,2,-1],[0,0,1]],P) |
|
P |
|
rat_jordan([[1,0,1],[0,2,-1],[1,-1,1]]) |
|
rat_jordan([[1,0,0],[0,1,1],[1,1,-1]]) |
|
If A is symmetric and has eigenvalues with multiple orders, the matrix P returned by rat_jordan(A) will contain orthogonal eigenvectors (not always of norm equal to 1); that is, PTP will be a diagonal matrix where the diagonal is the square norm of the eigenvectors.
rat_jordan([[4,1,1],[1,4,1],[1,1,4]]) |
|